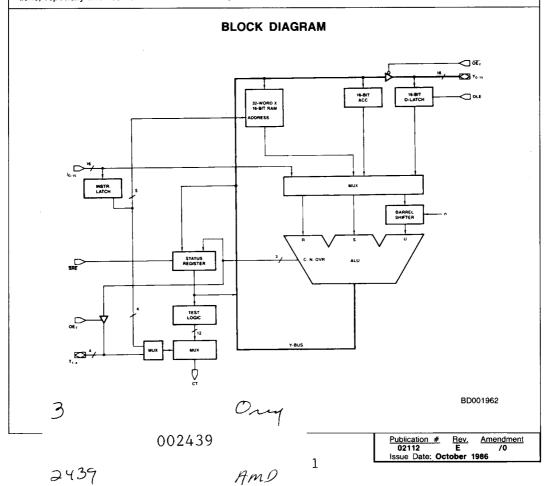
Am29116A/Am29L116A/Am29116

High-Performance 16-Bit Bipolar Microprocessors

J

DISTINCTIVE CHARACTERISTICS

- Optimized for High-Performance Controllers
 Excellent solution for applications requiring speed and bit-manipulation power.
- Fast

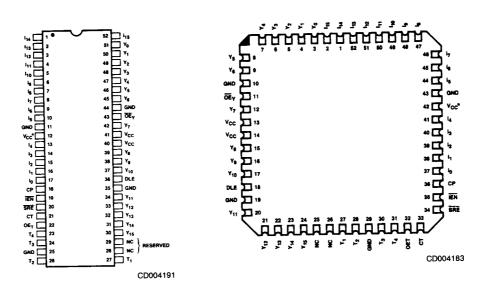

The Am29116 supports 100-ns microcycle time/10-MHz data rate for all instructions.

- Speed-Enhanced Version
- The Am29116A is 25% faster than the Am29116.
- Low-Power Version
 - The Am29L116A is the same speed as the Am29116 and dissipates 25% less power.
- Powerful Field Insertion/Extraction and Bit-Manipulation Instructions
 - Rotate and Merge, Rotate and Compare and bitmanipulation instructions provided for complex bit control.
- Immediate Instruction Capability
 May be used for storing constants in microcode or for configuring a second data port.
- 16-Bit Barrel Shifter
- 32-Working Registers

GENERAL DESCRIPTION

The Am29116 is a microprogrammable 16-bit bipolar microprocessor whose architecture and instruction set is optimized for high-performance peripheral controllers, like graphics controllers, disk controllers, communications controllers, front-end concentrators and modems. The device also performs well in microprogrammed processor applications, especially when combined with the Am29517, 16 x 16

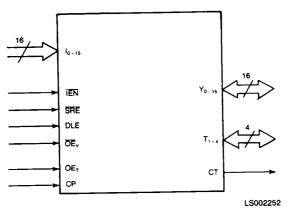
Multiplier (65-ns worst-case 16 x 16 multiply). In addition to its complete arithmetic and logic instruction set, the Am29116 instruction set contains functions particularly useful in controller applications; bit set, bit reset, bit test, rotate and merge, rotate and compare, and cyclic-redundancy-check (CRC) generation.

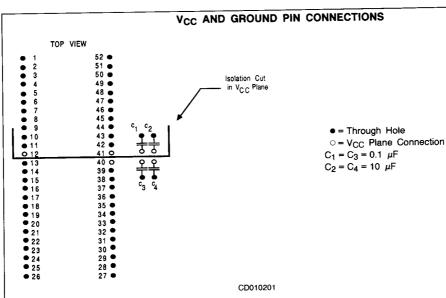


Advanced Micro Devices
Advanced Micro Devices

RELATED PRODUCTS

Part No.	Description
Am29112	High-Performance 8-Bit Slice Microprogram Sequencer
Am29C116	CMOS Version of the Am29116
Am29117	Two-Port Version of the Am29116
Am29C117	CMOS Version of the Am29117
Am29118	Eight-Bit Am29116 I/O Support

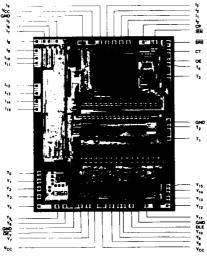

CONNECTION DIAGRAMS Top View


Note: Pin 1 is marked for orientation.

*On the current bipolar devices, pin 12 is not connected (NC) internally. Historically, this pin was connected. CMOS options of the Am29116 currently use this pin for an internal V_{CC} connection.

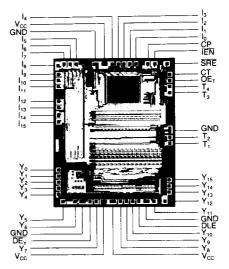
LOGIC SYMBOL

GND = Ground V_{CC} = Power Supply



The Am29116 Family of microprocessors consists of high-performance devices that operate in an environment of fast signal rise times and substantial switching currents. Attention must be paid to layout and decoupling to avoid undesired effects from this environment. The following suggestions may be of benefit in developing the layout scheme:

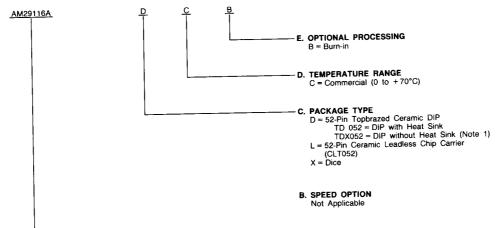
- A multi-layer PC board with separate power, ground, and signal planes required for Schottky performance-level systems.
 Tie the four ground pins immediately to the ground plane.
 A U-shaped isolation cut should be made in the V_{CC} plane between pins 12 and 13 and pins 40 and 41. This isolation cut establishes a low-pass network that will provide sufficient inductive isolation between pin 40 (which supplies the TTL output drivers) and pin 41 (which supplies the internal ECL) so that transient currents will have no effect on the internal operation.
- object of the part of the vector of the vec


METALLIZATION AND PAD LAYOUTS

Am29116

Die Size: 0.251" x 0.311" Gate Count: 2500 Equivalent Gates

Am29116A/Am29L116A


Die Size: 0.205" x 0.250" Gate Count: 2500 Equivalent Gates

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: A. Device Number

- B. Speed Option (if applicable)
- C. Package Type
 D. Temperature Range
 E. Optional Processing

A. DEVICE NUMBER/DESCRIPTION

Am29116 High-Performance 16-Bit MPU Am29116A High-Speed, High-Performance 16-Bit MPU Am29L116A Low-Power, High-Performance 16-Bit MPU

Notes: 1. 52-pin DIP without heat sink (TDX052) is available only for the Am29L116A Low-Power, High-Performance MPU.

Valid Combinations									
AM29116, AM29116A	DC, DCB,								
AM29L116A (Note 1)	LC, XC								

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION

APL and CPL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) products are processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, solderability, or surface treatment exceptions to those specifications. The order number (Valid Combination) is formed by a combination of:

APL Products: A. Device Number

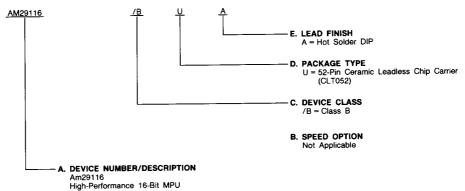
B. Speed Option (if applicable)

C. Device Class

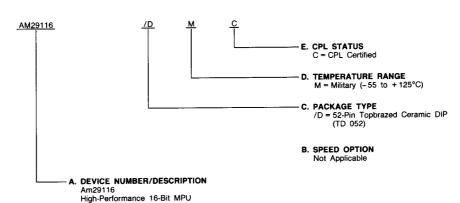
D. Package Type

E. Lead Finish

CPL Products: A. Device Number


B. Speed Option (if applicable)

C. Package Type


D. Temparature Range

E. CPL Status

CPL Products

Valid Combinations A P AM29116 /BUA L C P AM29116 /DMC

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A Tests consists of Subgroups: 1, 2, 3, 7, 8, 9, 10, 11

PIN DESCRIPTION

Data I/O Lines — 16 (Input/Output) Y0-Y15

When OE_Y is HIGH, Y₀-Y₁₅ are used as external data inputs which allow data to be directly loaded into the 16-bit data latch. Having $\overline{\text{OE}}_{Y}$ LOW allows the ALU data to be output on Yo-Y15.

DLE Data Latch Enable (Input)

When DLE is HIGH, the 16-bit data latch is transparent and is latched when DLE is LOW.

Output Enable (Input)

When $\overline{\text{OE}}_{Y}$ is HIGH, the 16-bit Y outputs are disabled (highimpedance); when $\overline{\text{OE}}_{Y}$ is LOW, the 16-bit Y outputs are enabled (HIGH or LOW).

 l_0-l_{15} Instruction Inputs — 16 (Input)
Used to select the operations to be performed in the Am29116. Also used as data inputs while performing immediate instructions.

Instruction Enable (Input)

With IEN LOW, data can be written into the RAM when the clock is LOW. The Accumulator can accept data during the LOW-HIGH transition of the clock. Having IEN LOW, the Status Register can be updated when $\overline{\text{SRE}}$ is LOW. With IEN HIGH, the conditional test output, CT, is disabled as a function of the instruction inputs. IEN should be LOW for the first half of the first cycle of an immediate instruction.

SRE Status Register Enable (Input)

When SRE and IEN are both LOW, the Status Register is updated at the end of all instructions with the exception of NO-OP, Save Status, and Test Status. Having either SRE or IEN HIGH will inhibit the Status Register from changing.

CP Clock Pulse (Input)

The clock input to the Am29116. The RAM latch is transparent when the clock is HIGH. When the clock goes LOW, the RAM output is latched. Data is written into the RAM during the low period of the clock provided IEN is LOW and if the instruction being executed designates the RAM as the destination of operation. The Accumulator and Status Register will accept data on the LOW-HIGH transition of the clock if $\overline{\text{IEN}}$ is also LOW. The instruction latch becomes transparent when it exits an immediate instruction mode during a LOW-HIGH transition of the clock.

Input/Output Pins — 4 (Input/Output)

Under the control of OET, the four lower status bits Z, C, N, OVR become outputs on T₁-T₄, respectively when OE_T goes HIGH. When OET is LOW, T1- T4 are used as inputs to generate the CT output.

OET Output Enable (Input)

When OET is LOW, the 4-bit T outputs are disabled (highimpedance); when OET is HIGH, the 4-bit T outputs are enabled (HIGH or LOW).

Conditional Test (Output)

The condition code multiplexer selects one of the twelve condition code signals and places them on the CT output. A HIGH on the CT output indicates a passed condition and a LOW indicates a failed condition.

FUNCTIONAL DESCRIPTION

The following diagram (Figure 1) is a summary of devices within the Am29116 Family showing performance versus power.

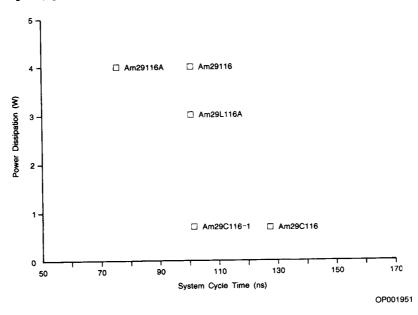


Figure 1. Am29116 Family (Performance Versus Power)

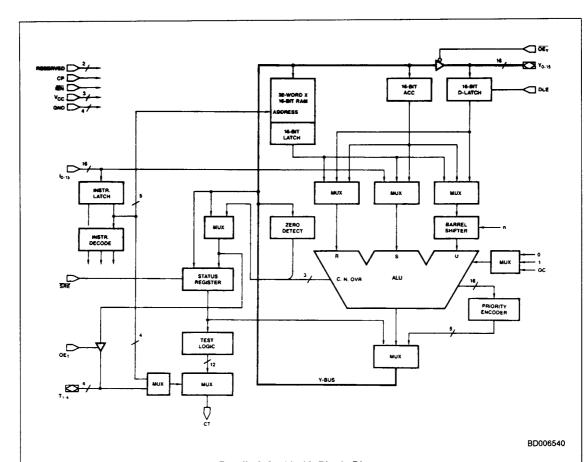


Figure 2. Detailed Am29116 Block Diagram

ARCHITECTURE OF THE Am29116

The Am29116 is a high-performance, microprogrammable 16bit bipolar microprocessor.

As shown in the Block Diagram, the device consists of the following elements interconnected with 16-bit data paths.

- 32-Word by 16-Bit RAM
- Accumulator
- Data Latch
- Barrel Shifter
- ALU
- Priority Encoder
- Status Register
- Condition-Code Generator/Multiplexer
- Three-State Output Buffers
- Instruction Latch and Decoder

32-Word by 16-Bit RAM

The 32-Word by 16-Bit RAM is a single-port RAM with a 16-bit latch at its output. The latches are transparent when the clock input (CP) is HIGH and latched when the clock input is LOW. Data is written into the RAM while the clock is LOW if the IEN input is also LOW and if the instruction being executed defines the RAM as the destination of the operation. For byte instructions, only the lower eight RAM bits are written into; for word instructions, all 16 bits are written into. With the use of an external multiplexer on five of the instruction inputs, it is possible to select separate read and write addresses for the same instruction. This two-address operation is not allowed for immediate instructions

Accumulator

The 16-bit Accumulator is an edge-triggered register. The Accumulator accepts data on the LOW-to-HIGH transition of the clock input if the $\overline{\text{IEN}}$ input is LOW and if the instruction being executed defines the Accumulator as the destination of the operation. For byte instructions, only the lower eight bits of the Accumulator are written into; for word instructions, all 16 bits are written into.

Data Latch

The 16-bit Data Latch holds the data input to the Am29116 on the bi-directional Y bus. The latch is transparent when the DLE input is HIGH and latched when the DLE input is LOW.

Barrel Shifter

A 16-bit Barrel Shifter is used as one of the ALU inputs. This permits rotating data from either the RAM, the Accumulator or the Data Latch up to 15 positions. In the word mode, the Barrel Shifter rotates a 16-bit word; in the byte mode, it rotates only the lower eight bits.

Arithmetic Logic Unit

The Am29116 contains a 16-bit ALU with full carry lookahead across all 16 bits in the arithmetic mode. The ALU is capable of operating on either one, two or three operands, depending upon the instruction being executed. It has the ability to execute all conventional one and two operand operations, such as pass, complement, two's complement, add, subtract, AND, NAND, OR, NOR, EXOR, and EX-NOR. In addition, the ALU can also execute three-operand instructions such as rotate and merge, and rotate and compare with mask. All ALU operations can be performed on either a word or byte basis, byte operations being performed on the lower eight bits only

The ALU produces three status outputs, C (carry), N (negative) and OVR (overflow). The appropriate flags are generated at the byte or word level, depending upon whether the device is executing in the byte or word mode. The Z (zero) flag, although not generated by the ALU, detects zero at both the byte and word level.

The carry input to the ALU is generated by the Carry Multiplexer which can select an input of zero, one, or the stored carry bit from the Status Register, QC. Using QC as the carry input allows execution of multiprecision addition and subtractions.

Priority Encoder

The Priority Encoder produces a binary-weighted code to indicate the locations of the highest order ONE at its input. The input to the Priority Encoder is generated by the ALU which performs an AND operation on the operand to be prioritized and a mask. The mask determines which bit locations to eliminate from prioritization. In the word mode, if no bit is HIGH, the output is a binary zero. If bit 15 is HIGH, the output is a binary one. Bit 14 produces a binary two, etc. Finally, if only bit 0 is HIGH, a binary 16 is produced.

In the byte mode, bits 8 thru 15 do not participate. If none of bits 7 thru 0 are HIGH, the output is a binary zero. If bit 7 is HIGH a binary one is produced. Bit 6 produces a binary two, etc. Finally, if only bit 0 is HIGH, a binary 8 is produced.

Status Register

The Status Register holds the 8-bit status word. With the Status-Register Enable, (SRE) input LOW and the IEN input LOW, the Status Register is updated at the end of all instructions except NO-OP, Save-Status and Test-Status instructions. SRE going HIGH or IEN going HIGH inhibits the Status Register from changing.

The lower four bits of the Status Register contain the ALU status bits of Zero (Z), Carry, (C) Negative (N), and Overflow (OVR). The upper four bits contain a Link bit and three userdefinable status bits (Flag 1, Flag 2, Flag 3).

With SRE LOW and IEN LOW, the lower four status bits are updated after each instruction except those mentioned above, NO-OP, Save Status, Status Test and the Status Set/Reset instruction for the upper four bits. Under the same conditions, the upper four status bits are changed only during their respective Status Set/Reset instructions and during Status Load instructions in the word mode. The Link-Status bit is also updated after each shift instruction.

The Status Register can be loaded from the internal Y-bus, and can also be selected as a source for the internal Y-bus. When the Status Register is loaded in the word mode, all 8bits are updated; in the byte mode, only the lower 4 bits (Z, C, N, OVR) are updated.

When the Status Register is selected as a source in the word mode, all eight bits are loaded into the lower byte of the destination; the upper byte of the destination is loaded with all zeros. In the byte mode, the Status Register again loads into the lower byte of the destination, but the upper byte remains unchanged. This Store and Load combination allows saving the restoring the Status Register for interrupt and subroutine processing. The four lower status bits (Z, C, N, OVR) can be read directly via the bidirectional T bus. These four bits are available as outputs on the T_{1-4} outputs whenever OE_T is HIGH.

Condition-Code Generator/Multiplexer

The Condition-Code Generator/Multiplexer contains the logic necessary to develop the 12 condition-code test signals. The multiplexer portion can select one of these test signals and place it on the CT output for use by the microprogram sequence. The multiplexer may be addressed in two different ways. One way is through the Test Instruction. This instruction specifies the test condition to be placed in the CT output, but does not allow an ALU operation at the same time. The second method uses the bidirectional T bus as an input. This requires extra bits in the microword, but provides the ability to simultaneously test and execute. The test instruction lines, I₀₋₄, have priority over T₁₋₄, for testing status.

Three-State Output Buffers

There are two sets of Three-State Output Buffers in the Am29116. One set controls the bidirectional, 16-bit Y bus. These outputs are enabled by placing a LOW on the OE input. A HIGH puts the Y outputs in the high-impedance state, allowing data to be input to the Data latch from an external source.

The second set of Three-State Output Buffers controls the bidirectional 4-bit T bus and is enabled by placing a HIGH on the OE_T input. This allows storing the four internal ALU status bits (Z, C, N, OVR) externally. A LOW OE_T input forces the T outputs into the high-impedance state. External devices can then drive the T bus to select a test condition for the CT

Instruction Latch and Decoder

The 16-bit Instruction Latch is normally transparent to allow decoding of the Instruction Inputs by the Instruction Decoder into the internal control signals for the Am29116. All instructions except Immediate Instructions are executed in a single clock cycle.

Immediate instructions require two clock cycles for execution. During the first clock cycle, the Instruction Decoder recognizes that an Immediate Instruction is being specified and captures the data on the Instruction Inputs in the Instruction Latch. During the second clock cycle, the data on the Instruction Inputs is used as one of the operands for the function specified during the first clock cycle. At the end of the second clock cycle, the Instruction Latch is returned to its transparent state.

INSTRUCTION SET

The instruction set of the Am29116 is very powerful. In addition to the single and two operand logical and arithmetic instructions, the Am29116 instruction set contains functions particularly useful in controller applications: bit set, bit reset, bit test, rotate and merge, rotate and compare, and cyclicredundancy-check (CRC) generation. Complex instructions like rotate and merge, rotate and compare, and prioritize are executed in a single microcycle.

Three data types are supported by the Am29116.

- Bit
- Byte
- Word (16-bit)

In the byte mode data is written into the lower half of the word and the upper half is unchanged. The special case is when the status register is specified as the destination. In the byte mode the LSH (OVR, N, C, Z) of the status register is updated and in the word mode all eight bits of the status register are updated. The status register does not change for save status and test status instructions. In the test status instructions the CT output has the result and the Y-bus is undefined.

The Am29116 Instruction Set can be divided into eleven types of instructions. These are:

- Single Operand
- Two Operand
- Single Bit Shift
- Rotate and Merge
- Bit Oriented
- Rotate by n Bits
- Rotate and Compare
- Prioritize
- Cyclic-Redundancy-Check
- Status
- No-Op

Each instruction type is arbitrarily divided into quadrants. Two of the sixteen instruction lines decode to four quadrants labelled from 0 to 3. The quadrants were defined mainly for convenience in classification of the instruction set and addressing modes and can be used together with the OP CODES to distinguish the instructions.

The following pages describe each of the instruction types in detail. Throughout the description OEy is assumed to be LOW allowing ALU outputs on the Y-bus.

Table 1 illustrates operand source-destination combinations for each instruction type.

TABLE 1. OPERAND SOURCE DESTINATION COMBINATIONS

Instruction Type	Operand	Combinatio	ons (Note 1)
manucuon Typo	Source		Destination
Single Operand	RAM (N AC D D(0 D(S	C E) E)	RAM ACC Y Bus Status ACC and Status
	Source (R)	Destination	
Two Operand	RAM RAM D D ACC D	ACC I RAM ACC I	RAM ACC Y Bus Status ACC and Status
	Sourc	e (U)	Destination
Single Bit Shift	RA AC AC C	CC CC O	RAM ACC Y Bus RAM ACC Y Bus
	Source	e (U)	Destination
Rotate n Bits	AC	AM CC C	RAM ACC Y Bus
	Source	(R/S)	Destination
Bit Oriented		AM CC	RAM ACC Y Bus
	Rotated Source (U)	Mask (S)	Non-Rotated Source/ Destination (R)
Rotate and Merge	D D D D ACC RAM	RAM ACC	ACC ACC RAM RAM RAM ACC


Instruction Type	Operand	Combination	ons (Note 1)					
	Rotated Source (U)	Mask (S)	Non-Rotated Source/ Destination (R)					
Rotate and Compare	D D D RAM	I ACC	RAM RAM ACC					
	Source (R)	Mask (S)	Destination					
Prioritize (Note 3)	RAM ACC D	RAM ACC I 0	RAM ACC Y Bus					
Cyclic	Data In	Destination	Polynomial					
Redundancy Check	QLINK	RAM	ACC					
No Operation								
-		Bits Affec	ted					
Set Reset Status	OVR, N, C, Z LINK Flag1 Flag2 Flag3							
	Sou	ırce	Destination					
Store Status	Sta	atus	RAM ACC Y Bus					
	Source (R)	Source (S)	Destination					
Status Load	D ACC	ACC I	Status Status and ACC					
	D							
Test Status	T	est Condition (N⊕OVR) N⊕OVI Z OVR Low C Z + C N LINK Flag 2 Flag 2 Flag 3	+ Z					

Notes: 1. When there is no dividing line between the R&S OPERAND or SOURCE and DESTINATION, the when there is no dividing line between the H&S OPEHAND of SOURCE and DESTINATION, the two must be used as a given pair. But where there exists such a separation, any combination of them is possible.
 In the SINGLE OPERAND INSTRUCTION, RAM cannot be used when both ACC and STATUS are designated as a DESTINATION.
 In the PRIORITIZE INSTRUCTION, OPERAND and MASK must be different sources.

SINGLE OPERAND INSTRUCTIONS

The Single Operand Instructions contain four indicators: byte or word mode, opcode, source and destination. They are further subdivided into two types. The first type uses RAM as a source or destination or both, and the second type does not use RAM as a source or destination. Both types have different instruction formats as shown below. Under the control of instruction inputs, the desired function is performed on the source and the result is either stored in the specified destination or placed on the Y-bus or both. For a special case where 8-bit to 16-bit conversion is needed, the Am29116 is capable of extending sign bit (D(SE)) or binary zero (D(0E)) over 16-bits in the word mode. The least significant four bits of the Status Register (OVR, N, C, Z) are affected by the function performed in this category. The most significant bits of status register (FLAG1, FLAG2, FLAG3, LINK) are not affected. The only limitation in this type is that the RAM cannot be used as a source when both ACC and the Status Register are specified as a destination.

SINGLE OPERAND FIELD DEFINITIONS

SINGLE OPERAND INSTRUCTION

		14 13			<u> </u>	8 5		- · · · · ·	4	4 0	BAM	Address
Instruction ¹	B/W ²	Quad ³		Opc	ode			R/S	Dest ⁴		HAM	
SOR	0 = B 1 = W	10	1100 1101 1110 1111	MOVE COMP INC NEG	SRC → Dest SRC → Dest SRC + 1 → Dest SRC + 1 → Dest	0000 0010 0011 0100 0110 0111 1000 1001 1010	SORA SORY SORS SOAR SODR SOIR SOZR SOZER SOSER SORR		ACC Y Bus Status RAM RAM RAM RAM RAM RAM RAM	11111	R00 R31	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad		Орс	ode			R/S ⁴			Dest	ination
SONR	0 = B 1 = W	11	1100 1101 1110 1111	MOVE COMP INC NEG	SRC → Dest SRC → Dest SRC + 1 → Dest SRC + 1 → Dest	0100 0110 0111 1000 1001 1010	SOA SOD SOI SOZ SOZE SOSE	ACC D I 0 D(0E) D(SE)		00000 00001 00100 00101	NRY NRA NRS NRAS	Y Bus ACC Status ⁵ ACC, Status ⁵

Notes:

1. The instruction mnemonic designates different instruction formats used in the Am29116. They are useful in assembly microcode with the System 29 AMDASMTM meta assembler.

2. B = Byte Mode, W = Word Mode.

3. See Instruction Set description.

4. R = Source; S = Source; Dest = Destination.

5. When status is destination,
 Status i ... Yi i = 0 to 3 (Byte mode)
 i = 0 to 7 (Word mode)

Y BUS AND STATUS - SINGLE OPERAND INSTRUCTIONS

Instruction	Opcode	Description	B/W	Y — Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
SOR	MOVE	SRC → Dest	0 = B	Y ← SRC	NC	NC	NC	NC	0	U	0	U
SONR	COMP	SRC → Dest	1 = W	Y ← SRC	NC	NC	NC	NC	0	U	0	U
	INC	SRC +1 → Dest	1	Y ← SRC +1	NC	NC	NC	NC	U	٦	υ	U
	NEG	SRC +1 → Dest	7	Y - SRC +1	NC	NC	NC	NC	U	U	כ	U

SRC = Source U = Update NC = No Change

i = 0 to 15 when not specified

TWO OPERAND INSTRUCTIONS

The Two Operand Instructions contain five indicators: byte or word mode, opcode, R source, S source, and destination. They are further subdivided into two types. The first type uses RAM as the source and/or destination and the second type does not use RAM as source or destination. The first type has two formats; the only difference is in the quadrant. Under the control of instruction inputs, the desired function is performed on the specified sources and the result is stored in the

specified destination or placed on the Y-bus or both. The least significant four bits of the status register (OVR, N, C, Z) are affected by the arithmetic functions performed and only the N and Z bits are affected by the logical functions performed. The OVR and C bits of the status register are forced to ZERO for logical functions. Add with carry and Subtract with carry instructions are useful for Multiprecision Add or Subtract.

TWO OPERAND FIELD DEFINITIONS

	15	14 13	12 9	8 5	4 0
TOR1	B/W	Quad	SRC-SRC -Dest	Opcode	RAM Address
TOR2	B/W	Quad	SRC-SRC -Dest	Opcode	RAM Address
TONR	B/W	Quad	SRC-SRC	Opcode	Dest

TWO OPERAND INSTRUCTIONS

Instruction	B/W	Quad			R ¹	S ¹	Dest ¹		Opco	de		RAM	Address
TOR1	0 = B 1 = W	00	0000 0010 0011 1000 1010 1011 11100 11110 11111	TORAA TORIA TODRA TORAY TORIY TODRY TORAR TORIR TODRR	RAM RAM D RAM RAM D RAM RAM D	ACC I RAM ACC I RAM ACC I RAM	ACC ACC ACC Y Bus Y Bus Y Bus RAM RAM	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011	SUBR SUBSC ² SUBSC ² ADD ADDC AND NAND EXOR NOR OR EXNOR	S minus R S minus R S minus R N S minus R N S N Minus S R minus S R minus S S N Minus S N Police S N N N N N N N N N N N N N N N N N N	00000	R00 R31	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad			R ¹	s ¹	Dest ¹		Opco	de		RAM	Address
TOR2	0 = B 1 = W	10	0001 0010 0101	TODAR TOAIR TODIR	D ACC D	ACC I	RAM RAM RAM	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011	SUBA SUBSC ² SUBSC ² ADD ADDC AND NAND EXOR NOR OR EXNOR	With carry	00000	R00 R31	RAM Reg 00 RAM Reg 31

Note 1: R = Source
S = Source
Dest = Destination
Note 2: During subtraction the carry is interpreted as borrow.

Instruction	B/W	Quad			R ¹	s ¹		Op	ocode		Destination
	0 = B 1 = W	11	0001 0010 0101	TODA TOAI TODI	D ACC D	ACC	0000 0001	SUBR SUBRC	S minus R S minus R with carry	00000 00001 00100	NRY Y Bus NRA ACC NRS Status ²
			0,0,	1001		•	0010 0011	SUBS SUBSC	R minus S R minus S with	00101	NRAS ACC, Status ²
TONR							0011	00000	carry		
			ļ				0100	ADD	R plus S		
							0101	ADDC	R plus S with carry	Ì	
							0110	AND	<u>R∙S</u> R∙S		
	1						0111	NAND			
							1000	EXOR	<u>R⊕S</u>		
							1001	NOR	R+S		
							1010	OR	<u>R + S</u> R⊕S	ł	
	1						1011	EXNOR	RAS	I	

Notes 1: R = Source
S = Source
2: When status is destination,
Status i... '\(i = 0 \) to 3 (Byte mode)
i = 0 to 7 (Word mode)
3: During subtraction the carry is interpreted as borrow.
4: OVR = C₈ ⊕ C₇ (Byte mode)
OVR = C₁₆ ⊕ C₁₅ (Word mode)

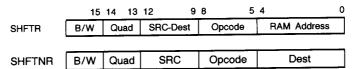
Y BUS AND STATUS CONTENTS - TWO OPERAND INSTRUCTIONS

Instruction	Opcode	Description	B/W	Y - Bus	Flag3	Flag2	Flag 1	LINK	OVR	N	С	z
	SUBR	S minus R	0 = B	Y ← S + R + 1	NC	NC	NC	NC	U	U	U	U
	SUBRC	S minus R with carry	1 = w	Y ← S + R + QC	NC	NC	NC	NC	U	U	υ	U
	SUBS	R minus S		Y←R+\$+1	NC	NC	NC	NC	U	U	٦	U
TOR1 TOR2	SUBSC	R minus S with carry		Y ← R + S + QC	NC	NC	NC	NC	U	U	υ	U
TONR	ADD	R plus S		Y←R+S	NC	NC	NC	NC	U	U	υ	U
	ADDC	R plus S with carry		Y ← R + S + QC	NC	NC	NC	NC	U	U	U	υ
	AND	R·S		Y ← Ri AND Si	NC	NC	NC	NC	0	U	0	U
	NAND	R·S		Yi←Ri NAND Si	NC	NC	NC	NC	0	υ	0	U
	EXOR	R⊕S		Yi←Ri EXOR Si	NC	NC	NC	NC	0	U	0	U
	NOR	R+S		Yi←Ri NOR Si	NC	NC	NC	NC	0	U	0	U
	OR	R+S		Y _i ←R _i OR S _i	NC	NC	NC	NC	0	υ	0	U
	EXNOR	R⊕S		Y _i ←R _i EXNOR S _i	NC	NC	NC	NC	0	0	0	U

U = Update

NC = No Change 0 = Reset

1 = Set


i = 0 to 15 when not specified

SINGLE BIT SHIFT INSTRUCTIONS

The Single Bit Shift Instructions contain four indicators: byte or word mode, direction and shift linkage, source and destination. They are further subdivided into two types. The first type uses RAM as the source and/or destination and the second type does not use RAM as source or destination. Under the control of the instruction inputs, the desired shift function is performed on the specified source and the result is stored in the specified destination or placed on the Y-bus or both. The direction and shift linkage indicator defines the direction of the shift (up or down) as well as what will be shifted into the vacant bit. On a shift-up instruction, the LSB may be loaded with ZERO, ONE,

or the Link-Status bit (QLINK). The MSB is loaded into the Link-Status bit as shown in Figure 3. On a shift-down instruction, the MSB may be loaded with ZERO, ONE, the contents of the Status Carry flip-flop, (QC), the Exclusive-OR of the Negative-Status bit and the Overflow-Status bit (QN @ QOVR) or the Link-Status bit. The LSB is loaded into the Link-Status bit as shown in Figure 4. The N and Z bits of the Status register are affected but the OVR and C bits are forced to ZERO. The Shift-Down with QN @ QOVR is useful for Two's Complement multiplication.

SINGLE BIT SHIFT FIELD DEFINITIONS:

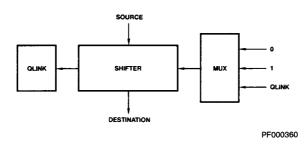


Figure 3. Shift Up Function.

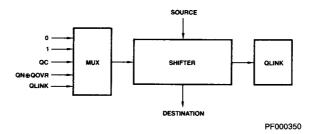


Figure 4. Shift Down Function.

SINGLE BIT SHIFT INSTRUCTIONS

SINGLE BIT SHIFT

Instruction	B/W	Quad			U ¹	Dest ¹		Оро	code			RAM	Address
SHFTR	0 = B 1 = W	10	0110 0111	SHRR SHDR	RAM D	RAM RAM	0000 0001 0010 0100 0101 0110 0111 1000	SHUPZ SHUP1 SHUPL SHDNZ SHDN1 SHDNL SHDNC SHDNOV	Up Up Up Down Down Down Down	1	00000	R00 R31	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad		U ¹				Opcode				Des	tination
SHFTNR	0 = B 1 = W	11	0110 0111	SHA SHD	ACC D		0000 0001 0010 0100 0101 0110 0111 1000	SHUPZ SHUP1 SHUPL SHDNZ SHDN1 SHDNL SHDNC SHDNOV	Up Up Up Down Down Down Down Down	1 QLINK QC	00000	NRY NRA	Y Bus ACC

U = Source Dest = Destination Note 1.

Y BUS AND STATUS - SINGLE BIT SHIFT INSTRUCTIONS

Instruction	Opcode	Description	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	z
SHUPZ Up SHUP1 Up			1 = W	$Y_i \leftarrow SRC_{i-1}$, $i = 1$ to 15; $Y_0 \leftarrow Shift$ Input	NC	NC	NC	SRC _{15*}	0	SRC ₁₄	٥	U
SHR SHNR	SHUPL	Up QLINK	0 = B	$Y_i \leftarrow SRC_{i-1}$, $i = 1$ to 7; $Y_0 \leftarrow Shift$ Input; $Y_8 \leftarrow SRC_7$, $Y_i \leftarrow SRC_{i-9}$ for $i = 9$ to 15	NC	NC	NC	SRC ₇ •	0	SRC ₆	0	U
	SHDNZ SHDN1	Down 0 Down 1	1 = W	Y; - SRC _{i + 1} , i = 0 to 14; Y ₁₅ - Shift Input	NC	NC	NC	SRC ₀ •	0	Shift Input	0	U
	SHDNL SHDNC SHCNOV	Down QLINK Down QC Down QN⊕QOVR	0 = B	$Y_i \leftarrow SRC_{i+1}$, $i = 0$ to 6; $Y_i \leftarrow SRC_{i-7}$, $i = 8$ to 14; $Y_{7,15} \leftarrow Shift Input$	NC	NC	NC	SRC ₀ ∗	0	Shift Input	0	U

*Shifted Output is loaded into the QLINK.

SRC = Source U = Update NC = No Change 0 = Reset 1 = Set i = 0 to 15 when not specified

BIT ORIENTED INSTRUCTIONS

The Bit Oriented Instructions contain four indicators: byte or word mode, operation, source/destination, and the bit position of the bit to be operated on (Bit 0 is the least significant bit). They are further subdivided into two types. The first type uses the RAM as both source and destination and has two kinds of formats which differ only by quadrant. The second type does not use the RAM as a source or a destination. Under the control of the instruction inputs, the desired function is performed on the specified source and the result is stored in the specified destination or placed on the Y-bus or both. The operations which can be performed are: Set Bit n which forces the nth bit to a ONE leaving other bits unchanged; Reset Bit n

which forces the nth bit to ZERO leaving the other bits unchanged; Test Bit n, which sets the ZERO Status Bit depending on the state of bit n leaving all the bits unchanged; Load 2ⁿ, which loads ONE in Bit position n and ZERO in all other bit positions; Load 2ⁿ which loads ZERO in bit position n and ONE in all other bit positions; increment by 2ⁿ, which adds 2ⁿ to the operand; and decrement by 2ⁿ which subtracts 2ⁿ from the operand. For all the Load, Set, Reset and Test instructions, the N and Z bits are affected and OVR and C bit of the Status register are forced to ZERO. For all arithmetic instructions the LSH (OVR, C, N, Z bits) of the Status register is affected.

BIT ORIENTED FIELD DEFINITIONS

	15	14 13	12 9	8 5	4 0
BOR1	B/W	Quad	n	Opcode	RAM Address
BOR2	B/W	Quad	n	Opcode	RAM Address
BONR	B/W	Quad	n	1100	Opcode

BIT ORIENTED INSTRUCTIONS

Instruction	B/W	Quad	n	Opcode	RAM Address			
BOR1	0 = B 1 = W	11	0 to 15	1101 SETNR Set RAM, bit n 1110 RSTNR Reset RAM, bit n 1111 TSTNR Test RAM, bit n	00000 R00 RAM Reg 00			
Instruction	B/W	Quad	n	Opcode	RAM Address			
BOR2	0 = B 1 = W	10	0 to 15	1100 LD2NR 2 ⁿ RAM 1101 LDC2NR 2 ⁿ RAM 1110 A2NR RAM plus 2 ⁿ RAM 1111 S2NR RAM minus 2 ⁿ RAM	00000 R00 RAM Reg 00 111111 R31 RAM Reg 31			
Instruction	B/W	Quad	C		Opcode			
BONR	0 = B 1 = W	11	0 to 15	1100	00000			

BIT ORIENTED INSTRUCTIONS

Y BUS AND STATUS - BIT ORIENTED INSTRUCTIONS

Instruction	Opcode	Description	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	1
BOR1	SETNR RSTNR	Set RAM Bit n Reset RAM, Bit n		Y _i -RAM _i for i≠n; Y _n -1 Y _i -RAM _i for i≠n; Y _n -0	NC NC	NC NC	NC NC	NC NC	0	υ	0 0	'
	TSTNR	Test Ram, Bit n		Y _i ←0 for i≠n; Y _n ←SRC _n	NC	NC	NC	NC	0	U	0	╁
	LD2NR	2 ⁿ → RAM		Y _i ⊢0 for i≠n; Y _n ⊢1	NC	NC	NC	NC	0	٥	0	Ł
	LDC2NR	2 ⁿ → RAM	1	Y _i ←1 for i≠n; Y _n ←0	NC	NC	NC	NC	0	υ	0	Ļ
BOR2	A2NR	RAM + 2 ⁿ → RAM	1	Yi ← RAM + 2 ⁿ	NC	NC	NC	NC	U	υ	U	ļ
	S2NR	RAM - 2 ⁿ → RAM	1	Y _i ← RAM – 2 ⁿ	NC	NC	NC	NC	U	U	U	1
	TSTNA	Test ACC, Bit n	1	$Y_i \leftarrow 0$ for $i \neq n$; $Y_n \leftarrow ACC_n$	NC	NC	NC	NC	0	U	0	4
	RSTNA	Reset ACC, Bit n	1	$Y_i \leftarrow ACC_i$ for $i \neq n$; $Y_n \leftarrow 0$	NC	NC	NC	NC	0	U	0	1
	SETNA	Set ACC, Bit n	1	$Y_i \vdash ACC_i \text{ for } i \neq n; Y_n \vdash 1$	NC	NC	NC	NC	0	U	0	1
	A2NA	ACC + 2 ⁿ → ACC	1	Y - ACC + 2 ⁿ	NC	NC	NC	NC	U	U	U	
	S2NA	ACC - 2 ⁿ → ACC	1	Yi-ACC-2n	NC	NC	NC	NC	U	U	U	
	LD2NA	2 ⁿ →ACC	1	$Y_i \leftarrow 0$ for $i \neq n$; $Y_n \leftarrow 1$	NC	NC	NC	NC	0	U	0	
	LDC2NA	2" → ACC	1	Y _i -1 for i≠n; Y _n -0	NC	NC	NC	NC	0	U	0	
BONR	TSTND	Test D. Bit n	1	$Y_i \leftarrow 0$ for $i \neq n$; $Y_n \leftarrow D_n$	NC	NC	NC	NC	0	U	0	
	RSTND	Reset D, Bit n*	1	$Y_i \leftarrow D_i$ for $i \neq n$; $Y_n \leftarrow 0$	NC	NC	NC	NC	0	U	0	
	SETND	Set D. Bit n*	1	$Y_i \leftarrow D_i$ for $i \neq n$; $Y_n \leftarrow 1$	NC	NC	NC	NC	0	U	0	_
		D + 2 ⁿ → Y Bus	1	Y ← D + 2 ⁿ	NC	NC	NC	NC	U	U	U	
	A2NDY	D-2 ⁿ -Y Bus	-	Y - D - 2 ⁿ	NC	NC	NC	NC	U	U	U	
BONR	S2NDY	2 ⁿ → Y Bus	-	$Y_i \leftarrow 0$ for $i \neq n$; $Y_n \leftarrow 1$	NC	NC	NC	NC	0	Ū	0	
	LD2NY		-			NC	NC	NC	10	U	0	
	LDC2NY	2 ⁿ → Y Bus		Y _i ←1 for i≠n; Y _n ←0	NC	NC	NC_	NC	10	<u>l</u> U	1 0	_

SRC = Source U = Update NC = No Change 0 = Reset 1 = Set i = 0 to 15 when not specified

*Destination is not D Latch but Y Bus.

ROTATE BY n BITS INSTRUCTIONS

The Rotate by n Bits Instructions contain four indicators: byte or word mode, source, destination and the number of places the source is to be rotated. They are further subdivided into two types. The first type uses RAM as a source and/or a destination and the second type does not use RAM as a source or destination. The first type has two different formats and the only difference is in the quadrant. The second type has only one format as shown in the table. Under the control of instruction inputs, the n indicator specifies the number of bit positions the source is to be rotated up (0 to 15), and the result

is either stored in the specified destination or placed on the Ybus or both. An example of this instruction is given in Figure 5. In the Word mode, all 16-bits are rotated up while in the Byte mode, only the lower 8-bits (0-7) are rotated up; In the Word mode, a rotate up by n bits is equivalent to a rotate down by (16-n) bits. Similarly, in the Byte mode a rotate up by n bits is equivalent to a rotate down by (8-n) bits. The N and Z bits of the Status Register are affected and OVR and C bits are forced to ZERO.

EXAMPLE:	n = 4, W or	d Mode			ROTATE BY n BITS FIELD DEFINITIONS
Source Destination	0001 0011	0011 0111	0111 1111	1111 0001	15 14 13 12 9 8 5 4 0 ROTR1 B/W Quad n SRC-Dest RAM Address
Source	n = 4, Byte 0001	9 Mode 0011	0111	1111	ROTR1 B/W Quad n SRC-Dest RAM Address
Destination	0001	0011	1111	0111	ROTR2 B/W Quad n SRC-Dest RAM Address
Fiç	jure 5. Ro	tate by n	Example		ROTNR B/W Quad n 1100 SRC-Dest

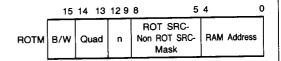
ROTATE BY n BITS INSTRUCTIONS

Instruction	B/W	Quad	n			U ¹	Dest ¹		RAM	Address	8
ROTR1	0 = B 1 = W	00	0 to 15	1100 1110 1111	RTRA RTRY RTRR	RAM RAM RAM	ACC Y Bus RAM	00000	R00 R31	RAM R	. ·
Instruction	B/W	Quad	n			U ¹	Dest ¹		RAM	Address	3
ROTR2	0 = B 1 = W	01	0 to 15	0000 0001	RTAR RTDR	ACC D	RAM RAM	00000	R00 R31	RAM R	
Instruction	B/W	Quad	n							U ¹	Dest ¹
ROTNR	0 = B 1 = W	11	0 to 15	1100				11000 11001 11100 11101	RTDY RTDA RTAY RTAA	D D ACC ACC	Y Bus ACC Y Bus ACC

Note 1: U = Source Dest = Destination

Y BUS AND STATUS - ROTATE BY n BITS INSTRUCTIONS

Instruction	Op- code	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	z
ROTR1		1 = W	Y _i ← SRC _{(i-n)mod16}	NC	NC	NC	NC	0	SRC 15-n	0	υ
ROTR2 ROTNR		0 = B	$Y_{i} \leftarrow SRC_{i+8} = SRC_{(i-n)mod8}$ for $i = 0$ to 7	NC	NC	NC	NC	0	SRC _{8-n}	0	U


SRC = Source
U = No Change
0 = Reset
1 = Set
i = 0 to 15 when not specified

ROTATE AND MERGE INSTRUCTION

The Rotate and Merge Instructions contain five indicators: byte or word mode, rotated source, non-rotated source/ destination, mask and the number of bit positions a source is to be rotated. The function performed by the Rotate and Merge instruction is illustrated in Figure 6. The rotated source, U, is rotated up by the Barrel Shifter n places. The mask input then selects, on a bit by bit basis, the rotated U input or R input. A ZERO in bit i of the mask will select the i^{th} bit of the R input as the i^{th} output bit, while ONE in bit i will select the i^{th} rotated U input as the output bit. The output word is stored in the non-rotated operand location. The N and Z bits are affected. The OVR and C bits of the Status register are forced to ZERO. An example of this instruction is given in Figure 7.

S (MASK) BARREL SHIFTER AND

ROTATE AND MERGE FIELD DEFINITIONS:

EXAMPLE: n = 4, Word Mode

U	0011	0001	0101	0110
Rotated U	0001	0101	0110	0011
R	1010	1010	1010	1010
Mask (S)	0000	1111	0000	1111
Destination	1010	0101	1010	0011

Figure 7. Rotate and Merge Example.

PF000630

Figure 6. Rotate and Merge Function.

OR

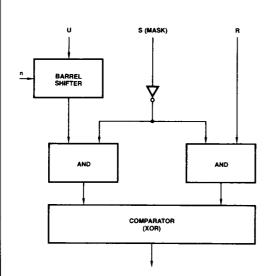
ROTATE AND MERGE INSTRUCTION

Instruction	B/W	Quad	n	T .		U ¹	R/Des	st ¹ S ¹		RAM A	ddress
ROTM	0 = B 1 = W	01	0 to 15	0111 1000 1001 1010 1100	MDAI MDAR MDRI MDRA MARI MRAI	D D D ACC BAM	ACC ACC RAM RAM RAM ACC	RAM I ACC	00000 11111	R00 R31	RAM Reg 00 RAM Reg 31

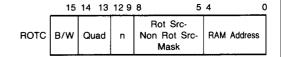
U = Rotated Source R/Dest = Non-Rotated Source and Destination Note 1.

S = Mask

Y BUS AND STATUS - ROTATED MERGE


Instruction	Opcode	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
		1=W	Y _i ← (Non Rot Op) _i · (mask) _i + (Rot Op) _{(i-n)mod 16} · (mask) _i	NC	NC	NC	NC	0	U	0	U
ROTM		0 - B	Y _i ← (Non Rot Op) _i · (mask) _i + (Rot Op) _{(i = n)mod} 8 · (mask) _i	NC	NC	NC	NC	0	U	0	U

U = Update NC = No Change 0 = Reset


1 = Set i = 0 to 15 when not specified

ROTATE AND COMPARE INSTRUCTIONS

The Rotate and Compare Instructions contain five indicators: byte or word mode, rotated source, non-rotated source, mask, and the number of bit positions the rotated source is to be rotated up. Under the control of instruction inputs, the function performed by the Rotate and Compare instruction is illustrated in Figure 8. The rotated operand is rotated by the Barrel Shifter n places. The mask is inverted and ANDed on a bit-by-bit basis with the output of the Barrel Shifter and R input. Thus, a ONE in the mask input eliminates that bit from the comparison. A ZERO allows the comparison. If the comparison passes, the Zero flag is set. If it fails, the Zero flag is reset. The N and Z bit are affected. The OVR and C bits of the Status register are forced to ZERO. An example of this instruction is given in Figure 9.

ROTATE AND COMPARE FIELD DEFINITIONS

EXAMPLE: n = 4, Word Mode

U	0011	0001	0101	0110
U Rotated	0001	0101	0110	0011
R	0001	0101	1111	0000
Mask (S)	0000	0000	1111	1111
7 (status) = 1				

Figure 9. Rotate and Compare Examples.

PF000650

Figure 8. Rotate and Compare Function.

ROTATE AND COMPARE INSTRUCTIONS

Ins	struction	B/W	Quad	n			U ¹	R ¹	s¹		RAM Address		
	ROTC	0=B 1 = W	01	0 to 15	0010 0011 0100 0101	CDAI CDRI CDRA CRAI	D D D RAM	ACC RAM RAM ACC	I ACC I	00000 11111	R00 R31	RAM Reg 00 RAM Reg 31	

Note 1.

U = Rotated Source R = Non-Rotated Source S = Mask

Y BUS AND STATUS - ROTATE AND COMPARE

Instruction	Opcode	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
ROTC		1 = W	Y _i ← (Non Rot Op) _i ·(mask) _i ⊕ (Rot Op) _{(i – n)mod 16} ·(mask) _i	NC	NC	NC	NC	0	U	0	U
ROIC		0 = B	Y _i ← (Non Rot Op) _i · (mask) _i ⊕ (Rot Op) _{(i = n)mod} 8 · (mask) _i	NC	NC	NC	NC	0	υ	0	U

U = Update
NC = No Change
0 = Reset
1 = Set
i = 0 to 15 when not specified

PRIORITIZE INSTRUCTION

The Prioritize Instructions contain four indicators: byte or word mode, operand source (R), mask source (S) and destination. They are further subdivided into two types. The function performed by the Prioritize instruction is shown in Figure 10. The R operand is ANDed with the complement of the Mask operand. A ZERO in the Mask operand allows the corresponding bit in the R operand to participate in the priority encoding function. A ONE in the Mask operand forces the corresponding bit in the R operand to a ZERO, eliminating it from participation in the priority encoding function.

The priority encoder accepts a 16-bit input and produces a 5-bit binary-weighted code indicating the bit position of the highest priority active bit. If none of the inputs are active, the output is ZERO. In the Word mode, if input bit 15 is active, the output is 1, etc. Figure 11 lists the output as a function of the highest-priority active-bit position in both the Word and Byte mode. The N and Z bits are affected and the OVR and C bits of the status register are forced to ZERO. The only limitation in this instruction is that the operand and the mask must be different sources.

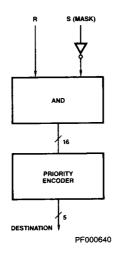


Figure 10. Prioritize Function.

PRIORITIZE INSTRUCTION FIELD DEFINITIONS

15	14 13	12 9	8 5	4 0
B/W	Quad	Destination	Source (R)	RAM Address/ Mask (S)
B/W	Quad	Mask (S)	Destination	RAM Address/ Source (R)
B/W	Quad	Mask (S)	Source (R)	RAM Address/ Destination
	-			
B/W	Quad	Mask (S)	Source (R)	Destination

WORD	MODE	BYTE !	MODE*		
Highest Priority Active Bit	Encoder Output	Highest Priority Active Bit	Encoder Output		
None	0	None	0		
15	1	7	1		
14	2	6	2		
•	•		•		
			•		
1	15	1	7		

^{*}Bits 8 through 15 do not participate.

Figure 11.

PRIORITIZE INSTRUCTION

Instruction	B/W	Quad		Destination Source				₹)	RAI	M Addre	ss/Mask (S)
PRT1	0 = B 1 = W	10	1000 1010 1011	PRIA PR1Y PR1R	ACC Y Bus RAM	0111 1001	RPT1A PR1D	ACC D	00000	R00 R31	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad		Mask (S	5)		Destination	on	RAM	Addres	ss/Source (R)
PRT2	0 = B 1 = W	10	1000 1010 1011	PRA PRZ PRI	Acc 0 I	0000 0010	PR2A PR2Y	ACC Y Bus	00000 11111	R00 R31	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad		Mask (S))		Source (I	₹)	R	AM Add	iress/Dest
PRT3	0 = B 1 = W	10	1000 1010 1011	PRA PRZ PRI	ACC 0 I	0011 0100 0110	PR3R PR3A PR3D	RAM ACC D	00000 11111	R00 R31	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad		Mask (S			Source (l	R)		Desti	nation
PRTNR	0 = B 1 = W	11	1000 1010	PRA PRZ	ACC 0	0100 0110	PRTA PRTD	ACC D	00000 00001	NRY NRA	Y Bus ACC

		YE	BUS AND STATUS - PRIORIT	IZE INS	FRUCTI	ON					
Instruction	Opcode	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
PRT1 PRT2		1 = W	$Y_{i\leftarrow}$ CODE (SCR _n ·mask _n); $Y_{m\leftarrow}$ 0; i = 0 to 4 and n = 0 to 15 m = 5 to 15	NC	NC	NC	NC	0	U	٥	U
PRT3 PRTNR		0 = B	$Y_i \leftarrow CODE (SCR_n \cdot mask_n);$ $Y_m \leftarrow 0; i = 0 \text{ to } 3 \text{ and } n = 0 \text{ to } 7$ m = 4 to 15	NC	NC	NC	NC	0	U	0	U

CRC INSTRUCTION

The CRC (Cyclic-Redundancy-Check) Instructions contain one indicator: address of a RAM register to use as the check sum register. The CRC instruction provides a method for generation of the check bits in a CRC calculation. Two CRC instructions are provided – CRC Forward and CRC Reverse. The reason for providing two instructions is that CRC standards do not specify which data bit is to be transmitted first, the LSB or the MSB, but they do specify which check bit must be transmitted first. Figure 12 illustrates the method used to generate these check bits for the CRC Forward function and

Figure 13 illustrates method used for the 2CRC Reverse function. The ACC serves as a polynominal mask to define the generating polynomial while the RAM register holds the partial result and eventually the calculated check sum. The LINK-bit is used as the serial input. The serial input combines with the MSB of the check-sum register, according to the polynomial defined by the polynomial mask register. When the last input bit has been processed, the check-sum register contains the CRC check bits. The LINK, N and Z bits are affected and the OVR and C bits of the Status register are forced to ZERO.

CYCLIC-REDUNDANCY-CHECK DEFINITIONS:

	15	14 13	12 9	8 5	4	0
CRCF	1	Quad	0110	0011	RAM Address	
						_
CRCR	1	Quad	0110	1001	RAM Address	٦

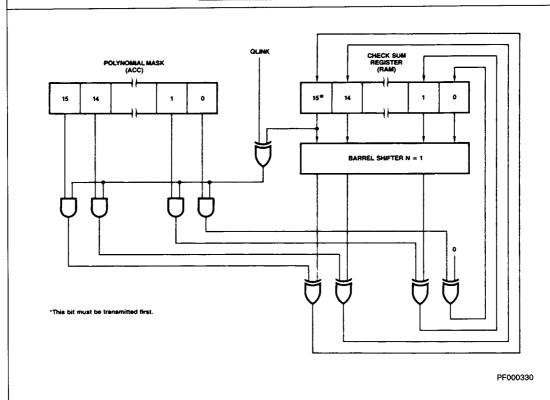
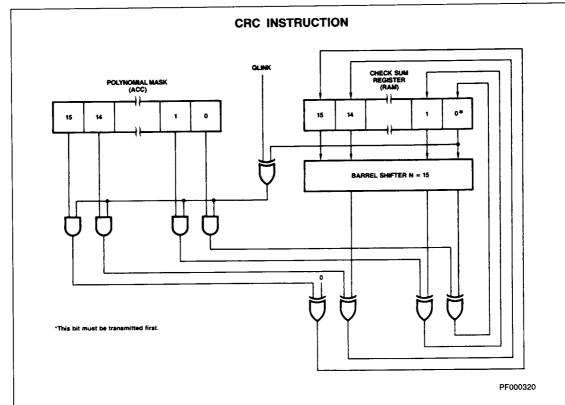
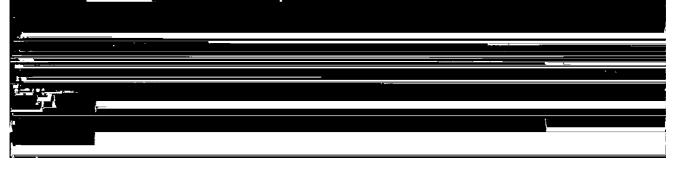


Figure 12. CRC Forward Function.




Figure 13. CRC Reverse Function.

CYCLIC REDUNDANCY CHECK

Instruction	B/W	Quad		·		RA	A Address
CRCF	1	10	0110	0011	00000 11111	R00 R31	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad				RAI	Address
CRCR	1	10	0110	1001	00000 11111	R00 R31	RAM Reg 00 RAM Reg 31

Y BUS AND STATUS - CYCLIC REDUNDANCY CHECK

Instruction	Opcode	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
CRCF		1 = W	Y _i ← [(QLINK ⊕ RAM ₁₅)·ACC _i] ⊕ RAM _{i-1} for i = 15 to 1 Y ₀ ← [(QLINK ⊕ RAM ₁₅)·ACC ₀] ⊕ 0	NC	NC	NC	RAM ₁₅ *	0	υ	0	U
CRCR		1 = W	Y _i -[(QLINK ⊕ RAM ₀)·ACC _i] ⊕ RAM _{i+1} for i = 14 to 0 Y ₁₅ -[(QLINK ⊕ RAM ₀)·ACC ₁₅] ⊕ 0	NC	NC	NC	RAM ₀ *	0	U	0	U

STATUS INSTRUCTIONS

Status Instructions - The Set Status Instruction contains a single indicator. This indicator specifies which bit or group of bits, contained in the status register (Figure 14), are to be set (forced to a ONE).

7	6	5	4	3	2	1	0
Flag3	Flag2	Flag1	LINK	OVR	N	O	z
						MPF	₹-775

Figure 14. Status Byte.

The Reset Status Instruction contains a single indicator. This indicator specifies which bit or group of bits, contained in the status register, are to be reset (forced to ZERO).

The Store Status Instruction contains two indicators; byte/word and a second indicator that specifies the destination of the status register. The Store Status Instruction allows the status of the processor to be saved and restored later, which is an especially useful function for interrupt handling.

The status register is always stored in the lower byte of the RAM or the ACC register. Depending upon byte or word mode the upper byte is unchanged or loaded with all ZEROs respectively.

The Load Status instructions are included in the single operand and two operand instruction types.

The Test Status Instructions contain a single indicator which specifies which one of the 12 possible test conditions are to be placed on the Conditional-Test output. Besides the eight bits in the Status register (QZ, QC, QN, QOVR, QLINK, QFlag1, QFlag 2, and QFlag3), four logical functions (QN \oplus QOVR)+ QZ, QZ + $\overline{\rm QC}$ and LOW may also be selected. These functions are useful in testing results of Two's Complement and unsigned number arithmetic operations. The status register may also be tested via the bidirectional T bus. The code to test the status register via T bus is similar to the code used by instruction lines l_1 to l_4 as shown below. Instruction lines l_0 $_4$ have priority over T bus for testing the

status register on CT output. See the discussion on the status register for a full description.

T ₄	T ₃	T ₂	T ₁	ст
0	0	0	0	(N ⊕ OVR) + Z
0	0	0	1	N ⊕ OVR
0	0	1	0	Z
0	0	1	1	OVR
0	1	0	0	LOW*
0	1	0	1	С
0	1	1	0	z + C
0	1	1	1	N
1	0	0	0	LINK
1	0	0	1	Flag1
1	0	1	0	Flag2
1	0	1	1	Flag3

^{*}LOW means CT is forced LOW

STATUS

	15	14 13	12 9	8 5	4 0
SETST	0	Quad	1011	1010	Opcode
RSTST	0	Quad	1010	1010	Opcode
				_	
SVSTR	B/W	Quad	0111	1010	RAM Address/Dest
			-		
SVSTNR	B/W	Quad	0111	1010	Destination

STATUS INSTRUCTIONS

Instruction	B/W	Quad	_			C	pcode
SETST	0	11	1011	1010	00011 00101 00110 01001 01010	SONCZ SL SF1 SF2 SF3	Set OVR, N, C, Z Set LINK Set Flag1 Set Flag2 Set Flag3
Instruction	B/W	Quad				C	pcode
RSTST	0	11	1010	1010	00011 00101 00110 01001 01010	RONCZ RL RF1 RF2 RF3	Reset OVR, N, C, Z Reset LINK Reset Flag1 Reset Flag2 Reset Flag3
Instruction	B/W	Quad				RAM A	ddress/Dest
SVSTR	0 = B 1 = W	10	0111	1010	00000 11111	R00 R31	RAM Reg 00 RAM Reg 31
						De	stination
SVSTNR	0 = B 1 = W	11	0111	1010	00000 00001	NRY NRA	Y Bus ACC

STATUS INSTRUCTIONS Opcode (CT) Instruction B/W Quad Test (N⊕OVR) + Z Test N⊕OVR Test Z Test OVR Test COW Test C Test Z Test N Test INK Test LINK Test Flag1 Test Flag2 Test Flag3 TNOZ TNO TZ TOVR TLOW TC TZC TN TL TF1 TF2 TF3 00000 00010 00100 00110 01000 01010 01110 10000 10010 10110 1001 1010 0 11 Test

IEN · test status instruction has priority over T₁₋₄ instruction. Note:

Y BUS AND STATUS - FOR STATUS INSTRUCTIONS

Instruction	Opcode	Description	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	z
	SONCZ	Set OVR, N, C, Z	0 = B	Y _i ←1 for i = 0 to 15	NC	NC	NC	NC	1	1	1	1
	SL	Set LINK	1	·	NC	NC	NC	1	NC	NC	NC	NC
SETST	SF1	Set Flag1	1		NC	NC	1	NC	NC	NC	NC	2
36131	SF2	Set Flag2	1		NC	1	NC	NC	NC	NC	NC	NC
	SF3	Set Flag3	1		1	NC	NC	NC	NC	NC	NC	NC
	RONCZ	Reset OVR, N, C, Z	0 = B	Y _i ← 0 for i = 0 to 15	NC	NC	NC	NC	0	0	0	0
	RL	Reset LINK	┤゛▔	" " " " " " " " " "	NC	NC	NC	0	NC	NC	NC	NC
DOTOT		Reset Flag1	-		NC	NC	0	NC	NC	NC	NC	NC
RSTST	RF1	Reset Flag2	-	ĺ	NC	 0	NC	NC	NC	NC	NC	NC
	RF2		┥		0	NC	NC	NC	NC	NC	NC	NC
SVSTR SVSTNR	RF3	Reset Flag3 Save Status*	0 = B 1 = W	Y _i ←Status for i = 0 to 7; Y _i ←0 for i = 8 to 15	NC	NC	NC	NC	NC	NC	NC	L_
	TNOZ	Test (N⊕OVR) + Z	0 = B	**	NC	NC	NC	NC	NC	NC	NC	NC
	TNO	Test N⊕OVR	1		NC	NC	NC	NC	NC	NC	NC	NC
	TZ	Test Z	1		NC	NC	NC	NC	NC	NC	NC	NC
	TOVR	Test OVR	7		NC	NC	NC	NC	NC	NC	NC	NC
	TLOW	Test LOW	1	1	NC	NC	NC	NC	NC	NC	NC	NC
Test	TC	Test C	1		NC	NC	NC	NC	NC	NC	NC	NC
1631	TZC	Test Z + C	1		NC	NC	NC	NC	NC	NC	NC	NC
	TN	Test N	1		NC	NC	NC	NC	NC	NC	NC	NC
	TL	Test LINK	1		NC	NC.	NC	NC	NC	NC	NC	NC
	TF1	Test Flag1	-		NC	NC	NC	NC	NC	NC	NC	NC
	TF2	Test Flag2	\dashv		NC	NC	NC	NC	NC	NC	NC	NC
	TF3	Test Flag3	┪		NC	NC	NC	NC	NC	NC	NC	NC

U = Update NC = No Change 0 = Reset 1 = Set i = 0 to 15 when not specified

*In byte mode only the lower byte from the Y bus is loaded into the RAM or ACC and in word mode all 16-bits from the Y bus are loaded into the RAM or ACC.

**Y-Bus is Undefined.

NO-OP INSTRUCTION

The NO-OP Instruction has a fixed 16-bit code. This instruction does not change any internal registers in the Am29116. It preserves the status register, RAM register and the ACC register.

NO OPERATION FIELD DEFINITION

0 15 14 13 12 98 00000 11 1000 1010 0

NOOP

NO-OP INSTRUCTION

Instruction	B/W	Quad			
NOOP	0	11	1000	1010	00000

Y BUS AND STATUS - NO-OP INSTRUCTION

Instruction	Opcode	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
NOOP		0 = B	•	NC	NC	NC	NC	NC	NC	NC	NC

SRC = Source

U = Update
NC = No Change
0 = Reset

1 = Set

i = 0 to 15 when not specified

*Y-Bus is undefined.

SUMMARY OF MNEMONICS

Instruction Type

SOR Single Operand RAM Single Operand Non-RAM SONR Two Operand RAM (Quad 0) TOR1 Two Operand RAM (Quad 2) TOR₂ Two Operand Non-RAM TONR Single Bit Shift RAM SHFTR SHFTNR Single Bit Shift Non-RAM Rotate n Bits RAM (Quad 0) ROTR1 Rotate n Bits RAM (Quad 1) ROTR2 Rotate n Bits Non-RAM ROTNR Bit Oriented RAM (Quad 3) BOR1 Bit Oriented RAM (Quad 2) BOR2 Bit Oriented Non-RAM BONR Rotate and Merge **ROTM** Rotate and Compare ROTC Prioritize RAM: Type 1 PRT1

PRT2 Prioritize RAM; Type 2
PRT3 Prioritize RAM; Type 3
PRTNR Prioritize Non-RAM

CRCF Cyclic Redundancy Check Forward
CRCR Cyclic Redundancy Check Reverse
NOOP No Operation

SETST Set Status
RSTST Reset Status
SVSTR Save Status RAM
SVSTNR Save Status Non-RAM

TEST Test Status

SOURCE AND DESTINATION

Single Operand

Single Operand RAM to ACC SORA Single Operand RAM to Y Bus SORY SORS Single Operand RAM to Status SOAR Single Operand ACC to RAM Single Operand D to RAM SODR Single Operand I to RAM SOIR Single Operand 0 to RAM SOZR Single Operand D(0E) to RAM SOZER Single Operand D(SE) to RAM SOSER Single Operand RAM to RAM SORR SOA Single Operand ACC SOD Single Operand D SOL Single Operand I Single Operand 0 SOZ SOZE Single Operand D(0E) SOSE Single Operand D(SE) Non-RAM Y Bus NRY NRA Non-RAM ACC NRS Non-RAM Status NRAS Non-RAM ACC, Status

Two Operand

Two Operand RAM, ACC to ACC TORAA Two Operand RAM, I to ACC TORIA Two Operand D, RAM to ACC **TODRA** Two Operand RAM, ACC to Y Bus TORAY Two Operand RAM, I to Y Bus TORIY Two Operand D, RAM to Y Bus TODRY TORAR Two Operand RAM, ACC to RAM Two Operand RAM, I to RAM TORIR Two Operand D, RAM to RAM TODRR TODAR Two Operand D, ACC to RAM TOAIR Two Operand ACC, I to RAM Two Operand D, I to RAM **TODIR** Two Operand D, ACC TODA TOAL Two Operand ACC, I Two Operand D, I TODI

Single Bit Shift

SHRR Shift RAM, Store in RAM
SHDR Shift D, Store in RAM
SHA Shift ACC

SHD Shift D

Rotate n Bits

RTRA Rotate RAM, Store in ACC Rotate RAM, Place on Y Bus RTRY Rotate RAM, Store in RAM RTRR Rotate ACC, Store in RAM RTAR Rotate D, Store in RAM RTDR Rotate D, Place on Y Bus RTDY RTDA Rotate D, Store in ACC Rotate ACC, Place on Y Bus RTAY

Rotate and Merge

RTAA

MDAI Merge Disjoint Bits of D and ACC Using I as Mask and Store in ACC

MDAR Merge Disjoint Bits of D and ACC Using RAM as Mask and Store in ACC

MDRI Merge Disjoint Bits of D and RAM Using I as Mask and Store in RAM

MDRA Merge Disjoint Bits of D and RAM Using ACC as Mask and Store in RAM

Rotate ACC, Store in ACC

MARI Merge Disjoint Bits of ACC and RAM
Using I as Mask and Store in RAM

MRAI Merge Disjoint Bits of RAM and ACC Using I as Mask and Store in ACC

Rotate and Compare

CDAI Compare Unmasked Bits of D and ACC Using I as Mask

Mnemonics copyright © 1980 Advanced Micro Devices, Inc.

CDRI	Compare Unmasked Bits of D and RAM Using I as Mask	SHDNZ SHDN1	Shift Down Towards LSB with 0 Insert Shift Down Towards LSB with 1 Insert
CDRA	Compare Unmasked Bits of D and RAM		Shift Down Towards LSB with LINK Insert
CDHA	Using ACC as Mask	SHONL	
CRAI	Compare Unmasked Bits of RAM and ACC	SHDNC	Shift Down Towards LSB with Carry Insel
OHAI	Using I as Mask	SHUNOV	Shift Down Towards LSB with Sign EXOP Overflow Insert
Prioritize		Loads	
PR1A	ACC as Destination for Prioritize Type 1	LD2NR	Load 2 ⁿ into RAM
PR1Y	Y Bus as Destination for Prioritize Type 1	LDC2NR	Load 2 ⁿ into RAM
PR1R	RAM as Destination for Prioritize Type 1	LD2NA	Load 2 ⁿ into ACC
PRT1A	ACC as Source for Prioritize Type 1	LDC2NA	Load 2n into ACC
PR1D	D as Source for Prioritize Type 1	LD2NY	Place 2 ⁿ on Y Bus
PR2A	ACC as Destination for Prioritize Type 2		Place 2 ⁿ on Y Bus
PR2Y	Y Bus as Destination for Prioritize Type 2	2502	
PR3R	RAM as Source for Prioritize Type 3	Bit Oriente	d
PR3A	ACC as Source for Prioritize Type 3	SETNR	Set RAM, Bit n
PR3D	D as Source for Prioritize Type 3	SETNA	Set ACC, Bit n
PRTA	ACC as source for Prioritize Type	SETND	Set D, Bit n
	Non-RAM	SONCZ	Set OVR, N, C, Z, in Status Register
PRTD	D as Source for Prioritize Type Non-RAM	SL	Set LINK Bit in Status Register
PRA	ACC as Mask for Prioritize Type 2, 3,	SF1	Set Flag1 Bit in Status Register
	and Non-RAM	SF2	Set Flag2 Bit in Status Register
PRZ	Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM	SF3	Set Flag3 Bit in Status Register
		RSTNR	Reset RAM, Bit n
PRI	I as Mask for Prioritize Type 2, 3, and Non-RAM	RSTNA	Reset ACC, Bit n
	NOTI-MAIVI	RSTND	Reset D, Bit n
OPCODE		RONCZ	Reset OVR, N, C, Z, in Status Register
Addition		RL	Reset LINK Bit in Status Register
	Add without Com.	RF1	Reset Flag1 Bit in Status Register
ADD	Add without Carry	RF2	Reset Flag2 Bit in Status Register
ADDC	Add with Carry Add 2 ⁿ to ACC	RF3	Reset Flag3 Bit in Status Register
A2NA		TSTNR	Test RAM, Bit n
A2NR	Add 2 ⁿ to RAM	TSTNA	Test ACC, Bit n
A2NDY	Add 2 ⁿ to D, Place on Y Bus	TSTNA	Test D, Bit n
Subtraction		Arithmetic	Operations
SUBR	Subtract R from S without Carry		•
SUBRC	Subtract R from S with Carry	MOVE	Move and Update Status
SUBS	Subtract S from R without Carry	COMP	Complement (1's Complement)
SUBSC	Subtract S from R with Carry	INC	Increment
S2NR	Subtract 2 ⁿ from RAM	NEG	Two's Complement
S2NA	Subtract 2 ⁿ from ACC	Conditiona	I Test
S2NDY	Subtract 2 ^{rl} from D, Place on Y Bus	TNOZ	Test (N ⊕ OVR) + Z
Logical Op	perations	TNO	Test N OVR
•		TZ	
AND	Boolean AND	TOVR	Test Zero Bit Test Overflow Bit
NAND	Boolean NAND		Test for LOW
EXOR	Boolean EXOR	TLOW	
NOR	Boolean NOR	TC	Test Carry Bit
OR	Boolean OR	TZC	Test Z + C
EXNOR	Boolean EXNOR	TN Ti	Test Negative Bit
SHIFTS		TL	Test LINK Bit
	Chitt Lin Towards MCP with A locat	TF1	Test Flag1 Bit
SHUPZ	Shift Up Towards MSB with 1 Insert	TF2	Test Flag2 Bit
SHUP1 SHUPL	Shift Up Towards MSB with 1 Insert Shift Up Towards MSB with LINK Insert	TF3	Test Flag3 Bit opyright ⓒ 1980

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to +150°C (Case) Temperature Under Bias55 to +125°C
Supply Voltage to Ground Potential0.5 V to +7.0 V
DC Voltage Applied to Outputs For
High Output State0.5 V to +V _{CC} Max.
DC Input Voltage0.5 V to +5.5 V
DC Output Current, Into Outputs30 mA
DC Input Current30 mA to +5.0 mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Temperature (T _A) Supply Voltage	0 to +70°C +4.75 V to +5.25 V
Military (M) Devices Temperature (T _C) Supply Voltage	55 to +125°C +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified; All APL and CPL products are included in Group A, Subgroup 1, 2, 3 tests unless otherwise noted.

Parameters	Description	Test C	onditions (N	lote 2)	Min.	Typ. (Note 1)	Max.	Units
Vон	Output HIGH Voltage	V _{CC} = Min. V _{IN} = V _{IH} or V _{IL}	Y ₀₋₁₅ T ₁₋₄ CT	I _{OH} = -1.6 mA/-1.2 mA (COM'L/MIL)	2.4			Volts
V _{OL}	Output LOW Voltage	V _{CC} = Min. V _{IN} = V _{IH} or V _{IL}	Y ₀₋₁₅ T ₁₋₄ CT	I _{OL} = 16 mA/12 mA (COM'L/MIL)			0.5	Volts
VIH	Guaranteed Input Logical HIGH Voltage (Note 6)		All Inputs		2.0			Volts
VIL	Guaranteed Input Logical LOW Voltage (Note 6)		All inputs				0.8	Volts
V ₁	Input Clamp Voltage	V _{CC} = Min.	Ail Inputs	I _{IN} = -18 mA	Ļ		-1.5	Volts
ŊĹ	Input LOW Current	V _{CC} = Max. V _{IN} = 0.5 Volts (Note 4)	IEN SRE DLE I0-4 I5-15 OET OEY CP T ₁₋₄ Y0-15				-0.50 -0.50 -1.00 -1.00 -0.50 -0.50 -0.50 -1.50 -0.55 -0.55	mA
ΊΗ	Input HIGH Current	V _{CC} = Max. V _{IN} = 2.4 Volts (Note 4)	IEN SRE DLE Io-4 Is-15 OET OEY CP T1-4 Yo-15				50 50 100 100 50 50 50 150 100	μΑ
h	Input HIGH Current	V _{CC} = Max. V _{IN} = 5.5 Volts	All Inputs				1.0	mA
lozh	Off State (HIGH Impedance) Output Current	V _{CC} = Max. V _O = 2.4 Voits (Note 4)	T ₁₋₄ Y ₀₋₁₅				100	μΑ
IOZL	Off State (HIGH Impedance) Output Current	V _{CC} = Max. V _O = 0.5 Volts (Note 4)	T ₁₋₄ Y ₀₋₁₅				-550	μΑ
los	Output Short Circuit Current	V _{CC} = Max. + 0.5 Volts V _O = 0.5 Volts (Note 3)			-30		-85	mA
			COM'L	T _A = 0 to 70°C (Note 7)	ļ		735	
			COM'L	$T_A = 70$ °C $T_A = 0$ to 70 °C	+		550	†
			(Am29L116A only)	(Note 7) T _A = 70°C	+-		400	m _A
Icc	Power Supply Current (Note 5)	V _{CC} = Max.	MIL (Am29116	T _C = -55 to 125°C (Note 7)			745	1
			only)	T _C = 125°C	\top		525	1

Notes: 1. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.
2. For conditions shown as Min. or Max., use the appropriate value specified under Operating Ranges for the applicable device type.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Y_O-15. T₁-4 are three-state outputs internally connected to TTL inputs. Input characteristics are measured under conditions such that the outputs are in the OFF state.
5. Worst case I_{CC} is at minimum temperature.
6. These input levels provide zero noise immunity and should be tested only in a static, noise-free environment.
7. Cold start.

Am29116 SWITCHING CHARACTERISTICS

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, \ V_{CC} = 4.75 \text{ to } 5.25 \text{ V}, \ C_L = 50 \text{ pF})$

A. Combinational Delays (nsec)

		Outputs				
		Y _{0 - 15}	T ₁₋₄	СТ		
	I ₀₋₄ (ADDR)	79	84	-		
	I _{0 - 15} (DATA)	79	84	-		
	I _{0 - 15} (INSTR)	79	84	48		
Input	DLE	58*	60	_		
	T ₁₋₄	-	-	39		
	СР	56	62	36		
	Y0 - 15	62*	64	-		
	ĪĒN	_	-	43		

 Y_{0-15} must be stored in the Data Latch and is source disabled before the delay to Y_{0-15} as an output can be measured. *Guaranteed indirectly by other tests.

B. Enable/Disable Times (nsec) (C_L = 5 pF for disable only)

		Ena	able	Dis	able
From Inp	ut To Output	tpzH	tpZL	tPHZ	tpLZ
ŌĒY	Y ₀₋₁₅	20	20	20	20
OET	T ₁₋₄	25	25	25	25

C. Clock and Pulse Requirements (nsec)

Input	Min Low Time	Min High Time
CP	20	30
DLE	-	, 15
ĪĒN	22	-

Input	With Respect to		•	o-Low sition H	old	Set-	Trai	o-High sition Hold		Comment	
I ₀₋₄ (RAM ADDR)	СР		s1) 24		1) 0	-		-	-		DDR
I ₀₋₄ (RAM ADDR)	CP and IEN both LOW	(t,	s2) 10		_					Two ADD (Destination	
l _{0 - 15} (DATA)	СР		-		-	(t _{s8})	65	(the)	0		
I _{0 - 15} (INSTR)	СР	(t _s	3) 38*	(t _{h3})* 17	(t _{s9}) (65	(t _{h9})	0	T	
IEN HIGH	СР	(t	₅₄) 10		-	-		(t _{h10})	0	Disable	
IEN LOW	СР	-	(t _{s5}) 20	-	(t _{h5})* 0	(t _{s11}) 22	_	(t _{h11})** 0	-	Enable	Immediate first cycle
SRE	CP		-		_	(t _{s12})	17	(t _{h12})	0		
Υ	СР		_		_	(t _{s13})	44	(t _{h13})	0		
Y	DLE	(t	s6) 10	(t _h	6) 6	_		-			
DLE	CP		_	,	_	(te14)	42	(th14)	0		

^{*}Timing for immediate instruction for first cycle.
**Status register and accumulator destination only.

Am29116 SWITCHING CHARACTERISTICS (Cont'd.)

(All APL and CPL products are included in Group A, Subgroup 9, 10, 11 tests unless otherwise noted)

GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE

(T_C = -55 to +125°C, V_{CC} = 4.5 to 5.5 V, C_L = 50 pF)

A. Combinational Delays (nsec)

		Outputs				
		Y _{0 - 15}	T1-4	СТ		
	I ₀₋₄ (ADDR)	100	103			
	10 - 15 (DATA)	100	103			
	I _{0 - 15} (INSTR)	100	103	50		
Input	DLE	68* †	70	_		
•	T ₁₋₄	-		46		
	СР	70	73	43		
	Y ₀₋₁₅	70* †	72			
	ĪĒŇ	 	-	50		

 Y_{0-15} must be stored in the Data Latch and its source disabled before the delay to Y_{0-15} as an output can be measured. *Guaranteed indirectly by other tests.

B. Enable/Disable Times (nsec) (C_L = 5 pF for disable only)

		Enable		Dis	able
From Input	To Output	tpzH	tpZL	tpHZ	tPLZ
ŌĒy	Y ₀₋₁₅	25	25	25	25
OET	T ₁₋₄	30	30	30	30

C. Clock and Pulse Requirements (nsec)

Input	Min Low Time	Min High Time
CP	33	50
DLE		20
ĪĒÑ	33	

Input	With Respect to		to-Low sition Hold		to-High nsition Hold	Comment	
I ₀₋₄ (RAM ADDR)	СР	(t _{s1}) 24	(t _{h1}) 0	-	-	Single ADDR (Source)	
I ₀₋₄ (RAM ADDR)	CP and IEN both LOW	(t _{s2}) 10 -		-,	(t _{h7}) 0	Two ADDR (Destination)	
I _{0 - 15} (DATA)	CP	(t _{s8}) 7		(t _{s8}) 76	(t _{h8}) 3		
l ₀₋₁₅ (INSTR)	CP	(t _{s3})* 57	(th3)* 17	(t _{s9}) 76	(t _{h9}) 3		
IEN HIGH	CP	(t _{s4}) 10	_	-	(t _{h10}) 1	Disable	
IEN LOW	CP	- (t _{s5}) 20	- (t _{h5})* 3	(t _{s11}) 28 -	(t _{h11})** 1 -	Enable Immediate first cycle	
SRE	CP		-	(t _{s12}) 19	(t _{h12}) 0		
V	СР		_	(t _{s13}) 50	(t _{h13}) 2		
<u>'</u>	DLE	(t _{s6}) 11	(th6) 7		-		
DLE	CP		-	(t _{s14}) 50	(t _{h14}) 0		

^{*}Timing for immediate instruction for first cycle.
**Status register and accumulator destination only.

^{† =} Not included in Group A tests

Am29116A SWITCHING CHARACTERISTICS

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, \ V_{CC} = 4.75 \text{ to } 5.25 \text{ V}, \ C_L = 50 \text{ pF})$

A. Combinational Delays (nsec)

			Outputs				
		Y ₀₋₁₅	T1-4	СТ			
	I ₀₋₄ (ADDR)	53	60	-			
	I _{0 - 15} (DATA)	53	60	-			
	I _{0 - 15} (INSTR)	53	60	29			
Input	DLE	39*	39	-			
	T ₁₋₄	-	-	25			
	CP	39	41	26			
	Y0-15	39*	39	-			
	ĪĒN	-	_	25			

 Y_{0-15} must be stored in the Data Latch and is source disabled before the delay to Y_{0-15} as an output can be measured. *Guaranteed indirectly by other tests.

B. Enable/Disable Times (nsec) (C_L = 5 pF for disable only)

		Enable		Dis	able
From Input	To Output	tpzH	tpzL	t _{PHZ}	t _{PLZ}
ŌĒY	Y ₀₋₁₅	22	22	22	22
OET	T ₁₋₄	25	25	25	25

C. Clock and Pulse Requirements (nsec)

Input	Min Low Time	Min High Time
CP	20	30
DLE	-	15
ĪĒN	20	+

Input	With Respect to			High-to-Low Transition Set-up Hold		Low-to-High Transition Set-up Hold			d	Comment Single ADDR (Source)				
I ₀₋₄ (RAM ADDR)	СР		(t _{s1}) 13 (t _{h1}) 0											
I ₀₋₄ (RAM ADDR)	CP and IEN both LOW	(1	(t _{s2}) 7		(t _{s2}) 7 –		-		(t _{h7})	2	Two ADD			
I _{0 - 15} (DATA)	СР		-		- 1		-		(t _{s8})	45	(t _{h8})	0		
I ₀₋₁₅ (INSTR)	СР	(t _{s3}) 24*		(t _{s3}) 24*		(t _h s	3)* 5	(t _{s9})	45	(t _{h9})	0			
IEN HIGH	СР	(1	t _{s4}) 5		-			(t _{h10})	1 1	Disable				
IEN LOW	CP	-	(t _{s5}) 7	-	(t _{h5})* 1	(t _{s11}) 20		(t _{h11})** 1	-	Enable	Immediate first cycle			
SRE	CP		_		_	(t _{s12})	12	(t _{h12})	2	1				
Υ	CP		_		_	(t _{s13})	32	(t _{h13})	0	1				
Υ	DLE	(1	l _{s6}) 6	(t _h	6) 6	-		-		1				
DLE	CP		-		_	(t _{s14})	30	(th14)	0					

^{*}Timing for immediate instruction for first cycle.
**Status register and accumulator destination only.

Am29L116A SWITCHING CHARACTERISTICS

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, \ V_{CC} = 4.75 \text{ to } 5.25 \text{ V}, \ C_L = 50 \text{ pF})$

A. Combinational Delays (nsec)

		Outputs				
		Y _{0 - 15}	T ₁₋₄	СТ		
	I ₀₋₄ (ADDR)	79	84	-		
	I _{0 - 15} (DATA)	79	84	-		
	I _{0 - 15} (INSTR)	79	84	48		
Input	DLE	58*	60	_		
•	T ₁₋₄	-	-	39		
	СР	56	62	36		
	Y ₀₋₁₅	62*	64			
	IEN	-	-	43		

 Y_{0-15} must be stored in the Data Latch and is source disabled before the delay to Y_{0-15} as an output can be measured. *Guaranteed indirectly by other tests.

B. Enable/Disable Times (nsec) (C_L = 5 pF for disable only)

		Enable		Dis	able
From Input	To Output	^t PZH	tpZL	tpHZ	t _{PLZ}
ŌĒY	Y ₀₋₁₅	20	20	20	20
OFT	T1_4	30	30	25	25

C. Clock and Pulse Requirements (nsec)

Input	Min Low Time	Min High Time
CP	20	30
DLE	-	15
ĪĒN	20	-

- In a set			High-to	sition		Set-	Tra	to-High nsition Hol	d	Cor	nment
Input	With Respect to	Set-up		Hold		361-	<u> </u>	1		Single AD	
IO-4 (RAM ADDR)	CP	(t	(t _{s1}) 24 (t _{h1}) 0		- -			(Source)			
I ₀₋₄ (RAM ADDR)	CP and IEN both LOW	(t _{s2}) 10					(t _{h7}) 1		Two ADD (Destination		
10-15 (DATA)	CP		_		_	(t _{s8}) (35	(t _{h8})	2		
I _{0 - 15} (INSTR)	CP	(t,	33) 38*	(t _{h3}) 17*	(t _{s9}) (55	(t _{h9})	2		
IEN HIGH	CP	(1	s4) 10		_	-		(t _{h10}	1	Disable	
IEN LOW	СР	-	(t _{s5}) 20	-	(t _{h5})* 0	(t _{s11}) 22	-	(t _{h11})** 2	-	Enable	Immediate first cycle
SRE	СР		'-		-	(t _{s12})	17	(t _{h12}	0		
Y	СР		-		-	(t _{s13})	44	(t _{h13}) 1		
Y	DLE	(1	s6) 12	(t _h	6) 6	-		_			
DLE	СР		-		_	(t _{s14})	42	(t _{h14}	0		

^{*}Timing for immediate instruction for first cycle.

*Status register and accumulator destination only.

Test Philosophy and Methods

The following points give the general philosophy that we apply to tests that must be properly engineered if they are to be implemented in an automatic testing environment. The specifics of what philosophies are applied to which test are shown in the data sheet and the data-sheet reconciliation that follow.

Capacitive Loading for AC Testing

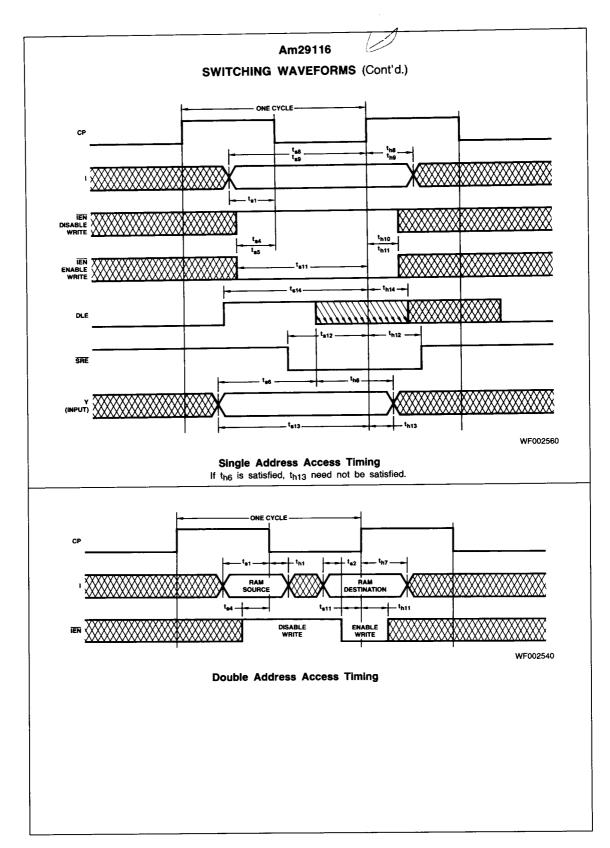
Automatic testers and their associated hardware have stray capacitance that varies from one type of tester to another, but is generally around 50 pF. This, of course, makes it impossible to make direct measurements of parameters that call for smaller capacitive load than the associated stray capacitance. Typical examples of this are the so-called "float delays" that measure the propagation delays in to and out of the high-impedance state and are usually specified at a load capacitance of 5.0 pF. In these cases, the test is performed at the higher load capacitance (typically 50 pF) and engineering correlations based on data taken with a bench setup are used to determine the result at the lower capacitance.

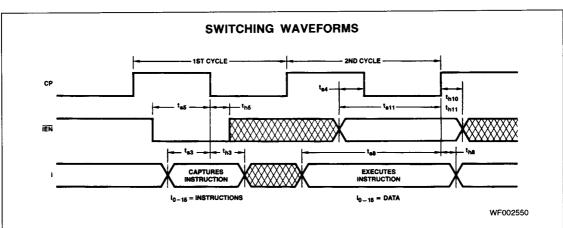
Similarly, a product may be specified at more than one capacitive load. Since the typical automatic tester is not capable of switching loads in mid-test, it is impractical to make measurements at both capacitances even though they may both be greater than the stray capacitance. In these cases, a measurement is made at one of the two capacitances. The result at the other capacitance is determined from engineering correlations based on data taken with a bench setup and the knowledge that certain DC tests are performed in order to facilitate this correlation

AC loads specified in the data sheet are used for bench testing. Automatic tester loads, which simulate the data-sheet loads, may be used during production testing.

Threshold Testing

The noise associated with automatic testing, the long inductive cables, and the high gain of bipolar devices frequently give rise to oscillations when testing high-speed circuits. These oscillations are not indicative of a reject device, but instead, of an overtaxed system. To minimize this problem, thresholds are tested at least once for <u>each</u> input pin. Thereafter, "hard" high and low levels are used for other tests. Generally this means that function and AC testing are performed at "hard" input levels.

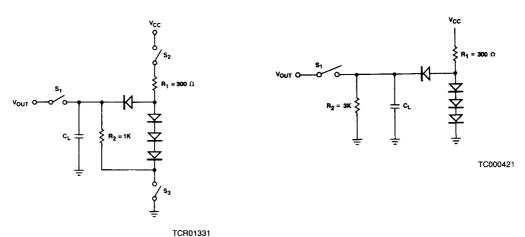

AC Testing


AC parameters are specified that cannot be measured accurately on automatic testers because of tester limitations. Datainput hold times fall into this category. In these cases, the parameter in question is tested by correlating the tester to bench data or oscilloscope measurements made on the tester by engineering (supporting data on file).

Certain AC tests are redundant since they can be shown to be predicted by other tests that have already been performed. In these cases, the redundant tests are not performed.

Output Short-Circuit Current Testing

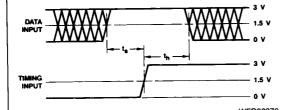
When performing I_{OS} tests on devices containing RAM or registers, great care must be taken that undershoot caused by grounding the high-state output does not trigger parasitic elements which in turn cause the device to change state. In order to avoid this effect, it is common to make the measurement at a voltage (V_{Output}) that is slightly above ground. The V_{CC} is raised by the same amount so that the result (as confirmed by Ohm's law and precise bench testing) is identical to the $V_{OUT} = 0$, $V_{CC} = Max$. case.



Immediate Instruction Cycle Timing

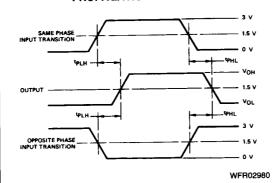
SWITCHING TEST CIRCUITS

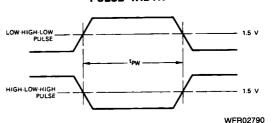
A. THREE-STATE OUTPUTS


B. NORMAL OUTPUTS

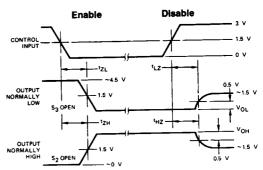
- Notes: 1. $C_L = 50$ pF includes scope probe, wiring and stray capacitances without device in test
 - 2. S_1 , S_2 , S_3 are closed during function tests and all AC tests except output enable tests.
 - 3. S_1 and S_3 are closed while S_2 is open for t_{PZH} test. S_1 and S_2 are closed while S_3 is open for t_{PZL} test.
 - 4. $C_L = 5.0$ pF for output disable tests.

SWITCHING TEST WAVEFORMS


SET-UP, HOLD, AND RELEASE TIMES

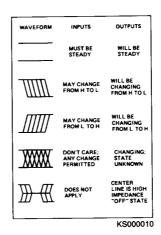

Notes: 1. Diagram shown for HIGH data only. Output transition may be opposite sense.

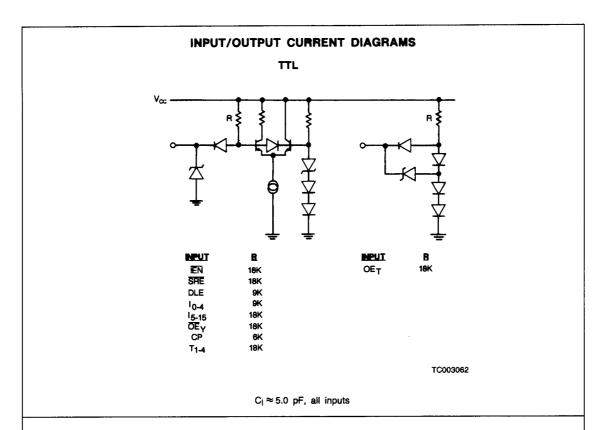
2. Cross hatched area is don't care condi-

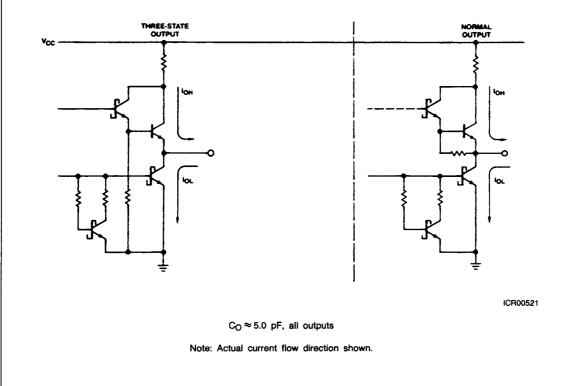

PROPAGATION DELAY

PULSE WIDTH

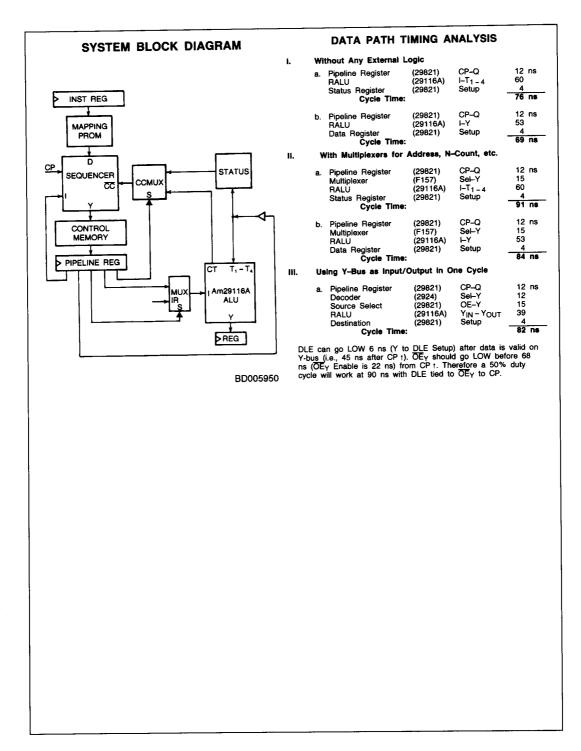
ENABLE AND DISABLE TIMES




WFR02660


- Notes: 1. Diagram shown for Input Control Enable-LOW and Input Control Disable-HIGH.
 - 2. S_1 , S_2 and S_3 of Load Circuit are closed except where shown.

Note: 1. Pulse Generator for All Pulses: Rate \leq 1.0 MHz; Z_0 = 50 $\Omega;~t_f \leq$ 2.5 ns; $t_f \leq$ 2.5 ns.


KEY TO SWITCHING WAVEFORM

Am29116A System Cycle Times

				Am2910A	Am29112 (est.)	Am29331 (est.)	Туре
	Pipeline Register	(29821)					Branch Map
	Mapping PROM Register	(27S190A) (29821)	CP-Q	12 ns	12	12	
	Sequencer	(====,	D-Y	20	23*	19	
	Control Memory	(00004)	taa	40	40	40	
	Pipeline Register	(29821) Cycle Time:	Setup	-4 -76		-4 -75	
	Pipeline Register	(29821)	CP-Q	12	12	12	Branch
	Buffer Enable	(2959)	OE-Y I. D-Y	20 20	20 23**	NA 20	
	Sequencer Control Memory		t _{AA}	20 40	40	40	
	Pipeline Register	(29821)	Setup	4	4	4	
	. 3	Cycle Time:	·	96	99	76	
	Pipeline Register	(29821)	CP-Q	12	12	12	Conditional
	RALU CC-MUX	(29116A) (2923)	I, T-CT D-W	29 7	29 7	29 NA	Branch
	Polarity	(74S86)	D-Y	11	NÁ	NA NA	
	Sequencer	(, ,,,,,,,	CC-Y	30	26	23	
	Control Memory		t _{AA}	40	40	40	
	Pipeline Register	(29821) Cycle Time:	Setup	133	118	108	
<i>1</i> .	Pipeline Register	(29821)	CP-Q	12	12	12	Conditional
	CC-MUX	(2923)	Sel-W	15	15	NA NA	Branch Using External Statu
	Polarity Sequencer	(74S86)	D-Y CC-Y	11 30	NA 26	NA 23	Register
	Control Memory		taa	40	40	40	, regiotei
	Pipeline Register	(29821)	Setup	4_	4_	4_	
		Cycle Time:		112	97	79	
	Pipeline Register Sequencer	(29821)	CP-Q I-Y	12 35	12 35*	12 20	Instruction to Output Path
	Control Memory		t _{AA}	40	40	40	Output Fatti
	Pipeline Register	(29821)	Setup	4_	4	4_	
		Cycle Time:	•	91	91	76	
١.	Sequencer		CP-Y	40	31	24	Clock to
	Control Memory Pipeline Register	(29821)	t _{AA} Setup	40 4	40 4	40 4	Output Path
	, ibalilia Liadistal	Cycle Time:	Odiup	84	75	68	

^{*} For the Am29112 Instruction 18 (Test SP with D (TSTSP.P)) is not used. If Instruction 18 is used D-Y is 35 ns and I-Y is 47 ns. **For the Am29112 Relative Branch Instructions are not used. If the Relative Branch Instructions are used D-Y is 43 ns.

THE USE OF AN EXTERNAL STATUS REGISTER IN REDUCING MICROCYCLE LENGTH

The standard connection of the CT pin of the Am29116 and microcycle length calculation arising from that connection are shown below:

CRITICAL PATH TIMING (FIGURE A)

Part Number	Path	Maximum Commercial Delay (ns)
Pipeline Register	CP-Q	12
Am29116A	I, T-CT	29
Am2923 CC-MUX	D-W	7
74S86 Polarity	D-Y	11
Am2910A	CC-Y	30
Control Memory	tAA	40
Pipeline Register	Setup	4
		133

While 133 ns cycle time is quite fast, it can be improved by using an external register for status testing.

CRITICAL PATH TIMING (FIGURE B)

Part Number	Path	Maximum Commercial Delay (ns)
Am29821 Status Reg	CP-Y	12
Am2923 CC-MUX	Sel-W	15
74S86 Polarity	D-Y	11
Am2910A	CC-Y	30
Control Memory	tAA	40
Pipeline Register	Setup	4
		112

The cycle time has been reduced from 133 ns to 112 ns.

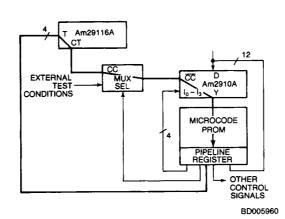


Figure A.

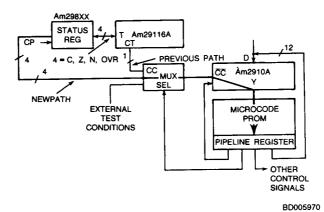
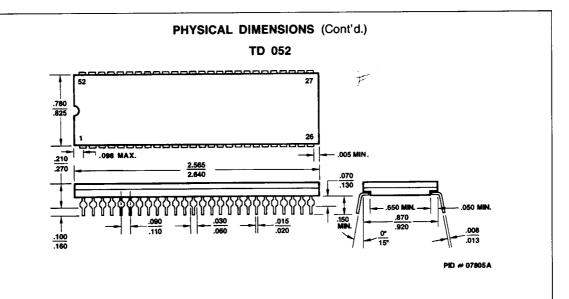
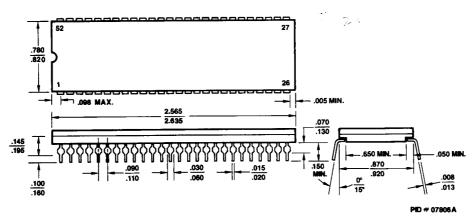
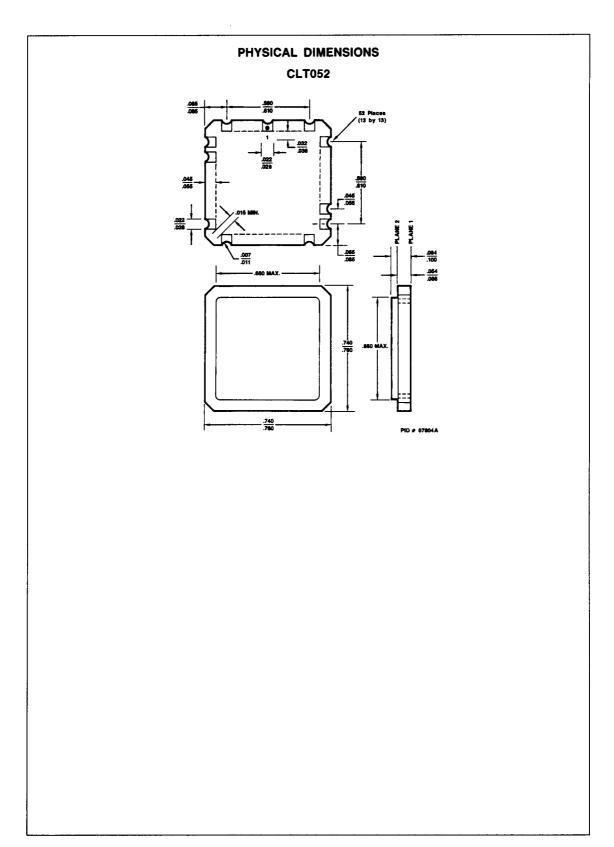





Figure B.

TDX052

ADVANCED	MICRO	DEVICES
DOMESTIC	SALES	OFFICES

ALABAMA	(205) 882-91:	22 MARYLAND	(301) 796-931
ARIZONA,		MASSACHUSETTS	(617) 273-397
Tempe	(602) 242-44	00 MINNESOTA	(612) 938-000
Tucson			(201) 299-000
	(002) 702 72	NEW YORK.	
CALIFORNIA,	(040), 640,00		(315) 457-540
El Segundo	(213) 640-32		(914) 471-818
Newport Beach	(714) 752-62	62 Pougrikeepsie	(516) 364-802
San Diego	(619) 560-70	30 Woodbury	(919) 847-847
Suppyyala	(408) 720-88	11 NORTH CAROLINA	
Woodland Hills	(818) 992-41		(503) 245-008
COLORADO	(303) 741-29	OO OMO.	
CONNECTICUT,	(/	Columbus	(614) 891-645
CONNECTICOT,	(203) 264-78	nn PENNSYLVANIA.	
	(200) 204 70	Allentown	(215) 398-800
FLORIDA,	(305) 339-50		(215) 657-310
Altamonte Springs			(809) 764-452
Clearwater	(813) 530-99		
Ft. Lauderdale	(305) 484-86		(512) 346-783
Melbourne	(305) 729-04	96 Austin	
GEORGIA	(404) 449-79)20 Dallas	(214) 934-909
ILLINOIS	(312) 773-44	122 Houston	
INDIANA		MASHINGTON	(206) 455-360
KANSAS			
KANSAS			
	INTERNATIO	NAL SALES OFFICI	£\$
BELGIUM,		HONG KONG,	0.0050
Bruvelles	TEL:(02) 771 99	93 Kowloon	TEL: 3-6953
Druxolles	FAX:(02) 762-3	716	FAX: 12342
	TLX:61	028	TLX:504
	TEX	: ITALY Milano	(02) 33905
CANADA, Ontario,	TE: (640) 500.0		FAX:(02) 34980
Kanata	TEL: (613) 592-0	090	• TLX:3152
Willowdale	TEL: (416) 224-5	193	TEL (03) 345-93
	FAX: (416) 224-0	056 JAPAN, TOKYO	TEL:(03) 345-82
FRANCE,	4		FAX34251
Porio	TEL:(0:1), 45 60 00	55	TLX: J24064 AMDTK
rails	FAX:(01) 46 86 21	85 IAUN AMERICA.	
	TLX:		TEL: (305) 484-86
	1LA2020	00, 1.5 24445.44.5	FAX:(305) 485-97
GERMANY,	(05440) 50	` .	TLX: 5109554261 AMDF
Hannover area	TEL:(05143) 50) 55	olm (08) 733 03
	FAX:(05143) 55	53 SWEDEN, Stockho	III(08) 733 00
	TLX: 925	287	FAX:(08) 733 22
München	TEL: (089) 41	14-0	TLX:116
Manchell	FAX:(089) 406	MOO UNITED KINGDOM	Л,
	TLX:		TEL:(0925) 828
	TE: (0744) 60 00	77	FAX:(0925) 8270
Stuttgart	TEL:(0711) 62 33	7 11	TLX:
	FAX: (0711) 625		
	TLX:721	1882 London area	
			FAX: (04862) 22
			TLX: 859
	NORTH AMERIC	CAN REPRESENTA	TIVES
	14011111 74111=1111	NEW MEXICO	
CALIFORNIA	OF14 (400) 000 (ERT STATES (505) 293-8
	OEM (408) 988-3		LITT OTATES (000) 200 0
I- INC	DISTI (408) 496-6	868 NEW YORK	(315) 437-8
F INC	D.O. (100) 100 .		(315) 437-0
IDAHO			
IDAHO			
IDAHO INTERMOUNTAIN TECH	MKGT (208) 888-6	6071 OHIO Dayton	
IDAHO INTERMOUNTAIN TECH INDIANA	MKGT (208) 888-6	6071 OHIO Dayton	
IDAHO INTERMOUNTAIN TECH INDIANA SAI MARKETING CORP		0071 OHIO Dayton DOLFUSS ROO	
IDAHO INTERMOUNTAIN TECH INDIANA SAI MARKETING CORP	MKGT (208) 888-6	5071 OHIO Dayton 9276 DOLFUSS ROO Strongsville	T & CO(513) 433-6
IDAHO INTERMOUNTAIN TECH INDIANA SAI MARKETING CORP	MKGT (208) 888-6	5071 OHIO Dayton 9276 DOLFUSS ROO Strongsville 4666 DOLFUSS ROO	T & CO(513) 433-6
IDAHO INTERMOUNTAIN TECH INDIANA SAI MARKETING CORP IOWA LORENZ SALES	MKGT	6071 OHIO	T & CO(513) 433-6 T & CO(216) 238-0
IDAHO INTERMOUNTAIN TECH INDIANA SAI MARKETING CORP IOWA LORENZ SALES	MKGT	6071 OHIO	T & CO(513) 433-6 T & CO(216) 238-0
IDAHO INTERMOUNTAIN TECH INDIANA SAI MARKETING CORP IOWA LORENZ SALES MICHIGAN SAI MARKETING CORP	MKGT (208) 888-6	5071 OHIO Dayton 9276 DOLFUSS ROO Strongsville DOLFUSS ROO PENNSYLVANIA DOLFUSS ROO DOLFUSS ROO	T & CO
IDAHO INTERMOUNTAIN TECH INDIANA SAI MARKETING CORP IOWA LORENZ SALES MICHIGAN SAI MARKETING CORP NERRASKA	MKGT	5071 OHIO Dayton 9276 DOLFUSS ROO Strongsville 4666 DOLFUSS ROO PENNSYLVANIA 1786 DOLFUSS ROO UTAH	T & CO(513) 433-6 T & CO(216) 238-0

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, correlated testing, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA
TEL: (408) 732-2400 ● TWX: 910-339-9280 ● TELEX: 34-6306 ● TOLL FREE: (800) 538-8450
TELEX: 34-6306 ● TOLL FREE: (800) 538-8450
Printed in U.S.A. AIS-WCP-15M-10/86-0