
1

Host Interface
(HIF)

Specification
Version 2.0

2

Host Interface (HIF) Specification, Version 2.0

� 1991, 1992, 1993 by Advanced Micro Devices, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
Advanced Micro Devices, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the
Rights in Technical Data and Computer Software clause at 252.227–7013. Advanced Micro Devices, Inc., 5204 E. Ben
White Blvd., Austin, TX 78741–7399.

29K, Am29000, Am29027, Am29030, Am29050, Am29200, Am29240, Am29243, Am29245, SA-29200, SA-29240,
SD-29240, EB29K, EB29030 and MiniMON29K are trademarks of Advanced Micro Devices, Inc.

High C is a registered trademark of MetaWare, Inc.
MS-DOS is a registered trademark of Microsoft, Inc.
UNIX is a registered trademark of AT&T
Other product or brand names are used solely for identification and may be the trademarks or registered trademarks of
their respective companies.

The text pages of this document have been printed on recycled paper consisting of 50% recycled fiber and
virgin fiber; the post-consumer waste content is 10%. These pages are recyclable.

Advanced Micro Devices, Inc.
5204 E. Ben White Blvd.
Austin, TX 78741–7399

Host Interface (HIF) Specification i

3

Contents

About This Specification
How to Use This Documentation vi.

About This Specification vi.

Intended Audience vi.

Reference Documents vii.

Documentation Conventions viii.

Chapter 1

Introduction
HIF Applications 1–3.

HIF Users 1–4.

HIF Concepts 1–5.

Implementation Types 1–7.

Chapter 2

System Call Mechanism
HIF Service Invocation 2–3.

User-Mode Traps 2–6.

Supervisor-Mode Traps 2–7.

ii Host Interface (HIF) Specification

4

Chapter 3

HIF Service Routines
Service 1 – exit: Terminate a Program 3–7.

Service 17 – open: Open a File 3–8.

Service 18 – close: Close a File 3–14.

Service 19 – read: Read a Buffer of Data from a File 3–16.

Service 20 – write: Write a Buffer of Data to a File 3–19.

Service 21 – lseek: Seek a File Byte 3–22.

Service 22 – remove: Remove a File 3–25.

Service 23 – rename: Rename a File 3–26.

Service 24 – ioctl: Input/Output Control 3–28.

Service 25 – iowait: Test and Wait I/O Complete 3–32.

Service 26 – iostat: Input/Output Status 3–35.

Service 33 – tmpnam: Return a Temporary Name 3–37.

Service 49 – time: Return Seconds Since 1970 3–39.

Service 65 – getenv: Get Environment 3–41.

Service 67 – gettz: Get Time Zone 3–43.

Service 257 – sysalloc: Allocate Memory Space 3–45.

Service 258 – sysfree: Free Memory Space 3–46.

Service 259 – getpsize: Return Memory Page Size 3–48.

Service 260 – getargs: Return Base Address 3–49.

Service 273 – clock: Return Time in Milliseconds 3–51.

Service 274 – cycles: Return Processor Cycles 3–53.

Service 289 – setvec: Set Trap Address 3–55.

Service 290 – settrap: Set Trap Vector 3–57.

Service 291 – setim: Set Interrupt Mask 3–59.

Service 305 – query: Return Version Information 3–61.

Service 321 – signal: Register Signal Handler 3–64.

Service 322 – sigdfl: Perform Default Signal Action 3–68.

Service 323 – sigret: Return From Signal Interrupt 3–69.

Service 324 – sigrep: Return From Signal Interrupt 3–70.

Service 325 – sigskp: Return From Signal Interrupt 3–71.

Service 326 – sendsig: Send Signal 3–72.

Host Interface (HIF) Specification iii

5

Chapter 4

Process Environment
Startup Initialization 4–2.

Stack Allocation Sizes 4–3.

Program Termination 4–3.

Trap Handlers 4–4.

HIF-Conforming Application COFF Information 4–5.

Appendix A

HIF Quick Reference
HIF Quick Reference A–1.

Appendix B

HIF Error Numbers
HIF Error Numbers B–1.

Index

iv Host Interface (HIF) Specification

6

Figures and Tables

Figures
Figure 1–1. HIF Interface 1–2.

Figure 3–1. HIF Register Preservation 3–65.

Tables
Table 3–1. HIF Service Calls in Numerical Order 3–3.

Table 3–2. HIF Service Calls in Alphabetical Order 3–4.

Table 3–3. Service Call Parameters 3–5.

Table 3–4. Open Service Mode Parameters 3–10.

Table 3–5. Open Service Mode Parameters 3–28.

Table 3–6. Signals Handled 3–64.

Table 3–7. Signal Return Services 3–66.

Table 4–1. Trap Handler Vectors 4–4.

Table A–1. HIF Service Calls A–1.

Table A–2. Service Call Parameters A–3.

Table B–1. HIF Error Numbers Assigned B–1.

Host Interface (HIF) Specification v

7

About This Specification

The Host Interface (HIF) is the software specification that defines the standard
set of kernel services that interface a user-application program to a host
operating system. HIF currently provides the interface between the user’s
high-level language program and products such as the Advanced Micro
Devices (AMD�) 29K� Processor Architectural Simulator, PC Execution
Boards (EB29K� development tool, EB29030� add-in board, and more), and
Standalone Demonstration and Execution Boards (SA-29200�, SA-29240�,
SD-29240�, EZ-030, and more).

End-users include the following:

� Those using AMD-supplied hardware execution vehicles or simulators

� Those developing a custom kernel operating system for a 29K Family
processor design

� Those who are using the AMD-supplied high-level language development
tools, but who must conform to another kernel operating system interface

�� �����������	
�����������
�
	���

�

How to Use This Documentation

About This Specification

The contents of each chapter and appendix of this document are described
below:

� Chapter 1: “Introduction” discusses the important concepts underlying the host
interface definition.

� Chapter 2: “System Call Mechanism” describes the mechanism used to make
calls on the HIF services, and includes information on register usage for
passing parameters and receiving results.

� Chapter 3: “HIF Service Routines” lists the services defined in HIF, and then
describes each of the services and shows details of the code sequences, including
examples, for invoking the services.

� Chapter 4: “Process Environment” describes the standard memory allocation and
register initializations performed by the HIF-conforming kernel prior to execution
of a user program.

� Appendix A: “HIF Quick Reference” lists all of the services and service
parameters used in this document, in quick reference form.

� Appendix B: “HIF Error Numbers” lists the error codes that HIF-conforming
services may return.

Intended Audience

This has been written for systems designers and programmers with a strong
working knowledge of the 29K Family and their supporting peripheral
hardware. This specification does not cover CPU design, the processor
instruction sets, or any other hardware details.

Host Interface (HIF) Specification vii

9

Reference Documents

The following AMD documents may be of interest:

� Am29000� and Am29005� User’s Manual and Data Sheet
Advanced Micro Devices, order number 16914A.

� Am29030� and Am29035� Microprocessors User’s Manual and Data Sheet
Advanced Micro Devices, order number 15723B

� Am29050� Microprocessor User’s Manual
Advanced Micro Devices, order number 14778A

� Am29050� Data Sheet
Advanced Micro Devices, order number 15039A.

� Am29200� RISC Microcontroller User’s Manual and Data Sheet
Advanced Micro Devices, order number 16362B

� Am29205� RISC Microcontroller Data Sheet
Advanced Micro Devices, order number 17198A

� Am29240�, Am29245�, and Am29243� RISC Microcontrollers
User’s Manual and Data Sheet
Advanced Micro Devices, order number 17741A

� Processor Initialization and Run-Time Services: OSBOOT
Advanced Micro Devices, order number 18275A

� Programming the 29K� RISC Family
by Daniel Mann, P T R Prentice-Hall, Inc. 1994

� Universal Debugger Interface (UDI) Specification
Advanced Micro Devices, order number 18276A

���� ����������
���������	������
����

��

Documentation Conventions

This specification assumes some familiarity with the UNIX� operating system
and the C language. In this specification, the conventions presented in the
sections below are assumed.

Numeric Values
All numeric values are presumed to be expressed in decimal notation unless
otherwise stated. Hexadecimal values are prefaced by the characters 0x. Any
value not prefaced by 0x is defined to be a decimal number. For example:

100092 Decimal number
0x100092 Hexadecimal number

The first number above is a decimal value by implication, because it has not
been prefaced by 0x. The second constant includes the explicit 0x prefix,
designating it as a hexadecimal value.

Character Strings
In the documentation, frequent mention is made of character strings that hold
filenames, pathnames, and environment variable names. In all cases, the HIF
Specification requires that strings be constructed as a sequence of ASCII
characters terminated by a NULL byte (an 8-bit character composed of all zero
bits). This is the form in which strings are represented in the C language. Thus,
the space reserved for a string must be one byte longer than the length of the
string, to accommodate the NULL byte.

Languages such as Pascal, which require counted strings (that is, a single 8-bit
byte in the first character of the string that specifies the number of bytes that
follow), are required to convert these to NULL-terminated form before calling
the HIF kernel services. In addition, languages other than C may need to
convert strings passed back from the HIF kernel services to a compatible
internal form. All returned strings are in NULL-terminated form.

Host Interface (HIF) Specification 1–1

11

Chapter 1

Introduction

Advanced Micro Devices is developing a complete line of 29K processor
simulators, hardware target execution vehicles, and high-level language
development tools for the 29K Family of 32-bit RISC microprocessors. These
products are designed to support end-users who are building embedded system
applications based on a 29K Family processor. For these users, often there is
no existing operating system or kernel for their hardware design.

Before AMD could create development tools for the 29K processors, a
standard set of kernel services had to be defined that would interface a
user-application program, written in a high-level language, to a host operating
system or any one of the 29K Family of processors.

The Host Interface (HIF) is the software specification that defines this standard
set of kernel services. Figure 1–1 shows the level where HIF resides. As
implied by the figure, HIF does not describe any particular implementation;
but rather each simulator, hardware vehicle, and high-level language
implements HIF in its own way. The kernel services provide the minimum
functionality needed to interface high-level language library functions to the
user’s operating system code.

1–2 Host Interface (HIF) Specification

12

Using HIF, program modules written in any of the languages available for the
29K processor can be combined, and the resulting program can run, without
change, on any 29K processor simulator or hardware execution vehicle. Future
AMD products will also use HIF, and AMD is actively encouraging third-party
vendor support.

AMD is indebted to Embedded Performance, Incorporated (EPI), who
originally developed the HIF concepts and then graciously made them
available.

29K
Processor

User’s
Application
Program

High-Level
Language
Library

Host
Interface
(HIF)

Operating
System
Kernel

Figure 1–1. HIF Interface

Host Interface (HIF) Specification 1–3

13

HIF Applications
The HIF specification has broad applications; it provides the interface between
the user’s high-level language program and many hardware and software
products. Some of the hardware and software products supported are as
follows:

� 29K Processor Architectural Simulator. This software product provides the
means to simulate the operation of the 29K Family processor in a specified
system environment. It provides detailed performance statistics by modeling
the internal architecture of the 29K processors, as well as system memory
configurations and timing. The HIF specification is implemented to provide
the interface between the user’s program and the host operating system.

� EZ-030 Demonstration Board. This hardware product is intended to be an
evaluation vehicle for the Am29030� processor. The entire HIF
specification is implemented on this board, which contains a resident
operating system to implement the necessary kernel services.

� SA-29200 Demonstration Board. This hardware product contains an
Am29200� processor and memory. It is intended to be an evaluation
vehicle for the Am29200 processor.

� SD-29240 Stand-Alone Demonstration Board has limited development
support and is designed to demonstrate the Am29240� or Am29245�
microcontrollers.

� SA-29240 Development and Evaluation Board provides a demonstration and
evaluation platform for the Am29240, Am29245 and Am29243�

microcontrollers.

� PC Execution Boards (EB29K development tool and EB29030 add-in
board). These hardware/software products contain an Am29000 and
Am29030 processor and memory, and are add-in boards to IBM PC-based
systems. One part of the HIF specification is implemented on the board,
and it’s counter-part, which interfaces directly with MS-DOS�, is
implemented on the PC.

Because HIF is a general-purpose standard, it can be used to interface any
high-level language to the 29K Family of processors. User programs need not
be written entirely in a high-level language; they may incorporate
assembly-language functions when maximized performance is the primary
concern.

1–4 Host Interface (HIF) Specification

14

HIF Users
There are three categories of end users who need to know the details of the
host interface:

� Those using AMD-supplied hardware execution vehicles or simulators. This
document defines the low-level mechanisms of HIF. With this information
and the design concepts presented herein, end-users can extend the HIF
environment to meet the needed degree of software functionality and
sophistication.

� Those developing a custom kernel operating system for any of the 29K
Family of microprocessors. These users need access to AMD’s high-level
and assembly-language development tools. This document provides the
information required to build a HIF-conforming kernel that uses the
high-level language development tools directly. With this information,
end-users can extend and customize the operating system code without
interfering with the basic capabilities of the HIF.

� Those who are using the AMD-supplied high-level language development
tools, but who must conform to another kernel operating system interface.
There is sufficient information in this document to enable users to modify
the development tools to properly interface with the target kernel’s
specifications.

Host Interface (HIF) Specification 1–5

15

HIF Concepts
Programmers developing software in a high-level language do not work
directly with the processor. Instead, they think in terms of a virtual machine
ideally suited to the computational paradigm of the language. For instance, the
C-language virtual machine has operations such as fprintf() and strcpy(), and
the FORTRAN machine has operations such as alog and sqrt.

In actual practice, these virtual machines are implemented by libraries of
object code that perform language-specific operations. As long as programmers
use only the functions of the language’s implied virtual machine, the programs
will be portable across a broad range of implementations of the language.

However, computer systems generally provide another virtual machine to the
world: one that is defined by the operating system software. This virtual
machine requires system calls to perform the services that are implemented
within the operating system code. Typical services are: process management,
file system management, device management, and memory management.

The high-level language virtual machine usually consists of: 1) functions that
can be implemented entirely within library routines, and 2) functions that
require the services of the operating system. The functions of the first group
(usually defined as the standard library for that language) are independent of
the operating system virtual machine on which they are implemented. The
functions of the second group must be coded in terms of the operating system
virtual machine. In other words, they must make system calls.

Making system calls is often useful for end-users, even though this practice
makes their programs less portable. This requirement can be accommodated by
augmenting the language library with glue routines that specifically invoke the
system calls, while providing the end-user with suitable high-level syntax and
semantics.

1–6 Host Interface (HIF) Specification

16

Given the previous discussion, the required task is to create high-level
language development tools that can be used easily and efficiently on a variety
of execution vehicles. This task can be broken down into the following steps:

� Define an operating system virtual machine that provides sufficient
functionality to support the fundamental requirements of each high-level
language, but not so much as to require a massive development effort to
create.

� Add appropriate glue routines to the standard libraries of the language so the
libraries are defined in terms of the operating-system virtual machine.

� Implement the operating system’s virtual machine services on the various
execution vehicles. For hardware vehicles, the virtual machine is
implemented by a kernel typically contained in a resident monitor software
program. For simulation vehicles, the virtual machine is implemented by
code internal to the simulator and by code simulated by the simulator.

For the 29K Family of hardware and software support products, HIF consists of
the following operating system virtual machine definitions:

� A carefully defined, efficient system call mechanism. Accessing a HIF
kernel service requires a transition from user mode to supervisor mode on
the processor. This requires a specific mechanism, such as a trap handler, to
be invoked.

� A set of services supporting the primitive requirements of C, FORTRAN,
and Pascal. Most of the services are defined according to UNIX operating
system interface specifications.

� A specification of the environment created by the kernel. This involves the
definition of storage allocation and register initializations implemented by
the kernel.

Host Interface (HIF) Specification 1–7

17

Implementation Types
Implementations of the HIF specification take two fundamental forms:
self-hosted and embedded.

The SA-29200 , SA-29240 and SD-29240 are some of AMD’s single-board
computers that incorporate microcontrollers, program and data memory. Serial
ports and timer-counter resources are resident in the microcontroller. In the
case of the SA-29200, the Am29200 processor is used. In the case of the
SA-29240 and SD-29240 boards, one of the Am2924x microcontrollers is used.
The HIF implementation for these boards includes a resident osboot program
that is programmed into ROM at low-memory locations and implements the
kernel services described in the “HIF Service Routines” chapter of this
document.

In contrast to the single-board computers, the EB29K and EB29030 tools are
two of AMD’s add-in boards for IBM PC-compatible computers. The EB29K
and EB29030 boards incorporate an Am29000 or Am29030 processor, program
and data memory, and PC dual-interface memory resources. The HIF
implementation for these boards consists of two portions of code. One portion
performs some of the kernel services on the board and the other portion
performs some of the kernel services through the auspices of the DOS
operating system. In the sense that the HIF is grafted onto the existing host
operating system, it is called an embedded implementation. The architectural
and instruction simulators are also embedded implementations because they
share the HIF implementation between custom code and existing host-computer
operating-system code.

There is no preference for either type of implementation as long as the services
and features of the HIF specification are fully implemented in the target
environment. With the standard interfaces that a HIF implementation presents,
application programs written for one environment will run equally well in
another.

Host Interface (HIF) Specification 2–1

18

Chapter 2

System Call Mechanism

System calls on 29K processor-based systems are accomplished through
invocation of a specific software trap. The 29K processor traps are roughly
equivalent to software interrupts on other CPUs. System call traps are invoked
through execution of an appropriate assert instruction whose assertion is
FALSE at the time the instruction is executed.

Execution of an ASEQ, ASGE, ASGEU, ASGT, ASGTU, ASLE, ASLEU,
ASLT, ASLTU , or ASNEQ instruction, where the result of the assertion is
FALSE, will cause the trap specified in the instruction to be taken.

Once the trap is invoked, the 29K Family processor accesses a trap vector
contained in a table of 256 separate trap handler addresses.

With the Am29000 and Am29050� microprocessors, the operating system
software may implement direct trap execution for increased efficiency,
(although in most implementations, the table of vectors is used). Since the
need for a vector table lookup is not required, this solution offers an efficiency
gain, even though it requires the reservation of a much greater amount of
system memory.

2–2 Host Interface (HIF) Specification

19

When a trap is taken, the normal program execution sequence is interrupted
and the trap handler is invoked. At this point, the current program’s context is
contained in CPU registers of the 29K processor. No saving or restoring of
registers is performed by the processor when a trap occurs. HIF services are
required to preserve the following registers and restore their contents before
returning to the application program:

� All local registers

� Global registers gr1, gr112–gr115, and gr125

� Global registers gr126 and gr127 should be preserved according to AMD
calling conventions. Their values may differ upon return from a HIF service,
but the span between their values will remain the same.

The HIF services may modify the contents of certain registers without first
saving their values, namely: gr121, gr96, and gr97; although, the application
program should not count on gr96 through gr111 to be untouched by current
and future HIF kernel services.

Host Interface (HIF) Specification 2–3

20

HIF Service Invocation
Before invoking HIF services, the service number and any input parameters to
be passed must be loaded into the general registers of the 29K processor. Both
local and global registers are used for various HIF services, as shown in the
HIF Service Calls table on page A–1. Details for invoking specific services are
contained in the “HIF Service Routines” chapter.

Service Number
Every HIF system service is identified by a unique number. Service numbers
0–127 and 256–383 are reserved for use by AMD and should not be used for
user-supplied extensions.

The service number must be loaded into global register gr121, the trap-handler
argument register. Global register gr121 is a temporary register and its value is
not preserved over a system call, nor will its value be preserved over any trap
invoked by the running program.

Input Parameters
Any input parameters to be passed must be placed in local registers lr2 through
lr17. See the appropriate 29K Family processor documentation for specific
details describing the parameter-passing mechanism.

Invoking a HIF Service
The HIF services are accessed by forcing trap 69 to occur, after the service
number and parameters (if any) are loaded in the designated registers. Trap
handler 69 executes the service in supervisor mode.

2–4 Host Interface (HIF) Specification

21

Returned Values
Most of the services return values, usually a single integer value (number of
bytes read or written, number of clock ticks, size of a memory block, etc.), or a
pointer (address of a file descriptor, address of a memory block, etc.). These
values are returned in register gr96, per standard high-level language calling
conventions.

If a service returns multiple values, the additional values are returned in gr97,
gr98, and so forth. If the service fails to perform the requested task, the
validity of the values contained in gr96 and succeeding registers is not
guaranteed.

See the documentation that accompanies your language processor for
additional details on 29K Family processor high-level language calling
conventions.

Status Reporting
In all cases, upon return from a HIF service, global register gr121 contains either a
TRUE value (0x80000000), or a positive nonzero integer error code indicating the
reason for failure. Predefined error codes for existing HIF implementations are
listed starting on page B–1.

HIF does not specify these error codes. They may be completely defined by an
implementation, except for cases in which there is a corresponding, existing,
UNIX error code. In these cases, the UNIX error code is expected to be used
(see Appendix B).

Host Interface (HIF) Specification 2–5

22

Example Assembly Code
The following code fragment shows how the definitions given previously are
implemented in Am29000 processor assembly-language to invoke the open
HIF service to open a file:

const lr2,input_file ;set input file
consth lr2,input_file ;pathname address
const lr3,O_RDONLY ;set open mode
const gr121,17 ;service number=17 (open)
asneq 69,gr1,gr1 ;force trap 69

;(a system call)
jmpf gr121,err_hand ;handle service error
nop

In this example, local register lr2 is loaded with the address of the filename
constant; local register lr3 contains the code: O_RDONLY, indicating that the
file is to be opened for read-only access. The service number (17) is loaded
into global register gr121 and the service is executed by asserting that register
gr1 is not equal to itself. Since this is FALSE, the trap is invoked. Upon return
from the service, global register gr121 contains either a TRUE value,
indicating that the service was successful; or a positive nonzero error code,
indicating that the service could not complete. If an error code is returned,
gr121 will test as FALSE, providing the means to invoke an appropriate error
handler routine.

2–6 Host Interface (HIF) Specification

23

User-Mode Traps
When a trap is invoked, the 29K Family processor switches from user mode to
supervisor mode to execute the trap handler code. Most of the traps are
properly executed in this mode, including the kernel services that implement
the HIF specification. However, a few traps, such as the spill/fill handlers, are
intended to execute in user mode. In these cases, the trap handler code is not
part of the kernel, but is supplied by the particular high-level language product
library and is linked with the user’s application program.

In order to use a consistent trap-handling mechanism, and to support the
individual language products’ methodologies for user-mode traps, a HIF
service called setvec is called with the address of the user-mode trap- handler
code for each of the traps handled in this way.

Once the user-mode handler addresses have been supplied and the corresponding
trap is invoked, the operating-system kernel receives control in supervisor
mode. It then reinstates user mode and invokes the appropriate language
library trap handler to complete the required operation. This bouncing from
user mode to supervisor mode and back to user mode is referred to as a
trampoline effect. When the trap handler’s execution is complete, it returns
directly to the user’s application program rather than back through the kernel.

The register stack spill/fill handlers are appropriate examples of code that is
intended to execute in user mode. When a user’s application program calls a
function that requires a large number of local registers to execute, some
currently unused registers may have to be written to main memory to free
enough of the on-chip registers. In this case, the registers are spilled to
memory via the spill-trap handler. When the function completes execution and
intends to return to its caller, the spilled registers may have to be restored by
calling the fill-trap handler. Since register stack management is unique for each
application environment, individual spill/fill handlers are provided with each
of the high-level language products.

Host Interface (HIF) Specification 2–7

24

Supervisor-Mode Traps
The settrap service offers the ability for supervisor-mode traps to be installed
at the discretion of the implementation designer. These traps are installed
directly into the vector table whose base address is pointed to by the Vector
Area Base Address special-purpose register (VAB). It is up to the
implementation designer whether this facility will be implemented and made
available to the user program.

In many dedicated hardware systems, programs are given permission to access the
full facilities of the system hardware. In this case, the implementation designer
should determine which trap vectors may be set or modified by the settrap
service. In cases where only a limited number of vectors may be modified in this
way, the designer should test the trapno parameter to validate the request.

In cases where certain trap vectors have privileged access, or if access to the
settrap service is not allowed to a particular user, the implementation should take
care to return the EHIFNOTAVAIL error code. This will ensure portability of
applications across different implementations.

When a trap occurs, whether in user or supervisor mode, the 29K Family
processor enters supervisor mode to execute the trap-handling function pointed
to by the trap address stored in the vector. The trap-handling function is
required to save and restore the registers described in this specification.

Two special traps are handled under the auspices of the signal facility. This
service call lets user programs specify trap handlers for user-interrupt and
floating-point exception errors. The signal service is described beginning on
page 3–64 of this specification.

Host Interface (HIF) Specification 3–1

25

Chapter 3

HIF Service Routines

The HIF service routine calls currently defined are listed by decimal service
number in Table 3–1, and in alphabetical order in Table 3–2. Descriptions of
the individual services follow on the remaining pages of this chapter, and are
listed in order of service number. Table 3–3 describes the parameter names
used in the service descriptions.

Most HIF calls are similar or identical to equivalent UNIX operating- system
calls. The titles given in the tables are not the names that actually exist in a
particular library but, instead, are the generic names of the services.

Service numbers 0–127 and 256–383 are reserved by AMD and should not be
used for user-supplied extensions.

Each service description on the following pages contains a concise explanation
of the purpose of the service, the input and result register contents, and
example assembly-language code to invoke the service. In all cases,
operating-system kernel services meeting the HIF specifications are invoked
by forcing the software trap 69 to occur. The service number is always
contained in general register gr121 and parameters are passed, if necessary, in
local registers beginning with lr2.

When the service returns, general register gr121 is required to report the
success or failure of the service. If successful, gr121 is expected to contain a
TRUE boolean value (a 1 bit in the most significant bit position). If the service
is not successful, a positive nonzero error code is returned in gr121. If the
service returns results, the first result is held in gr96, the second in gr97, and
so forth.

3–2 Host Interface (HIF) Specification

26

HIF implementations are required to return an error code when a requested
operation is not possible. The codes from 0–10,000 are
reserved for compatibility with current and future HIF error return standards.
The currently assigned codes and their meanings are listed in Appendix B. If a
HIF implementation returns an error code in the range of 0–10,000, it must
carry the identical meaning to the corresponding error code in this table. Error
code values larger than 10,000 are available for implementation-specific
errors.

In the examples for each service call, references are made to error handlers that
are not part of the example code. These are assumed to be contained in the
larger part of the user’s code and are not supplied as part of the HIF
specification. The JMPF instructions have been provided to show that interface
glue routines should incorporate this error-testing philosophy in order to be
robust. In practice, error handling may be relegated to a single routine, or may
be vested in individual sections of either inline code, or as callable services by
the glue routines.

Since HIF implementations may exist over a wide spectrum of systems, the
capabilities of the HIF may vary from one system to the next. In the simplest
case, the HIF implementation in an embedded Am29000 processor system,
such as a printer controller, may contain no external file system. In this event,
the input/output facilities specified in the kernel service descriptions need not
be implemented. In more common cases, where the HIF will exist on systems
that have full operating-system capabilities, such as DOS or UNIX, it is
assumed that all of the features of the HIF will be implemented. The service
descriptions in this document provide a set of standard interfaces for
commonly implemented operating- system interfaces. If individual features are
implemented, the interfaces are expected to follow the guidelines in this
specification.

It is suggested that unimplemented services consist of skeleton code that
always returns an EHIFNOTAVAIL error code, to aid in portability between
implementations. Undefined HIF services, if invoked, should return the
EHIFUNDEF error code; although this is up to the discretion of the
implementor.

Host Interface (HIF) Specification 3–3

27

Table 3–1. HIF Service Calls in Numerical Order

Number Title Description Page

1 exit Terminate a program 3–7
17 open Open a file 3–8
18 close Close a file 3–14
19 read Read a buffer of data from a file 3–16
20 write Write a buffer of data to a file 3–19
21 lseek Seek a file byte 3–22
22 remove Remove a file 3–25
23 rename Rename a file 3–26
24 ioctl Input/output control 3–28
25 iowait Test and wait I/O complete 3–32
26 iostat Input/output status 3–35
33 tmpnam Return a temporary name 3–37
49 time Return seconds since 1970 3–39
65 getenv Get environment 3–41
66 Reserved
67 gettz Get time zone 3–43
257 sysalloc Allocate memory space 3–45
258 sysfree Free memory space 3–46
259 getpsize Return memory page size 3–48
260 getargs Return base address 3–49
261 Reserved
273 clock Return time in milliseconds 3–51
274 cycles Return processor cycles 3–53
289 setvec Set trap address 3–55
290 settrap Set trap vector 3–57
291 setim Set interrupt mask 3–59
305 query Return version information 3–61
321 signal Register signal handler 3–64
322 sigdfl Perform default signal action 3–68
323 sigret Return from signal interrupt

(normal)
3–69

324 sigrep Return from signal interrupt
(repeat operation)

3–70

325 sigskp Return from signal interrupt
(skip operation)

3–71

326 sendsig Send signal 3–72

3–4 Host Interface (HIF) Specification

28

Table 3–2. HIF Service Calls in Alphabetical Order
Name Description Page

clock Return time in milliseconds 3–51
close Close a file 3–14
cycles Return processor cycles 3–53
exit Terminate a program 3–7
getargs Return base address 3–49
getenv Get environment 3–41
getpsize Return memory page size 3–48
gettz Get time zone 3–43
ioctl Input/output control 3–28
iostat Input/output status 3–35
iowait Test and wait I/O complete 3–32
lseek Seek a file byte 3–22
open Open a file 3–8
query Return version information 3–61
read Read a buffer of data from a file 3–16
remove Remove a file 3–25
rename Rename a file 3–26
sendsig Send signal 3–72
setim Set interrupt mask 3–59
settrap Set trap vector 3–57
setvec Set trap address 3–55
sigdfl Perform default signal action 3–68
signal Register signal handler 3–64
sigrep Return from signal interrupt (repeat operation) 3–70
sigret Return from signal interrupt (normal) 3–69
sigskp Return from signal interrupt (skip operation) 3–71
sysalloc Allocate memory space 3–45
sysfree Free memory space 3–46
time Returns seconds since 1970 3–39
tmpnam Return a temporary name 3–37
write Write a buffer of data to a file 3–19

Host Interface (HIF) Specification 3–5

29

Table 3–3. Service Call Parameters

Parameter Description

027vers The version number of the installed Am29027 arithmetic
accelerator chip (if any).

addrptr A pointer to an allocated memory area, a
command-line-argument array, a pathname buffer, or a
NULL-terminated environment variable name string.

baseaddr The base address of the command-line-argument vector
returned by the getargs service.

buffptr A pointer to the buffer area where data is to be read from or
written to during the execution of I/O services, or the buffer area
referenced by the wait service.

capcode The capabilities request code passed to the query service.
Code values are: 0 (request HIF version), 1 (request CPU
version), 2 (request Am29027 arithmetic accelerator version), 3
(request CPU clock frequency), and 4 (request memory
environment).

clkfreq The CPU clock frequency (in Hertz) returned by the query
service.

count The number of bytes actually read from file or written to a file.

cpuvers The CPU family and version number returned by the query
service.

cycles The number of processor cycles (returned value).

di The disable interrupts parameter to the setim service.

dstcode The daylight-savings-time-in-effect flag returned by the gettz
service.

errcode The error code returned by the service. These are usually the
same as the codes returned in the UNIX errno variable. See
Appendix B for a list of HIF error codes.

exitcode The exit code of the application program.

filename A pointer to a NULL-terminated ASCII string that contains the
directory path of a temporary filename.

fileno The file descriptor that is a small integer number. File
descriptors 0, 1, and 2 are guaranteed to exist and correspond
to open files on program entry (0 refers to the UNIX equivalent
of stdin and is opened for input; 1 refers to the UNIX stdout and
is opened for output; 2 refers to the UNIX stderr and is opened
for output).

funaddr A pointer to the address of a spill or fill handler passed to the
setvec service.

hifvers The version of the current HIF implementation returned by the
query service.

iostat The input/output status returned by the iostat service.

3–6 Host Interface (HIF) Specification

30

Parameter Description

mask The interrupt mask value passed to and returned by the setim
service.

memenv The memory environment returned by the query service.

mode A series of option flags whose values represent the operation to
be performed. Used in the open , ioctl , and wait services to
specify the operating mode.

msecs Milliseconds returned by the clock service.

name A pointer to a NULL-terminated ASCII string that contains an
environment variable name.

nbytes The number of data bytes requested to be read from or written
to a file, or the number of bytes to allocate or deallocate from
the heap.

newfile A pointer to a NULL-terminated ASCII string that contains the
directory path of a new filename.

newsig The address of the new user signal handler passed to the
signal service.

offset The number of bytes from a specified position (orig) in a file,
passed to the lseek service.

oldfile A pointer to NULL-terminated ASCII string that contains the
directory path of the old filename.

oldsig The address of the previous user signal handler returned by the
signal service.

orig A value of 0, 1, or 2 that refers to the beginning, the current
position, or the position of the end of a file.

pagesize The memory page size, in bytes, returned by the getpsize
service.

pathname A pointer to a NULL-terminated ASCII string that contains the
directory path of a filename.

pflag The UNIX file access permission codes passed to the open
service.

retval The return value that indicates success or failure.

secs The seconds count returned by the time service.

sig A signal number passed to the sendsig service.

sigptr A pointer to the HIF signal stack containing preserved registers.

trapaddr The trap address returned by the setvec and settrap services;
a trap address passed to and returned by the settrap service.

trapno The trap number passed to the setvec and settrap services.

where The current position in a specified file returned by the lseek
service.

zonecode The time zone minutes correction value returned by the gettz
service.

Host Interface (HIF) Specification 3–7

31

Service 1 – exit
Terminate a Program

Description
This service terminates the current program and returns a value to the system
kernel, indicating the reason for termination. By convention, a zero passed in
lr2 indicates normal termination, while any nonzero value indicates an
abnormal termination condition. There are no returned values in registers gr96
and gr121 since this service does not return.

Register Usage

Type Regs Contents Description

Calling: gr121 1 (0x1) Service number

lr2 exitcode User-supplied exit code

Returns: gr96 undefined This service call does not return

gr121 undefined This service call does not return

Example Call

 const lr2,1 ;exit code = 1

 const gr121,1 ;service = 1

 asneq 69,gr1,gr1 ;call the operating system

In the above example, the operating system kernel is being called with service
code 1 and an exit code of 1, which is interpreted according to the
specifications of the individual operating system. The value of the exit code is
not defined as part of the HIF specification.

In general, however, an exit code of zero (0) specifies a normal program
termination condition, while a nonzero code specifies an abnormal termination
resulting from detection of an error condition within the program.

Programs can terminate normally by falling through the curly brace at the end
of the main function in a C-language program. Other languages may require an
explicit call to the kernel’s exit service.

3–8 Host Interface (HIF) Specification

32

Service 17 – open
Open a File

Description
This service opens a named file in a requested mode. Files must be explicitly
opened before any read, write , close, or other file-positioning accesses can be
accomplished. The open service, if successful, returns an integer token that is
used to refer to the file in all subsequent service requests. In many high-level
languages, the returned token is referred to as a file descriptor. Filenames are
generally not portable from one implementation to another. In some cases,
names can be made more portable by limiting them to six or fewer uppercase
alphabetic characters, or by using the tmpnam HIF service (33) to create
names that conform to the current implementation’s file system requirements.

Environment variables can also be used to specify legal filenames for
application programs wishing to conform to the requirements of a particular
HIF implementation. The getenv service (65) provides the means to associate a
filename or pathname with a mnemonic reference. This is the most portable
means to specify pathnames for implementations incorporating the getenv
service.

The HIF specification intentionally refrains from defining the constituents of a
legal pathname or any intrinsic characteristics of the implemented file system.
In this regard, the only requirement of a HIF-conforming kernel is that when
the open service is successfully performed, the routine must return a small
integer value that can be used in subsequent input/output service calls to refer
to the opened file.

Host Interface (HIF) Specification 3–9

33

Register Usage

Type Regs Contents Description

Calling: gr121 17 (0x17) Service number

lr2 pathname A pointer to a filename

lr3 mode See parameter descriptions below

lr4 pflag See parameter descriptions below

Returns: gr96 fileno Success: �� 0 (file descriptor)
Failure: < 0

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

Parameter Descriptions
Pathname is a pointer to a zero-terminated string that contains the full path and
name of the file being opened. Individual operating systems have different
means to specify this information. With hierarchical file systems, individual
directory levels are separated with special characters that cannot be part of a
valid filename or directory name. In UNIX-compatible file systems, directory
names are separated by forward slash characters, /, (e.g.,
/usr/jack/files/myfile); where usr, jack, and files are succeedingly lower
directory levels, beginning at the root directory of the file system. The name
myfile is the filename to be opened at the specified level. The individual
characteristics of files and pathnames are determined by the specifications of a
particular operating system implementation.

The mode parameter is composed of a set of flags whose mnemonics and
associated values are listed in Table 3–4.

3–10 Host Interface (HIF) Specification

34

Table 3–4. Open Service Mode Parameters

Name Value Description

O_RDONLY 0x0000 Open for read-only access

O_WRONLY 0x0001 Open for write-only access

O_RDWR 0x0002 Open for read and write access

O_APPEND 0x0008 Always append when writing

O_NDELAY 0x0010 No delay

O_CREAT 0x0200 Create file if it does not exist

O_TRUNC 0x0400 If the file exists, truncate it to zero length

O_EXCL 0x0800 Fail if writing and the file exists

O_FORM 0x4000 Open in text format

The O_RDONLY mode provides the means to open a file and guarantee that
subsequent accesses to that file will be limited to read operations. The
operating system implementation will determine how errors are reported for
unauthorized operations. The file pointer is positioned at the beginning of the
file unless the O_APPEND mode is also selected.

The O_WRONLY mode provides the means to open a file and guarantee that
subsequent accesses to that file will be limited to write operations. The
operating system implementation will determine how errors are reported for
unauthorized operations. The file pointer is positioned at the beginning of the
file unless the O_APPEND mode is also selected.

The O_RDWR mode provides the means to open a file for subsequent read
and write accesses. The file pointer is positioned at the beginning of the file
unless the O_APPEND mode is also selected.

If O_APPEND mode is selected, the file pointer is positioned to the end of the
file at the conclusion of a successful open operation, so that data written to the
file is added following the existing file contents.

Ordinarily, a file must already exist in order to be opened. If the O_CREAT
mode is selected, files that do not currently exist are created; otherwise, the
open function will return an error condition in gr121.

Host Interface (HIF) Specification 3–11

35

If a file being opened already exists and the O_TRUNC mode is selected, the
original contents of the file are discarded and the file pointer is placed at the
beginning of the (empty) file. If the file does not already exist, the HIF service
routine should return an error value in gr121, unless O_CREAT mode is also
selected.

The O_EXCL mode provides a method for refusing to open the file if the
O_WRONLY or O_RDWR modes are selected and the file already exists. In
this case, the kernel service routine should return an error code in gr121.

O_FORM mode indicates that the file is to be opened as a text file rather than
a binary file. The nominal standard input, output, and error files (file
descriptors 0, 1, and 2) are assumed to be open in text mode prior to
commencing execution of the user’s program.

When opening a FIFO (interprocess communication file) with O_RDONLY or
O_WRONLY set, the following conditions apply:

� If O_NDELAY is set (i.e., equal to 0x0010):

– A read-only open will return without delay.

– A write-only open will return an error if no process currently has the file
open for reading.

� If O_NDELAY is clear (i.e., equal to 0x0000):

– A read-only open will block until a process opens a file for writing.

– A write-only open will block until a process opens a file for reading.

When opening a file associated with a communication line (e.g., a remote
modem or terminal connection), the following conditions apply:

� If O_NDELAY is set, the open will return without waiting for the carrier
detect condition to be TRUE.

� If O_NDELAY is clear, the open will block until the carrier is found to be
present.

3–12 Host Interface (HIF) Specification

36

The optional pflag parameter specifies the access permissions associated with a
file; it is only required when O_CREAT is also specified (i.e., create a new file
if it does not already exist). If the file already exists, pflag is ignored. This
parameter specifies UNIX-style file access permission codes (r, w, and x for
read, write, and execute, respectively) for the file’s owner, the work group, and
other users. If pflag is -1, then all accesses are allowed. See the UNIX
operating system documentation for additional information on this topic.

Example Call

path: .ascii “/usr/jack/files/myfile\0”

.set mode,0_RDWR|0_CREAT|0_FORM

.set permit,0x180

fd: .word 0

const lr2,path ;address of

consth lr2,path ;pathname

const lr3,mode ;open mode
;settings

const lr4,permit ;permissions

const gr121,17 ;service=17 (open)

asneq 69,gr1,gr1 ;perform OS call

jmpf gr121,open_err ;jump if error on
;open

const gr120,fd ;set address of

consth gr120,fd ;file descriptor

store 0,0,gr96,gr120 ;store file
;descriptor

In the above example, the file is being opened in read/write text mode. The
UNIX permissions of the owner are set to allow reading and writing, but not
execution, and all other permissions are denied. As indicated above in the
parameter descriptions, the file permissions are only used if the file does not
already exist. When the open service returns, the program jumps to the
open_err error handler if the open was not successful; otherwise, the file
descriptor returned by the service is stored for future use in read, write , lseek,
remove, rename, or close service calls.

Host Interface (HIF) Specification 3–13

37

As described in the introduction to these services, the HIF can be implemented
to several degrees of elaboration, depending on the underlying system
hardware and whether the operating system is able to provide the full set of
kernel services. In the least capable instance (i.e., a standalone board with a
serial port), it is likely that only the O_RDONLY, O_WRONLY, and O_RDWR
modes will be supported. In more capable systems, the additional modes
should be implemented if possible.

If an error is encountered during the execution of an open call, no file
descriptor will be allocated.

3–14 Host Interface (HIF) Specification

38

Service 18 – close
Close a File

Description
This service closes the open file associated with the file descriptor passed in
lr2. Closing all files is automatic on program exit (see exit), but since there is
an implementation-defined limit on the number of open files per process, an
explicit close service call is necessary for programs dealing with many files.

Register Usage

Type Regs Contents Description

Calling: gr121 18 (0x12) Service number

lr2 fileno File descriptor

Returns: gr96 retval Success: = 0
Failure: < 0

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

Example Call

fd: .word 0

const gr96,fd ;set address of

consth gr96,fd ;file descriptor

load 0,0,lr2,gr96 ;get file descrip-
;tor

const gr121,18 ;service=18

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,clos_err ;handle close
;error

nop

Host Interface (HIF) Specification 3–15

39

The previous example illustrates loading a previously stored file descriptor (fd,
in this case) and calling the kernel’s close service to close the file associated
with that descriptor. If an error occurs when attempting to close the file, the
kernel will return an error code in gr121 (the content of that register will not be
TRUE) and the program will jump to an error handler; otherwise, program
execution will continue. The file will be closed and the file descriptor
deallocated, even when an error is encountered. Requested data is available.

3–16 Host Interface (HIF) Specification

40

Service 19 – read
Read a Buffer of Data from a File

Description
This service reads a number of bytes from a previously opened file (identified
by a small integer file descriptor in lr2 that was returned by the open service)
into memory starting at the address given by the buffer pointer in lr3. lr4
contains the number of bytes to be read. The number of bytes actually read is
returned in gr96. Zero is returned in gr96 if the file is already positioned at its
end-of-file. If an error is detected, a small positive integer is returned in gr121,
indicating the nature of the error.

Register Usage

Type Regs Contents Description

Calling: gr121 19 (0x13) Service number

lr2 fileno File descriptor

lr3 buffptr A pointer to buffer area

lr4 nbytes Number of bytes to be read

Returns: gr96 count* *See Return Value table, below.

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

The value returned in register gr96 can be interpreted differently, depending on
the current operating mode of the file identified by the fileno parameter. The
operating mode is established or changed by invoking the ioctl service (24).
The Return Value table shows how the return value in gr96 should be
interpreted for various operating modes.

Host Interface (HIF) Specification 3–17

41

Return Value

Count Non-ASYNC ASYNC NBLOCK

gr96>0 count n/a count

gr96 =0 EOF success EOF

gr96 <0 fail fail if = –1 and gr121 = EAGAIN,
no data is available. Other-
wise, fail.

In the Return Value table, for normal synchronous read service requests, the
return value contains a count of the number of bytes read (if gr96 > 0),
end-of-file (if gr96 = 0), or an indication that the operation failed (gr96 < 0).
For ASYNC mode, the operation is only scheduled by invoking the read
service, so the return value in gr96 merely indicates that the request succeeded
or failed. Nonblocking read requests indicate that data is to be returned if
available; otherwise, the service is to return control to the user process with an
indication that the operation would block if allowed to continue. When gr96
contains the value –1, and the errcode value in register gr121 is EAGAIN, then
no data is available to be read. If gr96 contains any other negative value, or if
register gr121 contains any other error code, the service request was not
accepted.

If the operating mode of the file descriptor referenced by the read service has
previously been set to ASYNC using the ioctl service, the iowait service
should be used to test the completion status of this operation, and to access the
number of bytes that have been transferred. If a previously issued
asynchronous read, write , or lseek operation is not complete, the current read
request will return a failure status. Only one outstanding request is allowed.

If the operating mode has previously been set to NBLOCK (nonblocking), the
count value returned in gr96 will only reflect the number of bytes currently
available in the buffer. NBLOCK mode only applies to terminal-like devices.

3–18 Host Interface (HIF) Specification

42

Example Call

fd: .word 0

.block 256

const gr119,fd

consth gr119,fd

load 0,0,lr2,gr119 ;get file
;descriptor

const lr3,buf ;set buffer

consth lr3,buf ;address

const lr4,256 ;specify buffer
;size

const gr121,19 ;service = 19

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,rd_err ;handle read errors

The example call requests the HIF to return 256 bytes from the file descriptor
contained in the variable fd. If the call is successful, gr121 will contain a
TRUE value and gr96 will contain the number of bytes actually read. If the
service fails, gr121 will contain the error code.

Host Interface (HIF) Specification 3–19

43

Service 20 – write
Write a Buffer of Data to a File

Description
This service writes a number of bytes from memory (starting at the address
given by the pointer in lr3) into the file specified by the small positive integer
file descriptor that was returned by the open service when the file was opened
for writing. lr4 contains the number of bytes to be written. The number of
bytes actually written is returned in gr96. If an error is detected, gr121 will
contain a small positive integer on return from the service, indicating the
nature of the error.

Register Usage

Type Regs Contents Description

Calling: gr121 20 (0x14) Service number

lr2 fileno File descriptor

lr3 buffptr A pointer to buffer area

lr4 nbytes Number of bytes to be written

Returns: gr96 count* *See Return Value table, below.

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

The value returned in register gr96 can be interpreted differently, depending on
the current operating mode of the file identified by the fileno parameter. The
operating mode is established or changed by invoking the ioctl service (24).
The following table shows how the return value in gr96 should be interpreted
for various operating modes.

3–20 Host Interface (HIF) Specification

44

Return Value

Count Non-ASYNC ASYNC NBLOCK

gr96=lr4 success n/a (NBLOCK mode is not illegal
for write requests, but
requests are performed in

0� gr96 < lr4 fail =0, success
requests are performed in
either synchronous or
ASYNC mode. Return val-
ues are interpreted accord-

gr96 <0 extreme fail
ues are interpreted accord
ingly.)

In the Return Value table, for normal synchronous write service requests, the
return value contains a count of the number of bytes written. If the value
returned in gr96 is equal to the nbytes argument passed to the service in lr4,
the write operation was successful. Any other return value indicates that an
error occurred. If gr96 contains a value between 0 and the value of nbytes, the
failure is not catastrophic. Negative values returned in gr96 indicate extreme
errors.

For ASYNC mode, the operation is only scheduled by invoking the write
service, so the return value in gr96 merely indicates that the request succeeded
or failed. A return value of 0 in gr96 indicates that the asynchronous write
operation was successfully scheduled.

Nonblocking write requests are performed in either synchronous or
asynchronous mode, depending on whether the ASYNC operating mode was
selected. NBLOCK mode is ignored; the return value in gr96 is interpreted
according to the values shown for non-ASYNC and ASYNC modes in the
table.

Host Interface (HIF) Specification 3–21

45

Example Call

fd: .word 0

buf: .block 256

const gr96,fd ;set address of

consth gr69,fd ;file descriptor

load 0,0,lr2,gr96 ;get file
;descriptor

const lr3,buf ;set buffer

consth lr3,buf ;address

const lr4,256 ;specify buffer
;size

const gr121,20 ;service = 20

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,wr_err ;handle write
;errors

const gr120,num ;set address of

consth gr120,num ;“num” variable

store 0,0,gr96,gr120 ;store bytes
;written

The example call writes 256 bytes from the buffer located at buf to the file
associated with the descriptor stored in fd. If errors are detected during
execution of the service, the value returned in gr121 will be FALSE. In this
case, the wr_err error handler will be invoked. The number of bytes actually
written is stored in the variable num.

3–22 Host Interface (HIF) Specification

46

Service 21 – lseek
Seek a File Byte

Description
This service positions the file associated with the file descriptor in lr2, in an
offset number of bytes from the position of the file referred to by the orig
parameter. lr3 contains the number of bytes offset and lr4 contains the value
for orig. The parameter orig is defined as:

0 = Beginning of the file

1 = Current position of the file

2 = End of the file

The lseek service can be used to reposition the file pointer anywhere in a file.
The offset parameter may either be positive or negative. However, it is
considered an error to attempt to seek in front of the beginning of the file. Any
attempt to seek past the end of the file is undefined and is dependent on the
restrictions of each implementation.

Register Usage

Type Regs Contents Description

Calling: gr121 21 (0x15) Service number

lr2 fileno File descriptor

lr3 offset Number of bytes offset from orig

lr4 orig A code number indicating the point
within the file from which the offset is
measured

Returns: gr96 where* *See Return Value table, below.

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

The value returned in register gr96 can be interpreted differently, depending on
the current operating mode of the file identified by the fileno parameter. The
operating mode is established or changed by invoking the ioctl service (24).
The Return Value table shows how the return value in gr96 should be
interpreted for various operating modes.

Host Interface (HIF) Specification 3–23

47

Return Value

Count Non-ASYNC ASYNC NBLOCK

gr96�0
gr96<0

where
fail

n/a
fail

(NBLOCK mode is not illegal for
lseek requests, but requests
are performed in either synchro-
nous or ASYNC mode. Return
values are interpreted accord-
ingly.)

In the Return Value table, for normal synchronous lseek service requests, the
return value contains the current position in the file, if the value is greater than
or equal to 0. Negative values returned in gr96 indicate that the request was
not accepted.

The file position returned by the lseek service in gr96 (where) is always
measured from the beginning of the file. A value of 0 refers to the beginning,
and any other positive nonzero value refers to the current position in the file.
To determine the size in bytes for a particular file, an lseek request with an
offset value of 0 and an orig value of 2 will position the file to its end and
return the byte position of the end-of-file, which is an accurate measure of the
size of the file.

Asynchronous lseek requests are allowed if the operating mode for the file
descriptor associated with the request has been set to ASYNC. In this case, the
file position returned in gr96 (where) will not be relevant. The iowait service
call should be used to determine the final file position when the seek operation
is complete.

If a previously issued read or write request is still in progress when an lseek is
issued, a failure status will be returned for the lseek request. Only one request
can be pending at a time. To properly handle this situation, the iowait service
should be used to ensure the completion of an outstanding read or write before
issuing the lseek service request.

3–24 Host Interface (HIF) Specification

48

Example Call

fd: .word 6 ;file descriptor=6

const gr96,fd ;set address of

consth gr69,fd ;file descriptor

load 0,0,lr2,gr96 ;get file descriptor

consth lr3,23 ;offset argument=23

consth lr4,0 ;origin argument=0

const gr121,21 ;service = 21

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,seek_err ;seek error if false

nop

The call example shows how a file can be positioned to a particular byte
address by specifying the orig, which is the starting point from which the file
position is adjusted, and the offset, which is the number of bytes from the orig
to move the file pointer. In this case, the file identified by file descriptor 6 is
being repositioned to byte 23, measured from the beginning of the file (origin
= 0).

The file descriptor, offset, and orig values are loaded and lseek is called to
perform the file positioning operation. If an error occurs when attempting to
reposition the file, the value returned in gr121 is FALSE, and contains an error
code that indicates the reason for the error. Upon return, gr96 also contains the
file position measured from the beginning of the file.

Host Interface (HIF) Specification 3–25

49

Service 22 – remove
Remove a File

Description
This service deletes a file from the file system. lr2 contains a pointer to the
pathname of the file. The path must point to an existing file, and the referenced
file should not be currently open. The behavior of the remove service is
undefined if the file is open. Any attempt to remove a currently open file will
have an implementation-dependent result.

Register Usage

Type Regs Contents Description

Calling: gr121 22 (0x16) Service number

lr2 pathname A pointer to string that contains the
pathname of the file

Returns: gr96 retval Success: = 0
Failure: < 0

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

Example Call

path: .ascii “/usr/jack/files/myfile\0”

const lr2,path ;set address of

consth lr2,path ;file pathname

const gr121,22 ;service = 22

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,rem_err ;jump if error

nop

In the example call, a file with a UNIX-style pathname stored in the string
named path is being removed. The address (pointer) to the string is put into lr2
and the kernel service 22 is called to remove the file. If the file does not exist,
or if it has not previously been closed, an error code will be returned in gr121;
otherwise, the value in gr121 will be TRUE.

3–26 Host Interface (HIF) Specification

50

Service 23 – rename
Rename a File

Description
This service moves a file to a new location within the file system. lr2 contains
a pointer to the file’s old pathname and lr3 contains a pointer to the file’s new
pathname. When all components of the old and new pathnames are the same,
except for the filename, the file is said to have been renamed. The file
identified by the old pathname must already exist, or an error code will be
returned and the rename operation will not be performed.

Register Usage

Type Regs Contents Description

Calling: gr121 23 (0x17) Service number

lr2 oldfile A pointer to string containing the old
pathname of the file

lr3 newfile A pointer to string containing the new
pathname of the file

Returns: gr96 retval Success: = 0

 Failure: < 0

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

Host Interface (HIF) Specification 3–27

51

Example Call

old: .ascii “/usr/fred/payroll/report\0”

path: .ascii “/usr/fred/history/june89\0”

const lr2,old ;set address of

consth lr2,old ;old pathname

const lr3,new ;set address of

consth lr3,new ;new pathname

const gr121,23 ;service = 23
;(rename)

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,ren_err ;jump if rename
;error

nop

The example call moves a file from its old path (renaming it in the process) to
its new pathname location. The file will no longer be found at the old location.

3–28 Host Interface (HIF) Specification

52

Service 24 – ioctl
Input/Output Control

Description
This service establishes the operating mode of the specified file or device. It is
intended to primarily be applied to terminal-like devices; however, certain
modes apply to mass-storage files or to other related input/output devices.

Type Regs Contents Description

Calling: gr121 24 (0x18) Service number

lr2 fileno File descriptor number to be tested

lr3 mode Operating mode

Returns: gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful.
EHIFNOTAVAIL if service not imple-
mented (implementation dependent)

Parameter Descriptions
In the above interface, local register lr2 is expected to contain a legal file
descriptor, fileno, assigned by the HIF open service (HIF service number 17).
The mode parameter establishes the desired operating mode, which is selected
from one or more of the following:

Table 3–5. Open Service Mode Parameters

Name Value Description

COOKED 0x0000 Process I/O data characters

RAW 0x0001 Do not process I/O data characters

CBREAK 0x0002 Process only I/O signals

ECHO 0x0004 Echo read data

ASYNC 0x0008 Asynchronous data read

NBLOCK 0x0010 Nonblocking data read

Host Interface (HIF) Specification 3–29

53

Multiple mode values are possible; however, COOKED, RAW, and CBREAK
modes are mutually exclusive. Other mode values can be combined with these
by logically ORing them to form a composite mode value. Certain mode
values do not apply to every open file descriptor. For example, the ASYNC
mode is used to establish a data input mode that will cause a read, write , or
lseek operation, once initiated, to complete at a later time. With the ASYNC
mode set, a read or write request will immediately return after passing the
buffer address and file descriptor to the operating system, leaving the
scheduling of the operation up to the HIF implementation. lseek operations can
also be serviced in ASYNC mode. The completion status of these operations
can be tested by issuing an iowait service request (HIF service number 25).
When a read or write operation is issued for a file descriptor whose operating
mode is ASYNC, the count returned in gr96 will be 0 if the operation was
accepted, or less than 0 if the operation was rejected. An iowait service should
be issued to ascertain the number of bytes that have been transferred upon
completion of the operation.

The default I/O processing mode is COOKED (0x0000), which implies that the
HIF implementation examines input and output data characters as they are
received, or before they are sent, and may perform some alteration of the data.
Specific alterations are not explicitly indicated in this specification; however, it
is common to perform end-of-line processing for files whose operating mode is
COOKED. ASCII carriage-return and line-feed translations are common, as
may be the translation of ASCII TAB characters to a number of equivalent
spaces. When RAW mode is selected, no translation of input or output
characters will be performed by HIF-conforming implementations.

Normally, when a read operation is issued for a terminal-like device by the
application program, the processor will block any further execution of the
subject program until the data has been transferred. The NBLOCK mode is
intended to specify for terminal-like devices that subsequent read operations
be executed without suspending (blocking) further CPU operation. This is
particularly relevant to read operations when RAW mode is also selected. If
NBLOCK mode has been specified, a subsequent read operation will return (in
gr96) the number of characters currently available, or –1 if none are available.
NBLOCK mode is not meaningful for write operations, but they are handled in
the same fashion as synchronous or asynchronous operations, depending on
whether ASYNC mode was specified.

3–30 Host Interface (HIF) Specification

54

RAW mode delivers the characters to/from the I/O device without conversion
or interpretation of any kind.

If COOKED mode has been selected, line-buffering is implied. If NBLOCK is
also selected, a subsequent read operation will return –1 for the count, unless
an entire line of input is available.

The ECHO mode applies only to the standard input device (file descriptor = 0),
and makes provision to automatically echo data received from that device to
the standard output device (file descriptor = 1). ECHO mode is undefined for
any other file descriptor.

The CBREAK mode is intended for file descriptors that refer to serial
communication channels. CBREAK mode specifies that I/O signal inputs will
be processed, which could alter the data stream.

The NBLOCK and ASYNC settings are not necessarily mutually exclusive.
There may be occasions where this is a legal mode. NBLOCK specifies that
subsequent read, write , or lseek operations not block until completion. If a
read is requested, for example, and no data is currently available, the read
service will return –1 (with an errcode value in gr121 of EAGAIN), rather than
blocking further execution until data becomes available. ASYNC mode simply
allows an operation, once invoked, to proceed asynchronously with other
operations, if the HIF implementation provides this capability.

If the above mode settings are not implemented, the EHIFNOTAVAIL error
code should be returned to the user if the ioctl service is invoked.

Although the mode parameter occupies a 32-bit word, only the low-order
16-bits are reserved. The upper 16-bits are available for
implementation-dependent mode settings, and are not part of this specification.

Host Interface (HIF) Specification 3–31

55

Example Call

fd: word 0 ;variable to
;contain the file
;descriptor

const gr120,fd ;Get fd address

consth gr120,fd ;

load 0,0,lr2,gr120 ;load file
;descriptor

const lr3,0x0010 ;NBLOCK mode

const gr121,24 ;service = 24

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,io_err ;jump if failure

In the example call, a previously assigned file descriptor is passed to the
service in order to specify that subsequent read requests not block if data is not
available. If an error occurs when servicing this request, gr121 will be set to
FALSE and the program will jump to an error handling routine (io_err) when
the service returns.

3–32 Host Interface (HIF) Specification

56

Service 25 – iowait
Test and Wait I/O Complete

Description
This service is used in conjunction with the ioctl (ASYNC mode) and read,
write , or lseek services to test the completion of an asynchronous input/output
operation and, optionally, to wait until the operation is complete. The iowait
service is called with the file descriptor returned by the open service when the
file was originally opened. The mode parameter specifies whether the iowait
will block until the operation is complete, or immediately return the
completion status in the result register (gr96). If the operation was complete,
gr96 will contain the number of bytes transferred for read or write service
requests (count), or the ending file position (measured from the beginning of
the file) for lseek service requests (where).

If no previous asynchronous (ioctl ASYNC mode) read, write , or lseek service
is pending for the specified file descriptor, or if an unrecognized mode value is
provided, the iowait service will return an error status in gr121.

Register Usage

Type Regs Contents Description

Calling: gr121 25 (0x19) Service number

lr2 fileno File descriptor, as returned by open
(17)

lr3 mode 1 = nonblocking completion test
2 = wait until read operation complete

Returns: gr96 count* *See Return Value table

gr121 0x80000000
errcode

Logical TRUE, service successful Error
number, service not successful (imple-
mentation dependent)

The value returned in register gr96 can be interpreted differently, depending on
the value specified in the mode parameter (in register lr3) of the service
request. The Return Value table shows how the return value in gr96 should be
interpreted for nonblocking and blocking completion tests.

Host Interface (HIF) Specification 3–33

57

Return Value

Count Blocking Tests Nonblocking Tests

read/write lseek read/write lseek

gr96>0 count where count where

gr96=0 EOF where EOF where

gr96<0 fail fail IF= –1 and gr121=EAGAIN,
there is no data available;
otherwise, fail.

In the Return Value table, for blocking completion tests, the return value
specifies the status of the completed operation. If the operation was a read or
write service request, the count value specifies the number of bytes actually
transferred (gr96 > 0), that an end-of-file condition was reached (gr96 = 0), or
that a failure occurred (gr96 < 0). For lseek requests, the return value specifies
the current position of the file, unless the value is negative, in which case a
failure occurred.

The return value for nonblocking completion tests of read and write service
requests is interpreted the same as for blocking completion tests, except for the
case where the value in gr96 is equal to –1. In this case, and if the errcode in
register gr121 is EAGAIN, then no data is currently available. Any other
negative return value or error code signals a failure condition.

The iowait service reports errors that may have occurred in the outstanding
asynchronous operation— subsequent to its original issue—as well as errors in
the iowait call itself.

3–34 Host Interface (HIF) Specification

58

Example Call

fd: .word 0 ;file descriptor

const lr3,1 ;nonblocking
;completion test

const gr121,25 ;service = 25
;(iowait)

loop: const gr120,fd ;load file descrip-

consth gr120,fd ;tor address

load 0,0,lr2,gr120 ;get file
;descriptor

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,wait_err ;handle wait error

const lr3,1 ;nonblocking
;completion test

jmpt gr96,loop ;wait until
;operation complete

const gr121,25 ;service = 25
;(iowait)

In the example call, the file descriptor (fileno) is loaded into lr2, nonblocking
mode is selected, and the iowait service is invoked. If the service returns an
error status in gr121, the program will jump to the wait_err label. If the
operation is accepted, gr96 will contain the completion status upon return from
the service. This example jumps to reinvoke the service if the operation is not
yet complete. This is equivalent to issuing a iowait service with a mode value
of 2, specifying that the operation should block until the operation is complete.
A more complex program might perform some useful work before retrying the
operation.

Host Interface (HIF) Specification 3–35

59

Service 26 – iostat
Input/Output Status

Description
This service returns the status corresponding to a file descriptor assigned by the
open service. If the specified file descriptor is not legal, an error code will be
returned in gr121; otherwise, gr121 will contain a TRUE result and gr96 will
contain the requested status. Two status values are defined:

0x0001 RDREADY Input device ready and data available
0x0002 ISATTY File descriptor refers to a terminal-like

device (TTY)

Application programs frequently need to determine if data is currently
available to be read for a terminal-like device. If the RDREADY status is
returned, at least one byte of data is available to be read from the device.

The ISATTY status indicates that the device associated with the file descriptor
refers to a terminal-like peripheral, rather than a mass-storage file or other
peripheral device. The iostat service can be used to determine if a standard
output device (file descriptors 1 or 2) refers to a terminal, or if output is being
redirected to a mass-storage file.

The RDREADY and ISATTY status values are not mutually exclusive; either
or both results may be present. Although the status is returned in a 32-bit word,
only the lower 16 bits are reserved for HIF-conforming reply values. The upper
16 bits are available for implementation-specific status results.

3–36 Host Interface (HIF) Specification

60

Register Usage

Type Regs Contents Description

Calling: gr121 26 (0x19) Service number

lr2 fileno File descriptor number

Returns: gr96 iostat Input status
0x0001 = RDREADY
0x0002 = ISATTY

gr121 0x80000000
errcode

Logical TRUE, service successful
error number, service not successful
(implementation dependent)

Example Call

const lr2 ;set file
;descriptor = 0

const gr121,26 ;service = 26

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,fail ;handle failure

sll gr120,gr96,30 ;test ISATTy status
;bit

jmpf gr120,not_tty ;jump if not a tty

nop

In the example call, the program calls the iostat service to determine if the
device associated with file descriptor 0 is a tty-like device. If the service
returns an error indication in gr121, the program jumps to the fail label;
otherwise, the iostat value returned in gr96 is shifted to put bit position 1 of the
result into the sign-bit of gr120, which is tested to determine if the file
descriptor refers to a tty-like device. If not, the program jumps to the not_tty
label.

Host Interface (HIF) Specification 3–37

61

Service 33 – tmpnam
Return a Temporary Name

Description
This service generates a string that can be used as a temporary file pathname.
A different name is generated each time it is called. The name is guaranteed
not to duplicate any existing filename. The argument passed in lr2 should be a
valid pointer to a buffer that is large enough to contain the constructed
filename. User programs are required to allocate a minimum of 128 bytes for
this purpose.

If the argument in lr2 contains a NULL pointer, the HIF service routine should
treat this as an error condition and return a nonzero error number in global
register gr121.

The HIF specification sets no standards for the format or content of legal
pathnames; these are determined by individual operating-system requirements.
Each implementation must undertake to construct a valid filename that is also
unique.

Register Usage

Type Regs Contents Description

Calling: gr121 33 (0x21) Service number

lr2 addrptr A pointer to buffer into which the
filename is to be stored

Returns: gr96 filename Success: pointer to the temporary
filename string
Failure: =0 (NULL pointer)

gr121 0x80000000 Logical TRUE, service successful

errcode Error number, service not successful
(implementation dependent)

3–38 Host Interface (HIF) Specification

62

Example Call

fbuf: .block 21 ;buffer size = 21 bytes

const lr2,fbuf ;set buffer pointer

consth lr2,fbuf

const gr121,33 ;service = 33

asneq 69,grl,grl ;call the OS

jmpf gr121,tmp_err ;jump if error

nop

In the example call, the tmpnam service is called with a pointer to fbuf, which
has been allocated to hold a name that is up to 21 bytes in length. If the service
is able to construct a valid name, the filename will be stored in fbuf when the
service returns. If the content of gr121 on return is not TRUE, the program
fragment jumps to tmp_err to handle the error condition.

Host Interface (HIF) Specification 3–39

63

Service 49 – time
Return Seconds Since 1970

Description
This service returns, in register gr96, the number of seconds elapsed since
midnight, January 1, 1970, as an integer 32-bit value. It is assumed that the
kernel service will have access to a counter whose contents can be preloaded
that measures time, with at least a 1-second resolution, for this purpose.

The time value returned by this service is Greenwich Mean Time (GMT). The
conversion to local time should be accomplished by a separate function that
uses the value returned by the time service and the time-zone information from
the gettz (Get time zone) service call to compute the correct local time.

Register Usage

Type Regs Contents Description

Calling: gr121 49 (0x31) Service number

Returns: gr96 secs Success: ≠ 0 (time in seconds)
Failure: = 0

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

3–40 Host Interface (HIF) Specification

64

Example Call

secs: .word 0

const gr121,49 ;service = 49

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,tim_err ;jump if error

const gr120,secs ;set the address

consth gr120,secs ;for storing
;‘secs’

store 0,0,gr96,gr120 ;store the seconds

In the example call, the kernel service time is being called. If the value
returned in gr121 is TRUE, the number of seconds returned in gr96 is stored in
the secs variable; otherwise, the program jumps to tim_err to determine the
cause of the error.

Host Interface (HIF) Specification 3–41

65

Service 65 – getenv
Get Environment

Description
This service searches the system environment for a string associated with a
specified symbol. lr2 contains a pointer to the symbol name. If the symbol
name is found, a pointer to the string associated with it is returned in gr96;
otherwise, a NULL pointer is returned.

In UNIX-hosted systems, the setenv command allows a user to associate a
symbol with an arbitrary string. For example, the command setenv TERM
vt100 defines the string vt100 to be associated with the symbol named TERM.
Application programs can use this association to determine the type of terminal
connected to the system, and therefore, use the correct set of codes when
outputting information to the user’s screen. To access the string, getenv should
be called with lr2 pointing to a string containing the TERM symbol name. The
address returned in gr96 will point to the corresponding vt100 string if TERM
is found. In UNIX-hosted systems, entering a different setenv command lets
the user select a different terminal name without requiring recompilation of the
application program.

Operating-system implementations that do not include provisions for the
environment variable, if always, should return a NULL value in gr96 when this
service is requested.

Register Usage

Type Regs Contents Description

Calling: gr121 65 (0x41) Service number

lr2 name A pointer to the symbol name

Returns: gr96 addrptr Success: pointer to the symbol name
string
Failure: =0 (NULL pointer)

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

3–42 Host Interface (HIF) Specification

66

Example Call

mysym: .ascii “MYSYMBOL\0”

strptr .word 0

const lr2,mysym ;set address of
;symbol

consth lr2,mysym ;to be located in
;environment

const gr121,65 ;service = 65

asneq 69,gr1,gr1 ;call the os

jmpf gr121,env_err ;jump if error

const gr120,strptr ;set address of

consth gr120,strptr ;string pointer

store 0,0,gr96,gr120 ;store string
;pointer

The example call program calls the operating system getenv service to access
a string associated with the environment variable MYSYMBOL. If the symbol is
found, a pointer to the string associated with the symbol is returned in gr96. If
the call is not successful (i.e., gr121 holds a FALSE Boolean value upon
return), the program jumps to env_err to handle the error condition.

Host Interface (HIF) Specification 3–43

67

Service 67 – gettz
Get Time Zone

Description
This service terminates the current program and returns a value to the system
kernel, indicating the reason for termination. By convention, a zero passed in
lr2 indicates normal termination, while any nonzero value indicates an
abnormal termination condition. There are no returned values in registers gr96
and gr121 since this service does not return.

Register Usage

Type Regs Contents Description

Calling: gr121 67 (0x43) Service number

Returns: gr96 zonecode Success: ≥ 0 (minutes west of GMT)
Failure: < 0 (or information unavailable)

gr97 dstcode Success =1 (Daylight Savings Time in
effect)
Success = 0 (Daylight Savings Time
not in effect)

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

If the result returned in gr96 (zonecode) contains a value greater than 1,440
(60 minutes x 24 hours), then 1,440 should be subtracted from the result, which
relates to minutes east of Greenwich.

3–44 Host Interface (HIF) Specification

68

Example Call

timzone: .word 0

dstflag: .word 0

const gr121,67 ;service = 67

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,tz_err ;jump if error

const lr2,timzone ;the address to

consth lr2,timzone ;store timezone

store 0,0,gr96,lr2 ;store the timezone
;correction

const lr2,dstflag ;the address to store
;daylight savings

consth lr2,dstflag

store 0,0,gr97,lr2 ;store the daylight
;savings flag

In the example call, the gettz service is called to access the current time zone
correction value. Upon return, gr121 is tested to determine if the service was
successful. If not, the program jumps to an error handling routine called
tz_err. If the service was successful, the values returned in gr96 and gr97 are
stored in local variables called timzone and dstflag, respectively.

Host Interface (HIF) Specification 3–45

69

Service 257 – sysalloc
Allocate Memory Space

Description
This service allocates a specified number of contiguous bytes from the
operating-system-maintained heap and returns a pointer to the base of the
allocated block. lr2 contains the number of bytes requested. If the storage is
successfully allocated, gr96 contains a pointer to the block; otherwise, gr121
contains an error code indicating the reason for the call failure.

Register Usage

Type Regs Contents Description

Calling: gr121 257 (0x101) Service number

lr2 nbytes Number of bytes requested

Returns: gr96 addrptr Success: pointer to allocated bytes
Failure: = 0 (NULL pointer)

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

Example Call

blkptr: .word 0

const lr2,1200 ;request 1200 bytes

const gr121,257 ;service = 257

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,alloc_err ;jump if error

const gr120,blkptr ;set address to store

consth gr120,blkptr ;pointer

store 0,0,gr96,gr120 ;store the pointer

The example call requests a block of 1200 contiguous bytes from the system
heap. If the call is successful, the program stores the pointer returned in gr96
into a local variable called blkptr. If gr121 contains a boolean FALSE value
when the service returns, the program jumps to alloc_err to handle the error
condition.

3–46 Host Interface (HIF) Specification

70

Service 258 – sysfree
Free Memory Space

Description
This service returns memory to the system starting at the address specified in
lr2. lr3 contains the number of bytes to be released. The pointer passed to the
sysfree service in lr2 and the byte count passed in lr3 must match the address
returned by a previous sysalloc service request for the identical number of
bytes. No dynamic memory allocation structure is implied by this service.
High-level language library functions such as malloc() and free() for the C
language are required to manage random dynamic memory block allocation
and deallocation, using the sysalloc and sysfree kernel functions as their basis.

Register Usage

Type Regs Contents Description

Calling: gr121 258 (0x102) Service number

lr2 addrptr Starting address of area returned

lr3 nbytes Number of bytes to release

Returns: gr96 retval Success: = 0
Failure: <0

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

Host Interface (HIF) Specification 3–47

71

Example Call

blkptr: .word 0

const gr120,blkptr ;set address of previous

consth gr120,blkptr ;block pointer

load 0,0,lr2,gr120 ;fetch pointer to block

const lr3,1200 ;set number of bytes to
;release

const gr121,258 ;service = 258

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,free_err ;jump if error

nop

The example calls sysfree to deallocate 1200 bytes of contiguous memory,
beginning at the address stored in the blkptr variable. If the call is successful,
the program continues; otherwise, if the return value in gr121 is FALSE, the
program jumps to free_err to handle the error condition.

3–48 Host Interface (HIF) Specification

72

Service 259 – getpsize
Return Memory Page Size

Description
This service returns, in register gr96, the page size (in bytes) used by the
memory system of the HIF implementation.

Register Usage

Type Regs Contents Description

Calling: gr121 259 (0x103) Service number

Returns: gr96 pagesize Success: memory page size, one of the
following: 1024,2048,4096 and 8192
Failure: <0

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

Example Call

pagsiz: .word 0

const gr121,259 ;service = 259

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,pag_err ;jump if error

const gr120,pagsiz ;set address to

consth gr120,pagsiz ;store the page size

store 0,0,gr96,gr120 ;store it!

The example calls the operating system kernel to return the page size used by
the virtual memory system. If the call was successful, gr121 will contain a
boolean TRUE result and the program will store the value in gr96 into the
pagsiz variable; otherwise, a boolean FALSE is returned in gr121. In this case,
the program will jump to pag_err to handle the error condition.

Host Interface (HIF) Specification 3–49

73

Service 260 – getargs
Return Base Address

Description
This service returns the base address of the command-line-argument vector,
argv, in register gr96, as constructed by the operating-system kernel when an
application program is invoked.

Arguments are stored by the operating system as a series of NULL-terminated
character strings. A pointer containing the address of each string is stored in an
array whose base address (referred to as argv) is returned by the getargs HIF
service. The last entry in the array contains a NULL pointer (an address
consisting of all zero bits). The number of arguments can be computed by
counting the number of pointers in the array, using the fact that the NULL
pointer terminates the list.

Register Usage

Type Regs Contents Description

Calling: gr121 260 (0x104) Service number

Returns: gr96 baseaddr Success: base address of argv
Failure: 0 (NULL pointer)

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

3–50 Host Interface (HIF) Specification

74

Example Call

argptr: .word 0

const gr121,260 ;service = 260

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,bas_err ;jump if error

const gr120,argptr ;set address where base

consth gr120,argptr ;pointer is to be stored

store 0,0,gr96,gr120 ;store the pointer

The example calls operating-system service 260 to access the
command-line-argument vector address. If the service executes without error,
the program continues by storing the argument vector address in the variable
basptr. If gr121 contains a boolean FALSE value upon return, the program
jumps to bas_err to handle the error condition.

Host Interface (HIF) Specification 3–51

75

Service 273 – clock
Return Time in Milliseconds

Description
This service returns the elapsed processor time in milliseconds. Operating
system initialization procedures set this value to zero on startup. Successive
calls to this service return times that can be arithmetically subtracted to
accurately measure time intervals.

Register Usage

Type Regs Contents Description

Calling: gr121 273 (0x111) Service number

Returns: gr96 msecs Success: ≠0 (time in milliseconds)
Failure: =0 (NULL pointer)

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

3–52 Host Interface (HIF) Specification

76

Example Call

pagsiz: .word 0

const gr121,273 ;service = 273

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,clk_err ;jump if error

const gr120,time ;set address where

consth gr120,time ;time is to be stored

store 0,0,gr96,gr120 ;store the time in ms.

The example calls the operating system kernel to get the current value of the
system clock in milliseconds. On return, if gr121 contains a boolean FALSE
value, the program jumps to clk_err to handle the error; otherwise, the time in
milliseconds is stored in the variable time.

The return value from the clock service does not include system I/O data-
transfer time incurred by HIF services with service numbers less than 256. The
return value is related to the value returned by the cycles service, in that it is
derived from the processor cycles counter, but scaled by the processor
frequency and resolved to milliseconds.

Host Interface (HIF) Specification 3–53

77

Service 274 – cycles
Return Processor Cycles

Description
This service returns an ascending positive number in registers gr96 and gr97
that is the number of processor cycles that have elapsed since the last processor
initialization was applied to the CPU. It provides a mechanism for user
programs to access the contents of the internal Am29000 processor timer
counter register. The cycle count can be multiplied by the speed of the
processor clock to convert it to a time value. gr97 will contain the most
significant bits of the cycle count, while gr96 will contain the least significant
bits. HIF implementations of this service are required to provide a cycle count
with a minimum of 42 bits of precision.

The implementor of this HIF service must, as best possible, eliminate system
I/O data transfer time incurred by HIF services with service numbers less than
256. This will benefit the user when using this service to perform benchmarks
across different hardware platforms. The user of this service should be aware
that the return value may still contain cycles used in support of operating
system tasks.

Register Usage

Type Regs Contents Description

Calling: gr121 274 (0x112) Service number

Returns: gr96 cycles Success: Bits 0–31 of processor
cycles
Failure: = 0 (in both gr96 and gr97)

gr97 cycles Success: Bits 32 and higher of
processor cycles
Failure: = 0 (in both gr96 and gr97)

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

3–54 Host Interface (HIF) Specification

78

Example Call

cycles: .word 0 ;MSb of cycles

.word 0 ;LSb of cycles

const gr121,274 ;service = 274

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,cyc_err ;jump if error

const gr120,cycles ;set the address where

consth gr120,cycles ;the count is to be
;stored

store 0,0,gr97,gr120 ;store the MSb,

add gr120,gr120,4 ;increment the address,

store 0,0,gr96,gr120 ;then store the LSb of
;cycles.

The example-call program fragment calls the operating-system service 274 to
access the number of CPU cycles that have elapsed since processor
initialization. The cycle count (in gr96 and gr97) is stored in the two words
addressed by the variable cycles if the service call is successful. If gr121
contains a boolean FALSE value on exit, the program jumps to cyc_err to
handle the error condition.

Host Interface (HIF) Specification 3–55

79

Service 289 – setvec
Set Trap Address

Description
This service sets the address for user-level trap handler services that implement
the local register stack spill and fill traps. In addition, if the current HIF
implementation supports program calls to set other trap vectors, this service
provides that capability. It returns an indication of success or failure in register
gr121. The method used to invoke these traps in user mode is described on
page 2–6 in the User-Mode Traps section.

The only vectors supported by this specification are 64 (spill) and 65 (fill).
These vectors are invoked by operating system software using the trampoline
principles described in the section User-Mode Traps, and are not supported by
the Am29000 processor hardware.

Extensions to this service, in implementations that support setting traps other
than spill and fill, will return the previously installed trap address in register
gr96, if the service is successful. For User Mode Traps, register gr96 reports
only the success or failure of the service. In HIF implementations where the
extended setvec service is available, programs can use the returned (previous)
vector address to implement vector chaining.

Register Usage

Type Regs Contents Description

Calling: gr121 289 (0x121) Service number

lr2 trapno trap number

lr3 funaddr address of trap handler

Returns: gr96 trapaddr For user mode traps:
Success: =0
Failure: <0
For extended trap vectors:
Success: previous trap address
Failure: =0

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

3–56 Host Interface (HIF) Specification

80

Example Call

trpadr: .word 0

const lr2,64 ;trap number = 64

const lr3,t64_hnd ;set address of

consth lr3,t64_hnd ;trap-64 handler

const gr121,289 ;service = 289

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,vec_err ;jump if error

const gr120,trpadr ;set address where to

consth gr120,trpadr ;store the trap address

store 0,0,gr96,gr120 ;and store it!

The example calls the setvec service to pass the address to be used for the trap
64 trap handler routine. If the service returns with gr121 containing a boolean
TRUE result, the program continues by storing the trap address returned in
gr96; otherwise, the program jumps to vec_err to handle the error condition.

Host Interface (HIF) Specification 3–57

81

Service 290 – settrap
Set Trap Vector

Description
This service provides the means to install trap-handler addresses directly into
the vector table whose base address is pointed to by the Vector Area Base
Address special-purpose register (VAB). The vector numbers that may legally
be modified by this service are implementation dependent.

Implementations that do not intend to provide the ability to set trap addresses
with this service should return the EHIFNOTAVAIL error code when this
service is invoked. If certain vectors are restricted from being set by this
service, the implementation should check the trapno parameter and return the
EHIFNOTAVAIL error code for references to restricted trap vectors.

Register Usage

Type Regs Contents Description

Calling: gr121 290 (0x122) Service number

lr2 trapno Vector number

lr3 trapaddr Address of trap handler

Returns: gr96 trapaddr Address of previous trap handler

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number: EHIFNOTAVAIL if ser-
vice not available (implementation
dependent)

3–58 Host Interface (HIF) Specification

82

Example Call

oldtrap: .word 0 ;placeholder for old
;trap address

const lr2,54 ;floating divide trap
;vector (V_FDIV)

const lr3,new_div ;set new_div as the

consth lr3,new_div ;trap handler address

const gr121,290 ;service = 289

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,trap_err ;jump if error

const gr120,oldtrap ;set address for saving

consth gr120,oldtrap ;the old trap handler
;address

store 0,0,gr96,gr120 ;save the old handler
;address

In the example call, a new handler for the floating-point division operation is
being installed. If the implementation returns an error, the program jumps to
the trap_err label. If the service was successful and a new trap handler was
installed, the previous handler address (if any) is stored into the oldtrap
variable.

There is often a need for programs operating on dedicated hardware to enter
supervisor mode. This can be accomplished by reserving a trap vector for that
purpose and installing a trap-handler routine to return control to the user in
supervisor mode. The operation is effected by issuing an assert instruction that
invokes the specified trap. User mode can be restored by clearing (setting to 0)
the Supervisor Mode bit (4) of the Current Processor Status register (CPS).

Host Interface (HIF) Specification 3–59

83

Service 291 – setim
Set Interrupt Mask

Description
This service provides the means to set the interrupt mask (IM) field and the
disable interrupts (DI) field of the current processor status register (CPS). This
field enables the external interrupt pins INTR3–INTR0, according to the
following encoding:

00 INTR0 enabled
01 INTR1–INTR0 enabled
10 INTR2–INTR0 enabled
11 INTR3–INTR0 enabled

These two bits provide for a priority-oriented enabling capability; however, the
INTR0 interrupt cannot be disabled through the IM field alone. The disable
interrupts (di) parameter must be set to 1 to produce this effect. A di value of 0
enables the selected interrupts, and a value of 2 leaves the di-bit of the CPS
unchanged. If this service is not implemented, an error code of
EHIFNOTAVAIL should be returned by the software. The error code for an
illegal value in registers lr2 or lr3 is implementation dependent.

Register Usage

Type Regs Contents Description

Calling: gr121 291 (0x123) Service number

lr2 mask New mask field value

lr3 di 0 = Enable interrupts
1 = Disable interrupts
2 = Leave interrupt enable unchanged

Returns: gr96 mask Old mask field value

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number: EHIFNOTAVAIL if ser-
vice not available (implementation
dependent)

3–60 Host Interface (HIF) Specification

84

Example Call

oldmask: .word 0 ;placeholder for old
;mask field value

const lr2,0x10 ;mask = 10 (*INTR(2:0)
;enable)

const lr3,0x0 ;enable interrupts
;(di = 0)

const gr121,291 ;service = 291

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,mask_err ;jump if error

const gr120,oldmask ;set address for saving

consth gr120,oldmask ;the old IM field value

store 0,0,gr96,gr120 ;save the oldIM field
;value

In the example call, the IM field of the current processor status register is to be
set to 10, enabling external interrupt pins INTR0, INTR1, and INTR2. If this
service is not available, or if the value in lr2 is illegal, the service will return
an error code, in which case the program jumps to the mask_err label. If the
service execution is successful, the previous contents of the IM field are stored
in the oldmask variable.

Host Interface (HIF) Specification 3–61

85

Service 305 – query
Return Version Information

Description
This service returns version information, or capabilities of the HIF
implementation, as requested. On entry, the requested capability is passed as an
argument in lr2. The service returns the requested information or indicates that
it is unavailable in gr96.

Register Usage

Type Regs Contents Description

Calling: gr121 305 (0x131) Service number

lr2 capcode Capabilities code
0 = Request HIF version
1 = Request CPU version and family
code
2 = Request Am29027� processor
arithmetic accelerator version
3 = Request CPU clock frequency
4 = Request memory environment

For lr2=0 (HIF version)

Returns: gr96 hifvers Success:

>0 (encoded version information). The
version number is returned as two 4-bit
fields in the low-order 8 bits of the re-
turn value. The two fields are separated
by an implied decimal point (e.g., 0x20
means HIF V2.0).

Failure:

<0 (or unavailable)

For lr2=1 (CPU version and family code)

Returns: gr96 cpuvers Success:

>0 (encoded version/family). The high-
order 8 bits of the configuration register
(CFG), known as the processor release
level (PRL), are moved to the low-order
8 bits of gr96, as two 4-bit fields.

Failure:

<0 (or unavailable)

3–62 Host Interface (HIF) Specification

86

Type DescriptionContentsRegs

For lr2=2 (Am29027 version)

Returns: gr96 027vers Success:

>0 (encoded version information). The
high-order 8 bits of the accelerator’s
precision register form the arithmetic
accelerator release level (ARL) and are
moved to the low-order 8 bits of gr96,
as two 4-bit fields.

Failure: <0 (or unavailable)

For lr2=3 (CPU clock frequency)

Returns: gr96 clkfreq Success: >0 (frequency in Hertz)

Failure: =0 (or unavailable)

For lr2=4 (Memory environment)

Returns: gr96 memenv Success:

>0 (memory environment)

BYTEW 0x1 byte-write available
DWSE 0x2 DW-bit set
IREAD 0x4 Instruction memory

readable

Failure: �0 (or unavailable)

For all requests

Returns: gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

In addition to the Return Usage table requests, negative capcode values in
register lr2 are available for implementation-dependent encoding of query
requests. All positive values in register lr2 are reserved for future expansion of
the HIF query service.

Host Interface (HIF) Specification 3–63

87

Example Call

vers: .word 0

const lr2,0 ;request HIF version

const gr121,305 ;service = 305

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,qry_err ;handle query error

const lr2,vers ;address to store

consth lr2,vers ;version info

store 0,0,gr96,lr2 ;store the HIF version
;number

In the example call, a request code of 0 is loaded into lr2 and the service is
called. Upon return, if the value in gr121 is FALSE, indicating failure, the
program jumps to an error routine. If gr121 is TRUE, then the program stores
the returned HIF version information into the variable called vers.

3–64 Host Interface (HIF) Specification

88

Service 321 – signal
Register Signal Handler

Description
This service provides the means to register (or un-register) a specified user
signal handler. Local register lr2 contains the address of the user signal-
handler routine on entry. This routine is expected to handle the signals shown
in Table 3–6.

Table 3–6. Signals Handled

Mnemonic Value Description

SIGINT 2 User interrupt (e.g., from keyboard)

SIGFPE 8 Floating-point exception

The HIF service returns the address of the previously installed handler in gr96.
If no previous handler was installed, gr96 will contain a NULL pointer
(gr96 = 0). Signal handlers may perform any appropriate processing, but only
the services with service numbers above 256 are guaranteed to be available.
Calls to services with numbers below 256 may result in unpredictable behavior
when returning to the interrupted program—unless the service executes a
longjump(), which avoids execution of the interrupt return service.

To un-register a signal handler, local register lr2 must contain a value of 0
(NULL) on entry. When a handler is un-registered in this manner, signal
handling will revert to the default behavior established by the operating
system.

When one of the (SIGINT or SIGFPE) signals occurs, the HIF implementation
must preserve the signal number that occurred; the register stack pointer (gr1);
the register allocate bounds (gr126); the program counters, PC0–PC2; the
channel registers (CHA, CHD, and CHC); the ALU register; the old processor
status (OPS); and the contents of gr121. These registers are saved in the user
memory stack. The HIF implementation must be careful not to disturb values
in registers that have not been saved on the user’s stack. Global register gr125
should contain the address of the last saved value in the HIF Signal Stack (e.g.,
gr121) at the conclusion of this phase. Figure 3–1 illustrates the required user
stack format for saved registers.

Host Interface (HIF) Specification 3–65

89

gr125 points to the
last register saved
by the HIF in the

user’s stack

User’s
Stack

signal numberHigher Addresses

Lower Addresses

gr1

gr126

PC1

PC2

CHA

CHD

CHC

ALU

OPS

gr121

Registers Saved by HIF

(rab)

(tav)

PC0

Figure 3–1. HIF Register Preservation

At this point the execution of the HIF invokes the handler specified by the
newsig parameter to the signal service. The handler is invoked with the
processor mode set to the mode of the interrupted program (either user or
supervisor mode). Depending on the nature of the interrupt (SIGINT or
SIGFPE) and the complexity of the handler, additional registers may need to
be saved. In this case, the handler must preserve the values in the indirect
pointers IPA, IPB, and IPC; the contents of the Q register; the stack frame
pointer, lr1; and the local register stack free bounds in rfb (gr127). In addition,
because high-level languages use global registers gr96–gr124 as temporaries,
the user signal handler may have to save these as well.

User signal handlers can be grouped into three levels of complexity, depending
on the implementation:

� The least complex are handlers that have no intention of returning control to
the user. In this case, only a few additional registers may need to be saved
(if any).

� Floating-point error handlers are often more complex, where some of the
user’s context needs to be saved. In this case, probably only the indirect
pointers (IPA–IPC), the Q register, and gr125 need be preserved. After the
error has been handled, the handler will issue one of the signal return
services listed in Table 3–7 to return control to the user’s program.

3–66 Host Interface (HIF) Specification

90

� The most complex handlers will be those needing to return to the user
program at the C level of context. If the handler intends to pass control to a
user-provided signal routine (e.g., to handle SIGINT), then it may be
necessary to preserve all the registers indicated in Figure 3–1. In addition,
handlers intending to return control at the C level of context will need to
make a provision for completing any interrupted SPILL or FILL operations
or complete a long-jump that may be in progress. Fortunately, AMD
supplies the necessary code in library routines supplied with most tool
products.

Before execution of the signal handler, the HIF is responsible for clearing the
Channel Control (CHC) register (setting it to 0), to prevent restarting a load or
store multiple operation that may have been interrupted. The proper contents
of this register will be restored by the HIF when the handler issues one of the
service requests listed in Table 3–7.

Table 3–7. Signal Return Services

Service Name Description

322 sigdfl Perform default signal handling

323 sigret Return to location indicated by PC1

324 sigrep Return to location indicated by PC2

325 sigskp Return to location indicated by PC0

Once a signal handler is invoked by one of the signals listed in Table 3–6, and
when it has finished, it will usually return to the HIF by invoking one of the
signal return services shown in Table 3–7, with register gr125 pointing to the
last saved register in the HIF-saved registers (i.e., gr121), as shown in
Figure 3–1. More complex implementations may make other arrangements for
returning to the user program’s context. Sample code for saving and restoring
the necessary registers is included in AMD development tool products.

The handler is responsible for determining the appropriate action for each type
of interrupt (SIGINT or SIGFPE) and must return control to the HIF using one
of the services listed in Table 3–7, after first restoring the indirect pointers
(IPA–IPC), the Q register, and with gr125 pointing to the last saved register in
the user’s stack (assuming the suggested approach for preserving registers is
followed).

Host Interface (HIF) Specification 3–67

91

Register Usage

Type Regs Contents Description

Calling: gr121 321 (0x141) Service number

lr2 newsig Address if signal handler, or NULL
pointer

Returns: gr96 oldsig Old handler address

gr121 0x80000000
errcode

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

Example Call

oldhdlr: .word 0

const lr2,user_sigs ;address of user signal

consth lr2,user_sigs ;handler

const gr121,321 ;service = 321

asneq 69,gr1,gr1 ;call the OS to install
;the handler

jmpf gr121,sig_err ;jump to handle error

const gr120,oldhdlr ;set address to store

consth gr120,oldhdlr ;old handler address

store 0,0,gr96,gr120 ;store the old handler
;address

In the example call, a user signal handler whose entry-point name is user_sigs
is installed. When the service returns, if gr121 contains a FALSE value, the
program jumps to an error routine; otherwise, the address of the previously
installed handler returned in gr96 is stored in the local variable oldhdlr .

3–68 Host Interface (HIF) Specification

92

Service 322 – sigdfl
Perform Default Signal Action

Description
This service is called only from within a user signal handler installed using the
signal (321) service. The function of this service is to instruct the HIF to
perform the predetermined default action for the specified signal. The
operating system is responsible for establishing the appropriate default action.

Register Usage

Type Regs Contents Description

Calling: gr121 322 (0x142) Service number

gr125 sigptr Pointer to HIF Signal Stack containing
preserved registers (See signal (321)
for further information)

Returns: Does not return

Example Call

const gr121,322 ;service = 322

asneq 69,gr1,gr1 ;call the OS

Since this service does not return, no attempt is made to test returned values or
to store results.

Host Interface (HIF) Specification 3–69

93

Service 323 – sigret
Return From Signal Interrupt

Description
This service is called only from within a user signal handler installed using the
signal (321) service. The function of this service is to return from the latest
signal interrupt to the location specified by the value in program counter PC1
at the time the signal occurred. Once invoked, this service does not return to
the user signal handler.

Register Usage

Type Regs Contents Description

Calling: gr121 323 (0x143) Service number

gr125 sigptr Pointer to HIF Signal Stack containing
preserved registers (See signal (321)
for further information)

Returns: Does not return

Example Call

const gr121,323 ;service = 322

asneq 69,gr1,gr1 ;call the OS

Since this service does not return, no attempt is made to test returned values or
to store results.

3–70 Host Interface (HIF) Specification

94

Service 324 – sigrep
Return From Signal Interrupt

Description
This service is called only from within a user signal handler installed using the
signal (321) service. The function of this service is to return from the latest
signal interrupt to the location specified by the value in program counter PC2
at the time the signal occurred. Once invoked, this service does not return to
the user signal handler.

Register Usage

Type Regs Contents Description

Calling: gr121 324 (0x144) Service number

gr125 sigptr Pointer to HIF Signal Stack containing
preserved registers (See signal (321)
for further information)

Returns: Does not return

Example Call

const gr121,324 ;service = 324

asneq 69,gr1,gr1 ;call the OS

Since this service does not return, no attempt is made to test returned values or
to store results.

Host Interface (HIF) Specification 3–71

95

Service 325 – sigskp
Return From Signal Interrupt

Description
This service is called only from within a user signal handler installed using the
signal (321) service. The function of this service is to return from the latest
signal interrupt to the location specified by the value in program counter PC0
at the time the signal occurred. Once invoked, this service does not return to
the user signal handler.

Register Usage

Type Regs Contents Description

Calling: gr121 325 (0x145) Service number

gr125 sigptr Pointer to HIF Signal Stack containing
preserved registers (See signal (321)
for further information)

Returns: Does not return

Example Call

const gr121,325 ;service = 325

asneq 69,gr1,gr1 ;call the OS

Since this service does not return, no attempt is made to test returned values or
to store results.

3–72 Host Interface (HIF) Specification

96

Service 326 – sendsig
Send Signal

Description
This service provides the means to send a signal to the current process to
support signal testing. A single parameter, sig, specifies the signal number to
be sent.

Register Usage

Type Regs Contents Description

Calling: gr121 326 (0x141) Service number

lr2 sig Signal number to be sent to current
process

Returns: gr121 0x80000000 Logical TRUE, service successful

errcode Error number, service not successful
EHIFNOTAVAIL if service not imple-
mented (implementation dependent)

Example Call

const lr2,SIGFPE ;floating-point excep-
;tion

const gr121,326 ;service = 326

asneq 69,gr1,gr1 ;call the OS

jmpf gr121,send_err ;handle signaling error

nop

In the above example, a floating-point exception error signal is being sent to
the current process. It is assumed that a signal handler for the SIGFPE
(floating-point exception) error has been previously installed (see signal
service) and is being tested.

Host Interface (HIF) Specification 4–1

97

Chapter 4

Process Environment

There are standard memory and register initializations that must be performed
by a HIF-conforming kernel before entry to a user program. In C-language
programs, this is usually performed by the module crt0. This module receives
control when an application program is invoked, and executes prior to
invocation of the user’s main function. Other high-level languages have similar
modules.

4–2 Host Interface (HIF) Specification

98

Startup Initialization
Initialization procedures must establish appropriate values for the general
registers mentioned below. In addition, file descriptors for the standard input
and output devices must be opened.

Register Stack Pointer (gr1)
The register stack pointer (rsp) register contains the main memory address in
which the local register lr0 will be saved, and from which it will be restored.
The content of rsp is compared to the content of rab to determine when it is
necessary to spill part of the local register stack to memory. On startup, the
values in rab, rsp, and rfb should be initialized to prevent a spill trap from
occurring on entry to the crt0 code, as shown by the following relations:

256 + rab ≤ rsp < rfb

rfb = rab + 512

This provides the crt0 code with at least 64 registers on entry, which should be
a sufficient number to accomplish its purpose. Before entering crt0, the startup
initialization code must load the Am29027 processor’s mode register value
into global registers gr96 and gr97. Register gr96 contains the most significant
half of the mode register value, and gr97 contains the least significant half.

Memory Stack Pointer (gr125)
The memory stack pointer (msp) register points to the top of the memory stack,
or the lowest addressed entry on the memory stack. This register must be
preserved (or, more conventionally, restored).

Register Allocate Bound (gr126)
The register allocate bound (rab) register contains the register stack address of
the lowest addressed word contained within the register file. rab is referenced
in the prologue of most user program functions to determine whether a register
spill operation is necessary to accommodate the local register requirements of
the called function.

Host Interface (HIF) Specification 4–3

99

Register Free Bound (gr127)
The register free bound (rfb) register contains the register stack address of the
lowest addressed word not contained within the register file (and greater than
rab). rfb is referenced in the epilogue of most user program functions to
determine whether a register fill operation is necessary to restore previously
spilled registers needed by the function’s caller.

Open File Descriptors
File descriptor 0 (corresponding to the standard input device) must be opened
for text mode input. File descriptors 1 and 2 (corresponding to standard output
and standard error devices) must be opened for text mode output prior to entry
to the user’s program. File descriptors 0, 1, and 2 are expected to be in
COOKED mode (see ioctl), and file descriptor 0 should also select ECHO
mode, so that input from the standard input device (stdin) is echoed to the
standard output device (stdout).

Stack Allocation Sizes
The recommended minimum allocation sizes for the Memory and Register
stacks are 6 Kb and 2 Kb, respectively. It is the responsibility of the HIF
implementation to prepare the corresponding support registers for these
minimum sizes.

Program Termination
The only valid way for an application to terminate execution is by calling the
exit service. Most high-level languages provide this capability, even if the
programmer does not explicitly invoke a corresponding library function.

4–4 Host Interface (HIF) Specification

100

Trap Handlers
The trap vector entries shown in Table 4–1 must be installed and corresponding
handlers must be provided. All HIF-conforming operating systems must
provide unaligned access trap handlers.

Table 4–1. Trap Handler Vectors

Trap Description

32 MULTIPLY

33 DIVIDE

34 MULTIPLU

35 DIVIDU

36 CONVERT

42 FEQ

43 DEQ

44 FGT

45 DGT

46 FGE

47 DGE

48 FADD

49 DADD

50 FSUB

51 DSUB

52 FMUL

53 DMUL

54 FDIV

55 DDIV

64 Spill (Set up by the user’s task through a setvec call)

65 Fill (Set up by the user’s task through a setvec call)

69 HIF System Call

Note: The Spill (64) and Fill (65) traps are returned to the user’s code to
perform the trap handling functions in user mode.

Host Interface (HIF) Specification 4–5

101

HIF-Conforming Application COFF
Information

A HIF-conforming application binary file is relocatable; however, it is not
necessary to implement a relocation capability in any COFF loader. Many
HIF-environment support-tool developers may chose to relink portable
HIF-conforming applications prior to their execution on the target hardware.
Although portable HIF applications are relocatable, the relocation information
should be restricted to entries that use the symbol table entry relating to the
start of each section. As a result, there need only be one symbol table entry for
each section. These restrictions reduce the link/load time and costs.

Host Interface (HIF) Specification A–1

102

Appendix A

HIF Quick Reference

Table A-1 lists the HIF service calls, calling parameters, and the returned
values. If a column entry is blank, the register is not used or is undefined.
Table A-2 describes the parameters used in Table A-1.

Table A–1. HIF Service Calls

Service
Title

Calling Parameters Returned Values
Title

gr121 lr2 lr3 lr4 gr96 gr97 gr121

exit 1 exitcode Service does not return

open 17 pathname mode pflag fileno errcode

close 18 fileno retval errcode

read 19 fileno buffptr nbytes count errcode

write 20 fileno buffptr nbytes count errcode

lseek 21 fileno offset orig where errcode

remove 22 pathname retval errcode

rename 23 oldfile newfile retval errcode

ioctl 24 fileno mode errcode

iowait 25 fileno mode count errcode

iostat 26 fileno iostat errcode

tmpnam 33 addrptr filename errcode

time 49 secs errcode

getenv 65 name addrptr errcode

gettz 67 zonecode dstcode errcode

sysalloc 257 nbytes addrptr errcode

sysfree 258 addrptr nbytes retval errcode

getpsize 259 pagesize errcode

getargs 260 baseaddr errcode

A–2 Host Interface (HIF) Specification

103

Service
Title

Calling Parameters Returned Values
Title

gr121 lr2 lr3 lr4 gr96 gr97 gr121

clock 273 msecs errcode

cycles 274 LSBs
cycles

MSBs
cycles

errcode

setvec 289 trapno funaddr trapaddr errcode

settrap 290 trapno trapaddr trapaddr errcode

setim 291 mask di mask errcode

query 305 capcode hifvers errcode

capcode cpuvers errcode

capcode 027vers errcode

capcode clkfreq errcode

capcode memenv errcode

signal 321 newsig oldsig errcode

sigdfl 322 Service does not return

sigret 323 Service does not return

sigrep 324 Service does not return

sigskp 325 Service does not return

sendsig 326 sig errcode

Host Interface (HIF) Specification A–3

104

Table A–2. Service Call Parameters

Parameter Description

027vers The version number of the installed Am29027 arithmetic
accelerator chip (if any).

addrptr A pointer to an allocated memory area, a
command-line-argument array, a pathname buffer, or a
NULL-terminated environment variable name string.

baseaddr The base address of the command-line-argument vector
returned by the getargs service.

buffptr A pointer to the buffer area where data is to be read from or
written to during the execution of I/O services, or the buffer area
referenced by the wait service.

capcode The capabilities request code passed to the query service.
Code values are: 0 (request HIF version), 1 (request CPU
version), 2 (request Am29027 arithmetic accelerator version), 3
(request CPU clock frequency), and 4 (request memory
environment).

clkfreq The CPU clock frequency (in Hertz) returned by the query
service.

count The number of bytes actually read from file or written to a file.

cpuvers The CPU family and version number returned by the query
service.

cycles The number of processor cycles (returned value).

di The disable interrupts parameter to the setim service.

dstcode The daylight-savings-time-in-effect flag returned by the gettz
service.

errcode The error code returned by the service. These are usually the
same as the codes returned in the UNIX errno variable. See
Appendix B for a list of HIF error codes.

exitcode The exit code of the application program.

filename A pointer to a NULL-terminated ASCII string that contains the
directory path of a temporary filename.

fileno The file descriptor that is a small integer number. File
descriptors 0, 1, and 2 are guaranteed to exist and correspond
to open files on program entry (0 refers to the UNIX equivalent
of stdin and is opened for input; 1 refers to the UNIX stdout and
is opened for output; 2 refers to the UNIX stderr and is opened
for output).

funaddr A pointer to the address of a spill or fill handler passed to the
setvec service.

hifvers The version of the current HIF implementation returned by the
query service.

iostat The input/output status returned by the iostat service.

A–4 Host Interface (HIF) Specification

105

Parameter Description

mask The interrupt mask value passed to and returned by the setim
service.

memenv The memory environment returned by the query service.

mode A series of option flags whose values represent the operation to
be performed. Used in the open , ioctl , and wait services to
specify the operating mode.

msecs Milliseconds returned by the clock service.

name A pointer to a NULL-terminated ASCII string that contains an
environment variable name.

nbytes The number of data bytes requested to be read from or written
to a file, or the number of bytes to allocate or deallocate from
the heap.

newfile A pointer to a NULL-terminated ASCII string that contains the
directory path of a new filename.

newsig The address of the new user signal handler passed to the
signal service.

offset The number of bytes from a specified position (orig) in a file,
passed to the lseek service.

oldfile A pointer to NULL-terminated ASCII string that contains the
directory path of the old filename.

oldsig The address of the previous user signal handler returned by the
signal service.

orig A value of 0, 1, or 2 that refers to the beginning, the current
position, or the position of the end of a file.

pagesize The memory page size, in bytes, returned by the getpsize
service.

pathname A pointer to a NULL-terminated ASCII string that contains the
directory path of a filename.

pflag The UNIX file access permission codes passed to the open
service.

retval The return value that indicates success or failure.

secs The seconds count returned by the time service.

sig A signal number passed to the sendsig service.

sigptr A pointer to the HIF signal stack containing preserved registers.

trapaddr The trap address returned by the setvec and settrap services;
a trap address passed to and returned by the settrap service.

trapno The trap number passed to the setvec and settrap services.

where The current position in a specified file returned by the lseek
service.

zonecode The time zone minutes correction value returned by the gettz
service.

Host Interface (HIF) Specification B–1

106

Appendix B

HIF Error Numbers

HIF implementations are required to return error codes when a requested
operation is not possible. The codes from 0–10,000 are reserved for
compatibility with current and future error return standards. The currently
assigned codes and their meanings are shown in Table B–1. If a HIF
implementation returns an error code in the range of 0–10,000, it must carry
the identical meaning to the corresponding error code in this table. Error code
values larger than 10,000 are available for implementation- specific errors.

Table B–1. HIF Error Numbers Assigned

Number Error Name Description

0 Not used.

1 EPERM Not owner
This error indicates an attempt to modify a
file in some way forbidden except to its
owner.

2 ENOENT No such file or directory
This error occurs when a filename is
specified and the file should exist but does
not, or when one of the directories in a
pathname does not exist.

3 ESRCH No such process
The process or process group whose
number was given does not exist, or any
such process is already dead.

4 EINTR Interrupted system call
This error indicates that an asynchronous
signal (such as interrupt or quit) that the
user has elected to catch occurred during
a system call.

B–2 Host Interface (HIF) Specification

107

Number DescriptionError Name

5 EIO I/O error
Some physical I/O error occurred during a
read or write. This error may, in some
cases, occur on a call following the one to
which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice
that does not exist or is beyond the limits
of the device.

7 E2BIG Arg list is too long
An argument list longer than 5120 bytes is
presented to execve.

8 ENOEXEC Exec format error
A request is made to execute a file that,
although it has the appropriate
permissions, does not start with a valid
magic number.

9 EBADF Bad file number
Either a file descriptor refers to no open
file, or a read (write) request is made to a
file that is open only for writing (reading).

10 ECHILD No children
Wait and the process has no living or
unwaited-for children.

11 EAGAIN No more processes
In a fork, the system’s process table is full,
or the user is not allowed to create any
more processes.

12 ENOMEM Not enough memory
During an execve or break, a program
asks for more memory than the system is
able to supply or else a process size limit
would be exceeded.

13 EACCESS Permission denied
An attempt was made to access a file in a
way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault
in attempting to access the arguments of a
system call.

15 ENOTBLK Block device required
A plain file was mentioned where a block
device was required, such as in mount.

Host Interface (HIF) Specification B–3

108

Number DescriptionError Name

16 EBUSY Device busy
An attempt was made to mount a device
that was already mounted, or an attempt
was made to dismount a device on which
there is an active file (open file, current
directory, mounted-on file, or active text
segment).

17 EEXIST File exists
An existing file was mentioned in an
inappropriate context (e.g., link).

18 EXDEV Cross-device link
A hard link to a file on another device was
attempted.

19 ENODEV No such device
An attempt was made to apply an
inappropriate system call to a device, (for
example, to read a write-only device), or
the device is not configured by the system.

20 ENOTDIR Not a directory
A nondirectory was specified where a
directory is required, for example, in a
pathname or as an argument to chdir.

21 EISDIR Is a directory
An attempt was made to write on a
directory.

22 EINVAL Invalid argument
This error occurs when some invalid
argument for the call is specified. For
example, dismounting a nonmounted
device, mentioning an unknown signal in
signal , or specifying some other argument
that is inappropriate for the call.

23 ENFILE File table overflow
The system’s table of open files is full, and
temporarily no more open requests can be
accepted.

24 EMFILE Too many open files
The configuration limit on the number of
simultaneously open files has been
exceeded.

25 ENOTTY Not a typewriter
The file mentioned in stty or gtty is not a
terminal or one of the other devices to
which these calls apply.

B–4 Host Interface (HIF) Specification

109

Number DescriptionError Name

26 ETXTBSY Text file busy
The referenced text file is busy and the
current request cannot be honored.

27 EFBIG File too large
The size of a file exceeded the maximum
limit.

28 ENOSPC No space left on device
A write to an ordinary file, the creation of a
directory or symbolic link, or the creation of
a directory entry failed because no more
disk blocks are available on the file
system.

29 ESPIPE Illegal seek
A seek was issued to a socket or pipe.
This error may also be issued for other
nonseekable devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was
made on a device mounted read-only.

31 EMLINK Too many links
An attempt was made to establish a new
link to the requested file and the limit of
simultaneous links has been exceeded.

32 EPIPE Broken pipe
A write on a pipe or socket was attempted
for which there is no process to read the
data. This condition normally generates a
signal; the error is returned if the signal is
caught or ignored.

33 EDOM Argument too large
The argument of a function in the math
package is out of the domain of the
function.

34 ERANGE Result too large
The value of a function in the math
package is unrepresentable within
machine precision.

35 EWOULDBLOCK Operation would block
An operation that would cause a process
to block was attempted on an object in
nonblocking mode.

Host Interface (HIF) Specification B–5

110

Number DescriptionError Name

36 EINPROGRESS Operation now in progress
An operation that takes a long time to
complete was attempted on a nonblocking
object.

37 EALREADY Operation already in progress
An operation was attempted on a
nonblocking object that already had an
operation in progress.

38 ENOTSOCK Socket-operation on nonsocket
A socket-oriented operation was
attempted on a nonsocket device.

39 EDESTADDRREQ Destination address required
A required address was omitted from an
operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger
than the internal message buffer or some
other network limit.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not
support the semantics of the socket type
requested.

42 ENOPROTOOPT Option not supported by protocol
A bad option or level was specified when
accessing socket options.

43 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into
the system, or no implementation for it
exists.

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not
been configured into the system, or no
implementation for it exists.

45 EOPNOTSUPP Operation not supported on socket
An example of this would be trying to
accept a connection on a datagram
socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been
configured into the system or no
implementation for it exists.

B–6 Host Interface (HIF) Specification

111

Number DescriptionError Name

47 EAFNOSUPPORT Address family not supported by protocol
family
An address was used that is incompatible
with the requested protocol.

48 EADDRINUSE Address already in use
Only one usage of each address is
normally permitted.

49 EADDRNOTAVAIL Cannot assign requested address
This normally results from an attempt to
create a socket with an address not on this
machine.

50 ENETDOWN Network is down
A socket operation encountered a dead
network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an
unreachable network.

52 ENETRESET Network dropped connection on reset
The host the user was connected to
crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to
the user’s host machine.

54 ECONNRESET Connection reset by peer
A connection was forcibly closed by a
peer. This normally results from a loss of
the connection on the remote socket due
to a timeout or a reboot.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not
performed because the system lacked
sufficient buffer space or because a queue
was full.

56 EISCONN Socket is already connected
A connect request was made on an
already connected socket; or a sendto or
sendmsg request on a connected socket
specified a destination when already
connected.

Host Interface (HIF) Specification B–7

112

Number DescriptionError Name

57 ENOTCONN Socket is not connected
A request to send or receive data was
disallowed because the socket was not
connected and (when sending on a
datagram socket) no address was
supplied.

58 ESHUTDOWN Cannot send after socket shutdown
A request to send data was disallowed
because the socket had already been shut
down with a previous shutdown call.

59 ETOOMANYREFS Too many references; cannot splice.

60 ETIMEDOUT Connection timed out
A connect or send request failed because
the connected party did not properly
respond after a period of time. (The
timeout period is dependent on the
communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because
the target machine actively refused it. This
usually results from trying to connect to a
service that is inactive on the foreign host.

62 ELOOP Too many levels of symbolic links
A pathname look-up involved more than
the maximum limit of symbolic links.

63 ENAMETOOLONG Filename too long
A component of a pathname exceeded the
maximum name length, or an entire
pathname exceeded the maximum path
length.

64 EHOSTDOWN Host is down
A socket operation failed because the
destination host was down.

65 EHOSTUNREACH Host is unreachable
A socket operation was attempted to an
unreachable host.

66 ENOTEMPTY Directory not empty
A nonempty directory was supplied to a
remove directory or rename call.

67 EPROCLIM Too many processes
The limit of the total number of processes
has been reached. No new processes can
be created.

B–8 Host Interface (HIF) Specification

113

Number DescriptionError Name

68 EUSERS Too many users
The limit of the total number of users has
been reached. No new users may access
the system.

69 EDQUOT Disk quota exceeded
A write to an ordinary file, the creation of a
directory or symbolic link, or the creation of
a directory entry failed because the user’s
quota of disk blocks was exhausted; or the
allocation of an inode for a newly created
file failed because the user’s quota of
inodes was exhausted.

70 EVDBAD RVD related disk error

1001 EHIFNOTAVAIL HIF service not available.
The requested HIF service is not
implemented or is not available to the user
program making the request.

1002 EHIFUNDEF HIF service is undefined
The HIF service referenced by the
program is undefined. No valid HIF service
with that service number exists.

Host Interface (HIF) Specification Index–1

114

Index

Numbers

0x prefix, viii

A
addresses, setting for traps, 3–55–3–57
allocating, memory space, 3–45–3–46
architectural simulator, v, 1–3
ASCII, 3–29
assembly code example, 2–5
ASYNC mode, 3–28

B
buffer

reading from, 3–16–3–19
writing to, 3–19–3–22

byte, seeking, 3–22–3–25

C
carriage return, 3–29
CBREAK mode, 3–28
character string conventions, viii
clock service, 3–51
close service, 3–14–3–16
COFF, 4–5
conventions

character strings, viii
documentation, viii
numeric values, viii

COOKED mode, 3–28
CPS register, 3–59
crt0 module, 4–1
cycles service, 3–53–3–55

D
decimal numbers, viii
deleting, files, 3–25–3–26
descriptors, for open file, 4–3
DI field, setting, 3–59
direct trap execution, 2–1
documentation

audience, vi
conventions, viii
reference, vii

Index–2 Host Interface (HIF) Specification

115

E
EB29030 board, v, 1–3
EB29K board, v, 1–3
ECHO mode, 3–28
environment

getting, 3–41–3–43
process, 4–1

errors, list of, B–1–B–9
exit service, 3–7–3–8
exiting, programs, 3–7–3–8
EZ-030 board, v, 1–3

F
files

byte, seeking, 3–22–3–25
closing, 3–14–3–16
descriptors, 4–3
opening, 3–8–3–14
reading buffer, 3–16–3–19
removing, 3–25–3–26
renaming, 3–26–3–28
writing data to, 3–19–3–22

freeing, memory space, 3–46–3–48

G
getargs service, 3–49
getenv service, 3–41–3–43
getpsize service, 3–48–3–49
getting

environment, 3–41–3–43
page size, 3–48–3–49
time zone, 3–43–3–45

gettz service, 3–43–3–45
GMT, 3–43

gr1 register, 4–2
gr125 register, 4–2
gr126 register, 4–2
gr127 register, 4–3

H
hexadecimal numbers, viii
HIF

application examples, 1–3
assembly code example, 2–5
concepts, 1–5
definition, v
errors, B–1–B–9
implementation types, 1–7
initialization, 4–2
interface (figure), 1–2
introduction, 1–1–1–3
quick reference to services, A–1–A–5
register preservation, 3–65
registers preserved, 2–2
services. See services.
users, v, 1–4

I
I/O

control of, 3–28–3–32
status of, 3–35–3–37
testing for completion, 3–32–3–35

I/O modes
ASYNC, 3–28
CBREAK, 3–28
COOKED, 3–28
ECHO, 3–28
NBLOCK, 3–28
RAW, 3–28

IM field, setting, 3–59

Host Interface (HIF) Specification Index–3

116

implementations of HIF
embedded, 1–7
self-hosted, 1–7

input, control of, 3–28–3–32
input parameters, 2–3
interrupt mask, setting, 3–59–3–61
invocation, of services, 2–3
ioctl service, 3–28
iostat service, 3–35–3–37
iowait service, 3–32–3–35
ISATTY status value, 3–35

L
line–feed, 3–29
lseek service, 3–22–3–25

M
memory

allocating, 3–45–3–46
freeing, 3–46–3–48
page size, returning, 3–48–3–49

memory stack pointer (msp) register, 4–2

N
NBLOCK mode, 3–28
numeric value conventions, viii

O
O_APPEND mode, 3–10
O_CREAT mode, 3–10
O_EXCL mode, 3–11
O_FORM mode, 3–11
O_NDELAY mode, 3–11
O_RDONLY mode, 3–10
O_RDWR mode, 3–10
O_TRUNC mode, 3–11
O_WRONLY mode, 3–10
open service, 3–8–3–14
osboot, 1–7
output, control of, 3–28–3–32

P
parameters

description of, A–3
input, 2–3
quick reference to, A–3

PC0 program counter, returning to,
3–71–3–72

PC1 program counter, returning to,
3–69–3–70

PC2 program counter, returning to,
3–70–3–71

pointers
memory stack, 4–2
register stack, 4–2

process environment, overview, 4–1
processor, cycles, 3–53–3–55
programs, termination, 3–7–3–8, 4–3

Index–4 Host Interface (HIF) Specification

117

Q
query service, 3–61–3–64

R
RAW mode, 3–28
RDREADY status value, 3–35
read service, 3–16–3–19
reading, buffer, 3–16–3–19
register allocate bound (rab) register, 4–2
register free bound (rfb) register, 4–3
register stack pointer (rsp) register, 4–2
registers

See also names of specific registers.
preserved by HIF, 2–2
preserving with HIF, 3–65
reserved by HIF, 2–3

remove service, 3–25–3–26
removing, files, 3–25–3–26
rename service, 3–26
returning

base address, 3–49–3–51
memory page size, 3–48–3–49
PC0, to, 3–71–3–72
PC1, to, 3–69–3–70
PC2, to, 3–70–3–71
processor cycles, 3–53–3–55
seconds since 1970, 3–39–3–41
temporary name, 3–37–3–39
time in milliseconds, 3–51–3–53
version information, 3–61–3–64

S
SA-29200 board, v, 1–3
SA-29240 board, v, 1–3
SD-29240 board, v, 1–3
sending, signals, 3–72
sendsig service, 3–72
services

invocation of, 2–3
listed by decimal number, 3–3
listed by name, 3–4
numbers reserved, 2–3
overview, 3–1–3–3
parameters list, 3–5–3–7
quick reference to, A–1
returned values, 2–4

setenv command, 3–41
setim service, 3–59–3–61
setting

interrupt mask, 3–59–3–61
trap addresses, 3–55–3–57
trap vectors, 3–57–3–59

settrap service, 2–7, 3–57–3–59
setvec service, 2–6, 3–55–3–57
sigdfl service, 3–68–3–69
SIGFPE signal, 3–64
SIGINT signal, 3–64
signal service, 2–7, 3–64–3–68
signals

handling, 3–68–3–69
registering signal handler, 3–64–3–68
returning to PC0, 3–71–3–72
returning to PC1, 3–69–3–70
returning to PC2, 3–70–3–71
sending, 3–72

Host Interface (HIF) Specification Index–5

118

sigrep service, 3–70–3–71
sigret service, 3–69–3–70
sigskp service, 3–71–3–72
spill/fill handlers, 2–6
stack, allocation sizes, 4–3
status

input/output, 3–35–3–37
reporting, 2–4

strings, conventions, viii
supervisor mode, 2–7
sysalloc service, 3–45–3–46
sysfree service, 3–46–3–48
system calls, overview, 2–1

T
TAB characters, 3–29
temporary name, returning, 3–37–3–39
terminating, program, 3–7–3–8, 4–3
time

getting time zone, 3–43–3–45
returning in milliseconds, 3–51–3–53
returning seconds since 1970,

3–39–3–41
time service, 3–39–3–41
tmpnam service, 3–37

traps
handlers, 4–4
setting addresses, 3–55–3–57
setting vector of, 3–57–3–59
supervisor mode, 2–7
user mode, 2–6
vector entries, 4–4

U
user mode, 2–6

V
values, returned by HIF, 2–4
vectors, setting for traps, 3–57–3–59
version information, returning, 3–61–3–64
virtual machine, 1–5

W
write service, 3–19–3–22
writing, buffer, 3–19–3–22

	Contents
	About This Specification
	How to Use This Documentation
	About This Specification
	Intended Audience
	Reference Documents
	Documentation Conventions

	Introduction
	HIF Applications
	HIF Users
	HIF Concepts
	Implementation Types

	System Call Mechanism
	HIF Service Invocation
	User-Mode Traps
	Supervisor-Mode Traps

	HIF Service Routines
	Service 1 – exit
	Service 17 – open
	Service 18 – close
	Service 19 – read
	Service 20 – write
	Service 21 – lseek
	Service 22 – remove
	Service 23 – rename
	Service 24 – ioctl
	Service 25 – iowait
	Service 26 – iostat
	Service 33 – tmpnam
	Service 49 – time
	Service 65 – getenv
	Service 67 – gettz
	Service 257 – sysalloc
	Service 258 – sysfree
	Service 259 – getpsize
	Service 260 – getargs
	Service 273 – clock
	Service 274 – cycles
	Service 289 – setvec
	Service 290 – settrap
	Service 291 – setim
	Service 305 – query
	Service 321 – signal
	Service 322 – sigdfl
	Service 323 – sigret
	Service 324 – sigrep
	Service 325 – sigskp
	Service 326 – sendsig

	Process Environment
	Startup Initialization
	Stack Allocation Sizes
	Program Termination
	Trap Handlers
	HIF-Conforming Application COFF Information

	HIF Quick Reference
	HIF Error Numbers
	Index

