SBC5204 USER'S MANUAL
REVISION 1.1

V7 / 4

Copyright 1996, 1997 Arnewsh Inc.
Arnewsh Inc.
P.O. Box 270352
Fort Collins, CO 80527-0352
Phone: (970) 223-1616
Fax: (970) 223-9573

COPYRIGHT

Copyright 1996, 1997 by Arnewsh Inc.

All rights reserved. No part of this manual and the dBUG software provided in Flash ROM’YEPROM’s
may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise. Use of the program or any part thereof, for any
purpose other than single end user by the purchaser is prohibited.

DISCLAIMER

The information in this manua has been carefully examined and is believed to be entirely reliable.
However, no responsibility is assumed for inaccuracies. Furthermore, Arnewsh reserves the right to make
changes to any product(s) herein to improve rdliability, function, or design. The SBC306 board is not
intended for use in life and/or property critical applications. Here, such applications are defined to be any
situation in which any failure, mafunction, or unintended operation of the board could, directly, or
indirectly, threaten life, result in personal injury, or cause damage to property. Although every effort has
been made to make the supplied software and its documentation as accurate and functiona as possible,
Arnewsh Inc. will not assume responsibility for any damages incurred or generated by this product.
Arnewsh does not assume any liability arising out of the application or use of any product or circuit
described herein, neither does it convey any license under its patent rights, if any, or the rights of others.

WARNING

THIS BOARD GENERATES, USES, AND CAN RADIATE
RADIO FREQUENCY ENERGY AND, IF NOT INSTALLED
PROPERLY, MAY CAUSE INTERFERENCE TO RADIO
COMMUNICATIONS. AS TEMPORARILY PERMITTED
BY REGULATION, IT HAS NOT BEEN TESTED FOR
COMPLIANCE WITH THE LIMITS FOR CLASS A
COMPUTING DEVICES PURSUANT TO SUBPART J OF
PART 15 OF FCC RULES, WHICH ARE DESIGNED TO
PROVIDE REASONABLE PROTECTION AGAINST SUCH
INTERFERENCE. OPERATION OF THIS PRODUCT IN A
RESIDENTIAL AREA IS LIKELY TO CAUSE
INTERFERENCE, IN WHICH CASE THE USER, AT
HISHER OWN EXPENSE, WILL BE REQUIRED TO
CORRECT THE INTERFERENCE.

LIMITED WARRANTY

Arnewsh Inc. warrants this product against defects in material and workmanship for a period of
sixty (60) days from the original date of purchase. This warranty extends to the original
customer only and is in lieu of all other warrants, including implied warranties of
mer chantability and fitness. In no event will the seller be liable for any incidenta or
consequential damages. During the warranty period, Arnewsh will replace, a no charge,
components that fail, provided the product is returned (properly packed and shipped prepaid) to
Arnewsh at address below. Dated proof of purchase (such as a copy of the invoice) must be
enclosed with the shipment. We will return the shipment prepaid via UPS.

This warranty does not apply if, in the opinion of Arnewsh Inc., the product has been damaged by
accident, misuse, neglect, misapplication, or as a result of service or modification (other than
specified in the manua) by others.

Please send the board and cables with a compl ete description of the problem to:

Arnewsh Inc.

P.O. Box 270352

Fort Collins, CO 80527-0352
Phone: (970) 223-1616

Fax :(970) 223-9573

Motorolais aregistered trademark of Motorola Inc.
IBM PC and IBM AT are registered trademark of IBM Corp.

All other trademark names mentioned in this manua are the registered trade mark repective
owners.

TABLE OF CONTENTS

Page
CHAPTER 1 | NTRODUCTI ON TO THE SBC5204 BQOARD 1-1
1.1 INTRODUCTT ON . .. e e e e e 1-1
1.2 CGENERAL HARDWARE DESCRIPTIONc. ... 1-1
1.3 SYSTEM MEMORY . .. e e 1-3
1.4 SERIAL COWUN CATION CHANNELS 1-3
1.5 PARALLEL I/OPORTS e 1-3
1.6 PROGRAWABLE TIMERS/ COUNTERS 1-3
1.7 | SA BUS CONNECTOR.ot e e e e 1-3
1.8 SYSTEM CONFI GURATION . ..o e 1-4
1.9 | NSTALLATION AND SETUP e 1-4
1.9.1 Unpacki Ng 1-4
1.9.2 Preparing the Board for Use 1-4
1.9.3 Providing Power to the Board 1-4
1.9.4 Selecting Termnal Baud Rate 1-5
1.9.5 The Termnal Character Format 1-5
1.9.6 Connecting the Termnal 1-5
1.9.7 Usi ng Personal Conputer as a Termnal 1-5
1.10 SYSTEM POMNER-UP AND I NI TIAL OPERATION 1-9
1.11 SBC5204 JUWPER SETUP. e 1-9
1.12 USING THE BDM e e 1-10
CHAPTER 2 USING THE MONI TOR/DEBUG FIRMMRE 2-1
2.1 VWHAT IS dBUG e 2-1
2.2 OPERATIONAL PROCEDUREt 2-3
2.2.1 System POWEr -Upo 2-3
2.2.2 SystemlInitialization 2-3
2.2.2.1 RESET Button i, 2-4
2.2.2.2 ABORT Button 2-4
2.2.2.3 Software Reset Command 2-4
2.2.2. 4 User Program 2-4
2.2.3 SystemQperation 2-4
2.3 TERM NAL CONTROL CHARACTERS, 2-5
2.4 dBUG COWAND SET e 2-5
2.4.1 BF - Block Menmory Fill 2-7
2.4.2 BM - Block Move 2-8
2.4.3 BR - Breakpoint 2-9
2.4.4 BS - Block Search L. 2-10
2.4.5 DATA - Data Conversioniiuuenn... 2-11
2.4.6 D - Dsassenble 2-12
2.4.7 DL - Download Serial 2-13
2.4.8 DN - Download Network.......................... 2-14
2.4.9 GO - EXecUute 2-15
2.4.10 GT - Execute Till a Tenporary Breakpoint 2-16
2.4.11 Help - Help 2-17
2.4.12 IRD - Internal Registers Display 2-18
2.4.13 IRM- Internal Registers Mdify 2-19
2.4.14 ND - Menory Display, 2-20
2.4.15 MM- Menory Modify .. oo 2-21

2.4.16 RD - Register Display 2-22
2.4.17 RM- Register Modify, 2-23
2.4.18 RESET - Reset the board and dBUG 2-24
2.4.19 SET - Set Configuration 2-25
2.4.20 SHOW- Show Configuration 2-27
2.4.21 STEP - Step Over 2-28
2.4.22 SYMBOL - Synbol Nane Managenent 2-29
2.4.23 TRACE - Trace Into 2-30
2.4.24 UPDBUG - Update the dBUG Image 2-31
2.4.25 UPUSER - Update User Code In Flash 2-32
2.4.26 VERSION - Display dBUG Version 2-33
2.5 TRAP #15 FUNCtIiONS 2-34
2.5.1 QU _CHAR . .. 2-34
2.5.2 IN CHAR . . 2-34
2.5.3 CHAR PRESENT e 2-35
2.5.4 EXIT TOABUG e 2-35
CHAPTER 3 HARDWARE DESCRI PTI ON AND RECONFI GURATION 3-1
3.1 THE PROCESSOR AND SUPPCRT LOAC 3-1
3.1.1 The Processor 3-1
3.1.2 The Reset LOQICoiiii i 3-1
3.1.2.1 The ATS/BUSWLIine, 3-2
3.1.3 The Aock Grecuitry, 3-2
3.1.4 \Watchdog Timer (BUS MONNITOR) 3-2
3.1.5 Interrupt Sources, 3-2
3.1.6 Internal SRAM 3-3
3.1.7 The MCF5204 Registers and Menory Map 3-3
3.1.8 Reset Vector Mapping 3-4
3.1.9 DTACK Generationiiiiiinn 3-4
3.1.10 Wait State Generator 3-5
3.2 THE EXTERNAL SRAM e 3-5
3.3 THE EPROM FLASH ROM e 3-5
3.4 THE UART LOG C ... e e 3-7
3.4.1 MCBBHCO0L 3-7
3.5 THE PARALLEL I/O PORT. e 3-7
3.6 THE ISABUS LOGC ...t e 3-7
3.7 THE CONNECTORS AND THE EXPANSION BUS 3-8
3.7.1 The Termnal Connector J1 3-8
3.7.2 The I SA Bus Auxiliary Connector J2 3-8
3.7.3 The Power Supply Connector J3 and J4 3-9
3.7.4 The Programm ng Connector J5 3-9
3.7.5 The Auxiliary Communi cati on Connector J6 3-10
3.7.6 The Debug Connector J7uiuiiini... 3-10
3.7.7 The Processor Expansion Bus J8 and J9 3-10
3.7.8 The I SA Bus Connector P1 3-13
3.8 THE SBC5204 JUVPERS 3-15
APPENDI X A NETWORK DOMNLQOAD A1l
A1l Configuring dBUG for Network Downloads Al

\'!

All
Al 2
A 13

Required Network Paraneters

Configuring dBUG Network Paraneters

Troubl eshooti ng Network Probl ens

Vi

CHAPTER 1
INTRODUCTION TO THE SBC5204 BOARD
1.1 INTRODUCTION

The SBC5204 is a versatile single board computer based on MCF5204 ColdFire Processor. 1t may be used
as a powerful microprocessor based controller in avariety of applications. With the addition of aterminal,
it serves as a complete microcomputer for development/evaluation, training and educational use. The user
must only connect an RS-232 compatible terminal (or a personal computer with terminal emulation
software) and a power supply to have afully functional system.

Provisions have been made to connect this board to additional user supplied boards, via the Microprocessor
Expansion Bus connectors, to expand memory and 1/O capabilities. Additional boards may require bus
buffers to permit additional bus loading.

Furthermore, provisions have been made in the PC-board to permit configuration of the board in a way
which best suits an application. Options available are: 1M of SRAM, Timer, 1/O, ISA businterface, and
up to 1M bytes of Flash or 2M bytes of EPROM. In addition, all of the I/O functions of the MCF5204 are
available for the user.

1.2 GENERAL HARDWARE DESCRIPTION

The SBC5204 board provides the RAM, Flash ROM, optiona Ethernet interface (ISA bus), RS232, and
all the built-in 1/0O functions of the MCF5204 for learning and evaluating the attributes of the MCF5204.
The MCF5204 is a member of the ColdFire family of processors. It isa 32-bit processor with 32 bits of
addressing and 32 lines of data. The processor has eight 32-bit data registers, 8 32-bit address registers, a
32-bit program counter, and a 16-bit status register.

The MCF5204 has a System Integration Module referred to as SIM. The module incorporate many of the
functions needed for system design. These include programmable chip-select logic, System Protection
logic, General purpose I/O, and Interrupt controller logic. The chip-select logic can select up to six
memory banks or peripherals. The chip-select logic also allows programmable number of wait-state to
alow the use of dower memory (refer to MCF5204 User's Manual by Motorola for detail information
about the SIM.) The SBC5204 dBUG monitor only uses five of the chip selects to access the Flash
ROM'’s, one bank of SRAM’s, MC68HC901, and ISA bus interface. All other functions of the SIM are
available to the user.

A hardware watchdog timer (Bus Monitor) circuit isincluded in the SIM which monitors the bus activities.
If a bus cycle is not terminated within a programmable time, the watchdog timer will assert an internal
transfer error signal to terminate the bus cycle. A block diagram of the board is shown in Figure 1.1.

ISA
BUS

P1

RS232
MCF5204 <> xcovers [
u7 ¢
<>
»| MCG8HC90]
€ | SI2032 < >
<€ > us
— | Flash ROM/
»| EPROM
<> < >
Data and U13,U14
Address <
Xcevers ‘ ’
EEE— N
>
< » SRAM
yoportsY Y
CONTROL BUS| U11, U12

ADDRESSBUS Y
DATA BUS
Figure 1.1

1.3 SYSTEM MEMORY

There are two 32-pin sockets on the board for EPROM’s or Flash ROM’s (U13, U14), U13 is the most
significant byte and the U14 is the least significant byte. The EPROM sockets can be set up via jumpers
(JP2, JP3, and JP4) to accept 27C256, 27C512, 27C010, 27C020, 27C040, and 27C080 EPROM'’s. or
29F010, and 29F040. The SBC5204 comes with two 29F010 Flash ROM’s which are programmed with
a debugger/monitor firmware. The dBUG driver only supports 29F010 Flash ROM.

There are two 32-pin sockets for SRAM’ s which can accept 128Kx8 and 512Kx8 SRAM’s. JP2 is used to
make the selection.

14 SERIAL COMMUNICATION CHANNELS

The MCF5204 has one built-in Serial Communication Channel with baud rate generator. This signals of
this channel are passed through externa Driver/Receivers to make the channel compatible with RS-232.
This channd is not used by the debugger and is available to user. The SBC5204, however, has one
MC68HC901 which has four timers and a serial communication port. One timer channel is used as baud
rate generator for the serial channel. The RXD and TXD lines are passed through external Driver/Receiver
to make this channdl compatible with RS-232C level (Note: only 2 main signals are available, RXD and
TXD signals). This channel is the “TERMINAL” channel used by the debugger for communication with
external terminal/PC.

1.5 PARALLEL I/O PORTS
Some of the multifunction pins of the MCF5204 can be used as Port A general purpose I/O pins. These
pins are available to user except A20/PAO which may be used for EPROM selection when using 8M
EPROM’s.
1.6 PROGRAMMABLE TIMER/COUNTER
The MCF5204 has two built in general purpose timer/counters. These timers are not used by the debugger
and are available to the user. The signals for the timer share the pins with Port A and are available on the
connector J9. There are aso three timersin MC68HC901 which are available to user.
1.7 1SA BUSCONNECTOR
The SBC5204 has one I SA bus connector to allow the use of off-the-shelf ISA /O cards. The main reason
for this connector isto install an Ethernet card to support down-load via network.
1.8 SYSTEM CONFIGURATION
The SBC5204 board requires only the following items for minimum system configuration (Fig. 1.2):

a The SBC5204 board (provided).

b. Power supply (+5 Vdc regulated or 7.5V to 12V DC), about 0.5 Amp.
¢. RS-232C compatible terminal or a PC with terminal emulation software.

3

d. Communication cable (provided).

Refer to next sections for initial setup.

19 INSTALLATION AND SETUP

The following sections describe all the steps needed to prepare the board for operation. Please read the
following sections carefully before using the board. When you are preparing the board for the first time, do
not use the optional features (Ethernet, ISA BUS). The minimum configuration does not require any

modifications. After the board is functiona in its minimal configuration, you may use other features by
following the instructions provided in the following sections.

1.9.1 Unpacking

Unpack the computer board from its shipping box. Save the box for storing or reshipping. Refer to the
following list and verify that all the items are present. 'Y ou should have received:

a. SBC5204 Single Board Compuiter.
b. SBC5204 User's Manual, this documentation.

¢. One communication cable.

WARNING

AVOID TOUCHING THE MOS DEVICES. STATIC DISCHARGE
CAN AND WILL DAMAGE THESE DEVICES.

Once you verified that al the items are present, remove the board from its protective jacket. Check the
board for any visible damage. Ensure that there are no broken, damaged, or missing parts. If you have not
received al the items listed above or they are damaged, please contact Arnewsh Inc. immediately in order
to correct the problem.

1.9.2 Preparing the Board for Use

The board as shipped is ready to be connected to a terminal and the power supply without any need for
modification. However, follow the steps below to insure proper operation from the first time you apply the
power. Figure 1.3 shows the placement of the jumpers and the connectors which you need to refer to in the
following sections. The steps to be taken are:

a. Connecting the power supply.
b. Connecting the terminal .

1.9.3 Providing Power to the Board
The board accepts two means of power supply connections. Connector J3 is a 2.1mm power jack and J4

lever actuated connector. The board accepts either +5V regulated supply or +7.5V to 12V DC (regul ated
or unregulated), less than one Amp via either connectors. Jumper JP1 selects between +5 and +7.5-12V

4

options. Make sure the jumper JP1 isin proper location for your option. Connect power supply as
marked on the board and shown below (do not turn the power supply on yet):

Contact NO. Voltage
1 +5Vdcor +7.5-12V
2 Ground
Jumper JP1.
Jumper Pin Function
1and 2 +5V regulated
2and 3 +7.5-12V DC, regulated or unregulated (default)

19.4 Sdlecting Terminal Baud Rate

The serial channel of MC68HC901 which is used for serial communication channel has a built in software
programmable baud rate generator (timer). It can be programmed to a number of baud rates. After the
power-up or a manual RESET, the dBUG firmware configures the channel for 19200 baud. After the
dBUG is running, you may issue the SET command to choose any baud rate supported by the dBUG.
Refer to Chapter 2 for the discussion of this command.

1.95 The Terminal Character Format

The character format of the communication channel is fixed at the power-up or RESET. The character
format is 8 bits per character, no parity, and one stop bit. You need to insure that your termina or PC is
Set to this format.

1.9.6 Connecting the Terminal

The board is now ready to be connected to a terminal. Use the communication cable provided to connect
the terminal to the SBC5204. The cable has a 9-pin female D-sub connector at one end and a 9-pin male
D-sub connector at the other end. Attach the 9-pin male connector to J1 connector on the board. Attach
the 9-pin female connector to a 9-pin-to-25-pin adapter, if necessary, to make it compatible with the
connector on the back of the terminal.

1.9.7 Using a Personal Computer asa Terminal

You may use your personal computer as a termina provided you aso have a terminal emulation software
such as PROCOMM, KERMIT, QMODEM, or similar packages. Use the communication cable provided
to connect the PC to the SBC5204. The cable has a 9-pin female D-sub connector at one end and a 9-pin
male D-sub connector at the other end. Connect the 9-pin male connector to J1 connector on SBC5204.
Connect the 9-pin female connector to one of the available serial communication channels normaly referred
to as COM1 (COM2, etc.) on the IBM PC's or compatible. Depending on the kind of serial connector on
the back of your PC, the connector on your PC may be a male 25-pin or 9-pin. Y ou may need to obtain a
9-pin-to-25-pin adapter to make the connection. If you need to build an adapter, refer to Figure 1.4 which
shows the pin assignment for the 9-pin connector on the board.

ISA BUS

dBUG>

Z
P1

[L[[J

i

LLL LS SBC5204

J6

RS232 TERMINAL
or PC 7 38/ —

+5, GND
Power Supply

BACKGROUND DEBUG

MICROPROCESSOR
EXPANSION BUS

Figure 1.2. System Configuration

Once the connection to the PC is made, you are ready to power-up the PC and run the terminal emulation
software. When you are in the terminal mode, you need to select the baud rate and the character format for
the channel. Most terminal emulation software packages provide a command known as "Alt-p" (pressthe p
key while pressing the Alt key) to choose the baud rate and character format. Make sure you select 8 bits,
no parity, one stop bit (see Section 1.9.5). Then, select the baud rate as 19200. Now you are ready to
apply power to the board.

80 O O O O
9O O O 0OFf

Data Carrier Detect, Output (shorted to pins 6 and 8).

Receive Data, Output from board (receive refersto terminal side).
Transmit Data, Input to board (transmit refersto termina side).
Data Terminal Ready, input (not used).

Signal Ground.

Data Set Ready, Output (shorted to pins 1 and 8).

Request to Send, inpuit.

Clear to send, output (shorted to pins 1 and 6).

Not connected.

©oNOUAWNE

Figure 1.4. Pin assignment for the J1 (Terminal) connector.

ol —

P1

Ji

JP2
JP3

JP1 ™

JPA

J8 |

Figure 1.3. Jumper and connector placement.

1.10 SYSTEM POWER-UP AND INITIAL OPERATION
Now that you have connected all the cables, you may apply power to the board. After power is applied, the

dBUG initializes the board then displays the power-up message on the terminal which includes the amount
of the memory present.

Hard Reset
Installed SRAM: 256K
Copyright 1995-1996 Matorola, Inc. All Rights Reserved.
ColdFire MCF5204 EVS Debugger V2.1 (Aug Xx 1996 XX:XX:XX:)
Enter ‘help’ for help.
dBUG>
The board is now ready for operation under the control of the debugger as described in Chapters 2. If you
do not get the above response, perform the following checks:
1. Make sure that the power supply is properly set and connected to the board.

2. Check that the terminal and board are set for the same character format and baud.

3. Pressthered RESET (red switch) button to insure that the board has been initialized
properly.

If you dtill are not receiving the proper response, your board may have been damaged in shipping. Contact
Arnewsh for further instructions.
1.11 SBC5204 JUMPER SETUP

The jumpers on the board are discussed in Chapter 3. However, a brief discussion of the jumper settings
are asfollows:

1. Jumper JPL. Thisjumper selects the power supply selection.

Jumper Pin Function
1and 2 +5V regulated.
2and 3 +7.5-12V DC regulated or unregulated (default)

2. Jumper JP2. Thisjumper selects the SRAM size and EPROM Size.

Jumper Pin Function
2t04 Selects 128K x8 SRAM (default)
1to3 Selects 128K x8 Flash Memory (default)

3. Jumper JP3. Thisjumper selects between Flash and EPROM.

Jumper Pin Function
3to5 Select Flash (default)
and
4t06

4. Jumper JP4. Thisjumper selects the size of EPROM or Flash.

Jumper Pin Function
7t09 Selects 128K x8 EPROM/Flash
and
810 10

1.12 USING THE BDM

The MCF5204 has a built in debug mechanism referred to as BDM. The SBC5204 has the necessary
connector, J7, to facilitate this connection.

In order to use the BDM, simply connect the 26-pin IDC header at the end of the BDM cable provided by

the BDM development tool (third party tool) to the J7 connector. No special setting is needed. Refer to the
BDM User's Manual for additiona instructions.

10

CHAPTER 2

USING THE MONITOR/DEBUG FIRMWARE

The SBC5204 Computer Board has a resident firmware package that provides a self-contained
programming and operating environment. The firmware, named dBUG, provides the user with
monitor/debug, disassembly, program download, and I/O control functions. This Chapter is a how-to-use
description of the dBUG package, including the user interface and command structure.

2.1 WHAT ISdBUG?

dBUG is aresident firmware package for the ColdFire family Computer Boards. The firmware (stored in
two 128Kx8 Flash ROM devices) provides a self-contained programming and operating environment.
dBUG interacts with the user through pre-defined commands that are entered via the terminal.

The user interface to dBUG is the command line. A number of features have been implemented to achieve
an easy and intuitive command line interface.

dBUG assumes that an 80x24 character dumb-terminal is utilized to connect to the debugger. For seria
communications, dBUG requires eight data bits, no parity, and one stop bit, 8N1. The baud rate is 19200
but can be changed after the power-up.

The command line prompt is “dBUG> “. Any dBUG command may be entered from this prompt. dBUG
does not alow command lines to exceed 80 characters. Wherever possible, dBUG displays data in 80
columns or less. dBUG echoes each character as it is typed, eliminating the need for any “local echo” on
the terminal side.

In general, dBUG is not case sensitive. Commands may be entered either in upper or lower case, depending
upon the user’s equipment and preference. Only symbol names require that the exact case be used.

Most commands can be recognized by using an abbreviated name. For instance, entering “h” is the same
as entering “help”. Thus, it is not necessary to type the entire command name.

The commands DI, GO, MD, STEP and TRACE are used repeatedly when debugging. dBUG recognizes
this and alows for repeated execution of these commands with minimal typing. After a command is
entered, smply press <RETURN> or <ENTER> to invoke the command again. The command is executed
asif no command line parameters were provided.

An additional function called the "TRAP 15 handler” allows the user program to utilize various routines
within dBUG. The TRAP 15 handler is discussed at the end of this chapter.

The operational mode of dBUG is demonstrated in Figure 2-1. After the system initiaization, the board
walits for a command line input from the user terminal. When a proper command is entered, the operation
continues in one of the two basic modes. If the command causes execution of the user program, the dBUG
firmware may or may not be re-entered, depending on the discretion of the user. For the aternate case, the
command will be executed under control of the dBUG firmware, and after command completion, the system
returns to command entry mode.

INITIALIZE

COMMAND

LINE INPUT
FROM

TERMINAL

NO

EXECUTE YES

COMMAND
FUNCTION

DOES

COMMAND LINE
CAUSE USER PROGRAM

YES

EXECUTION

v

JUMP TO USER
PROGRAM AND
BEGIN
EXECUTION

Figure2-1. Flow Diagram of dBUG Operational Mode.

During command execution, additional user input may be required depending on the command function.

For commands that accept an optional <width> to modify the memory access size, the valid values are:
B 8-bit (byte) access
W 16-bit (word) access
L 32-hit (long) access

When no <width> option is provided, the default width is W, 16-hit.

The core ColdFire register set is maintained by dBUG. These are listed below:
AC-A7
DO-D7
PC
SR

All control registers on ColdFire are not readable by the supervisor programming model, and thus not
accessible viadBUG. User code may change these registers, but caution must be exercised as changes may
render dBUG useless.

A referenceto “ SP actualy refersto “A7”.

2.2 OPERATIONAL PROCEDURE

System power-up and initial operation are described in detail in Chapter 1. This information is repeated
here for convenience and to prevent possible damage.

2.21 System Power-up

a. Besurethe power supply is connected properly prior to power-up.
b. Make sure theterminal is connected to TERMINAL (J1) connector.
c. Turn power on to the board.

2.2.2 System Initialization
The act of powering up the board will initialize the system. The processor is reset and dBUG isinvoked.

dBUG performs the following configurations of internal resources during the initialization. The instruction
cacheisinvalidated and disabled. The Vector Base Register, VBR, points to the Flash. However, a copy
of the exception table is made at address $00000000 in SRAM. To take over an exception vector, the user
places the address of the exception handler in the appropriate vector in the vector table located at
0x00000000, and then points the VBR to 0x00000000.

The Software Watchdog Timer is disabled, Bus Monitor enabled, and internal timers are placed in a stop
condition. Interrupt controller registers initialized with unique interrupt level/priority pairs. The Port A
general purpose I/0 pins are configured for dedicated peripheral functions, i.e. the UART.

After initialization, the terminal will display:
Hard Reset
Installed SRAM: 256K

Copyright 1995-1996 Moatorola, Inc. All Rights Reserved.
ColdFire MCF5204 EVS Debugger V2.1 (Aug Xx 1996 XX:XX:XX:)
Enter ‘help’ for help.

dBUG>

If you did not get this response check the setup. Refer to Section 1.10. Note, the date

‘Aug Xx 1996 xx:xx:xXx" may vary in different revisions.

Other means can be used to re-initidize the SBC5204 Computer Board firmware. These means are
discussed in the following paragraphs.

2.2.2.1 RESET Button. RESET isthe red button located in the middle side of the board. Depressing this
button causes all processes to terminate, resets the MCF5204 processor and board logic's and restarts the
dBUG firmware. Pressing the RESET button would be the appropriate action if all elsefails.

2.2.2.2 ABORT Button. ABORT isthe black button located next to RESET button in the middle side of
the board. The abort function causes an interrupt of the present processing (a level 7 interrupt on
MCF5204) and gives control to the dBUG firmware. This action differs from RESET in that no processor
register or memory contents are changed, the processor and peripheras are not reset, and dBUG is not
restarted. Also, in response to depressing the ABORT button, the contents of the MCF5204 core internal
registers are displayed.

The abort function is most appropriate when software is being debugged. The user can interrupt the
processor without destroying the present state of the system.

2.2.2.3 Software Reset Command. dBUG does have a command that causes the dBUG to restart asif a
hardware reset was invoked. The command is"RESET".

2.2.2.4 USER Program. The user can return control of the system to the firmware by recalling dBUG via
higher program. Instructions can be inserted into the user program to call dBUG via the TRAP 15
handler.

2.2.3 System Operation

After system initialization, the terminal will display:

Hard Reset

Installed SRAM: 256K

Copyright 1995-1996 Matorola, Inc. All Rights Reserved.
ColdFire MCF5204 EVS Debugger V2.1 (Aug Xx 1996 XX:XX:XX:)
Enter ‘help’ for help.

dBUG>

and waits for a command.

The user can call any of the commands supported by the firmware. A standard input routine controls the
system while the user types a line of input. Command processing begins only after the line has been
entered and followed by a carriage-return.

NOTES

1. The user memory is located at addresses $00010000-$XXXXXXXX, SXXXXXXXX IS
the maximum RAM address of the memory installed in the board. When first
learning the system, the user should limit his’her activities to this area of the
memory map. Address range $00000000-$0000FFFF is used by dBUG.

2. If acommand causes the system to access an unused address (i.e., no memory or
peripheral devices are mapped at that address), a bus trap error will occur. This
results in the termina printing out a trap error message and the contents of al
the MCF5204 coreregisters. Control is returned to the dBUG monitor.

2.3 TERMINAL CONTROL CHARACTERS

The command line editor remembers the last five commands, in a history buffer, which were issued. They
can be recalled and then executed using control keys.

Severa keys are used as a command line edit and control functions. It is best to be familiar with these
functions before exercising the system. These functions include:

RETURN (carriage- return) - will enter the command line and causes processing to begin.
Delete (Backspace) key or CTRL-H - will delete the last character entered on the terminal.
CTRL-D - Go down in the command history buffer, you may modify then press enter key.
CTRL-U - Go up in the command history buffer, you may modify then press enter key.
CTRL-R - Recdl and execute the last command entered, does not need the enter key to be
pressed.

oo oTw

For characters requiring the control key (CTRL) , the CTRL should be pushed and held down and then the
other key (H) should be pressed.

2.4 dBUG COMMAND SET

Table 2-1 lists the dBUG commands. Each of the individual commands is described in the following
pages.

TABLE 2-1. dBUG Commands.

COMMAND DESCRIPTION SYNTAX PAGE
MNEMONIC

BF BLOCK FILL BF<WIDTH> BEGIN END DATA 2-7
BM BLOCK MOVE BM BEGIN END DEST 2-8
BS BLOCK SEARCH BS <WIDTH> BEGIN END DATA 2-9
BR BREAKPOINT BR ADDR <-R> <-C COUNT> <-T TRIGGER> 2-10
DATA DATA CONVERT DATA VALUE 2-11
DI DISASSEMBLE DI <ADDR> 2-12
DL DOWNLOAD SERIAL DL <OFFSET> 2-13
DN DOWNLOAD NETWORK | DN <-C> <-E> <-S> <-I> <-O OFFSET> <FILENAME> | 2-14
GO EXECUTE GO <ADDR> 2-15
GT Go TILL BREAKPOINT GT <ADDR> 2-16
HELP HELP HELP <COMMAND> 2-17
IRD INTERNAL REGISTER IRD <MODULE.REGISTER> 2-18

DISPLAY
IRM INTERNAL REGISTER IRM <MODULE.REGISTER> <DATA> 2-19
MODIFY
MD MEMORY DISPLAY MD <WIDTH> <BEGIN> <END> 2-20
MM MEMORY MODIFY MM <WIDTH> ADDR <DATA> 2-21
RD REGISTER DISPLAY RD <REG> 2-22
RM REGISTER MODIFY RM REG DATA 2-23
RESET RESET RESET 2-24
SET SET CONFIGURATIONS | SET OPTION <VALUE> 2-25
SHOW SHOW CONFIGURATIONS | SHOW OPTION 2-27
STEP STEP (OVER) STEP 2-28
SYMBOL SYMBOL MANAGEMENT | SYMBOL <SYMB> <-A SYMB VALUE> <-R SYMB> 2-29
<C|L|S>

TRACE TRACE(INTO) TRACE <NUM> 2-30
UPDBUG UPDATE DBUG UPDBUG 2-31
UPUSER UPDATE USER FLASH UPUSER 2-32
VERSION | SHOW VERSION VERSION 2-33

24.1 BF - Block of Memory Fill BF
Usage: BF<width> begin end data

The BF command fills a contiguous block of memory starting at address begin, stopping at address end,
with the value data. Width modifies the size of the data that is written.

The value for addresses begin and end may be an absolute address specified as a hexadecimal value, or a
symbol name. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To fill a memory block starting at 0x00010000 and ending at 0x00040000 with the value 0x1234, the
command is:
bf 10000 40000 1234

To fill ablock of memory starting at 0x00010000 and ending at 0x0004000 with a byte value of OxXAB, the
command is:
bf.o 10000 40000 AB

To zero out the BSS section of the target code (defined by the symbols bss start and bss end), the
command is:
bf bss start bss end 0

2.4.2 BM - Block Move BM
Usage: BM begin end dest

The BM command moves a contiguous block of memory starting at address begin, stopping at address end,
to the new address dest. The BM command copies memory as a series of bytes, and does not alter the
origina block.

The value for addresses begin, end, and dest may be an absolute address specified as a hexadecimal value,
or asymbol name. If the destination address overlaps the block defined by begin and end, an error message
is produced and the command exits.

Examples:

To copy a block of memory starting at 0x00040000 and ending at Ox00080000 to the location
0x00200000, the command is:;

bm 40000 80000 200000

To copy the target code's data section (defined by the symbols data_start and data_end) to 0x00200000,
the command is.

bm data_start data_end 200000

2.4.3 BR - Breakpoint BR
Usage: BR addr <-r> <-c count> <-t trigger>

The BR command inserts or removes breakpoints at address addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name. Count and trigger are numbers converted
according to the user defined radix, normally hexadecimal.

If no argument is provided to the BR command, alisting of all defined breakpoints is displayed.

The -r option to the BR command removes a breakpoint defined at address addr. |f no address is specified
in conjunction with the -r option, then al breakpoints are removed.

Each time a breakpoint is encountered during the execution of target code, its count value is incremented by
one. By default, the initial count value for a breakpoint is zero, but the -c option allows setting the initial
count for the breakpoint.

Each time a breakpoint is encountered during the execution of target code, the count value is compared
against the trigger value. If the count value is equal to or greater than the trigger value, a breakpoint is
encountered and control returned to dBUG. By default, the initial trigger value for a breakpoint is one, but
the -t option allows setting the initial trigger for the breakpoint.

If no address is specified in conjunction with the -c or -t options, then all breskpoints are initialized to the
values specified by the -c or -t option.

Examples:
To set abreakpoint at the C function main(), the command is:
br _main
When the target code is executed and the processor reaches main(), control will be returned to dBUG.
To set abreakpoint at the C function bench() and set itstrigger value to 3, the command is:

br _bench-t3

When the target code is executed, the processor must attempt to execute the function bench() a third time
before returning control back to dBUG.

To remove all breakpoints, the command is:

br -r

2.4.4 BS- Block Search BS
Usage: BS<width> begin end data

The BS command searches a contiguous block of memory starting at address begin, stopping at address
end, for the value data. Width modifies the size of the data that is compared during the search.

The value for addresses begin and end may be an absolute address specified as a hexadecimal value, or a
symbol name. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To search for the 16-bit value 0x1234 in the memory block starting at 0x00040000 and ending at
0x00080000 the command is:

bs 40000 80000 1234

This reads the 16-bit word located at 0x00040000 and compares it against the 16-bit value 0x1234. If no
match is found, then the address is incremented to 0x00040002 and the next 16-bit value is read and
compared.

To search for the 32-bit value OXABCD in the memory block starting at 0x00040000 and ending at
0x00080000, the command is:

bs.| 40000 80000 ABCD

This reads the 32-bit word located at 0x00040000 and compares it against the 32-bit value 0xO000ABCD.
If no match is found, then the address is incremented to 0x00040004 and the next 32-bit value is read and
compared.

To search the BSS section (defined by the symbols bss start and bss_end) for the byte value OXAA, the

command is.
bsb bss gtart bss end AA

10

245 DATA - Data Conversion DATA
Usage: DATA data
The DATA command displays data in both decimal and hexadecimal notation.
The value for data may be a symbol name or an absolute value. If an absolute value passed into the
DATA command is prefixed by ‘Ox’, then data is interpreted as a hexadecimal value. Otherwise data is
interpreted as a decimal vaue.
All values are treated as 32-bit quantities.
Examples:
To display the decimal equivaent of 0x1234, the command is:
data 0x1234
To display the hexadecimal equivaent of 1234, the command is:

data 1234

11

2.4.6 DI - Disassemble DI
Usage: DI <addr>

The DI command disassembles target code pointed to by addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name.

Wherever possible, the disassembler will use information from the symbol table to produce a more
meaningful disassembly. Thisis especialy useful for branch target addresses and subroutine calls.

The DI command attempts to track the address of the last disassembled opcode. If no address is provided
to the DI command, then the DI command uses the address of the last opcode that was disassembled.

Examples:

To disassemble code that starts at 0x00040000, the command is;
di 40000

To disassemble code of the C function main(), the command is:

di main

12

2.5.7 DL - Download Serial DL
Usage: DL <offset>

The DL command performs an S-record download of data obtained from the serial port. The value for
offset is converted according to the user defined radix, normally hexadecimal.

If offset is provided, then the destination address of each S-record is adjusted by offset.

The DL command checks the destination address for validity. If the destination is an address below the
defined user space (0x00000000-0x00010000), then an error message is displayed and downloading
aborted.

If the S-record file contains the entry point address, then the program counter is set to reflect this address.
Examples:

To download an S-record file through the seria port, the command is:

di

To download an S-record file through the serial port, and adjust the destination address by 0x40, the
command is:

di 0x40

13

2.4.8 DN - Download Network DN

Usage: DN <-c> <-e> <-i> <-s> <-0 offset> <filename>

The DN command downloads code from the network. The DN command handle files which are either S
record, COFF or ELF formats. The DN command uses Trivial File Transfer Protocol, TFTP, to transfer
filesfrom anetwork host. This command only works with 100% NE2000 compatible boards.

In general, the type of file to be downloaded and the name of the file must be specified to the DN command.
The -c option indicates a COFF download, the -e option indicates an ELF download, -I option indicates an
image fownload, and the -s indicates an S-record download. The -0 option works only in conjunction with
the -s option to indicate and optional offset for S-record download. The filename is passed directly to the
TFTP server and, therefore, must be avalid filename on the server.

If neither of the -c, -g, -i, -s or filename options are specified, then a default filename and filetype will be
used. Default filename and filetype parameters are manipulated using the set and show commands.

The DN command checks the destination address for validity. If the destination is an address below the
defined user space, then an error message is displayed and downloading aborted.

For ELF and COFF files which contain symbolic debug information, the symbol tables are extracted from
the file during download and used by dBUG. Only global symbols are kept in dBUG. The dBUG symbol
table is not cleared prior to downloading, so it is the user’s responsibility to clear the symbol table as
necessary prior to downloading.

If an entry point address is specified in the S-record, COFF or ELF file, the program counter is set
accordingly.

Examples:
To download an S-record file with the name “ srec.out”, the command is;
dn -s srec.out
To download a COFF file with the name “ coff.out”, the command is;
dn -c coff.out
To download afile using the default filetype with the name “bench.out”, the command is:
dn bench.out
To download afile using the default filename and filetype, the command is:
dn

This command requires proper Network address and parameter setup. Refer to Appendix A for this
procedure. Alsorefer to“SET” command to setup the base address and the IRQ for the card.

14

2.4.9 Go - Execute GO
Usage: GO <addr>

The GO command executes target code starting at address addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name.

If no argument is provided, the GO command begins executing instructions at the current program counter.
When the GO command is executed, all user-defined breakpoints are inserted into the target code, and the
context is switched to the target program. Control is only regained when the target code encounters a
breakpoint, illegal instruction, or other exception which causes control to be handed back to dBUG.
Examples:

To execute code at the current program counter, the command is:
go

To execute code at the C function main(), the command is:
go_main

To execute code at the address 0x00040000, the command is;

go 40000

15

24.10 GT - ExecuteTill a Temporary Breakpoint GT
Usage: GT <addr>

The GT command executes the target code starting at address in PC (whatever the PC has) until a
temporary breakpoint as given in the command line is reached.

Example:

To execute code at the current program counter and stop at breakpoint address 0x10000, the command is:
GT 10000

16

2411 HELP - Help HE
Usage: HELP <command>

The HELP command displays a brief syntax of the commands available within dBUG. In addition, the
address of where user code may start is given. If command is provided, then a brief listing of the syntax of
the specified command is displayed.

Examples:

To obtain alisting of all the commands available within dBUG, the command is:

help

The help list is longer than one page. The help command displays one screen full and ask for an input to
display the rest of thelist.

To abtain help on the breakpoint command, the command is:

help br

17

24.12 IRD - Internal Registers Display IRD
Usage: IRD <moduleregister>

This commands displays the internal registers of different modules inside the MCF5204. In the command
line, the module refers to the module name where the register is located and the register refersto the

specific register needed.

The registers are organized according to the module to which they belong. The available modules on the
MCF5204 are SIM, UART, and TIMER. Refer to MCF5204 User’s Manual.

Example:

ird sim.sypcr ;display the SY PCR register in the SIM module.

18

2.4.13 IRM - Internal Registers MODIFY IRM
Usage: IRM moduleregister data
This commands modifies the contents of the internal registers of different modules inside the MCF5204. In
the command line, the module refers to the module name where the register is located, register refers to the

specific register needed, and data is the new value to be written into that register.

The registers are organized according to the module to which they belong. The available modules on the
MCF5204 are SIM, UART, and TIMER. Refer to MCF5204 User’s Manual

Example:

irm timer.tmrl 0021 ;write 0021 into TMRL1 register in the TIMER module.

19

24.14 MD - Memory Display MD
Usage: MD<width> <begin> <end>
The MD command displays a contiguous block of memory starting at address begin and stopping at
address end. The value for addresses begin and end may be an absolute address specified as a
hexadecimal vaue, or asymbol name. Width modifies the size of the data that is displayed.
Memory display starts at the address begin. If no beginning address is provided, the MD command uses
the last address that was displayed. If no ending address is provided, then MD will display memory up to
an address that is 128 beyond the starting address.
This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.
Examples:
To display memory at address 0x00400000, the command is:

md 400000

To display memory in the data section (defined by the symbols data_start and data_end), the command is:
md data_start

To display arange of bytes from 0x00040000 to 0x00050000, the command is:
md.b 40000 50000

To display arange of 32-bit values starting at 0x00040000 and ending at 0x00050000, the command is:
md.I 40000 50000

This command may be repeated by simply pressing the carriage-return (Enter) key. It will continue
with the address after the last display address.

20

2215MM - Memory Modify MM
Usage: MM<width> addr <data>
The MM command modifies memory at the address addr. The value for address addr may be an
absolute address specified as a hexadecimal value, or a symbol name. Width modifies the size of the data
that is modified. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.
If avalue for datais provided, then the MM command immediately sets the contents of addr to data. If no
value for data is provided, then the MM command enters into a loop. The loop obtains a value for data,
sets the contents of the current address to data, increments the address according to the data size, and
repeats. The loop terminates when an invalid entry for the data value is entered, i.e., a period.
This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.
Examples:
To set the byte at location 0x00010000 to be OxFF, the command is:

mm.b 10000 FF
To interactively modify memory beginning at 0x00010000, the command is:

mm 10000

21

24.16 RD - Register Display RD
Usage: MM<width> addr <data>
The MM command modifies memory at the address addr. The value for address addr may be an
absolute address specified as a hexadecimal value, or a symbol name. Width modifies the size of the data
that is modified. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.
If avalue for datais provided, then the MM command immediately sets the contents of addr to data. If no
value for data is provided, then the MM command enters into a loop. The loop obtains a value for data,
sets the contents of the current address to data, increments the address according to the data size, and
repeats. The loop terminates when an invalid entry for the data value is entered, i.e., a period.
This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.
Examples:
To set the byte at location 0x00010000 to be OxFF, the command is:

mm.b 10000 FF
To interactively modify memory beginning at 0x00010000, the command is:

mm 10000

22

2417 RM - Register Modify RM
Usage: RM reg data

The RM command modifies the contents of the register reg to data. The value for reg is the name of the
register, and the value for data may be a symbol name, or it is converted according to the user defined
radix, normally hexadecimal.

dBUG preserves the registers by storing a copy of the register set in a buffer. The RM command updates
the copy of the register in the buffer. The actua value will not be written to the register until target code is
executed.

Examples:

To change register DO to contain the value 0x1234, the command is:

rm D0 1234

23

2.4.18 RESET - Reset the board and dBUG
RESET

Usage: RESET

The RESET command attempits to reset the board and dBUG to their initial power-on states.

The RESET command executes the same sequence of code that occurs at power-on. This code attempts to
initialize the devices on the board and dBUG data structures. If the RESET command fails to reset the
board to your satisfaction, cycle power or press the reset button.

Examples:

To reset the board and clear the dBUG data structures, the command is:

reset

24

2.4.19 SET - Set Configuration SET

Usage: SET option <value>
SET

The SET command allows the setting of user configurable options within dBUG. The options are listed
below. If the SET command isissued without option, it will show the available options and values.

The board needs a RESET after this command in order for the new option(s) to take effect.

baud - Thisis the baud rate for the first serial port on the board. All communications between dBUG and
the user occur using either 9600 or 19200 bps, eight data bits, no parity, and one stop bit, 8N1. Do not
choose 38400 baud.

base - This is the default radix for use in converting number from their ASCII text representation to the
internal quantity used by dBUG. The default is hexadecimal (base 16), and other choices are binary (base
2), octal (base 8), and decimal (base 10).

client - This is the network Internet Protocol, |P, address of the board. For network communications, the
client IPisrequired to be set to a unique value, usually assigned by your local network administrator.

server - This is the network IP address of the machine which contains files accessible via TFTP. Your
local network administrator will have this information and can assist in properly configuring a TFTP server
if one does not exit.

gateway - Thisisthe network |P address of the gateway for your local subnetwork. If the client IP address
and server |P address are not on the same subnetwork, then this option must be properly set. Your loca
network administrator will have this information.

netmask - Thisisthe network address mask to determine if use of a gateway isrequired. Thisfield must be
properly set. Your local network administrator will have this information.

filename - This is the default filename to be used for network download if no name is provided to the DN
command.

filetype - This is the default file type to be used for network download if no type is provided to the DN
command. Valid values are: “srecord”, “coff”, “image”, and “elf”.

autoboot - This option allows for the automatic downloading and execution of a file from the network.
This option can be used to automatically boot an operating system from the network. Valid values are:
“on” and “off”. Thisoption is not implemented on the current reviosion of dBUG.

nichase - this is base address of the network interface card. When using network card, the base address of
that card is needed by the dBUG in order to communicate with it. This command is used to inform the
dBUG of the address of the card. dBUG does not set or configure the interface card. It only uses this
address to access the card. The user should provide this information to dBUG.

nicirg - this is the IRQ used in the network interface card. When using network card, the IRQ used by
that card is needed by the dBUG in order to communicate with it. This command is used to inform the
dBUG of the IRQ of the card. dBUG does not set or configure the interface card. 1t only usesthisIRQ to
access the card. The user should provide this information to dBUG.

25

flashws - This command is used to adjust the number of wait state for the Flash ROM.

sramws - This command is used to adjust the number of wait state for the SRAM.

Examples:

To see dl the available options and supported choices, the command is:
set

To set the baud rate of the board to be 19200, the command is:;
set baud 19200

Now press the RESET button (RED) or RESET command for the new baud to take effect. This baud will
be programmed in Flash ROM and will be used during the power-up.

In order to use the KNE200OTL C ethernet ISA card in the system, the debugger need to know its IRQ and
its base address. The Kingston Technology Corporation ethernet card KNE2000TLC has a default base
address of $300 and uses IRQ3. To set up the debugger for ethernet communication, the following
commands should be issued first.

Set nicbase 300
Set nicirg 3

26

2420 SHOW - Show Configuration SHOW

Usage: SHOW option
SHOW

The SHOW command displays the settings of the user configurable options within dBUG. Most options
configurable via the SET command can be displayed with the SHOW command. If the SHOW command
isissued without any option, it will show all options.
Examples:
To display al the current options, the command is:

show
To display the current baud rate of the board, the command is:

show baud

To display the TFTP server IP address, the command is:

show server

27

2421 STEP - Step Over ST
Usage: STEP

The ST command can be used to “step over” a subroutine call, rather than tracing every instruction in the
subroutine. The ST command sets a breakpoint one instruction beyond the current program counter and
then executes the target code.

The ST command can be used for BSR and JSR instructions. The ST command will work for other
instructions as well, but note that if the ST command is used with an instruction that will not return, i.e.
BRA, then the temporary breakpoint may never be encountered and thus dBUG may not regain control.
Examples:

To pass over asubroutine call, the command is:

step

28

2422 SYMBOL - Symbol Name M anagement SYMBOL
Usage: SYMBOL <symb> <-a symb value> <-r symb> <-c|l|s>

The SYMBOL command adds or removes symbol names from the symbol table. If only a symbol name is
provided to the SYMBOL command, then the symbol table is searched for a match on the symbol name and
itsinformation displayed.

The -a option adds a symbol name and its value into the symbol table. The -r option removes a symbol
name from the table.

The -c option clears the entire symbol table, the -I option lists the contents of the symbol table, and the -s
option displays usage information for the symbol table.

Symbol names contained in the symbol table are truncated to 31 characters. Any symbol table lookups,
either by the SYMBOL command or by the disassembler, will only use the first 31 characters. Symbol
names are case sengtive.

Examples:

To define the symbol “main” to have the value 0x00040000, the command is:

symbol -amain 40000

To remove the symbol “junk” from the table, the command is:
symbol -r junk

To see how full the symbol tableis, the command is:
symbol -S

To display the symbol table, the command is:

symbol -

29

2.4.23 TRACE - Tracelnto TR
Usage: TRACE <num>

The TRACE command allows single instruction execution. If num is provided, then num instructions are
executed before control is handed back to dBUG. The value for num is a decimal number.

The TRACE command sets hits in the processors supervisor registers to achieve single instruction
execution, and the target code executed. Control returns to dBUG after a single instruction execution of the
target code.
Examples:
To trace one instruction at the program counter, the command is:

tr

To trace 20 instructions from the program counter, the command is:

tr 20

30

2.4.24 UPDBUG - Update the dBUG Image UPDBUG
Usage: UPDBUG

The UPDBUG command is used for updating the dBUG image in Flash. When updates to the MCF5204
EVS dBUG are available, the updated image is downl oaded to address 0x00010000. The new imageis
placed into Flash using the UPDBUG command. The user is prompted for verification before performing
the operation. Use this command with extreme caution, as any error can render dBUG, and thus the board,
useless!

31

2.4.25 UPUSER - Update User Code In Flash UPUSER
Usage: UPUSER

The UPUSER command places user code and data into space allocated for the user in Flash, the last 128K
of Flash ROM. To place code and data in user Flash, the image is downloaded to address 0x00010000,

and the UPUSER command issued. This commands programs the entire upper 128K of Flash. Users
access this space starting at address OxFFE20000.

32

2.4.26 VERSION - Display dBUG Version VERSION
Usage: VERSION

The VERSION command display the version information for dBUG. The dBUG version number and build
date are both given.

The version number is separated by a decimal, for example, “v1.1”. The first number indicates the version
of the CPU specific code, and the second number indicates the version of the board specific code.

The version date is the day and time at which the entire dBUG monitor was compiled and built.
Examples:
To display the version of the dBUG monitor, the command is:

verson

33

2.5 TRAP #15 Functions

An additional utility within the dBUG firmware is afunction called the TRAP 15 handler. Thisfunction
can be called by the user program to utilize various routines within the dBUG, to perform a special task,
and to return control to the dBUG. This section describes the TRAP 15 handler and how it is used.

There are four TRAP #15 functions. These are: OUT_CHAR, IN_CHAR, CHAR _PRESENT, and
EXIT _TO _dBUG.

25.1 OUT_CHAR
This function (function code 0x0013) sends a character, which isin lower 8 bits of D1, to terminal.
Assembly example:

/* assume d1 contains the character */

movel #$0013,d0 Selects the function
TRAP #15 The character in d1 is sent to terminal
C example:

void board_out_char (int ch)

{
* If your C compiler produces a LINK/UNLK pair for this routine,
* then use the following code which takes this into account
*/
#if |
/* LINK a6,#0 -- produced by C compiler */
asm (* movel 8(a6),d1”); /* put ‘ch’ into dl1 */
asm (“ movel #0x0013,d0"); /* select the function */
asm (“ trap #15"); [* make the call */
/* UNLK a6 -- produced by C compiler */
#Helse
/* 1f C compiler does not produce a LINK/UNLK pair, the use
* the following code.
*/
asm (“ movel 4(sp),d1”); /* put ‘ch’ intodl */
asm (“ movel #0x0013,d0”); /* select the function */
asm (“ trap #15"); I* make the call */
#endif
}
252IN_CHAR

This function (function code 0x0010) returns an input character (from terminal) to the caller . The
returned character isin D1.

Assembly example:

movel #$0010,d0 Select the function
trap #15 Make the call, the input character isin d1.

34

C example:

int board_in_char (void)

{
asm (* movel #0x0010,d0"); * select the function */
asm (“ trap #157), I* makethecall */
asm (“ movel d1,d0"); * put the character in dO */
}

253 CHAR_PRESENT

This function (function code 0x0014) checks if an input character is present to receive. A value of zero is
returned in DO when no character is present. A non-zero value in DO means a character is present.

Assembly example:

movel #$0014,d0 Select the function
trap #15 Make the call, dO contains the response (yes/no).

C example:
int board_char_present (void)

{
asm (* movel #0x0014,d0"); * select the function */

asm (“ trap #157), I* makethecall */

25.4 EXIT_TO dBUG

This function (function code 0x0000) transfers the control back to the dBUG, by terminating the user
code. Theregister context are preserved.

Assembly example:

movel #$0000,d0 Select the function
trap #15 Make the cal, exitto dBUG.

C example:
void board_exit_to_dbug (void)

{
asm (“ movel #0x0000,d0"); /* select the function*/

asm (“ trap #157), /* exit and transfer to dBUG */

35

CHAPTER 3

HARDWARE DESCRIPTION AND RECONFIGURATION

This chapter provides a functional description of the SBC5204 board hardware. With the description given
here and the schematic diagram provided at the end of this manual, the user can gain a good understanding
of the board's design. In this manual, an active low signal isindicated by a"-" preceding the signal name.

3.1 THE PROCESSOR AND SUPPORT LOGIC
This part of the Chapter discusses the CPU and general supporting logic on the SBC5204 board.
3.1.1 The Processor

The microprocessor used in the SBC5204 is the highly integrated MCF5204, 32-bit processor. The
MCF5204 uses a ColdFire processor as the core with 512 bytes of instruction cache, a UART, two Timers,
512 bytes of SRAM, one-byte wide parallel 1/O port, and the supporting integrated system logic. All the
registers of the core processor are 32 bits wide except for the Status Register (SR) which is 16 bits wide.
This processor communicates with external devices over a 16-bit wide data bus, DO-D15. This chip can
address the entire 4 G Bytes of memory space using internal chip-select logic. However, it provides only
22 address lines, AO-A21. All the processor's signals are available at J8 and J9 for off the board
expansion. Refer to section 3.7 for pin assignment.

The MCF5204 has an IEEE JTAG-compatible port and BDM port. These signals are available at J7 and
J9. The processor also hasthe logic to generate six (6) chip selects, -CS0 to -CS5.

3.1.2 TheReset Logic

The reset logic provides system initialization under two modes. Under system power-up and when the
RESET switch, S2 (red switch), is activated. The power-on and the RESET switch assert the processor's -
RESET line to reset the processor.

U4 is used to produce both active high and low RESET. The -RESET signal is for on board devices and
RESET isfor the ISA Bus.

dBUG performs the following configurations of internal resources during the initialization. The instruction
cacheisinvalidated and disabled. The Vector Base Register, VBR, points to the Flash. However, a copy
of the exception table is made at address $00000000 in SRAM. To take over an exception vector, the user
places the address of the exception handler in the appropriate vector in the vector table located at
$00000000, and then points the VBR to $00000000.

The Software Watchdog Timer is disabled, Bus Monitor enabled, and internal timers are placed in a stop
condition. Interrupt controller registers initialized with unique interrupt level/priority pairs. The Port A
general purpose I/0 pins are configured for dedicated peripheral functions, i.e. the UART.

3.1.2.1 The ATS/BUSW Line

The ATS/BUSW line can be configure to function as -ATS or BUSW after reset. If the -IRQO is kept low
during Reset, the pin is -ATS otherwise, it is BUSW. The SBC5204 leaves the -IRQO high during the
reset which chooses the BUSW function. If the -ATS function is needed, the user may press the ABORT
button (BLACK) while pressing the RESET button (RED) which will cause the -IRQO t remain low when
resetting the board and the -ATS function will be selected.

3.1.3 TheClock Circuitry

The SBC5204 uses a 25MHZ oscillator (U3) to provide the clock to CLK pin of the processor. This clock
also feeds to LSI2032 for its internal use and to produce clock for the ISA timings and MC68HC901 (1/4
system clock).

3.1.4 Watchdog Timer (BUS MONITOR)

A bus cycleisinitiated by the processor providing the necessary information for the bus cycle (e.g. address,
data, control signals, etc.) and asserting the -CS low. Then, the processor waits for an acknowledgment (-
DTACK signal) from the addressed device before it can complete the bus cycle. It is possible (due to
incorrect programming) that the processor attempts to access part of the address space which physically
does not exist. In this case, the bus cycle will go on for ever, since there is no memory or 1/0 device to
provide an acknowledgment signal, and the processor will be in an infinite wait state. The MCF5204 has
the necessary logic built into the chip to watch the duration of the bus cycle. If the cycle is not terminated
within the preprogrammed duration the logic will internally assert Transfer Error signal. In response, the
processor will terminate the bus cycle and an access fault exception (trap) will take place.

The duration of the Watchdog is selected by BMTO-1 bits in System Protection Register. The dBUG
initializes this register with the value 00 which provides for 1024 system clock time-out.

3.1.5 Interrupt Sources

The ColdFire family of processors can receive interrupts for seven levels of interrupt priorities. When the
processor receives an interrupt which has higher priority than the current interrupt mask (in status register),
it will perform an interrupt acknowledge cycle at the end of the current instruction cycle. This interrupt
acknowledge cycle indicates to the source of the interrupt that the request is being acknowledged and the
device should provide the proper vector number to indicate where the service routine for this interrupt level
islocated. If the source of interrupt is not capable of providing a vector, its interrupt should be set up as
autovector interrupt which directs the processor to a predefined entry into the exception table (refer to the
MCF5204 User's Manudl).

The processor goes to different service routine via the exception table. This table isin the Flash and the
VBR pointsto it. However, a copy of thistable is made in the RAM starting at $00000000. To take over
an exception vector, the user places the address of the exception handler in the appropriate vector in the
vector table located at $00000000, and then points the VBR to $00000000.

The MCF5204 has four external interrupt request lines (-IRQO, -IRQ1, -IRQ2, -IRQ3) and four internal
requests from Timerl, Timer2, Software watchdog timer, and UART. Each interrupt source , external and
internal, can be programmed for any priority level. In case of similar priority level, a second relative
priority between 1 to 3 will be assigned.

On SBC5204, the internal Timers, Software Watchdog Timer, and UART are disabled and not used.
However, the software watchdog is programmed for Level 7, priority 2 and uninitialized vector. The
UART is programmed for Level 3, priority 2 and autovector. The Timers are at Level 5 with Timer 1 with
priority 3 and Timer 2 with priority 2 and both for autovector.

The SBC5204 uses -IRQO to support the ABORT function using the ABORT switch S1 (black switch).
This switch is used to force a non-maskable interrupt (level 7, priority 3) if the user's program execution
should be aborted without issuing a RESET (refer to Chapter 2 for more information on ABORT). Since
the ABORT switch is not capable of generating a vector in response to level seven interrupt acknowledge
from the processor, the debugger programs this request for autovector mode.

The MC68HC901 reports its interrupt request on -IRQ1 line which is set for Level 1, priority 3. It uses
the vectored mode for acknowledgment. The chip-select -CS3 is used to generate the -IACK signa for
MC68HC901. The MC68HC01 is programmed to generate vectors $F0 to $FF. This should not be
changed.

The -IRQ2 and -IRQ3 lines of the MCF5204 are not used on this board. However, the -IRQ2 is
programmed for Level 1 with priority 1 and the -IRQ3 is programmed for Level 1 with priority 2. The user
may use these lines for external interrupt request. Refer to MCF5204 User’s Manua for more information
about the interrupt controller.

3.1.6 Internal SRAM

The MCF5204 has 512 bytes of internal memory. This memory is mapped to $02000000 and is not used
by the dBUG. It isavailable to the user.

3.1.7 The MCF5204 Registersand Memory Map

The memory and 1/0 resources of the SBC5204 are divided into three groups, MCF5204 Internal, External
resources, and the ISA Bus address. All the 1/O registers are memory mapped.

The MCF5204 has built in logic and six Chip-select pins (-CS0, -CS1, -CS2, -CS3, -C$4, -CS5) which
are used to enable external memory and /O devices. There are eighteen (18) 32-bit registers to specify the
address range, type of access, and the method of DTACK generation for each chip-select pin. These
registers are programmed by dBUG to map the external memory and /O devices.

The SBC5204 uses chip-select zero (-CS0) to enable the EPROM/Flash ROM (refer to Section 3.3.) The
SBC5204 also uses -CS1 to enable the SRAM (refer to Section 3.2), -CS2 for enabling the MC68HC901,
-CS3 for Interrupt acknowledge of MC68HC901, and -C$4 for ISA Bus I/0O space. The SBC5204 does
not use the -CS5.

The chip sdlect mechanism of the MCF5204 alows the memory mapping to be defined based on the
memory space desired (User/Supervisor, Program/Data spaces).

All the MCF5204 internal registers, configuration registers, parallel 1/0 port registers, DUART registers
and system control registers are mapped by MBAR register at 1K-byte boundary. It is mapped to
$01000000 by dBUG. For complete map of these registers refer to the MCF5204 User's Manual.

The SBC5204 board can have up to 1M bytes of SRAM installed. Thefirst 1M bytes are reserved for this
memory. Refer to Section 3.2 for a discussion of RAM. The dBUG is programmed in two 29F010 Flash

3

ROM'’s which only occupies 256K bytes of the address space. The first 128K bytes are used by dBUG
and the second half isleft for user. Refer to section 3.3.

The MC68HC901 is used as dBUG serial communication, baud rate generator, and 1SA Bus interrupt
request. Refer to section 3.4.1.

The ISA Bus interface maps al the 1/0 space of the ISA bus to the MCF5204 memory at address
$04000000. Refer to section 3.6.

TABLE 3.1. The SBC5204 memory map.

ADDRESS RANGE SIGNAL and DEVICE
$00000000-$000FFFFFL -CS1, Upto 1M bytes of SRAM'’s.
$01000000-$010003FF Internal Module registers
$02000000-$020001FF Internal SRAM
$03000000-$030FFFFF -CS2, 1M space for MC68HC901. -CS3isused for IACK
$04000000-$040FFFFF -C34, 1M ISA Bus area
$FFEOO0000-$SFFE3FFFF -CS0, 256K bytes of Flash ROM.

1 Refer to the text for more detail.

All the unused area of the memory map is available to the user.

3.1.8 Reset Vector Mapping

After reset, the processor attempts to get the initial stack pointer and initial program counter vaues from
locations $000000-$000007 (the first eight bytes of memory space). This requires the board to have a
nonvolatile memory device in this range with proper information. However, in some systems, it is preferred
to have RAM starting at address $00000000. In MCF5204, the -CS0 responds to any accesses after reset
until the V-bit is set for CS0. This includes the reset vector range. Since -CS0 is connected to Flash
ROM’s, the Flash ROM’ s appesar to be at address $00000000 which provides the initial stack pointer and
program counter (the first 8 bytes of the EPROM). The initialization routine, however, programs the chip-
select logic and locates the Flash ROM to start at $FFE00000 and the SRAM’ s to start at $00000000.

3.1.9 DTACK Generation

The processor starts a bus cycle by providing the necessary information (address A1-A23, R/-W, etc.) and
asserting the -CS. The processor then waits for an acknowledgment (-DTACK) by the addressed device
before it can complete the bus cycle. This-DTACK is used not only to indicate the presence of a device, it
also allows devices with different access time to communicate with the processor properly. The MCF5204,
as part of the chip-select logic, has a built in mechanism to generate the -DTACK for all externa devices
which do not have the capability to generate the -DTACK on their own. The Flash ROM’s and SRAM’s
can not generate the -DTACK. Their chip-select logic's are programmed by dBUG to generate the -
DTACK internally after a preprogrammed number of wait states. In order to support the future expansion
of the board, the -DTACK input of the processor is aso connected to the Processor Expansion Bus, JO.
This alows the expansion boards to assert this line to indicate their -DTACK to the processor. On the
expansion boards, however, this signa should be generated through an open collector buffer with no
pull-up resistor, a pull-up resistor is included on the board. All the -DTACK’s from the expansion boards
should be connected to thisline.

3.1.10 Wait State Generator

The Flash ROM and SRAM chips on the board may require some adjustments on the cycle time of the
processor to make them compatible with processor speed. To extend the CPU bus cycles for the dower
devices, the chip-select logic of the MCF5204 can be programmed to generate the -DTACK after a given
number of wait states. Refer to Sections 3.2 and 3.3 information about wait state requirements of SRAM’s
and Flash ROM’s respectively.

3.2THE EXTERNAL SRAM

The SBC5204 has two 32-pin sockets (U11 and U12) for static RAM’s. These sockets support both the

128K x8 (such as KM681000BLP) and 512K x8 (such as HM628512). The board may be configured for

256K and 1M bytes of SRAM’s. The dBUG will detect the total memory installed on power-up.

The are two memory configuration choices:

a 256K bytes - For 256K bytes, install two 128Kx8 SRAM chips in U1l and U12. The memory
address range will be $00000000-$0003FFFF. The jumper JP2 pins 2 and 4 should be connected
(default).

b. 1M bytes - For 1M bytes, install two 512x8 SRAM chips in U1l and U12. The memory address
range will be $00000000-$000FFFFF. The jumper JP2 pins 4 and 6 should be connected.

The debugger programs the chip-select to generate one wait state for the SRAM.

JP2

3.3 THE EPROM/FLASH ROM

There are two sockets for EPROM’ s/Flash ROM’ s on the SBC5204, U13 (high, even byte) and U14 (low,
odd byte). These sockets support 32K, 64K, 128K, 256K, 512K, and 1M-byte EPROM’s such as
27C256, 27C512, 27C010, 27C020, 27C040, and 27C080 chips for a total of up to 2M bytes. The
sockets also support the Flash ROM’ s such as 29F010 and 29F040 which are 5-volt only devices.

If the user wishes to modify the size or the type of the memory chips, the jumpers JP2, JP3, and JP4
should be modified to accommodate different size and type of memory chips. Refer to Figure 3.1 for
jumper selection.

The board is shipped with two 29F010, 128K-byte, FLASH ROM’s for a total of 256K bytes. The first
128K of the Flash contains dBUG firmware. The second haf (last 128K) is available to the user. The
high byte (even address) chip is installed in U13 socket and the low byte (odd address) chip isinstalled in
U14 socket. The chip-select signal generated by the MCF5204 (-CS0) enables both chips.

The MCF5204 chip-select logic can be programmed to generate the -DTACK for -CS0 signa after a
certain number of wait states. The dBUG programs this parameter to three wait-states.

JP3 Configuration

MEMORY TYPE

JUMPER SETUP

FLASH ROM

Connect 3to 5 and 4 to 6 (default)

EPROM

Connect 1to3and 2to 4

JP2 Configuration

MEMORY TYPE | JUMPER SETUP
FLASH ROM Connect 3 to 5 (default)
EPROM Connect 1 to 3
1 P2 , | JP3 ;
L
3 4 i |e w|4
5 5 |® @,
JP4 Configuration for EPROM
MEMORY SIZE JUMPER SETUP
27C256 (256K EPROM) | 5to 7 and 6to 8
27C512 (512K EPROM) | 7to9and 6to 8
27C010 (1M EPROM) 3to5and7t09
4t0 6 and 8 to 10
27C020 (2M EPROM) 3to5and7t9
4t0 6 and 8 to 10
27C040 (4M EPROM) 3to5and7t09
2to4 and 8 to 10
27C080 (8M EPROM) lto3and7to9
2to4 and 8 to 10
JP4
1 L B
3 L
E L B
Tle w»
Ble w»
JP4 Configuration for FLASH ROM
MEMORY SIZE JUMPER SETUP
29F010 (1M, Flash) and 29F040 7to9and 8to 10
(4M Flash)

Note: Only connect the pins specified. Leave the rest open.

— G0 Oh B b

Figure 3.1. Jumper setup for the Flash/EPROM sockets.

34 THE UART LOGIC

The MCF5204 has a built in UART, This seriad channel with software programmable baud rate generator
is not used by the SBC5204 or dBUG and it is available to the user. The dBUG, however, programs the
interrupt level for UART to Level 3, priority 2 and autovector mode of operation. The signas of this
channel are available on J9 and are passed through the RS-232 driver/receiver and are available on DB-9
connector J6. Refer to the MCF5204 User’s Manual for programming and the register map.

3.4.1 MC68HC901

To provide the board with one independent serial communication channel for dBUG communication with
terminal or PC, an MC68HCO901 is used. This device provides four timer channels (A, B, C, and D), one
serial communication channel, and 8 input lines. Channel D timer is used as the baud rate generator for the
serial communication channel.

The clock source for the timers is the 2.4576MHZ crystal. The clock signal to drive the MC68HC901
logic is one-fourth of the processor’s clock.

The TXD (SO) signal and the RXD (Sl) signal are passed through RS-232 driver/receiver and are
available on J1. The eight input lines are used to report the ISA Bus interrupts (IRQ3, IRQ4, IRQ5, IRQG,
IRQ7, IRQ9, IRQ10, and IRQ11). The interrupt from MC68HCO01 is reported to MCF5204 on -IRQ1
of the MCF5204. The interrupt level for the MC68HCOO01 is set for Level 1 with priority 3. The vectors
used for MC68HC901 are $FO0 to $FF. It generates 16 vectors. This should not be changed.

The -CS2 is used to access the MC68HCI01 internal registers, it is mapped to $03000000. The -CS3 is
programmed to generate an Interrupt Acknowledge signal to drive the -IACK of the MC68HC901. Refer
to MC68HC901 User’s Manual for functional description and the programming model.

3.5 THE PARALLEL I/O Port

The MCF5204 has one 8-bit parallel port. All the pins have dua functions. They can be configured as I/O
or their alternate function via the Pin Assignment register. PAO/A20 and PA1/A21 are available on J8 and
the rest are available on J9. Usar may use them based on the application. However, A20 will be used by
8M EPROM’s if they are installed. Otherwise A20 and A21 can be changed to I/O pin. For more
information on this refer to MCF5204 User’s Manual from Motorola. The dBUG programs these pins for
their dedicated peripheral functions.

3.6 THEISA BUSLOGIC

The SBC5204 includes the necessary logic, drivers, and the connector (P1) to allow the use of off-the-shelf
ISA Bus I/O cards. The dot can be used with 8- or 16-bit ISA cards. Due to architectura differences
between 1SA and ColdFire buses, all accesses to the ISA bus must be 16-bits. In addition, for byte
accessing, even |SA-gpace addresses are |located starting at $04000000, and odd | SA-space addresses are
located starting at $04010000. For example, consider 4 sequential registers starting at | SA-space address
$320. Their ColdFire addresses become, in order, $04000320, $04010320, $04000322, and $04010322.

The main purpose for this setup is to alow the use of Ethernet card (NE2000 compatible) to facilitate
network down load, refer to chapter 2 for network download command (DN). The dBUG driver only
accepts 100% NE2000 compatible cards.

The ISA Bus interrupt request lines IRQ3, IRQ4, IRQ5, IRQ6, IRQ7, IRQ9, IRQ10, and IRQ11 are
connected to 10 to 17 of the MC68HCO01. The requested interrupt is then routed to -IRQ1 of the
MCF5204.

3.7 THE CONNECTORSAND THE EXPANSION BUS

There are ten connectors on the SBC5204 which are used to connect the board to externa 1/O devices and
or expansion boards. This section provides a brief discussion and the pin assignments of the connectors.

3.7.1 The Terminal Connector J1
The SBC5204 uses a 9-pin D-sub female connector J1 for connecting the board to aterminal or a PC with

terminal emulation software. The available signals are a working subset of the RS-232C standard. Table
3.2 shows the pin assignment.

TABLE 3.2. TheJ1 (TERMINAL) Connector pin assgnment.

PIN NO. | DIRECTION SIGNAL NAME

1 Output Data Carrier Detect (shorted to 4 & 6)
2 Output Receive data

3 Input Transmit data

4 Input Data Terminal Ready (shortedto 1 & 6)
5 Signal Ground

6 Output Data Set Ready (shortedto 1 & 4)

7 Input Request to Send (shorted to 8)

8 Output Clear to Send (shorted to 7)

9 Not Used

3.7.2 ThelSA BusAuxiliary Power Connector J2

The I1SA Bus requires +/-12 and -5 as well as +5 volts supply. Since they are not aways needed the
connector used for theseis a simple burg connector. Table 3.3 shows the Pin assignment for J2.

TABLE 3.3. TheJ2 Connector pin assgnment.

PIN NUMBER SIGNAL NAME
1 +12 Volts
2 Ground
3 -12 Volts
4 -5Valts

3.7.3 The Power Supply ConnectorsJ3 and J4

The SBC5204 needs +5 volts supply (less than an Amp.). The power can be +5 Volts regulated or +7.5 to
+12 Volts DC (regulated or unregulated) which utilizes the on board regulator U9. Jumper JP1 (Table 3.6)
makes the selection between +5 Volts regulated and the +7.5-12 Volts supply. If pins 1 and 2 are
connected, the board needs external +5 Volts regulated supply. If pins 2 and 3 are connected, then a DC
supply of +7.5 to +12 volts may be used. In either case, the power may be connected to the board through
J3 (2.1mm power jack) or the J4 two-contact lever actuated terminal block. On J3 the center pin (pin 1) is
the plus supply and the body (pin 3) is the ground. On J4 the Red handle (pin 1) is the plus supply and the
black handle (pin 2) isthe ground. Tables 3.4 and 3.5 show the Pin assignment for J3 and J4.

TABLE 3.4. The J3 Connector pin assgnment.

PIN NUMBER | SSGNAL NAME
1 (center pin) Plus Supply
2 (body) Ground

TABLE 3.5. The J4 Connector pin assgnment.

PIN NUMBER SIGNAL NAME
1 Plus Supply
2 Ground

TABLE 3.6. The Jumper JP1.

Jumper Selection
Pins
1t02 regulated +5 Volts
2t03 +7.5 t0 +12 regulated or unregulated (default)

3.7.4 The Programming Connector J5
The J5 connector is used to program the ispL SI2032. This Connector is not a user connector.

TABLE 3.7. The J5 Connector Pin Assignment.

PIN NO. | SIGNAL NAME
+5 Volts

-SDO

-SDI

-ISPEN

No Connect (key)
-MODE

GND

SCLK

O IN|O|OTBR]|WIN(|F

3.7.5 The Auxiliary Serial Communication Connector J6

The MCF5204 has a built-in UART. This channel is not used by the SBC5204 dBUG and it is available
to the user. The signals of this channel are available on J9 and the they are also run trough RS-232
driver/receivers and are available on J6. The available signals form a working subset of the RS-232C
standard. Table 3.8 shows the pin assignment for J6.

TABLE 3.8. TheJ6 Connector pin assgnment.

PIN NO. | DIRECTION | SIGNAL NAME

Output Connected to pin 6 and 8
Output Receive Data
Input Transmit Data
No connect

Signal Ground
Output Connected to 1 and 8
Input Clear to Send
Output Reguest to Send (connected to 1 & 6)
Not Used

OO |IN[O(O|R|W[IN|F

3.7.6 The Debug Connector J7

The MCF5204 does have background Debug Port, Rea-Time Trace Support, and Real-Time Debug
Support. The necessary signals are available at connector J7. Table 3.9 shows the pin assignment.

3.7.7 TheProcessor Expansion Bus J8 and J9

All the processors signals are available on two burg headers J8 and J9 for future expansion. Although
these signals are not buffered, they can drive at least one TTL load with some having more than one TTL
load capability. User may refer to the data sheets for the major parts and the schematic at the end of this
manual to obtain an accurate loading capability. All the primary signals to/from the processor needed for
expansion are available on J8. Secondary signals (less likely to be used) and 1/0O signals are available on
J9. Therefore, a single 50-wire flat ribbon cable with the IDC connectors may be used for most of future
expansions. Tables 3.10 and 3.11 show the pin assignment for J8 and JO respectively.

10

TABLE 3.9. The J7 Connector pin assgnment.

PIN NO. | SSIGNAL NAME
1 No Connect
2 -BKPT
3 Ground
4 DSCLK
5 Ground
6 No Connect
7 -RESET
8 DSl
9 +5 Volts
10 DSO
11 Ground
12 MTMOD2/PST3
13 MTMOD1/PST2
14 MTMODO/PST1
15 -HIZ/PSTO
16 DDAT3
17 DDAT2
18 DDAT1
19 DDATO
20 Ground
21 MTMOD3
22 No Connect
23 Ground
24 CLK
25 +5 Volts
26 No Connect

11

TABLE 3.10. TheJ8 Connector pin assignment.

PIN NO. SIGNAL NAME
1 A0
2 DO
3 Al
4 D1
5 A2
6 D2
7 A3
8 D3
9 A4
10 D4
11 A5
12 D5
13 A6
14 D6
15 A7
16 D7
17 A8
18 D8
19 A9
20 D9
21 Al10
22 D10
23 All
24 D11
25 Al2
26 D12
27 Al3
28 D13
29 Al4
30 D14
31 A15
32 D15
33 A16
34 +5Volts
35 Al7
36 Ground
37 Al8
38 -CS2
39 A19
40 -CS3
41 A20
42 -C+4
43 A2l
44 -CS5
45 +5Volts
46 -RE
47 -UDS
48 -WE
49 Ground
50 -LDS

12

Table 3.11. The J9 Connector pin assignment.

PIN NO. SIGNAL NAME
1 TCLK
2 TIN
3 DSCLK
4 TOUT
5 DSl
6 TXD
7 DSO
8 RXD
9 -BKPT
10 -RTS
11 +5 Volts
12 -CTS
13 Ground
14 +5 Volts
15 DDATAO
16 Ground
17 DDATA1
18 -IRQO
19 DDATA?2
20 -IRQ1
21 DDATA3
22 -IRQ2
23 +5 Volts
24 -IRQ3
25 Ground
26 Ground
27 MTMODO/PST1
28 -CS0
29 MTMODZ1/PST2
30 -HIZ/PSTO
31 MTMODZ2/PST3
32 BUSW
33 MTMOD3
34 -DTACK
35 -RESET
36 +5 Volts
37 Ground
38 -CS1
39 CLK
40 No Connect

3.7.8 The I SA Bus Connector P1

The SBC5204 can utilize the ISA Bus 16-bit 1/0 cards. The P1 connector is|SA Bus compatible
connector. Table 3.12 shows the pin assignment.

13

TABLE 3.12. The P1 Connector pin assgnment.

PINNO. | SIGNAL NAME PINNO. | SIGNAL NAME
1 GND 2 IOCHK*
3 RESET 4 SD7
5 +5V 6 SD6
7 IRQ9 8 SD5
9 5V 10 SD4
11 DRQ2 12 SD3
13 12V 14 SD2
15 ZWS 16 SD1
17 +12V 18 SDO
19 GND 20 IOCHRDY
21 SMEMW* 22 AEN
23 SMFMR* 24 SA19
25 IOW* 26 SA18
27 IOR* 28 SA17
29 DACK3* 30 SA16
31 DRQ3 32 SA15
33 DACK1* 34 SA14
35 DRQL 36 SA13
37 REFSH 38 SA12
39 SYSCLK 40 SA1L
41 IRQ7 42 SA10
43 IRQG 44 SA9
45 IRQ5 46 SA8
47 IRQ4 48 SA7
49 IRQ3 50 SAG
51 DACK2* 52 SAS
53 TC 54 SA4
55 BALE 56 SA3
57 +5V 58 SA2
59 0OsC 60 SAL
61 GND 62 SAO
63 MEMCS16* 64 SBHE*
65 I0CS16 66 LA23
67 IRQ10 68 LA22
69 IRQ1L 70 LA21
71 IRQ1L2 72 LA20
73 IRQ15 74 LA19
75 IRQ14 76 LA18
77 DACKO* 78 LAL7
79 DRQO 80 MEMB*
81 DACK5* 82 MEMW*
83 DRQ5 84 SD8
85 DACK6* 86 SD9
87 DRQ6 88 SD10
89 DACKT*) SD11
01 DRQ7 92 SD12
93 +5V 94 SD13
95 MASTER* % SD14
97 GND 98 SD15

14

3.8 THE SBC5204 JUMPERS

There are atotal of four jumpers on the SBC5204 board to configure the board for different setup. Table
3.13 shows what these jJumpers are for and the section where more information can be found.

TABLE 3.13. The SBC5204 Jumpers.

Jumper No. | Function (section)
JP1 Power Supply Selection, (section 3.7.3)
JP2 RAM and EPROM size selection (section 3.2 and 3.3)
JP3 Flash/ EPROM selection (section 3.3)
JP4 Flash/EPROM size selection (section 3.3)

15

Appendix A
A.1 Configuring dBUG for Network Downloads
dBUG has the ahility to perform downloads over an Ethernet network using the Trivial File Transfer
Protocol, TFTP. Prior to using this feature, several parameters are required for network downloads to
occur. Theinformation that is required and the steps for configuring dBUG are described below.
A1.1 Required Network Parameters

For performing network downloads, dBUG needs six parameters; four are network-related, and two are
download-related. The parameters are listed below, with the dBUG designation following in parenthesis.

All computers connected to an Ethernet network running the IP protocol need three network-specific
parameters. These parameters are:

Internet Protocol, 1P, address for the computer (client 1P),
IP address of the Gateway for non-local traffic (gateway IP), and
Network netmask for flagging traffic as local or non-local (netmask).

In addition, the dBUG network download command requires the following three parameters:

IP address of the TFTP server (server 1P),
Name of the file to download (filename),
Type of the file to download (filetype of S-record, COFF, Elf, or Image).

Your local system administrator can assign a unique IP address for the board, and also provide you the IP
addresses of the gateway, netmask, and TFTP server. Fill out the lines below with this information.

Client IP: . (IP address of the board)
Server |P: e (IP address of the TFTP server)
Gateway: . (IP address of the gateway)
Netmask: . (Network netmask)

A.1.2 Configuring dBUG Network Parameters

Once the network parameters have been obtained, dBUG must be configured. The following commands are
used to configure the network parameters.

set client <client P>

set server <server |P>

set gateway <gateway | P>
set netmask <netmask>

For example, the TFTP server is named ‘santafe’ and has IP address 123.45.67.1. The board is assigned
the IP address of 123.45.68.15. The gateway IP address is 123.45.68.250, and the netmask is
255.255.255.0. The commands to dBUG are:

set client 123.45.68.15
set server 123.45.67.1

set gateway 123.45.68.250
set netmask 255.255.255.0

The last step isto inform dBUG of the name and type of the file to download. Prior to giving the name of
the file, keep in mind the following.

Mogt, if not all, TFTP servers will only permit access to files starting at a particular sub-directory. (This
is a security feature which prevents reading of arbitrary files by unknown persons.) For example, SunOS
uses the directory /tftp_boot as the default TFTP directory. When specifying a filename to a SunOS TFTP
server, al filenames are relative to /tftp_boot. Asaresult, you normally will be required to copy the file to
download into the directory used by the TFTP server.

A default filename for network downloadsis maintained by dBUG. To change the default filename, use the
command:

set filename <filename>
When using the Ethernet network for download, either S-record, COFF, Elf, or Image files may be
downloaded. A default filetype for network downloads is maintained by dBUG as well. To change the
default filetype, use the command:

set filetype <srecor d|coff|elf|image>

Continuing with the above example, the compiler produces an executable COFF file, ‘aout’. Thisfileis
copied to the /tftp_boot directory on the server with the command:

rcp a.out santafe:/tftp_boot/a.out
Change the default filename and filetype with the commands:

<at filename a.out
set filetype coff

Finaly, perform the network download with the ‘dn’ command. The network download process uses the
configured |P addresses and the default filename and filetype for initiating a TFTP download from the
TFTP server.

A.1.3 Troubleshooting Networ k Problems
Most problems related to network downloads are a direct result of improper configuration. Verify that all
I P addresses configured into dBUG are correct. Thisis accomplished viathe ‘show’ command.

Using an IP address aready assigned to another machine will cause dBUG network download to fail, and
probably other severe network problems. Make certain the client IP address is unique for the board.

Check for proper insertion or connection of the network cable. Are status LEDs lit indicating that network
traffic is present?

Check for proper configuration and operation of the TFTP server. Most Unix workstations can execute a
command named ‘tftp*which can be used to connect to the TFTP server as well. |s the default TFTP root
directory present and readable?

If ICMP_DESTINATION_UNREACHABLE' or similar ICMP message appears, then a serious error has
occurred. Reset the board, and wait one minute for the TFTP server to time out and terminate any open
connections. Verify that the IP addresses for the server and gateway are correct.

&

5
% FH Nowwo~neS o Ao.21)
| [a)alaYalalalalalaYalaYa) mm—m_'
947K 8885888888888 10 AL
N >55555555555 AL 0
RESET T =T % ﬁ "
"
— 5 | MENCRY. SCH
R RO % 6 | 1SASH
-RQL RoL 5 52 | COWECT. SH
R Rz A 8
RB R® ” o
—_— I A0
Hz FZPSTO AID F
MIMODO MIMODOPSTL AL ‘5
MIMODL MIMODIPST2 AR ‘5
MIMOD2 MIMOD2PST3 A3 o
MIMODS MIMOD3 e s
A5
DoATO DoATO A AL
DDATAL DDATAL A7 A
DDATR2 DDATR2 A8 0
DDATA DDATA A9 =
2 PPOA) = o.15)
™ & 5| P2 PPLA2L
Tout TOUTPP3 o
o
VO 0P oL 2
RO ROMFS ® =
m CISPP6 3 o
RSPP7 D 53
®
Bsw BUSWATS > & 5 5
DAK DIACK o o
& R B =
VE VE » o
s UNELES o B ey
108 LWELDS o1 947K 97K
o
BKPT BRETIVS 0B o
DSaK DSCLKITRST D14 o o
DSl DSITDI oI5
00 CS0T00
Tak Tak & o)
@ oS s
ax = ey
3
i st
DNONNDNONNNNNN 3 <
2383338333383
S>5>5>353>353>3>3>3>>
g o MoFE! B
b z) ™
o T8I
5
gﬁ ® TOFEE
o 3 TEO &
- o o D TOHE—E
® O
B Di
5 g X | =w IS 5
> £ ©° o 10 0
947K I 11
o 2 Q0 RSL 2 2
e R i = i i
e “I :L /: R4 [3 5
= RS 16 16
= 7 7
RW
S sl sl
3 O =)
DTACKEL DIACK RC
RESET I
arz 4 ax =®r
RESET TR
WK
6 2 l |
Ve 1
BGAIANE—— e | g—
2 < REN s B
z =
s 21 o o 2 L
° 1 -
6 i |2
= 1 MOEHCSL
4o 5 5 =
% % % % % % A A [COPYRIGHT ARNEWSH, INC.
IPO. BOX 270862 FORT COLLINS, 00 80270382
=
=E=__ = ISze Dooumert Nurrber
= = = = = = B | secsmicru Flm
Dee___Thusy, e 17, 19% IS5 T

{Title}
Document Number Rev

Date: Friday, November 08, 1996 [Sheet 1 of 1

5
A
P
-
5
4.7 [
9, 1

AL2Y]
0.1
o s o s
A b3 A 0
1% B 53 1% B 0L
9 0 5 D0 3 0 5 0
M I Uy DIl M I Uy)
I 03 I 03
15 D 15 D4
M 0 M 0
n 5 05 L n 5 05 &
] Di4 [D5
2 0% o 2 0% g
W bl W bl :
A9 A9
AIQ 18 AIQ 18
i i i i
A A
e AL e AL
A4 5| A2 *5 A4 5| A2 *5
A A
L A 2 L T A 2
i Ls e e M5 Ve
Al Al
ATE ATE
- ABNC 5 - ABNC 5
GNDH o
ubs 2 w = 2 v ‘Ll
E - E =
u e uE =
Hi2512 Hi2512
0
cst
RE
us s
1 12 20 o0 13 X 1 12 20 o 13 0
M 1 4 D 1 1 1 DL
A o1 A o1
3 0 5 DI0 3 0 5 0
I oy I 0y
) DIt) D
15 I o D0 15 I o Dt
M 04 M o4
6 i N D5
i 5 05 o i 5 05 =
! 6 06 o8 ! 6 06 o
10 A o7 10 A o7 -
8 8
m A m A
o A . o A 5
A AL A AL
m 5| A2 2 m g | A 2 i)
e e
Al | Als |
A 5 A 5
i A5 GND A5 GND
- b b
T AT
ASWE AWE
A8 = A8 =
e e
03 03
7080 7080
OPYRIGHT ARNEVISH, INC
. P.0. BOX 270352 FORT COLLINS, €O 80527-0352
ize Document Number Rev
B | SBCE204EMORY 10
[Date:Friday, November 08, 19%6 [heet 2 of 4

/-((D[o..m

3

v+1\2m< <—<_ Vs K&— X ;MJK

(5

=)
NOSwo~oo

e

i

SEEEEEEEE R

FARRANE RN

014
015

geg
|
hch

HEEEREEE

019

gzgggyagggﬁggﬁgg

) 100H 5

BRRE bupNEHNEEEERERRE

RR(&[-

SIS

B

8888

: /—<<A[1..16]

BBERBRSEREE

b

E

o3

88

ERBE

=

!

LB%BK&REBEE

RQ
DTACK0L

S|~

N (R|&

16
1 R0

a

TTT

107

®esecses

a

R(G(B(a

2222 hPRR 2338288 8RBRNREREF g%%%% FE65 BEERERRREESSEERE(

2229 BRBE EEEELYYEREEBEERESE

%

EREERE

e

[COPYRGHT ARNEWSH, INC.

IP. 0. BOX 270852 FORT COLLINS, 0O 806270852

ISze Dooumert Nim ber
B SBCS204ISA

D ‘Gocher 17, 19% et 3o

CDATAO
CDATAL
DDATA2
CDATA3

Dp.15 &

N\
Ap21) <<_\
2 o
AL 4 o
I ®
) 8
M D4
5 5
26 05
Al o
8 8
I [
AID DD
AlL D1
AL D
A3)
Ald D
Ab DB [
A6
a0 P> |
AB =
g - €.
2] 3 <4
4 4 e U0
4 4 e
us 4 VE S0 < D1 ™
s El DOL RX
D2 ™
D2 Re|
03 a2
D8 R
; 2+ Cl+| i
B |2 G-y
7w VSS—
\ID @D
NCUEAT
% 3
B
: TIN
ToUT
"0 %
. .
TS
RO
RQL
R
RB
<
-HZ
BNV
DTACK
st
-0
= 1 ’1 3
X
PL
- ®
LTI088CT
e Kvs T 3w o vour 2 I
vz 2
vz :‘
|2 = [COPYRIGHT ARNEWSH, INC.
£ IPO. BOX 270852 FORT COLLINS, 0O 806270382
- 2 ISze Dot Number

B SBC04 QCONNECTORS

|Date: Tl October 17, 1996

	Return to Main Menu
	Return to ColdFire Product Page
	
	Table of Contents
	Sec. 1- Introduction to the SBC5204 Board
	1.1 Introduction
	1.2 General Hardware Description
	1.3 System Memory
	1.4 Serial Communication Channels
	1.5 Parallel I/O Ports
	1.6 Programmable Timer/Counter
	1.7 ISA Bus Connector
	1.8 System Configuration
	1.9 Installation and Setup
	1.9.1 Unpacking
	1.9.2 Preparing the Board for Use
	1.9.3 Providing Power to the Board
	1.9.4 Selecting Terminal Baud Rate
	1.9.5 The Terminal Character Format
	1.9.6 Connecting the Terminal
	1.9.7 Using a Personal Computer as a Terminal

	1.10 System Power-Up and Initial Operation
	1.11 SBC5204 Jumper Setup
	1.12 Using the BDM

	Sec. 2- Using the Monitor/Debug Firmware
	2.1 What is dBUG?
	2.2 Operational Procedure
	2.2.1 System Power-Up
	2.2.2 System Intialization
	2.2.3 System Operation

	2.3 dBUG Command Set
	2.4 dBUG Command Set
	2.4.1 BF - Block of Memory Fill
	2.4.2 BM - Block Move
	2.4.3 BR - Breakpoint
	2.4.4 BS - Block Search
	2.4.5 DATA - Data Conversion
	2.4.6 DI- Disassemble
	2.5.7 DL - Download Serial
	2.4.8 DN - Download Network
	2.4.9 Go- Execute
	2.4.10 GT - Execute Till a Temporary Breakpoint
	2.4.11 HELP - Help
	2.4.12 IRD - Internal Registers Display
	2.4.13 IRM - Internal Registers MODIFY
	2.4.14 MD - Memory Display
	2.2.15 MM - Memory Modify
	2.4.16 RD - Register Display
	2.4.17 RM - Register Modify
	2.4.18 RESET - Reset the board and dBUG
	2.4.19 SET - Set Configuration
	2.4.20 SHOW - Show Configuration
	2.4.21 STEP - Step Over
	2.4.22 SYMBOL - Symbol Name Management
	2.4.23 TRACE - Trace Into
	2.4.24 UPDBUG - Update the dBUG Image
	2.4.25 UPUSER - Update User Code In Flash
	2.4.26 VERSION - Display dBUG Version

	2.5 TRAP #15 Functions
	2.5.1 OUT_CHAR
	2.5.2 IN_CHAR
	2.5.3 CHAR_PRESENT
	2.5.4 EXIT_TO_dBUG

	Sec. 3 - Hardware Description and Reconfiguration
	3.1 The Processor and Support Logic
	3.1.1 The Processor
	3.1.2 The Reset Logic
	3.1.3 The Clock Circuitry
	3.1.4 Watchdog Timer
	3.1.5 Interrupt Sources
	3.1.6 Internal SRAM
	3.1.7 The MCF5204 Registers and Memory Map
	3.1.8 Reset Vector Mapping
	3.1.9 DTACK Generation
	3.1.10 Wait State Generator

	3.2 The External SRAM
	3.3 The EPROM/Flash ROM
	3.4 The UART Logic
	3.4.1 MC68HC901

	3.5 The Parallel I/O Port
	3.6 the ISA Bus Logic
	3.7 The Connectors and the Expansion Bus
	3.7.1 The Terminal Connector J1
	3.7.2 The ISA Bus Auxiliary Power Connector J2
	3.7.3 The Power Supply Connectors J3 and J4
	3.7.4 The Programming Connector J5
	3.7.5 The Auxiliary Serial Communication Connector J6
	3.7.6 The Debug Connector J7
	3.7.7 The Processor Expansion Bus J8 and J9
	3.7.8 The ISA Bus Connector P1

	3.8 The SBC5204 Jumpers

	Appendix A
	A.1 Configuring dBUG for Network Downloads
	A.1.1 Required Network Parameters
	A.1.2 Configuring dBUG Network Parameters
	A.1.3 Troubleshooting Network Problems

