MOTOROLA e I R 162D
® SEMICOND c OR e
ENGINEERING BULLETIN
EB162

Programming Tips

This document includes the following topics:

Page
Numbers
*Single-Step Instruction Execution on the MC88110 1-6
«Efficient Implementation of Semaphores en the MC88110 6~9
+Efficient Implementation of Breakpoints on the MC88110 9-12
s|nitialization Code for the MCB8110 12-16

SINGLE-STEP INSTRUCTION EXECUTION ON THE MC88110

Single-step instruction execution implies that processor control is returned to a user-defined process after
each instruction is executed from a target instruction stream. Single-stepping the MC88110 can be a useful
too! for software debugging purposes and system state diagnostics. For example, the processor state can
be examined after execution of each instruction from a targeted instruction stream.

The MC88110 provides hardware support for single-step instruction execution through bit 23, the trace bit
(TRC), of the processor status register (PSR). 1If the TRC and serialize (SER) bits are set by software, the
MC88110 takes the instruction trace exception (vector offset 0x78) after execution of a single instructian.
This article assumes that the reader has some knowledge of the exception model as implemented on the
MC88110.

There are three distinct components that make up the entire algorithm of single-stepping the MC88110.
The control function, the target instruction stream, and the instruction trace exception handler each
contribute to the overall process, as illustrated in Figure 1.

To single-step an instruction, place the address of the target instruction in the exception-time executing
instruction pointer register (EXIP) and set the TRC and SER bits in the exception-time processor status
register (EPSR). At this point, executing an rte instruction transfers program contro! to the first instruction
in a target instruction stream. After the first instruction of the target instruction stream has been executed to
completion, program control is transferred to the instruction trace exception handler (vector offset 0x78).

This document contains information on a new product. Spacifications and information herein are subject to change without notice.

@ MOTOROLA R

© MOTOROLA INC., 1992 992

TARGET INSTRUCTION

CONTROL_FUNCTION

INSTRUCTION TRACE EXCEPTION HANDLER

Figure 1. Components of the Single-Stepping Algorithm

The following paragraphs further explain the control function, the target instruction stream, and the
instruction trace exception handler, all of which make up a complete single-stepping software envelope.

THE CONTROL FUNCTION

The control function is configured to execute a single instruction from the target instruction stream, thus, it is
called once for every instruction to be single-stepped. The control function initiailizes the MC88110 to
execute a single instruction at a specified address then begins execution at the instruction trace exception
handier. The control function requires two predefined data structures held in main memory, each of which is
capable of holding the entire programming model of the MC88110. The first data structure (referred to as
host_madel) contains the programming model in which the control function executes. The second data
structure {referred to as target_model) contains the programming model in which the target instruction
stream executes.

The control function should first save the current programming modetl into the host_model data structure. A
trap-not-taken should be executed just before the programming model save cccurs in order to ensure an
empty history buffer. Note that saving the programming model may corrupt it. For example, if the control
function places the address for the host_model data structure into one of the general purpose registers, that
register's original contents are overwritten. Control registers ¢rt6—cr20 can be used as a temporary scratch
pad while archiving the programming model. The control function can save the original data from one of the
general purpose registers into the scratch pad, before using it as a peinter to the host_model data structure.

Once the current working environment has been saved, the data in target_model can be loaded. Once
again, control registers er16—cr20 can be used to ensure that the programming model corresponds exactly
to the information in target_model.

The centrel function assumes that the calling routine has already placed the address of the instruction which
is to be single-stepped in the EXIP entry in the target_model data structure. The first time the control
function is called, the cailing routine must load the EXIP entry in target_mode! with the address of the target
instruction stream. However, as program control passes through the instruction trace exception handler, the

2 MC88110 ENGINEERING BULLETIN MOTOROLA

EXIP wil be automatically updated and saved back into the target_model for the next time the control
function is called to continue single-stepping this target instruction stream.

At this point, the TRC and SER bits in the EPSR are set and an rte operation is executed to begin a single-
step of the target instruction stream. The SER bit must be set along with the TRC bit in order for the single-
step operation to function properly.

When the rte operation is executed, program flow is transferred from the control function, to the target
instruction stream, to the instruction trace exception handler, and back to the control function again. Once
program flow returns to the control function, the control function will terminate and return program flow to its
calling routine.

Figure 2 shows the pseudo-code as well as the logical program flow into and out of the control function.

CONTROL_FUNCTION

FROM CALLING
_)

ROUTINE 1. Save current modsl to host_model

2. Load model from target_model

3. Set TRC and SER bits in the EPSR
FROM INSTRUCTION 4. rte | TO TARGET INSTRUCTION
TRACE EXCEPTION —3»1 5. Retum 3| TO CALLING ROUTINE

Figure 2. Control Function Pseudo-Code and Program Flow

Notice that program flow first enters the control function from a calling routine and finally exits the control
function to that same calling routine. This ensures that the calling routine will see a consistent system stack
before and after a call to the control function.

TARGET INSTRUCTION STREAM

Program flow enters the target instruction stream by the execution of an rte operation from within the control
function. Since the SER bit was set before the rte in the contro! function, the instruction pointed to by the
EXIP will be issued and executed to completion before another instruction in the target instruction stream
can be issued. When the target instruction completes execution, the instruction trace exception is
recognized. The instruction trace exception is a result of the TRC bit being set in the PSR.

The MC88110 automatically updates the EXIP and the exception-time next instruction pointer register
(ENIP) during the instruction trace exception recognition. There are three possible cases as to how the
EXIP and ENIP will be updated by the MC88110, as shown in Figure 3. The first possibility is if the
instruction which was just executed was not a taken flow-control operation. In this case, the EXIP is updated
with the next sequential address and the ENIP is not updated. The second possibility is it the instruction
which was just executed was a taken non-delayed flow-control operation. In this case, the EXIP is updated
with the target instruction address generated by the flow-control operation and the ENIP is not updated.
The third possibility is if the instruction which was just executed was a taken delayed flow-control operation.
In this case, the EXIP is updated with the next sequential address and the ENIP is loaded with the target

MOTOROLA MC88110 ENGINEERING BULLETIN 3

instruction address generated by the flow-control operation. [In addition, bit 0 of the EXIP is set to ensure
that the flow-control transfers to the address contained in the ENIP after the instruction pointed to by the
EXIP is executed.

When the instruction trace exception is recognized, the M(C88110 automatically updates the EXIP and
ENIP according to the following flowchart.

TARGET INSTRUCTION

/ N\
NOT A TAKEN TAKEN DELAYED
FLOW-CONTROL FLOW-CONTROL
OPERATION OPERATION

TAKEN
NON-DELAYED
FLOW-CONTOL

EXIP <- Next sequential address OPERATION| EX|P <- Next sequential address

ENIP <- Address generated by
Target Instruction

EXIP <- set bit 0

EXIP <- Address generated by
Target Instruction

Figure 3, EXIP and ENIP Update Possibilities

The instruction trace exception handler must properly save these values into the target_model data
structure. Note that no software is required for the updates made to the EXIP and ENIP as a result of the
instruction trace exception. These updates are performed by hardware and are automatic.

INSTRUCTION TRACE EXCEPTION HANDLER

Program flow is transferred to the instruction trace exception handler after a single instruction has been
executed from the target instruction stream. The instruction trace exception handler shouid first clear the
TRC and SER bits in the EPSR. Next, the entire programming model should be saved to the target_model
as soon as possible. This preserves the programming model in which the target instruction stream is
executing. In addition, this saves the EXIP and ENIP values in the target_model data structure for the next
time the contro! function is called by an external routine.

Once the pregramming model has been saved into the target_model data structure, the data in host_model
can be loaded. This restores the processor to the state that the control function is expecting. As in the
control function, contro! registers cr16—cr20 can be used as a temporary scratch pad when saving and
restoring the programming models.

4 MC88110 ENGINEERING BULLETIN MOTOROLA

After the programming models have been properly set, the instruction trace exception handler must load a
predefined address into the EXIP. This predefined address should be a label located inside the control
function. This label should be located just before the exit from the control function back to its calling routine.
After the correct address is loaded into the EXIP, an rte instruction should be executed, transferring
program flow back to the control function.

Figure 4 depicts the pseudo-code as well as the logical program flow into and out of the instruction trace
exception handler.

INSTRUCTION TRACE EXCEPTION HANDLER

FROM TARGET

INSTRUCTION —>»1 1. Clear TRC and SER bits in the EPSR

2. Save current model to target_model
3. Load model from host_model
4. Load specific address into EXIP

5. rte | TO CONTROL FUNCTION

Figure 4. Instruction Trace Exception Handler Pseudo-Code and Program Flow

SINGLE-STEP MODEL OVERVIEW

Figure 5 shows the entire single-stepping model and how program control flows through all three
components.

Notice that the rte at the end of the instruction trace exception handler simply exits to an exit in the control
function. This step could be removed and the rte from the instruction trace exception handler could exit to
the calling routine. However, certain stack allocations are made at the beginning of the control function and
those allocations must be de-allocated before a return to a calling routine. Thus, for consistency, the
instruction trace exception handler should exit to an exit in the control function.

It is also important to note that the MC88110 automatically updates the EXIP and ENIP when the instruction
trace exception occurs. This allows an external routine to repeatedly call the control function, thus single-
stepping through a targeted code sequence with no overhead. Another benefit of the MC88110
automatically loading the EXIP and ENIP with the proper values is that the programmer is no longer
burdened with handling the special cases of taken flow-control operations.

Hardware support for single-stepping the MC88110 allows for a simple, yet robust debugging mechanism.

When implemented correctly, a single-stepping model executes any valid MC88110 operation and returns
program contro! to a user-defined routine.

MOTOROLA MC88110 ENGINEERING BULLETIN 5

CONTROL_FUNGCTION

FRO IN
HOU¥IS£ L E——)- 1. Save current model to host_model

2. Load model from target_model
3. Set TRC and SER bits in the EPSR

4. nte - > TARGET INSTRUCTION
LABEL: -«

TO CALLING
ROUTINE -«€—]| 5. Retun

INSTRUCTION TRACE EXCEPTION HANDLER

1. Clear TRC and SER bits in the EPSR
2. Save current model to target_model
3. Load mode! from host_model

4. Load specific address into EXIP

5. nte

Figure 5. Single-Stepping Model Pseudo-Code and Program Flow

EFFICIENT IMPLEMENTATION OF SEMAPHORES ON THE
MC88110

A semaphore can be defined as an apparatus for signaling. In a software environment, a semaphore is often
used as a signal to indicate whether a specific resource is being used. In practical terms, a semaphore might
simply be a variable in memory that is set when a resource is in use, and clear when that resource is free.

In a system environment with shared resources, a potential owner may need to check a semaphore's value
before assuming ownership of a resource. For example, assume that process A would like to use an VO
device. Since it is possible that another process is currently using that device, process A must check the
semaphore that indicates if the device is in use. If the semaphore indicates that the device is free, process A
sets the semaphore to alert other processes that this resource is now in use. Process A is now free to use
the resource. Generally, process A clears the semaphore when the resource is no longer needed. This
enables other processes to take control of the I/O device.

Several subtleties arise after further study of the previous exampie. For example, is there an efficient way for
process A to poll the semaphore until the desired resource is available? Once process A sees that the
resource is available, what assurance is there that, by the time process A arbitrates for the system bus and
sets the semaphore, another process has not already set the semaphore and assumed ownership? How can
process A be sure that the setting of the semaphore actually updates main memory rather than only updating
the on-chip data cache?

Fortunately, the MC88110 provides an instruction that greatly simplifies the management of semaphores.
The xmem instruction exchanges the contents of the destination register with a specified memory location.

6 MC88110 ENGINEERING BULLETIN MOTOROLA

Functionally, xmem is similar to a load followed by a store to the same address, however, xmem has specific
characteristics that make it ideal for use with semaphores.

Xmem serializes the MC88110 and allows all previous operaticns to complete (effectively clearing the
register scoreboard and all internal pipelines) before the xmem executes. This ensures the state of the
machine when access 1o the semaphore is performed. If modification of the semaphore occurs before all
internal pipelines are clear, an exception may occur after the semaphore is modified, due to an instruction
that was issued prior to the xmem.

Xmem can be an atomic operation. In other words, xmem is very much like a oad followed by a store where
control of the system bus is never relinquished during the load-store combination. This ensures that no
other process can take control of the system bus and modify the semaphore during the time between the
load and store to the semaphore.

The xmem instruction is a cache-inhibited memory update operation. When the xmem operation is used,
the value of the semaphore in main memory wilt be updated while the value that might be held in the on-chip
data cache will remain the same. However, if a cache-inhibited access hits in the primary cache, the line is
marked invalid and copied back to memory, if modified.

Since the xmem instruction exchanges the contents of the register and memory, the value of the
semaphore just before the memory modification, can be checked. This ensures that the semaphore was
indeed clear and no other process could have possibly assumed ownership of the rescurce.

Now that the xmem operation has been described, the previous example can also be described further.
Assume that process A requires the specified I/0 device. Before process A can set the semaphore and take
ownership of the device, it must check the semaphore to see if another process is currently using the
resource. Polling of the semaphore most likely involves repeated accessing of the memory location until the
semaphore has been cleared. The xmem operation should not be used for polling the semaphore.
Executed repeatedly, the xmem operation can use a substantial amount of system bus bandwidth, which
can lower overall system performance.

An alternative means of testing the semaphore is to use Id operations to continuously poll the semaphore.
Since the semaphore resides in shared memory, the first Id operation accesses main memory and brings the
value of the semaphore into the on-chip data cache. Repeated Id operations to the semaphore only
accesses the on-chip data cache, leaving the system bus free to service other processes (including the
process currently using the required resource). Since the semaphore is in shared memory, the hardware
supported, cache coherency protocol automatically invalidates the copy of the semaphore in the on-chip
data cache when the value of the semaphore in memory changes. At that point, the Id operation again
accesses main memory to load the current (cleared) value of the semaphore. Process A now has notification
that the semaphore is clear and the resource is free.

The xmem operation can now be used to atomically access and set the semaphore. Once the xmem
operation has set the semaphore, process A can ensure that the semaphore was indeed clear at the time it
was set by checking the destination register of the xmem instruction. K the destination register of the
xmem indicates that the semaphore was set at the time process A set the semaphore, another process has
sat the semaphore and assumed control of the resource between process A's Id and xmem operations.
Process A must now return to its semaphore poll loop and re-arbitrate for control of the required resource.

MOTOROLA MC88110 ENGINEERING BULLETIN 7

There is a hidden advantage of the cache-inhibited characteristic of the xmem operation which is revealed in
this algerithm. If the xmem operation was not cache-inhibited by default, the system could achieve a cache-
inhibited access through page descriptors in the MMU. However, the system needs the memory which the
xmem operation is accessing to be cacheable. Allowing this memory to be cacheable enables the
sequence of Id operations to access the on-chip data cache rather than using valuable system bus
bandwidth.

Fotlowing is an example of a test and set sequence for the MC88110:

semaphore_test:

or r2,r0,0x1 ; 12 <- flag we will store in semaphore
; 13 <- address of semaphore
or r3,r0,lo16(semaphore_1) ; initialize lower half of semaphore address
or.u r3,r3,hi16(semaphore_1) ; initialize upper half of semaphore address
test_loop:
Id rd,r3,r0 ; 14 <- value of semaphore
bend nel,rd test_loop ; if the semaphore is not equal to 0, (the

; semaphore is still set and the resource is still
; being used by another process), reload and test
; the semaphore.

; If we get this far, the semaphore has tested
; clear, and we are free to set the semaphore and
; take ownership of the resource.
xmem r2,r3,r0 ; exchange contents of r2 {(our flag) with the
; contents of the semaphore. Since the xmem
; operation will update main memory (as opposed
; to only updating the value held in cache),
; we are assured that all other processes
; will be notified that the resource is
; being used.
bend ne0,r2,semaphore_test : This is a reassurance test to make sure that
; the value of the semaphore was clear when
s we set it. If the value we loaded from the
; semaphore is not clear, then another process has
; already set the semaphore and taken control
; of the resource in the time between the "Id" and
; "xmem" operations. If another process has
; indeed taken control of the resource, we need
; to return to the test and re-arbitrate for the
; required resource.

In the above sequence, the semaphore can be tested an arbitrary number of times and set, while only using

three memory accesses. The first memory access occurs the first time the Id operation is executed. The first
Id operation brings the value of the semaphore into the on-chip data cache. The following Id operations

8 MC88110 ENGINEERING BULLETIN MOTOROLA

only access the semaphore value in the on-chip data cache, leaving the system bus free for other processes.
The second memory access occurs the last time the Id operation is executed. This memoty access is the
result of a change to the semaphore value in main memory and the snooping hardware invalidating the value
of the semaphore in the en-chip data cache. Since the value of the semaphore in the on-chip data cache is
invalid, the 1d operation has to access main memory. The update of the semaphore value in main memory
should indicate that the semaphore has been cleared, signaling that the desired resource has been released
by another process. At this point the third memory access is the xmem operation, which is used to set the
value of the semaphore in memory.

EFFICIENT IMPLEMENTATION OF BREAKPOINTS ON THE
MC88110

A breakpoint is defined as a point in a program where execution is suspended so that examination of the
programming model is possible. There are two distinct types of breakpoints which can be implemented on
the MC88110: instruction breakpoints and data breakpoints.

An instruction breakpoint occurs when the address of a specific instruction is used to specify when
execution should be suspended. When an instruction at that address is encountered, execution is
stopped. Instruction breakpoints are fairly straightforward to implement in software, thus there is little reason
for the MC88110 to provide extensive hardware support for this algorithm. The instruction breakpoint must
be implemented almost entirely in software on the MC88110. The algorithm for this implementation is
discussed in this section.

A data breakpoint occurs when the address of a specific piece of data is used to specify when execution
should be suspended. When data at that address is encountered, execution is stopped. Data breakpoints
are significantly more comglicated to implement in software, thus the MC88110 provides significant hardware
support for the implementation of data breakpoints.

This document describes only instruction breakpoints. For additional information, reter to 8.6 Data
Breakpoints in the MC88710 Second Generation RISC Microprocessor User's Manual.

BREAKPOINTS OVERVIEW

The goal of the instruction breakpoint is to suspend program execution at a given point in the instruction
stream. Therefore, we must assume that there is some sort of control monitor present to provide a user
interface and memory modification capabiliies. The algorithm also assumes that the user will supply an
address for our algorithm to trigger on.

The basic algorithm is to replace the opcode found at the user-supplied address with a trap operation. This
trap operation transfers program control to a specified function that restores the proper opcode to the user-
supplied address and returns program flow to the control menitor. The following paragraphs describe the
data structure and functions needed to successfully implement this algorithm.

MOTOROLA MC88110 ENGINEERING BULLETIN 9

DATA STRUCTURES

Only one data structure is needed to implement instruction breakpoints on the MC88110. This data
structure, called breakpoint_database, is used to store the necessary information about each breakpoint.
Each entry in breakpoint_database must be large enough to hold both an address and an opcode.

Figure 6 illustrates the structure of the breakpoint_database. The address portion of each entry is simply the
address of the breakpoint (which is supplied by the user). In addition, the opcode portion of each entry is the
opcode found in memory at the address in the address portion. In other words, the opcode is read from
user-supplied address.

BREAKPOINT_DATABASE

e

Address

/ ;';g {.(i
Address Cpcode

Address Opcode

Figure 6. Breakpoint_Database Structure

SUPPORTING FUNCTIONS

There are two functions needed to implement the instruction breakpoint algorithm on the MC88110. The
first function needed is called beakpoint_insert. This function is given an address as input from the user. An
opcode is then read from memory (from the address supplied as input). At this point, the address and
opcode are inserted into breakpoint_database. The pseudo-code for breakpoint_insert follows:

breakpoint_insert(input_address)

{

i = next available entry in /* Set i to be the next available entry *f
breakpoint_database /* in breakpoint_database. *
breakpoint_database[i].address /* Insert the address of the new "/
= input_address I* breakpoint into breakpoint_database. *f
breakpoint_databassfi].opcode /" Insert the opcode read from the address */
= opcode read from input_address /* supplied by the user into *f

/™ breakpoint_database. *

)

Breakpoint_insert should be called from the monitor program whenever the user has requested the insertion
of another breakpoint.

10 MC88110 ENGINEERING BULLETIN MOTOROLA

The second function needed to implement the instruction breakpoint algorithm will be called the
breakpeint_exception_handler. This function reads an address as input. Breakpoint_exception_handler
then searches breakpoint_database for an entry with a matching address portion. When a match is found,
the opcede portion of that entry is written to memory, The pseudo-code for breakpoint_exception_handler
follows:

breakpoint_exception_handler()

{
while(breakpoint_database(i].address != input_address)
i++
memory at input_address = /* Once we have exited from the above]
breakpoint_database(i].opcode /" 'while' loop, we know that i points to !

/* the entry in breakpoint_database whose */
/* address portion matches input_address. */
/* tis now time to restore the proper */
/* opcode to the input_address. */

Program flow is transferred to breakpoint_exception_handler as soon as the user-specified breakpoint is
encountered. The input_address is not sent to breakpoint_exception_handler as a parameter. Rather,
upon taking an exception, the MC88110 automatically places the address of the excepting instruction in the
EXIP register (control register 4). Breakpoint_exception_handler can obtain input_address by simply
reading the EXIP. Once breakpoint_exception_handler has completed, program flow should be transferred
to the control monitor program.

Note that none of the support functions described above actually traverses the breakpoint_database and
writes trap operations to the specified addresses. This task must be performed by the control monitor just
before acting on a request by the user to execute a specified instruction stream. In other words, when the
user requests that a specified instruction stream be executed, the monitor should write the trap cperations to
memory before beginning execution of the specified instruction stream.

EXAMPLE OF THE INSTRUCTION BREAKPOINT ALGORITHM

The following list gives a simplified example of the instruction breakpoint algorithm and shows how that
algorithm's functionality is integrated into a control monitor.

The user has supplied an address to the control monitor and requests that an instruction breakpoint be set.

The control monitor calls breakpoint_insert and sends the user supplied address as a parameter.

The breakpoint_insert function makes the appropriate entry inte the breakpoint_database.

The user now reguests that the control monitor begin execution of a target instruction stream,

The control monitor writes a new opcode (a trap instruction) to each address found in breakpeint_database

and transfers program flow to the target instruction stream.

If an instruction breakpoint is encountered, program flow is transferred to breakpoint_exception_handler by

the execution of a trap instruction.

7. The breakpoint_exception_handler retrieves the address of the trap instruction which was just executed.
Upon entering the breakpoint_exception_handler, this address wil be found in the EXIP register on the
MC88110. Breakpoint_database is now traversed and all of the original opcodes are written back to the
appropriate memory addresses.

8. Program flow is transferred back to the control monitor.

& WHN =

@

MOTOROLA MC88110 ENGINEERING BULLETIN 11

Once the algorithm for instruction breakpeints has been implemented on a platform, the programming model
can be examined at almost any point in an instruction stream.

INITIALIZATION CODE FOR THE MC88110

When the MC88110 is brought out of reset, it begins fetching instructions from address 0x0. Rtis up to the
programmer to place correct initialization code at this location in memory. The terms "initialization code" refer
to the code that initializes the programming mode! of the MCB8110 to a known and stable state. This
document provides an overview of the initialization code necessary for the MC88110.

The inttialization code contained in this document does not put the MC8811C into a "highest performance’
state. This initialization code is meant to place the MC88110 into a conservative, "debug” state in which the
on-chip caches are disabled and all instructions are issued and executed serially.

INITIALIZATION OF THE PROCESS STATUS REGISTER

The PSR is the most important controt register on the MC88110. For this reason, the programmer should
begin the initialization procedure with this register. Refer to 2.2.4.1.2 Processor Status Register in
the MC88110 Second Generation RISC Microprocessor User's Manual for further details on the PSR. The
following code segment can be used to initialize the PSR.

Init_PSR:
: This routine will initialize the PSR to a
; known and stable state.
or.u r2,r0,0xA200 : OXA200 goes into the upper 16 bits of 12
or r2,r2,0x03E2 ; Ox03E2 goes into the lower 16 bits of r2
stecr r2,cr ; PSR <- 0xA20003E2

; 11

; Il lll_exceptions enabled

; Ii Il disable external
interrupts,

: 1 1| enable misaligned access

; I if exceptions,

; I I enable SFUA

; Il 1l_enable SFU2,

; Il | disable SFU3,

: Il | disable SFL)4,

; I | disable SFU5

; Il 1 disable SFUG,

: fl disable SFU7

; It disable trace mode
I_serialize memory instr's,

12 MC88110 ENGINEERING BULLETIN MOTOROLA

; | unsigned immediate offsets
; | & constants

; I

; |_clear carry bit,

; serialize all instr's,

; Big Endian data format,
; Supervisor Mode

INITIALIZATION OF THE INSTRUCTION MMU/CACHE CONTROL REGISTER

The instruction MMU/cache control register {ICTL) should follow the PSR in the initialization procedure.
Refer to 8.9.1.2 Instruction MMU/Cache Control Register in the MC88110 Second Generation
RISC Microprocessor User's Manual for further details on the 1CTL. The following code segment can be
used to initialize the ICTL.

Init_ICTL.:
; This code segment will initialize the
; ICTL to a known and stable state.

or 2,r0,rC ; "zero-out” r2. We will be using r2 as our
; mechanism to write into the ICTL so we need
; 1o begin with zero value in r2.

; We will be leaving bits 19-25 zero which
; tells the MC88110 that block size for the
; instruction BATC will be 512-Kbytes.

or r2,r2,0x8000 ; Set the 15th bitin r2. This will disable
; "double instruction issue” capabilities on
; the MC88110

; Do not modity the 14th bit. Leaving this
; bit zero keeps branch prediction disabled.

; Do not modify the 8th bit. Leaving this
; bit zero keeps “instruction cache freeze
; bank 0" disabled.

; Do not modify the 7th bit. Leaving this
; bit zero keeps “instruction cache freeze
: bank 1" disabled.

or r2,12,0%40 ; Set the 6th bit in r2. Setting this bit
: will enable hardware table search
; operations. We will disable the
; instruction MMU in the next step, so a
; hardware table search should not accur

: anyway.

MOTOROLA MC88110 ENGINEERING BULLETIN 13

; Do not modify the 5th bit. Leaving this
; bit zero keeps the instruction MMU
; disabled.

; Do not modify the 2nd bit. Leaving this

; bit zero keeps the target instruction cache
; disabled. For further information, refer to
1 9.3.4.2 Target Instruction Cache

: in the MC88110 Second Generation RISC

; Microprocessor User's Manual.

; Do not medify the Oth bit. Leaving this
; bit zero keeps the instruction cache
; disabled.

ster r2,crdi : Write the constructed r2 into the ICTL

INITIALIZATION OF THE DATA MMU/CACHE CONTROL REGISTER

The data MMU/cache control register (DCTL) should be initialized immediately after the ICTL has been
initialized. Refer to 8.9.2.2 Data MMU/Cache Control Register in the MC88110 Second Generation
RISC Microprocessor User's Manual for further details on the DCTL. The following code segment can be
used to initialize the DCTL to a known and stable state.

Init_DCTL:
; This code segment will initialize the
; DCTL to a known and stable state.

or r2,e0,r0 ; "zero-out" r2. We will be using r2 as our
; mechanism to write into the DCTL so we need
; to begin with zero value in r2.

; We will be leaving bits 19-25 zero which
; tells the MC88110 that block size for the
; data BATC will be 512-Kbytes.

or r2,r2,062000 ; Set the 13th bitin r2. This will indicate
; to the MC88110 that xmem operations should
; a load followed by a store.

; Do not modify the 12th bit. Leaving this
; bit zero keeps decoupled cache accesses
; disabled.

; Do not modify the 11th bit. Leaving this

; bit zero tells the MC88110 to check page or

; block descriptors to determine whether or

; not write-through mode will be used. We

; will be disabling the data cache anyway, so
; this bit is presently a "don't care”.

14 MC88110 ENGINEERING BULLETIN MOTOROLA

; Do not modify the 10th bit. Leaving this
; bit zero keeps data breakpeint register 1
; disabled.

; Do not modify the 9th bit. Leaving this
; bit zero keeps data breakpoint register 1
; disabled.

; Do not modify the 8th bit. Leaving this
; bit zero keeps "Data cache freeze bank 0"
; disabled.

; Do not modify the 7th bit. Leaving this
; bit zero keeps "Data cache freeze bank 1"
; disabled.

or rz,rz2,0x40 ; Set the 6th bit in r2. Setting this bit
; will enable hardware table search
; operations. We be disabling the data MMU
; in the next step, so a hardware table
; search should not occur anyway.

; Do not madify the 5th bit. Leaving this
; bit zero keeps the data MMU disabled.

; Do not modify the 1st bit. Leaving this

; bit zero keeps data snooping disabled.

; Since the data cache is disabled, there is
; no reason to enable snooping.

; Do not modify the Oth bit. Leaving this
; bit zero keeps the data cache disabled.

ster r2,crdl : Write the constructed r2 into the DCTL

INITIALIZATION OF THE INSTRUCTION AND DATA CACHES

Now that the cache control registers have been initialized, the on-chip caches should be initialized. The
MC88110 provides hardware support for flash-invalidation of the entire instruction and data caches. This
flash-invalidation is performed through the ICMD and DCMD registers. Refer to 8.9.1.1 Instruction
MMU/Cache/TIC Command Register (ICMD) and 8.9.2.1 Data MMU/Cache Command
Register (DCMD) in the MC88110 Second Generation RISC Microprocessor Users Manual for further
details on the ICMD and DCMD registers. The following code segment can be used to initialize the
instruction and data caches to a known state.

Init_caches:
; This code segment initializes the on-chip
; data and instruction caches to known state.
; Namely, both caches will be invalidated.

or r2,r0,0x1 ; We will use 12 as a temporary register to
: build a command to invalidate the entire
; caches.

ster r2,cr2s ; By writing a single "1" into cr25, we have
: told the MC88110 to invalidate the entire
; on-chip instruction cache.

ster r2,cr40 ; By writing a single "1" into cr40, we have

; told the MC88110 to invalidate the entire
; on-chip data cache.

MOTOROLA MC88110 ENGINEERING BULLETIN 15

INITIALIZATION OF A TEMPORARY SYSTEM STACK

The final step in the initialization sequence is to allocate a block of memory for a temporary system stack
space. The programmer should set aside approximately 10 Kbytes of memory to be used as stack space.
Initializing the actual memory used for the stack space is not necessary because the MC88110 should only
read variables from the stack that it has previously written to. However, the stack must be initialized in the
sense that the programmer must inform the MC88110 where the allocated block of memory is. This can be
accomplished by placing the highest address in the allocated block of memory in general register r31.
Programming convention dictates that r31 be used as a stack pointer on the MC88110. Note that the
highest address of the allocated block should be used. This is because 31 is decremented before an entry
is pushed onto the stack. Likewise, after that entry is popped from the stack, r31 is incremented.

The following instruction sequence properly initializes r31 to point to the end of an allocated block ot
memory.

or.u r31,r0,hi16(stack_space} : Move the upper 16 bits of the address of
; the stack space into the upper 16 bits of
;3

or r31,r31,lo16(stack space) : Move the lower 16 bits of the address of
; the stack space into the lower 16 bits of
;31

addu r31,r31,stack_size ; Add the size of the stack to r31
: so that r31 points to the end of the
; allocated block of memory

Although the initialization code for the MC88110 is quite short, it is an important step in powering up the part.

Once the MC88110 is placed in a known, stable state by this initialization code, the programmer is free to
begin loading additional software into the platform.

16 MC88110 ENGINEERING BULLETIN MOTOROLA

Motorola reserves the right 1o make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit described herein; neither does it canvey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or susltain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, smployees, subsidiaries, affiliates, and distributors harmless against all claims, cosis, damages, and expenses, and reasonable attomey
tees arising out of, directly or indirectly, any claim of parsonal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and the () are registered trademarks of Motorola, Inc. Moterola, Inc. is an
Equal Opportunity/Affirmative Action Employer.

Literature Digtribution Centers:

USA: Motorola Literature Distribution: P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorola Semiconducters H.K, Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

I @ MOTOROLA

