

MOTOROLA

Version 3 ColdFire Core User’s Manual i

TABLE OF CONTENTS

Paragraph Page
Number Title Number

Section 1
Introduction

1.1 Why ColdFire! ...1-7

Section 2
Architectural Overview

Section 3
Version 3 Core

3.1 Introduction ...3-1
3.2 CF3Core Signals ..3-1
3.3 ColdFire Master Bus..3-7
3.3.1 Introduction ...3-7
3.3.2 M-Bus Signals ..3-7
3.3.2.1 M-Bus Read Data (MRDATA[31:0])3-8
3.3.2.2 M-Bus Address Hold (MAH) ...3-8
3.3.2.3 M-Bus Transfer Acknowledge (MTA)3-8
3.3.2.4 M-Bus Reset (MRSTI) ..3-8
3.3.2.5 M-Bus Interrupt Priority Level (MIPL[2:0])3-9
3.3.2.6 M-Bus Address (MADDR[31:0])3-9
3.3.2.7 M-Bus Address Phase (MAP) ...3-9
3.3.2.8 M-Bus Data Phase (MDP) ..3-9
3.3.2.9 M-Bus Transfer Size (MSIZ[1:0])3-9
3.3.2.10 M-Bus Read/Write (MRW) ..3-10
3.3.2.11 M-Bus Transfer Type (MTT[1:0])3-10
3.3.2.12 M-Bus Transfer Modifier (MTM[2:0])3-10
3.3.2.13 M-Bus Write Data (MWDATA[31:0])3-11
3.3.3 M-Bus Operation ..3-11
3.3.3.1 Basic Bus Cycles ..3-11
3.3.3.2 Pipelined Bus Cycles ..3-12
3.3.3.3 Address and Data Phase Interactions3-13
3.3.3.4 Data Size Operations ..3-16
3.3.3.5 Line Transfers ...3-17
3.3.3.6 Bus Arbitration ..3-20
3.3.3.7 Interrupt Support ...3-22
3.3.3.8 Reset Operation ..3-23

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

ii Version 3 ColdFire Core User’s Manual MOTOROLA

Section 4
V3 CPU

4.1 Introduction ... 4-1
4.2 Version 3 Processor Microarchitecture .. 4-1
4.2.1 Version 3 Processor Pipeline Overview 4-1
4.2.2 Version 3 Instruction Fetch Pipeline ... 4-2
4.2.2.1 Change of Flow Acceleration .. 4-2
4.2.3 Version 3 Operand Execution Pipeline 4-3
4.2.3.1 Illegal Opcode Handling ... 4-4
4.2.3.2 Hardware Multiply-Accumulate (MAC) and Divide 4-4
4.2.4 Version 3 Processor Pipeline Block Diagrams and Summary ... 4-5
4.3 ColdFire Processor Programming Model ... 4-7
4.3.1 User Programming Model .. 4-7
4.3.1.1 Data Registers (D0 – D7) ... 4-8
4.3.1.2 Address Registers (A0 – A6) .. 4-8
4.3.1.3 Stack Pointer (A7, SP) .. 4-8
4.3.1.4 Program Counter (PC) .. 4-8
4.3.1.5 Condition Code Register (CCR) 4-8
4.3.2 MAC Programming Model .. 4-10
4.3.2.1 Accumulator (ACC) ... 4-10
4.3.2.2 Mask Register (MASK) ... 4-10
4.3.2.3 MAC Status Register (MACSR) 4-10
4.3.3 Supervisor Programming Model ... 4-10
4.3.3.1 Cache Control Register (CACR) 4-11
4.3.3.2 Access Control Registers (ACR0, ACR1) 4-11
4.3.3.3 Vector Base Register (VBR) ... 4-11
4.3.3.4 RAM Base Address Register (RAMBAR) 4-11
4.3.3.5 ROM Base Address Register (R0MBAR) 4-11
4.3.3.6 Status Register (SR) ... 4-12
4.4 Exception Processing Overview ... 4-12
4.5 Exception Stack Frame Definition .. 4-14
4.6 Processor Exceptions .. 4-15
4.6.1 Access Error Exception .. 4-15
4.6.2 Address Error Exception .. 4-16
4.6.3 Illegal Instruction Exception ... 4-16
4.6.4 Privilege Violation ... 4-16
4.6.5 Trace Exception ... 4-16
4.6.6 Debug Interrupt .. 4-17
4.6.7 RTE and Format Error Exceptions ... 4-17
4.6.8 TRAP Instruction Exceptions ... 4-18
4.6.9 Non-Supported Instruction Exceptions 4-18
4.6.10 Interrupt Exception ... 4-18

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA Version 3 ColdFire Core User’s Manual iii

4.6.11 Fault-on-Fault Halt ..4-18
4.6.12 Reset Exception ...4-18
4.7 Integer Data Formats ...4-19
4.8 Organization of Data in Registers ..4-19
4.8.1 Organization of Integer Data Formats in Registers4-19
4.8.2 Organization of Integer Data Formats in Memory4-20
4.9 Addressing Mode Summary ...4-21
4.10 Instruction Set Summary ..4-22

Section 5
Processor-Local Memories

5.1 Local Memory Overview ...5-1
5.2 The Two-Stage Pipelined Local Bus (K-Bus)5-3
5.3 Unified Cache ...5-5
5.3.1 Cache Organization ..5-6
5.3.2 Cache Operation ..5-7
5.3.3 Cache Control Register (CACR) ..5-11
5.3.4 Access Control Registers ...5-13
5.3.5 Cache Management ...5-15
5.3.6 Caching Modes ..5-16
5.3.6.1 Cachable Accesses ..5-17
5.3.6.1.1 Writethrough Mode ...5-17
5.3.6.1.2 Copyback Mode ...5-17
5.3.6.2 Cache-Inhibited Accesses ..5-17
5.3.7 Cache Protocol ...5-18
5.3.7.1 Read Miss ...5-19
5.3.7.2 Write Miss ...5-19
5.3.7.3 Read Hit ..5-19
5.3.7.4 Write Hit ..5-19
5.3.8 Cache Coherency ...5-19
5.3.9 Memory Accesses for Cache Maintenance5-19
5.3.10 Cache Filling ...5-20
5.3.11 Cache Pushes ..5-20
5.3.12 Push and Store Buffers ..5-20
5.3.12.1 Push and Store Buffer Bus Operation5-21
5.3.13 Cache Operation Summary ..5-21
5.4 Processor-Local Random Access Memory (RAM)5-24
5.4.1 RAM Operation ...5-24
5.4.2 RAM Programming Model ..5-24
5.4.3 RAM Initialization ..5-27
5.4.4 RAM Initialization Code ..5-27

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

iv Version 3 ColdFire Core User’s Manual MOTOROLA

5.4.5 RAM Power Management .. 5-27
5.5 Processor-Local Read-Only Memory (ROM) 5-29
5.5.1 ROM Operation .. 5-29
5.5.2 ROM Programming Model ... 5-29
5.5.3 ROM Power Management .. 5-32
5.6 Interactions between the KBUS Memories .. 5-32

Section 6
Debug Support

6.1 Signal Description .. 6-2
6.1.1 Breakpoint (BKPT) ... 6-2
6.1.1.1 Rev. A Functionality .. 6-2
6.1.1.2 Rev. B Enhancement .. 6-2
6.1.2 Debug Data (DDATA[3:0]) ... 6-2
6.1.3 Development Serial Clock (DSCLK) .. 6-2
6.1.4 Development Serial Input (DSI) ... 6-3
6.1.5 Development Serial Output (DSO) ... 6-3
6.1.6 Processor Status (PST[3:0]) .. 6-3
6.1.7 Processor Status Clock (PSTCLK) .. 6-3
6.2 Real-Time Trace Support.. 6-4
6.2.1 Processor Status Signal Encoding ... 6-4
6.2.1.1 Continue Execution (PST = $0) 6-4
6.2.1.2 Begin Execution of an Instruction (PST = $1) 6-4
6.2.1.3 Entry into User Mode (PST = $3) 6-4
6.2.1.4 Begin Execution of PULSE/WDDATA Instr. (PST = $4) .6-4
6.2.1.5 Begin Execution of Taken Branch (PST = $5) 6-5
6.2.1.6 Begin Execution of RTE Instruction (PST = $7) 6-6
6.2.1.7 Begin Data Transfer (PST = $8 - $B) 6-6
6.2.1.8 Exception Processing (PST = $C) 6-6
6.2.1.9 Emulator Mode Exception Processing (PST = $D) 6-6
6.2.1.10 Processor Stopped (PST = $E) 6-6
6.2.1.11 Processor Halted (PST = $F) ... 6-6
6.3 Background-Debug Mode (BDM) ... 6-6
6.3.1 CPU Halt .. 6-7
6.3.2 BDM Serial Interface .. 6-8
6.3.2.1 Receive Packet Format .. 6-9
6.3.2.2 Transmit Packet Format ... 6-10
6.3.3 BDM Command Set ... 6-10
6.3.3.1 BDM Command Set Summary 6-10
6.3.3.2 ColdFire BDM Commands .. 6-11
6.3.3.3 Command Sequence Diagram 6-12

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA Version 3 ColdFire Core User’s Manual v

6.3.3.4 Command Set Descriptions ..6-14
6.3.3.4.1 Read A/D Register (RAREG/RDREG)6-14
6.3.3.4.2 Write A/D Register (WAREG/WDREG)6-15
6.3.3.4.3 Read Memory Location (READ) ...6-16
6.3.3.4.4 Write Memory Location (WRITE) ...6-18
6.3.3.4.5 Dump Memory Block (DUMP) ..6-20
6.3.3.4.6 Fill Memory Block (FILL) ..6-22
6.3.3.4.7 Resume Execution (GO) ..6-24
6.3.3.4.8 No Operation (NOP) ...6-25
6.3.3.4.9 Synchronize PC to the PST/DDATA Lines(SYNC_PC)6-26
6.3.3.4.10 Read Control Register (RCREG) ...6-26
6.3.3.4.11 Write Control Register (WCREG) ...6-28
6.3.3.4.12 Read Debug Module Register (RDMREG)6-29
6.3.3.4.13 Write Debug Module Register (WDMREG)6-29
6.3.3.4.14 Unassigned Opcodes ...6-30
6.4 Real-Time Debug Support ..6-31
6.4.1 Theory of Operation ...6-31
6.4.1.1 Emulator Mode ...6-32
6.4.1.2 Debug Module Hardware ..6-33
6.4.1.2.1 Reuse of Debug Module Hardware (Rev. A)6-33
6.4.1.2.2 The New Debug Module Hardware (Rev. B)6-33
6.4.2 Programming Model ...6-34
6.4.2.1 Address Breakpoint Registers (ABLR, ABHR)6-34
6.4.2.2 Address Attribute TRIGGER Register (AATR)6-35
6.4.2.3 Program Counter Breakpoint Register (PBR, PBMR) ..6-38
6.4.2.4 Data Breakpoint Register (DBR, DBMR)6-38
6.4.2.5 Trigger Definition Register (TDR)6-40
6.4.2.6 Configuration/Status Register (CSR)6-42
6.4.2.7 BDM Address Attribute Register (BAAR)6-45
6.4.3 Concurrent BDM and Processor Operation6-46
6.4.4 Motorola-Recommended BDM Pinout6-47

Section 7
Test

7.1 Introduction ...7-1
7.2 CF3Core Design-for-Test ...7-1
7.2.1 CF3Core Test Goals ..7-1
7.2.2 CF3Core Test Features ..7-1
7.2.2.1 Functional Mode with Debug ..7-2
7.2.2.2 The Scan Modes ...7-2
7.2.2.3 The CPU Lock Mode ..7-2

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

vi Version 3 ColdFire Core User’s Manual MOTOROLA

7.2.3 Alternate, Non-Covered Fault Models .. 7-2
7.3 CF3TW Test Architecture and Test Interface 7-2
7.3.1 Access to the CF3Core Internal Scan Architecture 7-3
7.3.2 The CF3TW Boundary Scan Architecture 7-5
7.3.2.1 CF3TW Testing of Non-Core Inputs 7-6
7.3.2.2 CF3TW Testing of Non-Core Outputs 7-9
7.4 Chip-Level Integration & Test Issues ... 7-12
7.4.1 Chip-Level Test Program Goals ... 7-12
7.4.2 CF3Core Integration Connections .. 7-13
7.4.3 CF3Core Scan Connections .. 7-14

Appendix A
CF3Core Interface Timing Constraints

Appendix B
Instruction Execution Times

B.1 Timing Assumptions ..B-i
B.2 MOVE Instruction Execution Times ...B-ii
B.3 Standard One Operand Instruction Execution Times B-iii
B.4 Standard Two Operand Instruction Execution Times B-iv
B.5 Miscellaneous Instruction Execution Times ..B-v
B.6 Branch Instruction Execution Times ..B-vi

Appendix C
Processor Status, DDATA Definition

C.1 User Instruction Set ...C-i
C.2 Supervisor Instruction Set ...C-iv

Appendix D
Local Memory Connections

MOTOROLA

Version 3 ColdFire Core User’s Manual i

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number

Section 2
Architectural Overview

2-1. Generic ColdFire System Block Diagram... 2-2
2-2. Version 3 ColdFire Processor Block Diagram.. 2-3

Section 3
Version 3 Core

3-1. Generic Version 3 ColdFire Block Diagram ... 3-2
3-2. Basic Read and Write Cycles... 3-12
3-3. Pipelined Read and Write .. 3-13
3-4. Address Hold Followed by 1- and 0-Wait State Cycles.................................. 3-15
3-5. MAP and MAH Generated Mid-Data Phase... 3-15
3-6. MAH Generation for 1X Clock Mode.. 3-16
3-7. Line Access Read with Zero Wait States... 3-18
3-8. Line Access Read with 1 Wait State .. 3-19
3-9. Line Access Write with Zero Wait States ... 3-19
3-10. Line Access Write with One Wait State.. 3-20
3-11. Multiplexed M-Bus Structure .. 3-21
3-12. Multiplexed M-Bus Operation... 3-22

Section 4
V3 CPU

4-1. ColdFire Multiply-Accumulate Functionality Diagram....................................... 4-4
4-2. Version 3 ColdFire Pipeline Diagram... 4-6
4-3. User Programming Model .. 4-8
4-4. Condition Code Register (CCR)... 4-9
4-5. MAC Unit User Programming Model.. 4-10
4-6. Supervisor Programming Model... 4-11
4-7. Status Register (SR) .. 4-12
4-8. Exception Stack Frame Form... 4-14
4-9. Organization of Integer Data Formats in Data Registers 4-19
4-10. Organization of Integer Data Formats in Address Registers.......................... 4-20
4-11. Memory Operand Addressing .. 4-21

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

ii Version 3 ColdFire Core User’s Manual MOTOROLA

Section 5
Processor-Local Memories

5-1. ColdFire Core Synchronous Memory Interface... 5-1
5-2. Synchronous Memory Timing Diagram.. 5-2
5-3. Synchronous Memory Interface Block Diagram... 5-2
5-4. Version 3 Unified Cache Block Diagram.. 5-5
5-5. CF3Core Generic Block Diagram .. 5-7
5-6. Cache Organization and Line Format (32 KByte cache size shown)............... 5-8
5-7. Cache Line Format .. 5-8
5-8. Caching Operation (32 KByte cache size shown).. 5-9
5-9. ... 5-11
5-10. ... 5-13
5-11. ... 5-15
5-12. ... 5-16
5-13. Cache Line State Diagrams... 5-23
5-14. RAM Base Address Register (RAMBAR) .. 5-25
5-15. ROM Base Address Register (ROMBAR) .. 5-29

Section 6
Debug Support

6-1. Processor/Debug Module Interface ... 6-2
6-2. Example PST/DDATA Diagram ... 6-5
6-3. BDM Signal Sampling.. 6-9
6-4. BDM Serial Transfer .. 6-9
6-5. Receive BDM Packet ... 6-9
6-6. Transmit BDM Packet .. 6-10
6-7. Command Sequence Diagram... 6-14
6-8. SYNC_PC REG Command.. 6-26
6-9. Debug Programming Model ... 6-34
6-10. Address Breakpoint Low Register (ABLR)... 6-35
6-11. Address Breakpoint High Register (ABHR) ... 6-35
6-12. Address Attribute Trigger Register (AATR) .. 6-36
6-13. Program Counter Breakpoint Register (PBR) .. 6-38
6-14. Program Counter Breakpoint Mask Register (PBMR) 6-38
6-15. Data Breakpoint Register (DBR).. 6-39
6-16. Data Breakpoint Mask Register (DBMR) ... 6-39
6-17. Trigger Definition Register (TDR) .. 6-40
6-18. Configuration/Status Register (CSR) ... 6-42
6-19. BDM Address Attribute Register (BAAR) ... 6-46
6-20. Recommended BDM Connector .. 6-47

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

MOTOROLA Version 3 ColdFire Core User’s Manual iii

Section 7
Test

7-1. Example Registered CF3TW Architecture ... 7-4
7-2. CF3TW to Non-Core Input Scan Stuck-At Vector Example 7-7
7-3. CF3TW to Non-Core Delay Scan Vector Example .. 7-8
7-4. Non-Core to CF3TW Input Scan Stuck-At Vector Example 7-10
7-5. Non-Core to CF3TW Input Scan Delay Vector Example 7-11
7-6. Two Allowed Methods of mtmod distribution.. 7-13
7-7. Chip-Level CF3Core Parallel Scan Input Connection.................................... 7-15
7-8. Chip-Level CF3Core Parallel Scan Output Connection 7-15
7-9. Chip-Level CF3Core Parallel Scan Input Connection.................................... 7-16
7-10. Chip-Level CF3Core Parallel Scan Output Connection 7-16

MOTOROLA

Version 3 ColdFire Core User’s Manual i

LIST OF TABLES

Table Page
Number Title Number

Section 3
Version 3 Core

3-1. CF3Core Pin Specification ..3-4
3-2. M-Bus Signal Summary .. 3-8
3-3. M-Bus Interrupt Priority Level Encodings.. 3-9
3-4. M-Bus Transfer Size Encodings - 32-bit Data Bu ... 3-9
3-5. M-Bus Transfer Type Encodings... 3-10
3-6. M-Bus Transfer Modifier Encodings for MTT = 0- ...3-10
3-7. M-Bus Transfer Modifier Encodings for MTT = 10 ..3-10
3-8. M-Bus Transfer Modifier Encodings for MTT = 11 ..3-11
3-9. Processor Operand Representation.. 3-16
3-10. MRDATA Requirements for Read Transfers... 3-17
3-11. MWDATA Bus Requirements for Write Transfers... 3-17
3-12. Allowable Line Access Patterns.. 3-18

Section 4
V3 CPU

4-1. MOVEC Register Map... 4-11
4-2. Exception Vector Assignments ... 4-14
4-3. Format Field Encoding.. 4-15
4-4. Fault Status Encodings ... 4-15
4-5. Integer Data Formats .. 4-19
4-6. Effective Addressing Modes and Categories .. 4-22
4-7. Notational Conventions.. 4-22
4-8. Instruction Set Summary.. 4-24

Section 5
Processor-Local Memories

5-1. Synchronous Memory Truth Table (Sampled @ positive edge of clk) 5-3
5-2. CF3Core Unified Cache Sizes and Configurations... 5-7
5-3. Cache Line State Transitions... 5-22
5-4. RAM Base Address Bits.. 5-25
5-5. Examples of Typical RAMBAR Settings.. 5-28
5-6. ROM Base Address Bits ... 5-29
5-7. Examples of Typical ROMBAR Settings ... 5-31

LIST OF TABLES (Continued)

Figure Page
Number Title Number

ii Version 3 ColdFire Core User’s Manual MOTOROLA

Section 6
Debug Support

6-1. Processor Status Encoding... 6-3
6-2. CPU-Generated Message Encoding... 6-10
6-3. BDM Command Summary.. 6-11
6-4. BDM Size Field Encoding ... 6-12
6-5. Control Register Map.. 6-27
6-6. Definition of DRc Encoding - Read ... 6-29
6-7. Definition of DRc Encoding - Write ... 6-30
6-8. DDATA[3:0], CSR[31:28] Breakpoint Response... 6-31
6-9. Shared BDM/Breakpoint Hardware... 6-33
6-10. Access Size and Operand Data Location ... 6-40

Appendix B
Instruction Execution Times

B-1. Misaligned Operand References ... B-ii
B-2. Move Byte and Word Execution Times... B-ii
B-3. Move Long Execution Times .. B-ii
B-4. MAC Move Long Instruction Execution Times... B-iii
B-5. One Operand Instruction Execution Times.. B-iii
B-6. Two Operand Instruction Execution Times ..B-iv
B-7. Miscellaneous Instruction Execution Times...B-v
B-8. General Branch Instruction Execution Times... B-vi
B-9. BRA, Bcc Instruction Execution Times .. B-vi
B-10. Another Table of Bcc Instruction Execution Times B-vii

MOTOROLA

Version 3 ColdFire Core User’s Manual 1-1

SECTION 1
INTRODUCTION

This manual summarizes the operation and use of the Version 3 ColdFire processor
complex reference design. The processor complex design includes the processor core, the
debug module, high-speed processor local bus and associated memory controllers plus
interface bus controller. Collectively, this reference design is known as CFxRef, where x
defines the appropriate version of the microarchitecture. This document details the
microarchitecture, functionality, core interface and test strategy for the Version 3 ColdFire
reference design. Specific deployments of the CF3Ref design are named by a notation
which identifies the presence of optional functional blocks. As examples, the CF3 design
includes the basic CF3Ref design without the optional Multiply-Accumulate Unit (MAC),
while the CF3M implementation includes the MAC unit.

The ColdFire microprocessor architecture provides new levels of price and performance to
the emerging cost-sensitive, high-volume embedded markets, especially in the area of
consumer products. Based on the concept of a variable-length RISC technology, ColdFire
combines the architectural simplicity of conventional 32-bit RISC with a memory-saving,
variable-length instruction set. In defining the ColdFire architecture for embedded
processing applications, Motorola has incorporated a RISC-based processor design for
peak performance and a simplified version of the variable-length instruction set found in the
M68000 Family for maximum code density. The result is a family of 32-bit microprocessors
ideally suited for those embedded applications requiring high performance in a small core
size.

The ColdFire performance roadmap, announced in 3Q96, defines a series of
microarchitecture versions, which when coupled with improved process technology provides
increasing levels of performance, up to 300 Dhrystone 2.1 MIPS by the year 2001. The
Version 3 processor represents the early-midpoint of the roadmap providing a performance
of approximately 70 Dhrystone 2.1 MIPS in a 90 MHz implementation using 0.35 micron
semiconductor process technology. This performance metric can also be expressed as 0.78
Dhrystone 2.1 MIPS per MHz for the Version 3 ColdFire core, assuming a cache size of 4
KBytes or larger.

1.1 WHY COLDFIRE!
The ColdFire family of 32-bit microprocessors provides balanced system solutions to a
variety of embedded markets. The following list details a number of the basic philosophies
applicable to all ColdFire designs:

• The Instruction Set Architecture (ISA) and resulting code density directly
translate in lower memory costs, both for internal and external memory
subsystems

INTRODUCTION

1-2 Version 3 ColdFire Core User’s Manual MOTOROLA

•

Small, fully-synthesizable processor complexes
- Developments are on track with performance roadmap reaching 300

MIPS by 2001
- 100% synthesizable design and use of compiled memory arrays plus

function-level parameterization allow system designers to easily define
CPU configurations

- Can easily move to any process technology targeting different
operating voltages and frequencies

- Supports cost-effective integration capabilities

•

Modular system architecture
- A hierarchy of system buses provides layers of bandwidth and supports

an efficient partitioning of the optional, on-chip modules
- CFxRef designs support configurable processor-local memories, e.g.,

cache, RAM, ROM, with sizes from [0 - 32 KBytes]
- Standard Motorola peripheral bus promotes reuse of synthesizable

modules

•

Full-featured debug module
- Common debug architecture does not require traditional connection to

external bus, and yet provides background debug mode (BDM) capabil-
ities plus real-time trace and debug functionality

- Standard interface used in Motorola parts and completely embedded,
customer-specific designs using 3rd-party developer tools

•

Bridge from the 19-year M68000 Family legacy
- Reuse of 68K assembly language simplified through conversion tool
- Leverages system designer and programmer knowledge base
- Leverages mature 3rd-party developer tools

MOTOROLA

Version 3 ColdFire Core User’s Manual 2-1

SECTION 2
ARCHITECTURAL OVERVIEW

The following block diagram depicts the standard ColdFire microprocessor configuration.
The hierarchical bus structure (Processor-Local, Master, Slave and External Buses)
provides varying layers of data bandwidth and supports an efficient partitioning of the
optional, on-chip modules. This hierarchy of buses are also known by their abbreviated
names: the processor-local bus is the K-Bus, the Master Bus is the M-Bus, the Slave Bus is
the S-Bus and finally, the External Bus is the E-Bus. The modular system architecture is
readily apparent. The ColdFire processor complex reference design is defined by the
CFxCore level of hierarchy. The CFxCoreKmem boundary includes the core design plus the
required processor-local memories for a given design.

Within the CFxCore, the processor is connected via a local, high-speed bus to a number of
memory controllers and a bus controller. The processor-local memories include cache
storage, as well as blocks of RAM and ROM. The memory controllers contained within the
CFxCore design all support a range of sizes, allowing the system designer the ability to
specify the optimum memory organization for a given application. Transfers on the
processor-local bus are controlled by the K2M bus controller, which is also responsible for
initiation and control of all accesses onto the next-level system bus, the Master Bus. The
processor-local bus is designed to provide a maximum amount of bandwidth from these
high-speed memories to support the processor’s efficient execution of instructions.

The CFxCore plus all other bus masters are connected at the microprocessor level via the
Master Bus, which provides the primary interface between the ColdFire core and the other
system-level components. Any device which can initiate bus cycles is typically connected to
the Master Bus. Example modules include Direct-Memory Access devices (DMA), or
another ColdFire processor complex. The Master Bus is typically connected to a System
Bus Controller (SBC) which provides two interfaces: one to a simple, on-chip Slave Bus, and
another to an application-specific External Bus. The Slave Bus generally is connected to any
number of standard peripheral modules, including functions like timers, UARTs and other
serial communication devices, parallel ports, etc. The use of a standard Motorola-defined
bus protocol promotes the reuse of these synthesizable modules. The specific
implementation and protocol details of the External Bus generally vary widely, depending on
system requirements.

In many implementations, the process technology may allow the processor complex to
operate at a higher frequency compared to the rest of the microprocessor. The CFxCore
design supports this notion of multiple clock domains, and features a standard
implementation which allows the core to be operated at any integer multiplier (n = 1,2,3,...)
faster than the rest of the design. For multiple clock domains, the boundary is the Master

ARCHITECTURAL OVERVIEW

2-2 Version 3 ColdFire Core User’s Manual MOTOROLA

Bus, i.e., the processor complex operates at the higher frequency, while the Master Bus and
the remainder of the microprocessor operate at the slower speed. This design approach
provides a well-defined and easy-to-use clock boundary, which simplifies interface design
and timing and eases production test complications. This topic is covered in more detail in

Section 3: ColdFire Core.

The overall ColdFire implementation strategy of 100% synthesizable designs and use of
compiled memory arrays coupled with the modular system architecture allows easy
movement to any process technology, and provides cost-effective integration capabilities
while targeting a variety of operating voltages and/or frequencies.

Figure 2-1. Generic ColdFire System Block Diagram

C

System
Bus

Controller

Slave
Module

Slave
Module

Master
Module

Slave-Bus

External-Bus

Master-Bus

DEBUG
CF Vx K2M

CACHEKRAM

Processor-Bus

KRAM

KROM

CACHEKROM

CACHE

 CTRL CTRL CTRL

MEM
ARRAY

MEM
ARRAY

TAG
ARRAY

DATA
ARRAY

 CPU

CFxCoreKmem

CFxCore

M
A

V

D
I

ARCHITECTURAL OVERVIEW

MOTOROLA Version 3 ColdFire Core User’s Manual 2-3

All ColdFire processor cores consist of two independent, decoupled pipeline structures to
maximize performance while minimizing core size. The Instruction Fetch Pipeline (IFP)
prefetches instructions, while the Operand Execution Pipeline (OEP) decodes the
instructions, fetches the required operands and then executes the specified functions. Since
the IFP and OEP are decoupled by an instruction buffer that serves as a FIFO queue, the
IFP can prefetch instructions in advance of their actual use by the OEP, thereby minimizing
time stalled waiting for the variable-length instructions. Consider the following Version 3
ColdFire processor block diagram:

Figure 2-2. Version 3 ColdFire Processor Block Diagram

IA Generation

Instruction
Fetch Cycle 1

FIFO
Instruction

Buffer

Decode & Select,
Operand Fetch

Address
Generation,

Execute

IFP

OEP

CF3
Processor

Kwdata

Instruction
Fetch Cycle 2

Instruction
Early Decode

IAG

IC1

IC2

IED

IB

DSOC

AGEX

Krdata

Kaddr

ARCHITECTURAL OVERVIEW

2-4 Version 3 ColdFire Core User’s Manual MOTOROLA

Here the processor’s non-Harvard architecture is readily apparent. The processor’s
connection to the local bus (K-Bus) is defined by the reference address (

Kaddr

), and two
unidirectional data buses,

Krdata

 (read data) and

Kwdata

 (write data), which transfer
instructions and operands into the processor core, or to the destination memories. This
structure minimizes the core size

without

 compromising performance to a large degree.

The IFP is a four-stage pipeline for prefetching instructions and partially decoding them,
while the OEP is implemented in a two-stage pipeline featuring a traditional RISC datapath
with a dual-read-ported register file feeding an arithmetic/logic unit.

Subsequent sections provide further details on the microarchitecture of the Version 3
ColdFire processor complex, along with a description of the Master Bus interface.

MOTOROLA

Version 3 ColdFire Core User’s Manual 3-1

SECTION 3
VERSION 3 CORE

3.1 INTRODUCTION
This section details the CF3Core interface and provides an overview of the functional
operation of the Master Bus (M-Bus).

Note that the CF3Core pin naming definition uses all lower case signal names, due to
various tool limitations. However, most of the documentation presented in this manual,
except for Section 3.2: CF3Core Signals, follows a convention with upper case names. It
is important to note that these conventions are meant to be equivalent, i.e., port signal “xyz”
is the same as signal “XYZ”. Additionally, the use of a “b” suffix in the pin naming definition
indicates an active-low signal, while the rest of the documentation uses an overbar, i.e.,
signal “xyzb” (xyz bar) is the same as “XYZ

”.

3.2 CF3CORE SIGNALS

This section details the pin name definition and pin order for the Version 3 ColdFire
reference design, specifically, the CF3Core design. This core is typically deployed in a
configuration where the processor-local memories are

not

 included in the design to provide
the system designer with the ability to configure and size those memories for a given
application.

A generic block diagram of a Version 3 ColdFire design is shown below, where the
CF3Core is represented by the shaded area.

VERSION 3 CORE

3-2 Version 3 ColdFire Core User’s Manual MOTOROLA

Figure 3- 1. Generic Version 3 ColdFire Block Diagram

This pin name and ordering definition is used in the following “views” of the CF3Core
design:

1. Behavioral RTL model used as input to synthesis and other implementation tools
2. C model used in encrypted form by the ISD toolkit
3. Gate-level netlist
4. Bus functional model
5. Interface structure for any cycle-based models

It should be noted that the CF3Core/KBus configurable memory interface is not actually
modeled in the bus functional or cycle-based models. For these models, the behavior of
this interface is described at a different abstraction level, but the pin list remains consistent
across all views.

System
Bus

Controller

Slave
Module

Slave
Module

Master
Module

S-Bus

E-Bus

M-Bus

DEBUG
CF V3 K2M

CACHEKRAM

K-Bus

KRAM

KROM

CACHEKROM

CACHE

 CTRL CTRL CTRL

MEM
ARRAY

MEM
ARRAY

TAG
ARRAY

DATA
ARRAY

 CPU

CF3Core

D
I
V

M
A
C

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-3

The CF3Core pin list can be broadly classified into the following groups:

Pins {1-41} CF3Core outputs

Pins {1-9} M-Bus outputs
Pins {10-15} Debug outputs
Pins {16-21} Test outputs
Pins {22-41} Outputs to K-Bus memories

Pins {42-88} CF3Core inputs

Pins {42-46} M-Bus inputs
Pins {47-50} Debug and configuration inputs
Pins {51-57} Test inputs
Pins {58-86} Inputs from K-Bus memories + memory configuration definitions
Pins {87-88} Clock inputs

All K-Bus memories are specified to be synchronous devices, where the CF3Core outputs
are

next-state

 values which are registered within the memory device.

The pin specification and ordering for the CF3Core is detailed in the following table. The
use of a “

b

” suffix in the name indicates an active-low signal. Bus widths are specified using
a vector notation, while no entry in this column indicates a scalar (1-bit) signal.

The following notes are applicable to certain CF3Core signals:

1. In general, most of the M-Bus and debug input signals are driven directly into input
capture registers within the CF3Core design. The

mahb

 and

mtab

 signals are driven into
combinational logic before being registered, so these inputs have a greater setup timing
requirement.

The

mrdata[31:0]

 input capture register is only loaded by the termination of an M-Bus data
phase. The

miplb[2:0]

 and

mrstib

 input signals are routed into free-running input capture
registers, while the

dsclk

,

dsdi

 and

mbkptb

 input signals are routed into two levels of free-
running registers which effectively serve as synchronizers.

All M-Bus and debug output signals are driven directly from registers within the CF3Core
design.

2. For CF3Core designs, it is necessary to output a clock signal from the microprocessor to
the standard ColdFire debug connector so that external emulators can correctly sample the

pst[3:0]

 and

ddata[3:0]

output signals. This output clock, typically named

pstclk

, is a
derivative of the processor’s clock signal and

must be formed external to the CF3Core
design

using the following boolean equation:

pstclk

 =

clkfast

 &

enpstclk

where

pstclk

 is the output signal,

clkfast

 is the processor’s clock signal and

enpstclk

 is a logical enable, defined by the user-programmed configuration of the debug

VERSION 3 CORE

3-4 Version 3 ColdFire Core User’s Manual MOTOROLA

module within the CF3Core design.

Table 3-1. CF3Core Pin Specification

No. Type Name Bus Width Description

1 Output

maddr

[31:0] M-Bus address

2 Output

mtt

[1:0] M-Bus transfer type

3 Output

mtm

[2:0] M-Bus transfer modifier

4 Output

mrw

M-Bus read/write

5 Output

msiz

[1:0] M-Bus transfer size

6 Output

mwdata

[31:0] M-Bus write data

7 Output

mwdataoe

M-Bus output enable

8 Output

mapb

M-Bus address phase

9 Output

mdpb

M-Bus data phase

10 Output

cpustopb

Processor is stopped

11 Output

cpuhaltb

Processor is halted

12 Output

enpstclk

PST/DDATA clock enable

13 Output

pst

[3:0] Processor status

14 Output

ddata

[3:0] Debug data

15 Output

dsdo

Development system data output

16 Output

so

[31:0] Core parallel scan outputs

17 Output

tbso

[3:0] Test boundary scan outputs

18 Output

ucpaddr

[31:4] U-Cache push tag address for BIST

19 Output

ucpdata

[31:0] U-Cache push data for BIST

20 Output

rcpshdrtyk2

U-Cache push written bit for BIST

21 Output

rcpshvldk2

U-Cache push valid bit for BIST

22 Output

nsentb

Next-state U-Cache tag enable

23 Output

nswrttb

Next-state U-Cache tag write

24 Output

nswlvt

[3:0] Next-state U-Cache tag write level

25 Output

nsinvat

Next-state U-Cache tag invalidate all

26 Output

nsrowst

[8:0] Next-state U-Cache tag address

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-5

27 Output

nsaddrt

[31:9] Next-state U-Cache tag data

28 Output

nssw

Next-state U-Cache tag written bit

29 Output

nssv

Next-state U-Cache tag valid bit

30 Output

nsendb

Next-state U-Cache data enable

31 Output

nswrtdb

[3:0] Next-state U-Cache data write level

32 Output

nswtbyted

[3:0] Next-state U-Cache data byte write

33 Output

nsrowsd

[10:0] Next-state U-Cache data address

34 Output

nscwrdata

[31:0] Next-state U-Cache write data

35 Output

kramaddr

[14:2] Next-state KRAM address

36 Output

kramdi

[31:0] Next-state KRAM write data

37 Output

kramweb

[3:0] Next-state KRAM write enable

38 Output

kramcsb

Next-state KRAM chip select

39 Output

kramdata

[31:0] Next-state KRAM data for BIST

40 Output

kromaddr

[14:2] Next-state KROM address

41 Output

kromcsb

Next-state KROM chip select

42 Input

mrdata

[31:0] M-Bus read data

43 Input

mtab

M-Bus transfer acknowledge

44 Input

mahb

M-Bus address hold

45 Input

miplb

[2:0] M-Bus interrupt request priority level

46 Input

mrstib

M-Bus reset

47 Input

dsclk

Development system clock

48 Input

dsdi

Development system data input

49 Input

mbkptb

Development system breakpoint

50 Input

en000iack

Enable 68000-style IACK cycles

51 Input

bistplltest

BIST or PLL test mode

52 Input

si

[31:0] Core parallel scan inputs

53 Input

se

Core parallel scan enable

54 Input

tbsi

[3:0] Test boundary scan inputs

Table 3-1. CF3Core Pin Specification

No. Type Name Bus Width Description

VERSION 3 CORE

3-6 Version 3 ColdFire Core User’s Manual MOTOROLA

55 Input

tbsei

Test boundary scan enable - inputs

56 Input

tbseo

Test boundary scan enable - outputs

57 Input

tbte

Test boundary pcell test enable

58 Input

ucsz

[2:0] Encoded U-Cache size

59 Input

ucnoif

Block instructions from U-Cache

60 Input

ucnoop

Block operands from U-Cache

61 Input

bistmode

BIST test mode

62 Input

bisttaglvl

[1:0] BIST tag level select

63 Input

bistdatalvl

[1:0] BIST data level select

64 Input

uctag3do

[31:9] U-Cache level 3 tag data output

65 Input

ucw3do

U-Cache level 3 written bit output

66 Input

ucv3do

U-Cache level 3 valid bit output

67 Input

uctag2do

[31:9] U-Cache level 2 tag data output

68 Input

ucw2do

U-Cache level 2 written bit output

69 Input

ucv2do

U-Cache level 2 valid bit output

70 Input

uctag1do

[31:9] U-Cache level 1 tag data output

71 Input

ucw1do

U-Cache level 1 written bit output

72 Input

ucv1do

U-Cache level 1 valid bit output

73 Input

uctag0do

[31:9] U-Cache level 0 tag data output

74 Input

ucw0do

U-Cache level 0 written bit output

75 Input

ucv0do

U-Cache level 0 valid bit output

76 Input

uclvl3do

[31:0] U-Cache level 3 data output

77 Input

uclvl2do

[31:0] U-Cache level 2 data output

78 Input

uclvl1do

[31:0] U-Cache level 1 data output

79 Input

uclvl0do

[31:0] U-Cache level 0 data output

80 Input

kramsz

[2:0] Encoded KRAM size

81 Input

encf5307kram

Enable CF5307-style KRAM

82 Input

enraptorkram

Enable Raptor-style KRAM

Table 3-1. CF3Core Pin Specification

No. Type Name Bus Width Description

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-7

See

Appendix A: CF3Core Interface Timing Constraints

for detailed information on the
synthesis timing budgets for the CF3Core interface signals.

3.3 COLDFIRE MASTER BUS

3.3.1 Introduction

The ColdFire architecture implements a hierarchy of buses to provide the necessary
interconnection and bandwidth among the various components (processors, peripherals,
etc.) in a system.The Master Bus (M-Bus) is the system interconnect between multiple
masters (including processors) and the System Bus Controller (SBC). The System Bus
Controller provides additional connectivity to an optional internal Slave Bus (S-Bus)
containing on-chip peripheral modules, as well as the external system via the External Bus
(E-Bus). The M-, S-, and E-Buses operate with a Motorola-defined bus protocol. Providing
this bus protocol support allows integration of devices at any level in the system.

The ColdFire architecture is designed to allow multiple clock frequency domains. The
ColdFire processor can be operated at any integer multiple (n:1, where n = 1, 2,...) of the M-
Bus clock frequency. The ColdFire processor’s M-Bus interface is the boundary from the
processor’s clock domain to the M-Bus clock domain.

This section presents the M-Bus and its operation. It details specific M-Bus protocols
needed to support the multiple clock domains and gives system clocking guidelines.

3.3.2 M-Bus Signals

This section defines the signals required by the M-Bus. Although the timing of all of these
signals is referenced to the system clock, the system clock is not considered a bus signal. It
is expected that the clock is routed as needed to meet application requirements.

This section describes M-Bus signals as viewed by the Bus Master. Table 3-2 gives a
summary of the signals. A brief description of the signal’s functionality follows.

Note that an overbar indicates an active-low signal.

83 Input

kramdo

[31:0] KRAM data output

84 Input

kromsz

[2:0] Encoded KROM size

85 Input

kromvldrst

KROM valid at reset

86 Input

kromdo

[31:0] KROM data output

87 Input

mclken

Clock phase relationship definer

88 Input

clkfast

Processor core clock

Table 3-1. CF3Core Pin Specification

No. Type Name Bus Width Description

VERSION 3 CORE

3-8 Version 3 ColdFire Core User’s Manual MOTOROLA

The preceding section provided the actual pin names and order for the Version 3 ColdFire
core reference design, while this section details the M-Bus operation from a functional
perspective.

3.3.2.1 M-BUS READ DATA (MRDATA[31:0]).

These unidirectional input signals provide
the read data path between the system bus controller and internal masters. The read data
bus is 32 bits wide and can transfer 8, 16 or 32 bits of data per bus transfer. During a line
transfer, the data lines are time-multiplexed across multiple cycles to carry 128 bits.

3.3.2.2 M-BUS ADDRESS HOLD (MAH).

This input signal is asserted to indicate that the
address and attributes should be held. This signal indicates that the SBC is not ready to
accept the address phase of the bus cycle. This signal is also used in bus arbitration
situations to halt the master when it does not have the M-Bus.

3.3.2.3 M-BUS TRANSFER ACKNOWLEDGE (MTA).

This input signal is asserted to
indicate the successful completion of a requested bus transfer.

3.3.2.4 M-BUS RESET (MRSTI).

This input signal directs all M-Bus modules (including the
core) to enter reset mode.

Table 3-2. M-Bus Signal Summary

SIGNAL NAME DIRECTION DESCRIPTION

MRDATA[31:0]

In Read Data Bus

MAH

In Address Hold

MTA

In Transfer Acknowledge

MRSTI

In M-Bus Reset

MIPL[2:0]

In Interrupt Priority Level

MADDR[31:0]

Out Address Bus

MAP

Out Address Phase

MDP

Out Data Phase

MSIZ[1:0]

Out Transfer Size

MRW

Out Read/Write

MTT[1:0]

Out Transfer Type

MTM[2:0]

Out Transfer Modifier

MWDATA

Out Write Data Bus

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-9

3.3.2.5 M-BUS INTERRUPT PRIORITY LEVEL (MIPL[2:0]).

These three input signals
indicate to the processor that there is a pending interrupt request. Table 3-3 shows the
encoding for the

MIPL

 signals.

3.3.2.6 M-BUS ADDRESS (MADDR[31:0]).

During a normal bus cycle, these output
signals provide the address of the first item of a bus transfer.

MADDR

 is 32 bits wide with
all signals being unidirectional.

3.3.2.7 M-BUS ADDRESS PHASE (MAP).

This output signal indicates that the address
and attributes are being driven and that the address phase of the bus cycle is active.

3.3.2.8 M-BUS DATA PHASE (MDP).

This output signal indicates that the data phase of
the cycle is active. This means that data is driven by the bus master during the cycle if the
access is a write. During a read, data may be driven back to the bus master. The bus cycle
is always terminated during the data phase.

3.3.2.9 M-BUS TRANSFER SIZE (MSIZ[1:0]).

These output signals indicate the data size
for the bus transfer. Refer to Table 3-4 for the bus size encodings.

Table 3-3. M-Bus Interrupt Priority Level Encodings

MIPL[2:0] Interrupt Level

111 No Interrupt Pending

110 Level 1

101 Level 2

100 Level 3

011 Level 4

010 Level 5

001 Level 6

000 Level 7

Table 3-4. M-Bus Transfer Size Encodings - 32-bit Data Bus

MSIZ[1:0] Transfer Size

00 Longword (4 bytes)

01 Byte (1 byte)

10 Word (2 bytes)

11 Line (16 bytes)

VERSION 3 CORE

3-10 Version 3 ColdFire Core User’s Manual MOTOROLA

3.3.2.10 M-BUS READ/WRITE (MRW).

This output signal indicates the data transfer
direction for the current bus cycle. A high level indicates a read cycle and a low level
indicates a write cycle.

3.3.2.11 M-BUS TRANSFER TYPE (MTT[1:0]).

These output signals indicate the type of
access of the current bus cycle. Table 3-5 shows the definition of the transfer type
encodings. The alternate master access is used to indicate a non-core master is requesting
the transfer.

3.3.2.12 M-BUS TRANSFER MODIFIER (MTM[2:0]).

These output signals provide
supplemental information for each transfer type. Refer to Table 3-6 for normal transfer
encodings and Table 3-7 for processor emulator mode transfer encodings. Table 3-8 shows
the encoding for acknowledge or CPU Space accesses. For interrupt acknowledge
transfers, the

MTM

signals carry the interrupt level being acknowledged. For CPU space
transfers, the

MTM

signals are low.

Table 3-5. M-Bus Transfer Type Encodings

MTT[1:0] Transfer Type

00 Processor Access

01 Alternate Master Access

10 Processor Emulator Mode Access

11 Acknowledge or CPU Space Access

Table 3-6. M-Bus Transfer Modifier Encodings for MTT = 0-

MTM[2:0] Transfer Modifier

000 Reserved

001 User Data Access

010 User Code Access

011 - 100 Reserved

101 Supervisor Data Access

110 Supervisor Code Access

111 Reserved

Table 3-7. M-Bus Transfer Modifier Encodings for MTT = 10

MTM[2:0] Transfer Modifier

000 - 100, 111 Reserved

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-11

3.3.2.13 M-BUS WRITE DATA (MWDATA[31:0]).

These unidirectional output signals
provide the write data path between an internal master and the system bus controller. The
write data bus is 32 bits wide and can transfer 8, 16 or 32 bits of data per bus transfer. During
a line transfer, the data lines are time-multiplexed across multiple cycles to carry 128 bits.

3.3.3 M-Bus Operation

The M-Bus is a two-stage, synchronous pipelined bus. This gives it an effective bandwidth
rate of up to one transfer per clock.

3.3.3.1 BASIC BUS CYCLES.

The bus transaction is split into two phases. The first phase
is the address phase. During this phase, the address (

MADDR

) and attribute signals (

MSIZ

,

MRW

,

MTT

, and

MTM

) are driven. The Address Phase signal (

MAP

) is asserted to show
that the bus is in the address phase.

The second part of the transaction is the data phase. The Data Phase (

MDP

) signal is
asserted to show that the bus is in the data phase and that data transfer may now take place.
The data phase stays active until the bus cycle is terminated with a Transfer Acknowledge
(

MTA

). On a write cycle, the Write Data Bus (

MWDATA

) is driven for the duration of the data
phase. On a read cycle, the Read Data Bus (

MRDATA

) is sampled by the bus master
concurrently with

MTA

 at the rising clock edge. Figure 3- 4 shows the basic read and write
operations.

101 Emulator Mode Data Access

110 Emulator Mode Code Access

Table 3-8. M-Bus Transfer Modifier Encodings for MTT = 11

MTM[2:0] Transfer Modifier

000 CPU Space

001 Interrupt Level 1 Acknowledge

010 Interrupt Level 2 Acknowledge

011 Interrupt Level 3 Acknowledge

100 Interrupt Level 4 Acknowledge

101 Interrupt Level 5 Acknowledge

110 Interrupt Level 6 Acknowledge

111 Interrupt Level 7 Acknowledge

Table 3-7. M-Bus Transfer Modifier Encodings for MTT = 10

MTM[2:0] Transfer Modifier

VERSION 3 CORE

3-12 Version 3 ColdFire Core User’s Manual MOTOROLA

Figure 3- 4. Basic Read and Write Cycles

3.3.3.2 PIPELINED BUS CYCLES.

Since the bus is pipelined, it is possible for the address
phase of the next bus cycle to become valid while the data phase of the current bus cycle is
still valid. It is not possible for the address and data phases of the same bus cycle to be
concurrently valid. Figure 3- 5 shows two basic bus cycles that have been pipelined. For
illustration purposes, a read and write cycle are used in Figure 3-4. There are no restrictions
on cycles being either reads or writes in order for them to be pipelined.

MADDR &

MAP

MAH

MDP

MTA

MRW

MRDATA

MWDATA

ADDRESS
PHASE

DATA
PHASE

ADDRESS
PHASE

DATA
PHASE

READ CYCLE WRITE CYCLE

 Attributes

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-13

Figure 3- 5. Pipelined Read and Write

3.3.3.3 ADDRESS AND DATA PHASE INTERACTIONS.

Bus timing, performance, and
arbitration are controlled by handling the address and data phases of the bus cycle. The
general rules for controlling the phases are:

• The address phase is allowed to begin when there is no active address phase.

• The address phase is allowed to end and the data phase to begin when the address
hold (

MAH

) signal is not asserted and there is either no active data phase or the active
data phase is being terminated.

• The data phase is allowed to end when the cycle is terminated with

MTA

.

There is one special rule that applies only to M-Bus masters that are ColdFire processors
operating at the same clock frequency as the M-Bus (i.e., the processor ‘s clock domain and
the M-Bus clock domain have the same frequency, the so-called

1X clock mode)

. This
special rule is a restriction on the second general rule above:

• For a processor operating in 1X clock mode, the processor’s address phase is allowed
to end and the data phase to begin when the address hold (

MAH

) signal is not asserted
and there is either no active data phase or the active data phase is not from this
processor and is being terminated.

ADDRESS
PHASE

DATA
PHASE

ADDRESS
PHASE

DATA
PHASE

READ CYCLE

WRITE CYCLE

MADDR &

MAP

MAH

MDP

MTA

MRW

MRDATA

MWDATA

 Attributes

VERSION 3 CORE

3-14 Version 3 ColdFire Core User’s Manual MOTOROLA

That is, for a ColdFire Processor operating in 1X clock mode, there must be one M-Bus cycle
where that processor’s data phase is inactive before its active address phase can progress
to a data phase.

The implications of the general bus rules are:

• The bus master is held off (usually for bus arbitration) by asserting the

MAH

 signal. This
assures that the address and attributes remain valid and that the data phase is not
entered.

• Pipelining is accomplished by allowing the next address phase to begin during the data
phase as soon as the next address is available.

• Wait states are introduced by withholding the termination signal

MTA

.

The implications of the special 1X clock mode rule are:

• If a ColdFire processor operating in 1X clock mode has both an active address phase
and an active data phase, the M-Bus control module must assert the

MAH

 signal on the
last M-Bus transfer acknowledge. This forces the ColdFire processor to hold in its
address phase until its data phase has been idle for at least one cycle.

• A simple implementation of this 1X clock mode rule is to connect the

MTA

 signal from
the System Bus Controller to both the

MTA

 and

MAH

 inputs ports of the CF3Core
design.

Figure 3- 6 shows the

MAP

 signal asserted during the same clock that

MAH

 is asserted.
The address phase is held until

MAH

 is negated. At this point,

MDP

 is asserted to show that
the data phase of the first cycle has begun. Since the address for the next bus cycle is
available,

MAP

 remains asserted to indicate that the address phase of the second cycle has
begun. One wait state is inserted into the bus cycle by delaying

MTA

 until the next clock. In
this case,

MAP

 is negated after termination because there is not another address available
from the bus master.

MDP

 is not negated because at termination the address phase of the
second cycle transitions to the data phase. Since the termination signal remains asserted,
the data phase of the second cycle is only one clock long.

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-15

Figure 3- 6. Address Hold Followed by 1- and 0-Wait State Cycles

Figure 3- 7 demonstrates that

MAP

 may be generated in the center of the data phase. It also
shows that

MAH

 may be generated while a data phase is active. In this case, the current
data phase is completed, but the next cycle is not allowed to transition to the data phase.

Figure 3- 7. MAP and MAH Generated Mid-Data Phase

Figure 3-6 demonstrates the special rule for 1X clock mode. It shows a 1X clock mode
processor in its address phase (Address Phase 2) being held on the last

MTA

 of its current
data phase (Data Phase 1) by

MAH

.

MADDR &

MAP

MAH

MDP

MTA

 Attributes

Address Phase 1 Address Phase 2

Data Data
Phase 2Phase 1

MADDR &

MAP

MAH

MDP

MTA

 Attributes

Address Address Phase 2

Data Phase 1 Data
Phase 2

Phase 1

VERSION 3 CORE

3-16 Version 3 ColdFire Core User’s Manual MOTOROLA

Figure 3- 8. MAH Generation for 1X Clock Mode

3.3.3.4 DATA SIZE OPERATIONS.

The processor designates all operands for transfers on
a byte-boundary system using the nomenclature shown in Table 3-9. These designations
shown are used in the subsequent descriptions.

A bus cycle is a request to transfer data from the bus master to some slave device. Since
the ColdFire Architectures supports byte, word, and longword operand types, on misaligned
boundaries, there are certain requirements on the bus architecture to support these data
types. The main support is to guarantee that each byte of data is aligned to the proper “lane”
to assure it is handled properly by both master and slave. Note also, that for line transfers,
the data alignment is treated as 4 longword transfers. Specific protocols to handle these
transfers are discussed in the next section.

All transfers on M-Bus assume that the devices on M-Bus are 32 bits wide. If dynamic sizing
is supported in a system, to word or byte ports, it is handled by the System Bus Controller.
To support this bus sizing feature, there are certain

data replication functions which must be
performed by all M-Bus masters during write cycles

. For all data transfers,

MADDR[31:2]

indicates the longword base address of the first byte of the reference item.

MADDR[1:0]

Table 3-9. Processor Operand Representation

BITS[31:24] BITS[23:16] BITS[15:8] BITS[7:0] FORMAT

OP0 OP1 OP2 OP3 Longword Operand

OP2 OP3 Word Operand

OP3 Byte Operand

MADDR &

MAP

MAH

MDP

MTA

 Attributes

Address Address Phase 2

Data Phase 1 Data
Phase 2

Phase 1

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-17

indicates the byte offset from this base address. The

MSIZ[1:0]

 field along with the low-order
2 address bits are used to determine how the data buses are used.

The following tables, Table 3-10 and Table 3-11, indicate

MRDATA

 requirements for read
transfers and

MWDATA

requirements for write transfers. A “-” indicates a “don’t care”, i.e.,
the value is ignored. These tables define the complete set of allowable combinations of

MSIZ[1:0]

 and

MADDR[1:0]

.

3.3.3.5 LINE TRANSFERS.

A line is defined as a 16-byte value, aligned in memory on 0-
modulo-16 address boundary. On the M-Bus, this is seen as an address phase followed by
a data phase during which 4 longwords of data are transferred. Transfers on each of these
data phases are longword in size. Although the line itself is aligned on 16-byte boundaries,
the line access does not necessarily begin on a 0-modulo-16 address. They can begin at

Table 3-10. MRDATA Requirements for Read Transfers

Transfer
Size

MSIZ
[1:0]

MADDR
[1:0]

MRDATA
[31:24]

MRDATA
[23:16]

MRDATA
[15:8]

MRDATA
[7:0]

Byte 01 00 OP3 - - -

01 01 - OP3 - -

01 10 - - OP3 -

01 11 - - - OP3

Word 10 00 OP2 OP3 - -

10 10 - - OP2 OP3

Long 00 00 OP0 OP1 OP2 OP3

Line 11 00 OP0 OP1 OP2 OP3

Table 3-11. MWDATA Bus Requirements for Write Transfers

Transfer
Size

MSIZ
[1:0]

MADDR
[1:0]

MWDATA
[31:24]

MWDATA
[23:16]

MWDATA
[15:8]

MWDATA
[7:0]

Byte 01 00 OP3 - - -

01 01 OP3 OP3 - -

01 10 OP3 - OP3 -

01 11 OP3 OP3 - OP3

Word 10 00 OP2 OP3 - -

10 10 OP2 OP3 OP2 OP3

Long 00 00 OP0 OP1 OP2 OP3

Line 11 00 OP0 OP1 OP2 OP3

VERSION 3 CORE

3-18 Version 3 ColdFire Core User’s Manual MOTOROLA

any aligned long word address with

MADDR[1:0]

 = 00. Therefore, the slave system
(combination of the SBC, modules, and external devices) must be able to cycle through the
longword addresses. The allowable patterns during a line accesses are shown in Table 3-
12 below:

Figure 3-7 shows a line access read with zero wait states. Note that another address phase
may be initiated at any time during the data phase. This address phase corresponds to the
next bus cycle. Also note that the address hold may be asserted during this time. Address
hold has no effect on the data phase of a line access. The line access completes and the
address is held before the next data phase is allowed.

Figure 3- 9. Line Access Read with Zero Wait States

Table 3-12. Allowable Line Access Patterns

MADDR[3:2]

Longword Accesses

00 $0 - $4 - $8 - $C

01 $4 - $8 - $C - $0

10 $8 - $C - $0 - $4

11 $C - $0 - $4 - $8

MADDR &

MAP

MAH

MDP

MTA

MRW

MRDATA

 Attributes

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-19

Figure 3- 10. Line Access Read with 1 Wait State

Figure 3-9 and Figure 3-10 show line write accesses. Note that the next long word of data
is available on the clock immediately following the termination. There may be cases where
data may be pipelined to the external bus by terminating the access and registering the data
in the System Bus Controller during the first clock of the data phase. This allows the next
longword of data to be available at the next rising clock edge.

Figure 3- 11. Line Access Write with Zero Wait States

MADDR &

MAP

MAH

MDP

MTA

MRW

MRDATA

 Attributes

MADDR &

MAP

MAH

MDP

MTA

MRW

MWDATA

 Attributes

VERSION 3 CORE

3-20 Version 3 ColdFire Core User’s Manual MOTOROLA

Figure 3- 12. Line Access Write with One Wait State

3.3.3.6 BUS ARBITRATION.

Multiple bus masters are handled on the M-Bus through a
multiplexed bus scheme. There cannot be multiple masters on the same physical bus.
Figure 3-11 shows the top level architecture of a two-master, multiplexed M-Bus system.
Mux control is provided by the arbitration block. The address, attributes, write data,

MAP

and

MDP

 are multiplexed to the System Bus Controller. The current bus master’s signals
are muxed onto the common bus. The termination and address hold signals are
demultiplexed and routed to the appropriate bus master. Reset signals and read data do not
need to be multiplexed. Address hold is generated by the arbitration logic to stall the master
that does not currently have the bus.

The multiplexed scheme was adopted to more easily accommodate a standard cell
methodology. There are no three-state or bidirectional signals on the bus. One implication
of this architecture is that the addition of more bus masters causes the multiplexing to
become more complex and possibly creates timing problems. Designs should seek to limit
the number of M-Bus masters. For instance, instead of putting three DMA modules on the
M-Bus, a single 3-channel DMA should be investigated.

MADDR &

MAP

MAH

MDP

MTA

MRW

MWDATA

 Attributes

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-21

Figure 3- 13. Multiplexed M-Bus Structure

Figure 3-12 shows waveforms with two bus masters multiplexed onto a common M-Bus. The
exact arbitration scheme and relative priority of bus masters is not defined in this document.
That is determined by the implementation of the arbitration logic. In this example, bus master
#1 represents the default bus master, such as a core processor. The

MAH

 signal for this
master is normally high allowing the master to utilize the bus as needed. When bus master
#2, which serves as the alternate master, such as a DMA controller, needs the bus, it asserts
its

MAP

 signal which serves as the bus request. The arbiter begins the bus transition by
asserting

MAH1

 to hold off the first bus master. It also transitions

SEL_A_1

which is the mux
control signal for address, attributes, and

MAP

. Since there is an active data phase on the
bus, the data portion of the bus is not allowed to be muxed until termination of that bus cycle.
At that point,

SEL_D_1

 the mux control for

MWDATA

,

MDP

, and

MTA

 is toggled. The
second bus master runs its bus cycle, on the common bus, and the bus is then returned to
the first bus master. Note that there is no need to multiplex

MRDATA

. Since data is sampled
by the bus master when the data phase is terminated, control of the termination signal is
sufficient.

Bus Master
#1

Bus Master
#2

Bus Arbitration
And

Multiplexing

System
Bus

Controller

M-Bus
#1

M-Bus
#2

Common
M-Bus

External
BusS-Bus

VERSION 3 CORE

3-22 Version 3 ColdFire Core User’s Manual MOTOROLA

Figure 3- 14. Multiplexed M-Bus Operation

3.3.3.7 INTERRUPT SUPPORT.

Interrupts are supported on the M-Bus by the

MIPL

signals and Interrupt Acknowledge Cycles. When an interrupt is pending, the SBC is

MADDR1 &

MAP1

MAH1

MDP1

MTA1

MWDATA1

 Attributes

MADDR2 &

MAP2

MAH2

MDP2

MTA2

MWDATA2

 Attributes

MADDR &

MAP

MDP

MTA

MRDATA

MWDATA

 Attributes

SEL_A_1

SEL_D_1

B
u

s
M

as
te

r
#1

B
u

s
M

as
te

r
#2

C
o

m
m

o
n

 M
-B

u
s

M
u

x
C

o
n

tr
o

l

VERSION 3 CORE

MOTOROLA Version 3 ColdFire Core User’s Manual 3-23

responsible for driving the

MIPL

 signals to the processor to request interrupt processing.
The interrupted processor runs an acknowledge cycle to request the interrupt vector to begin
exception processing. The interrupt acknowledge cycle looks like a standard byte read
cycle. For this cycle, the

MTT

 signals indicate an acknowledge cycle (

MTT[1:0]

 = 11) and
the interrupt level of the interrupt being processed is specified in the

MTM

 signals.
Additionally, the address lines

MADDR[31:5]

 are all driven high, the interrupt level is
reflected on

MADDR[4:2]

 and the lower two address bits,

MADDR[1:0]

, are zero. The 8-bit
interrupt vector is returned on

MDATA[31:24]

.

3.3.3.8 RESET OPERATION.

When a master is reset, that is when

MRSTI

 is driven low,
the bus control signals of that M-Bus master are driven to their inactive state. This means
that

MAP

,

MDP

,

MRW

 and

MTA

 are all driven high.

MAH

 is an exception to this case and
may be driven high or low depending on the specific system implementation.

MOTOROLA

Version 3 ColdFire Core UserÕs Manual

4-1

SECTION 4
V3 CPU

4.1 INTRODUCTION

The design focus of the Version 3 (V3) ColdFire processor was the development of a higher
performance core while maintaining backward code compatibility with the previous
generation, the Version 2 core. The V3 core represents another step on the ColdFire
roadmap, and with its enhanced pipeline structure and local memories, provides a high level
of performance needed by todayÕs demanding embedded applications.

4.2 VERSION 3 PROCESSOR MICROARCHITECTURE

4.2.1 Version 3 Processor Pipeline Overview

All ColdFire processor cores consist of two independent, decoupled pipeline structures to
maximize performance. The Instruction Fetch Pipeline (IFP) prefetches instructions, while
the Operand Execution Pipeline (OEP) decodes the instruction, fetches the required
operands and then executes the specified function. While one of the goals of the original
ColdFire microarchitecture was to minimize overall size, the driving factor in the Version 3
design was to better balance the logic delays associated with each pipeline stage to allow
the operating frequency to be raised significantly. For some functions, this required new
pipeline stages to be added to support the higher frequency goals. In particular, accesses
on the processorÕs local, high-speed bus were reimplemented to use a 2-stage pipelined bus
to the cache, RAM and ROM memories. Additionally, the time-critical instruction decode
functions within the Operand Execution Pipeline were relocated into a new stage in the IFP,
named the

Instruction Early Decode

 stage. The implementation of the early decode pipeline
stage was first used in the development of the superscalar MC68060 microprocessor, and
is a proven technology addressing the decode issues normally associated with variable-
length instructions.

The net effect is the Version 3 pipeline structure is considerably different than the Version 2
design. The V3 Instruction Fetch Pipeline is a 4-stage design with an optional instruction
buffer stage, while the Operand Execution Pipeline retains its 2-stage structure. In the OEP
design, each pipeline stage has multiple functions.

The V3 processor pipeline stages are:

Instruction Fetch Pipeline

¥ Instruction Address Generation (IAG) Calculation of the next prefetch address

Date: 08-21-98
Revision No: 0.1

Pages affected: 25, 26 (see change bars)

V3 CPU

4-2

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

¥ Instruction Fetch Cycle 1 (IC1) Initiation of prefetch access on the
processorÕs local bus

¥ Instruction Fetch Cycle 2 (IC2) Completion of prefetch access on the
processorÕs local bus

¥ Instruction Early Decode (IED) Generation of time-critical decode
signals needed for the OEP

¥ Instruction Buffer (IB) Optional buffer stage using FIFO queue

Operand Execution Pipeline

¥ Decode, Select/Operand Fetch Cycle (DSOC) Decode the instruction and select the
required components for the effective
address calculation, or the operand
fetch cycle

¥ Address Generation/Execute Cycle (AGEX) Calculate the operand address, or
perform the execution of the instruction

4.2.2 Version 3 Instruction Fetch Pipeline

The resulting four-stage IFP implementation calculates the next prefetch address, fetches
the instruction data with two stages mapped onto the 2-stage pipeline local-memory bus
structure, followed by the early decode stage. When the instruction buffer is empty,
prefetched instruction data is loaded directly from the IED stage into the Operand Execution
Pipeline. If the buffer is not empty, the IFP stores the contents of the prefetch in the FIFO
queue until it is required by the OEP.

It should be noted that the organization of the Version 3 instruction buffer is fundamentally
different than the V2 approach. One of the time-critical decode fields provided by the early
decode stage of the IFP is the instruction length. By knowing the length of the prefetched
instructions, the IED field is able to

package

 the fetched data into machine instructions and
load them into the FIFO instruction buffer in that form.The Version 3 design implements an
8-entry instruction buffer, where each entry contains one machine instruction in the form of
the operation word, the early decode information (also known as the extended operation
word), and the optional extension words 1 and 2. This approach greatly simplifies and
accelerates the OEPÕs read logic. As one instruction is completed in the OEP, the next
instruction, regardless of instruction length, is read from the next sequential buffer location
and loaded into the instruction registers.

4.2.2.1 CHANGE OF FLOW ACCELERATION.

Since the Version 3 Instruction Fetch and
Operand Execution Pipelines are decoupled by the instruction buffer, the increased depth
of the IFP is generally hidden from the OEPÕs instruction execution. The one exception is
change-of-flow instructions, e.g., unconditional branches or jumps, subroutine calls, taken
conditional branches, etc. For these instructions, the increased depth of the IFP pipeline is
fully exposed. To minimize the effects of this increased depth, a logic module dedicated to

V3 CPU

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

4-3

change-of-flow acceleration was developed for the IED stage of the Instruction Fetch
Pipeline.

Given that the instruction boundaries are known in the IED stage, a logical extension was
the creation of branch acceleration module which could ÒmonitorÓ the prefetched stream,
looking for change-of-flow opcodes.The basic premise of the Version 3 branch acceleration
is to detect certain types of change-of-flow instructions, calculate their target instruction
address, and immediately begin fetching down the target stream. By allowing the switching
of the prefetch stream to be handled completely within the IFP without any Operand
Execution Pipeline intervention, the typical execution time is greatly improved.

As an example, consider a PC-relative unconditional branch using the BRA instruction. The
branch acceleration logic searches the prefetch stream for this type of opcode. Once
encountered, the acceleration logic calculates the target address by summing the current
instruction prefetch address with a displacement contained in the instruction. This detection
and calculation of the target address occurs in the IED stage of the BRA prefetch. The target
address is then immediately fed back into the IAG stage, causing the current prefetch
stream to be discarded and a new stream at the target address established. Given that the
two pipelines are decoupled, in many cases, the target instruction is available to the OEP
immediately after the BRA instruction, making its execution time appear as a single cycle.

The acceleration logic uses a static prediction algorithm when processing conditional branch
(Bcc) instructions. The default prediction scheme is forward Bcc instructions are predicted
as not-taken, while backward Bcc opcodes are predicted as taken. A user-mode control bit
(bit 7 of the CCR) is provided to allow users to dynamically alter the prediction algorithm for
forward Bcc instructions. See

Section 4.4.5: Condition Code Register

for details.

Depending on the runtime characteristics of an application, processor performance may be
increased significantly by the assertion or negation of this configuration bit. See Appendix B
on Branch Instruction Execution Times for details on individual instruction performance.

4.2.3 Version 3 Operand Execution Pipeline

The OEP is implemented in a two-stage pipeline featuring a traditional RISC datapath with
a dual-read-ported register file feeding an arithmetic/logic unit. For simple register-to-
register instructions, the first stage of the OEP performs the instruction decode and fetching
of the required register operands (OC), while the actual instruction execution is performed
in the second stage (EX). For memory-to-register (embedded-load) instructions, the
instruction is effectively staged through the OEP twice. First, the instruction is decoded and
the components of the operand address are selected (DS). Second, the operand address is
generated using the Òexecute engineÓ (AG). Third, the memory operand is fetched from the
processor local bus, while any register operand is simultaneously fetched (OC). Finally, in
the last cycle, the instruction is executed (EX). For register-to-memory operations, the stage
functions (DS/OC, AG/EX) are effectively performed simultaneously allowing single-cycle
execution. For read-modify-write instructions, the pipeline effectively combines an
embedded-load with a store operation.

V3 CPU

4-4

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

4.2.3.1 ILLEGAL OPCODE HANDLING.

As an aid in conversion from M68000 Family
code, the complete space defined by the 16-bit opcode is decoded. If the processor attempts
execution of an illegal or non-supported instruction, an illegal instruction exception is taken.

4.2.3.2 HARDWARE MULTIPLY-ACCUMULATE (MAC) AND DIVIDE EXECUTION
UNITS.

The optional MAC unit is designed to provide hardware support for a limited set of
signal processing operations that are currently being used in embedded code today, while
supporting the integer multiply instructions in the ColdFire microprocessor family.

The MAC unit provides functionality in three related areas:

¥ Signed and unsigned integer multiplies
¥ Multiply-accumulate operations supporting signed and unsigned operands
¥ Miscellaneous register operations

The ColdFire MAC has been optimized for 16x16 multiplies to minimize silicon costs. The

MAC unit is tightly coupled to the processorÕs Operand Execution Pipeline and features a 3-
stage execution pipeline. The OEP can issue a 16 x 16 multiply with a 32-bit accumulate
operation in a single cycle, while a 32 x 32 multiply with a 32-bit accumulation requires three
cycles before the next instruction can be issued. Figure 4-1 shows the basic functionality of
the ColdFire MAC.

The Operand Execution Pipeline also includes a hardware execute engine which performs
all integer divide operations. The supported divide functions include: 32/16 producing a 16-

Figure 4-1. ColdFire Multiply-Accumulate Functionality Diagram

X

+/-

Operand X Operand Y

Shift 0,1,-1

Accumulator

V3 CPU

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

4-5

bit quotient and a 16-bit remainder, 32/32 producing a 32-bit quotient, and 32/32 producing
a 32-bit remainder.

If execution of a MAC or divide opcode is attempted and the corresponding hardware unit is

not present

, then a non-supported instruction exception is generated.

For detailed instruction descriptions on the MAC and divide opcodes, see the

ColdFire
Microprocessor Family ProgrammerÕs Reference Manual

(MCF5200PRM/AD).

4.2.4 Version 3 Processor Pipeline Block Diagrams and Summary

The following diagrams present a more detailed view of the internal pipeline structures for
the Version 3 processor. Compared to the two-stage Version 2 design, note the increased
length of the IFP with the early decode (ED) table lookup and the branch acceleration target
address adders in the IED stage with the feedback to the prefetch address logic in the IAG
stage. The OEP is essentially unchanged from the Version 2 design with the exception of
the extended opword provided from the IFP as part of the instruction interface:

V3 CPU

4-6

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

Figure 4-2. Version 3 ColdFire Pipeline Diagram

IAG IC 1 IB

Kaddr

Krdata

Opword

Ext 1

Ext 2

FIFO
IB

Instruction Fetch Pipeline

Operand Execution Pipeline

DSOC AGEX

Opword

Extension 1

Extension 2

Krdata

Kaddr

Kwdata

RGF

IC 2 IED

Kaddr_ic2

Extended
OpwordED

Extended
Opword

+4

V3 CPU

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

4-7

As a result of the increased IFP pipelining and an exposed cycle of latency on most operand
read references, the

cycles per instruction

 performance of the V3 core is usually slightly
lower than V2 at a given frequency. However, the entire design focus of the V3 development
was to maximize the operating frequency, and comparison of speeds in a

given

 process
technology indicate this goal was achieved. Using a common 0.35 micron process
technology, the Version 3 core synthesizes into a ~200,000 transistor implementation with
a size of 3 mm

2

 (no MAC or DIV units) and 3.8 mm

2

 with the MAC and DIV. Operating
frequency is increased to 1.5x relative to V2 and reaches 90-100 MHz. Finally, the Version
3 microarchitecture provides a 0.78 Dhrystone 2.1 MIPS per MHz performance with an 8
KByte unified cache.

A comprehensive analysis using a standard set of embedded benchmarks has measured
the following relative performance based on initial implementation for each core generation:

90/45 MHz V3 = 2.5 x 33.3 MHz V2

with the following configurations:
- A 90 MHz V3 processor complex with an 8 KByte unified cache with a 1/2x

speed external bus with a 4-2-2-2 memory response speed
- A 33.3 MHz V2 processor complex with a 2 KByte unified cache with a 3-1-1-1

memory response speed
- Copyback cache mode for both processors, no KRAM memory, and no MAC

or DIV instructions

4.3 COLDFIRE PROCESSOR PROGRAMMING MODEL

Refer to the

ColdFire Microprocessor Family ProgrammerÕs Reference Manual

(MCF5200PRM/AD) for detailed information on the operation of the instruction set and
addressing modes.

The core programming model consists of three instruction and register groups: user, user-
mode MAC, and supervisor. Programs executing in user mode are restricted to the basic
user and MAC programming models. System software executing in supervisor mode can
reference all user-mode and MAC instructions and registers, plus an additional set of
privileged instructions and control registers. The appropriate programming model is
selected based on the privilege level (user or supervisor) of the processor as defined by the
S-bit of the status register. The following paragraphs describe the registers in the user, MAC
and supervisor programming models.

4.4 User Programming Model

Figure 4-3 illustrates the user programming model. It consists of the following registers:

¥ 16 general-purpose 32-bit registers

¥ 32-bit program counter

¥ 8-bit condition code register

V3 CPU

4-8

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

4.4.1 DATA REGISTERS (D0 Ð D7) .

Registers D0ÐD7 are used as data registers for bit (1
bit), byte (8 bits), word (16 bits), and longword (32 bits) operations and may also be used as
index registers.

4.4.2 ADDRESS REGISTERS (A0 Ð A6) .

These registers can be used as software stack
pointers, index registers, or base address registers and may be used for word and longword
operations.

4.4.3 STACK POINTER (A7, SP) .

The processor core supports a single hardware stack
pointer (A7) used during stacking for subroutine calls, returns, and exception handling. The
initial value of A7 is loaded from the reset exception vector, address $0. The same register
is used for user and supervisor modes, and may be used for word and longword operations.

A subroutine call saves the PC on the stack, and the return restores the PC from the stack.
Both the PC and the status register (SR) are saved on the stack during the processing of
exceptions and interrupts. The return from exception instruction restores the SR and PC
values from the stack.

4.4.4 PROGRAM COUNTER (PC).

The PC contains the address of the currently executing
instruction. During instruction execution and exception processing, the processor
automatically increments the contents of the PC or places a new value in the PC, as
appropriate. For some addressing modes, the PC can be used as a pointer for PC-relative
operand addressing.

4.4.5 CONDITION CODE REGISTER (CCR).

The CCR is the least significant byte of the
processor status register (SR), as shown later.

31 16 15 8 7 0

Data Register 0 (D0)
Data Register 1 (D1)
Data Register 2 (D2)
Data Register 3 (D3)
Data Register 4 (D4)
Data Register 5 (D5)
Data Register 6 (D6)
Data Register 7 (D7)

Address Register 0 (A0)
Address Register 1 (A1)
Address Register 2 (A2)
Address Register 3 (A3)
Address Register 4 (A4)
Address Register 5 (A5)
Address Register 6 (A6)
Stack Pointer (SP,A7)
Program Counter (PC)

Condition Code Register (CCR)

Figure 4-3. User Programming Model

V3 CPU

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

4-9

Bit 7, the branch prediction bit, provides a mechanism to alter the static prediction algorithm
used by the branch acceleration logic in the Instruction Fetch Pipeline. The prediction
algorithm is defined as:

if Bcc instruction is a forward branch && (CCR.P == 0)

then the Bcc is predicted as not-taken

if Bcc instruction is a forward branch && (CCR.P == 1)

then the Bcc is predicted as taken

All backwards Bcc instructions are predicted as taken. The forward/backward classification
is defined by the sign of the address displacement: if the address displacement is positive,
the Bcc is forward, while a negative displacement produces a backward branch.

Depending on the dynamic characteristics of a given application, the processor performance
may be increased by the assertion or negation of this control bit.

Bits 4Ð0 represent indicator flags based on results generated by processor operations. Bit
4, the extend bit (X bit), is also used as an input operand during multiprecision arithmetic
computations.

Field Definitions:

P[7]ÑBranch Prediction Bit
Setting this bit causes forward conditional branches to be predicted as taken. Clearing this
bit causes forward conditional branch instructions to be predicted as not-taken.

X[4]ÑExtend Condition Code
Assigned the value of the carry bit for arithmetic operations; otherwise not affected.

N[3]ÑNegative Condition Code
Set if the most significant bit of the result is set; otherwise cleared.

Z[2]ÑZero Condition Code
Set if the result equals zero; otherwise cleared.

V[1]ÑOverflow Condition Code
Set if an arithmetic overflow occurs implying that the result cannot be represented in the
operand size; otherwise cleared.

BITS 7 6 5 4 3 2 1 0
FIELD

P - - X N Z V C

RESET

0 0 0 - - - - -

R/W

R/W R R R/W R/W R/W R/W R/W

Condition Code Register (CCR)

V3 CPU

4-10

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

C[0]ÑCarry Condition Code
Set if a carry out of the most significant bit of the operand occurs for an addition, or if a
borrow occurs in a subtraction; otherwise cleared.

See the

ColdFire Microprocessor Family ProgrammerÕs Reference Manual

 (MCF5200PRM/
AD) for more information on how specific instructions affect the condition code register bits.

4.5 MAC Programming Model

Figure 4-4 illustrates the MAC portion of the user programming model available on the
processor core. It consists of the following registers:

¥ 32-bit accumulator (ACC)

¥ 16-bit mask register (MASK)

¥ 8-bit MAC status register (MACSR)

The instructions which reference the MAC registers always transfer 32 bits of data,
regardless of the implemented size of the register.

4.5.1 ACCUMULATOR (ACC).

This is a 32-bit general-purpose register used to
accumulate the results of MAC operations.

4.5.2 MASK REGISTER (MASK).

This is a 16-bit general-purpose register for use as an
optional address mask during MAC instructions which fetch operands from memory. It is
useful in the implementation of circular queues in operand memory.

4.5.3 MAC STATUS REGISTER (MACSR).

This is an 8-bit special-purpose register which
defines the operating configuration of the MAC unit, and contains indicator flags from the
results of MAC instructions.

4.6 Supervisor Programming Model

System programmers use the supervisor programming model to implement sensitive
operating systems, I/O control, memory configuration and management. The following
paragraphs briefly describe the registers in the supervisor programming model. All accesses
that affect the control features of the processor are in the supervisor programming model,
which consists of the instructions and registers accessible in the user and MAC models, as
well as the registers listed in Figure 4-5.

31 16 15 8 7 0

Accumulator (ACC)
Mask Register (MASK)

MAC Status Register (MACSR)

Figure 4-4. MAC Unit User Programming Model

V3 CPU

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

4-11

Most of the control registers are accessed via the MOVEC instruction using the control
register definitions shown in Table 4-1.

4.6.1 CACHE CONTROL REGISTER (CACR).

The CACR controls the operation of the
unified cache memory. This register includes enable, freeze and invalidate controls, plus
line fill buffer configuration control as well as the default cache mode and write protect fields.
See Section 4.3 for a complete description of the CACR.

4.6.2 ACCESS CONTROL REGISTERS (ACR0, ACR1).

The ACR registers allow
specification of certain attributes for two user-defined regions of memory. These attributes
include definition of cache mode, write protect and buffer write enables. See

Section 5.3.3

for a complete description of the ACR registers.

4.6.3 VECTOR BASE REGISTER (VBR).

The VBR contains the base address of the
exception vector table in memory. The displacement of an exception vector is added to the
value in this register to access the vector table. The lower 20 bits of the VBR are not
implemented by ColdFire processors; they are assumed to be zero, forcing the table to be
aligned on a 0-modulo-1 MByte boundary.

4.6.4 RAM BASE ADDRESS REGISTER (RAMBAR).

This register determines the base
address location of the processor local RAM module, plus provides definition of the types of
references that are mapped into it. The register includes a base address, write protect bit,
address space mask bits and enable. See

Section 5.4.2

 for a complete description of the
RAMBAR register.

4.6.5 ROM BASE ADDRESS REGISTER (R0MBAR).

This register determines the base
address location of the processor local ROM module, plus provides definition of the types of
references that are mapped into it. The register includes a base address, write protect bit,

31 16 15 0

Cache Control Register (CACR)
Access Control Register 0 (ACR0)
Access Control Register 1 (ACR1)

Vector Base Register (VBR)
ROM Base Address Register (R0MBAR)
RAM Base Address Register (RAMBAR)

Status Register (SR)

Figure 4-5. Supervisor Programming Model

Table 4-1. MOVEC Register Map

RC[11:0] REGISTER DEFINITION

$002 Cache Control Register (CACR)
$004 Access Control Register 0 (ACR0)
$005 Access Control Register 1 (ACR1)
$801 Vector Base Register(VBR)
$C00 ROM Base Address Register (R0MBAR)
$C04 RAM Base Address Register (RAMBAR)

V3 CPU

4-12

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

address space mask bits and enable. See

Section 5.5.2

for a complete description of the
R0MBAR register.

4.6.6 STATUS REGISTER (SR).

The following illustrates the SR, which stores the
processor status, the interrupt priority mask, and other control bits. In supervisor mode,
software can access the entire SR, but in user mode, only the lower 8 bits are accessible as
the CCR. The control bits indicate the following states for the processor: trace mode (T-bit),
supervisor mode (S-bit) and master mode (M-bit).

Field Definitions:

T[15]ÑTrace Enable
When set, the processor performs a trace exception after every instruction; otherwise no
trace exception is performed.

S[13]ÑSupervisor / User State
Denotes the processor privilege mode: supervisor mode (S =1) or user mode (S = 0).

M[12]ÑMaster / Interrupt State
This bit is cleared by an interrupt exception, and can be set by software during execution of
the RTE or move to SR instructions.

I[10:8]ÑInterrupt Priority Mask
Defines the current interrupt priority. Interrupt requests are inhibited for all priority levels less
than or equal to the current priority, except the level seven request, which cannot be
masked.

4.7 EXCEPTION PROCESSING OVERVIEW

Exception processing for ColdFire processors is streamlined for performance. Differences
from previous M68000 Family processors include:

¥ A simplified exception vector table

¥ Reduced relocation capabilities using the vector base register

¥ A single exception stack frame format

¥ Use of a single, self-aligning system stack pointer

ColdFire processors use an instruction restart exception model but do require software
support to recover from certain access errors. See

Section

4.7.1 Access Error Exception

for details.

BITS 15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
FIELD

T - S M - I P - X N Z V C

RESET

0 0 1 0 0 7 0 00 - - - - -

R/W

R/W R R/W R/W R R/W R/W R R/W R/W R/W R/W R/W

Status Register (SR)

V3 CPU

MOTOROLA Version 3 ColdFire Core UserÕs Manual 4-13

Exception processing is comprised of four major steps and can be defined as the time from
the detection of the fault condition until the fetch of the first handler instruction has been
initiated.

First, the processor makes an internal copy of the SR and then enters supervisor mode by
setting the S-bit and disabling trace mode by clearing the T-bit. The occurrence of an
interrupt exception also forces the M-bit to be cleared and the debug

priority mask to be set to the level of the current interrupt request.

Second, the processor determines the exception vector number. For all faults except
interrupts, the processor performs this calculation based on the exception type. For
interrupts, the processor performs an interrupt-acknowledge (IACK) bus cycle to obtain the
vector number from a peripheral device. The IACK cycle is mapped to a special
acknowledge address space with the interrupt level encoded in the address.

Third, the processor saves the current context by creating an exception stack frame on the
system stack. ColdFire processors support a single stack pointer in the A7 address register;
therefore, there is no notion of separate supervisor or user stack pointers. As a result, the
exception stack frame is created at a 0-modulo-4 address on the top of the current system
stack. Additionally, the processor uses a simplified fixed-length stack frame for all
exceptions. The exception type determines whether the program counter placed in the
exception stack frame defines the location of the faulting instruction (fault) or the address of
the next instruction to be executed (next).

Fourth, the processor acquires the address of the first instruction of the exception handler.
By definition, the exception vector table is aligned on a 1 MByte boundary. This instruction
address is obtained by fetching a value from the table located at the address defined in the
vector base register. The index into the exception table is calculated as (4 x vector_number).
Once the index value has been generated, the contents of the vector table determine the
address of the first instruction of the desired handler. After the instruction fetch for the first
opcode of the handler has been initiated, exception processing terminates and normal
instruction processing continues in the handler.

ColdFire processors support a 1024-byte vector table aligned on any 1 MByte address
boundary (see Table 4-2). The table contains 256 exception vectors where the first 64 are
defined by Motorola and the remaining 192 are user-defined interrupt vectors.

V3 CPU

4-14 Version 3 ColdFire Core UserÕs Manual MOTOROLA

ColdFire processors inhibit sampling for interrupts during the first instruction of all exception
handlers. This allows any handler to effectively disable interrupts, if necessary, by raising
the interrupt mask level contained in the status register.

4.6 EXCEPTION STACK FRAME DEFINITION
The exception stack frame is shown in Figure 4-6. The first longword of the exception stack
frame contains the 16-bit format/vector word (F/V) and the 16-bit status register. The second
longword contains the 32-bit program counter address.

The 16-bit format/vector word contains 3 unique fields:

Table 4-2. Exception Vector Assignments

VECTOR
NUMBER(S)

VECTOR
OFFSET (HEX)

STACKED
PROGRAM
COUNTER

ASSIGNMENT

0 $000 - Initial stack pointer
1 $004 - Initial program counter
2 $008 Fault Access error
3 $00C Fault Address error
4 $010 Fault Illegal instruction

5-7 $014-$01C - Reserved
8 $020 Fault Privilege violation
9 $024 Next Trace
10 $028 Fault Unimplemented line-A opcode
11 $02C Fault Unimplemented line-F opcode
12 $030 Next Debug interrupt
13 $034 - Reserved
14 $038 Fault Format error
15 $03C Next Uninitialized interrupt

16-23 $040-$05C - Reserved
24 $060 Next Spurious interrupt

25-31 $064-$07C Next Level 1-7 autovectored interrupts
32-47 $080-$0BC Next Trap # 0-15 instructions
48-60 $0C0-$0F0 - Reserved

61 $0F4 Fault Non-supported Instruction
62-63 $0F8-$0FC - Reserved
64-255 $100-$3FC Next User-defined interrupts

ÒFaultÓ refers to the PC of the instruction that caused the exception
ÒNextÓ refers to the PC of the next instruction that follows the instruction that
caused the fault.

Figure 4-6. Exception Stack Frame Form

FORMAT FS[3:2] VECTOR[7:0] FS[1:0]

PROGRAM COUNTER[31:0]

A7

+ $04

31 27 25 17 15 0

STATUS REGISTER

V3 CPU

MOTOROLA Version 3 ColdFire Core UserÕs Manual 4-15

¥ A 4-bit format field at the top of the system stack is always written with a value of
{4,5,6,7} by the processor indicating a two-longword frame format. See Table 4-3. This
field records any longword misalignment of the stack pointer which might have existed
at the time the exception occurred.

¥ A 4-bit fault status field, FS[3:0], at the top of the system stack. This field is defined for
access and address errors only and written as zeros for all other types of exceptions.
See Table 4-4.

¥ The 8-bit vector number, vector[7:0], defines the exception type and is calculated by the
processor for all internal faults and represents the value supplied by the peripheral in
the case of an interrupt. Refer to Table 4-2.

4.7 PROCESSOR EXCEPTIONS

4.7.1 Access Error Exception
For the Version 3 ColdFire core, access errors are only reported in conjunction with an
attempted store to a write-protected memory space. Thus, access errors associated with
instruction fetch or operand read accesses are not possible.

Table 4-3. Format Field Encoding

ORIGINAL A7 @ TIME OF
EXCEPTION, BITS 1:0

A7 @ 1ST
INSTRUCTION OF

HANDLER

FORMAT FIELD
BITS 31:28

00 Original A7 - 8 0100
01 Original A7 - 9 0101
10 Original A7 - 10 0110
11 Original A7 - 11 0111

Table 4-4. Fault Status Encodings

FS[3:0] DEFINITION

0000 Not an access or address error

0001 Reserved

001x Reserved

0100 Error on instruction fetch

0101 Reserved

011x Reserved

1000 Error on operand write

1001 Attempted write to write-protected space

101x Reserved

1100 Error on operand read

1101 Reserved

111x Reserved

V3 CPU

4-16 Version 3 ColdFire Core UserÕs Manual MOTOROLA

The ColdFire processor uses an imprecise reporting mechanism for access errors on
operand writes. Since the actual write cycle may be decoupled from the processorÕs issuing
of the operation, the signaling of an access error appears to be decoupled from the
instruction that generated the write. Accordingly, the PC contained in the exception stack
frame merely represents the location in the program when the access error was signaled.
All programming model updates associated with the write instruction are completed. The
NOP instruction can collect access errors for writes. This instruction delays its execution
until all previous operations, including all pending write operations, are complete. If any
previous write terminates with an access error, it is guaranteed to be reported on the NOP
instruction.

4.7.2 Address Error Exception
Any attempted execution transferring control to an odd-byte instruction address (i.e., if bit 0
of the target address is set) results in an address error exception.

Any attempted use of a word-sized index register (Xi.w) or a scale factor of 8 on an indexed
effective addressing mode generates an address error as does an attempted execution of
an instruction with a full-format indexed addressing mode.

4.7.3 Illegal Instruction Exception
On the Version 2 ColdFire microprocessor implementation, only certain illegal opcodes were
decoded and generated an illegal instruction exception. However, the Version 3 processor
decodes the full 16-bit opcode and generates an illegal instruction exception if the execution
of any non-supported instruction is attempted. Additionally, if execution of any illegal line A
or line F opcode is attempted, unique exception types are generated: vector numbers 10 and
11, respectively.

ColdFire processors do not provide illegal instruction detection on the extension words on
any instruction, including MOVEC. If execution of any instruction with an illegal extension
word is attempted, the resulting operation is undefined.

4.7.4 Privilege Violation
The attempted execution of a supervisor mode instruction while in user mode generates a
privilege violation exception. See the ColdFire Microprocessor Family ProgrammerÕs
Reference Manual for lists of supervisor- and user-mode instructions.

4.7.5 Trace Exception
To aid in program development, the ColdFire processors provide an instruction-by-
instruction tracing capability. While in trace mode, indicated by the assertion of the T-bit in
the status register (SR[15] = 1), the completion of an instruction execution signals a trace
exception. This functionality allows a software debugger to monitor program execution.

The single exception to this definition is the STOP instruction. If the processor is executing
in trace mode, the instruction preceding the STOP executes and then generates a trace
exception. In the exception stack frame, the PC is pointing to the STOP opcode. Once the
trace handler is exited, control returns to the STOP instruction, which is then executed,

V3 CPU

MOTOROLA Version 3 ColdFire Core UserÕs Manual 4-17

loading the SR with the immediate operand from the instruction. The processor then
immediately generates a trace exception. The PC in the exception stack frame points to the
instruction following the STOP, and the SR reflects the just-loaded value.

If the processor is not operating in trace mode, but executes a STOP instruction where the
immediate operand sets the trace bit in the SR, the hardware loads the SR, and then
immediately generates a trace exception. The PC in the exception stack frame points to the
instruction following the STOP, and the SR reflects the just-loaded value.

Since ColdFire processors do not support any hardware stacking of multiple exceptions, it
is the responsibility of the operating system to check for trace mode after processing other
exception types. As an example, consider the execution of a TRAP instruction while in trace
mode. The processor initiates the TRAP exception and then passes control to the
corresponding handler. If the system requires that a trace exception be processed, it is the
responsibility of the TRAP exception handler to check for this condition (SR[15] in the
exception stack frame asserted) and pass control to the trace handler before returning from
the original exception.

4.7.6 Debug Interrupt
This special type of program interrupt is discussed in detail in Section 6: Debug Support.
This exception is generated in response to a hardware breakpoint register trigger. The
processor does not generate an IACK cycle but rather calculates the vector number
internally (vector number 12). Additionally, the M-bit and the interrupt priority mask fields of
the status register are unaffected by the occurrence of a debug interrupt.

4.7.7 RTE and Format Error Exceptions
When an RTE instruction is executed, the processor first examines the 4-bit format field to
validate the frame type. For a ColdFire processor, any attempted execution of an RTE where
the format is not equal to {4,5,6,7} generates a format error. The exception stack frame for
the format error is created without disturbing the original exception frame and the stacked
PC points to the RTE instruction.

The selection of the format value provides some limited debug support for porting code from
68000 applications. On M68000 Family processors, the SR was located at the top of the
stack. On those processors, bit[30] of the longword addressed by the system stack pointer
is typically zero. Thus, if an RTE is attempted using this ÒoldÓ format, it generates a format
error on a ColdFire processor.

If the format field defines a valid type, the processor: (1) reloads the SR operand, (2) fetches
the second longword operand, (3) adjusts the stack pointer by adding the format value to
the auto-incremented address after the fetch of the first longword, and then (4) transfers
control to the instruction address defined by the second longword operand within the stack
frame.

V3 CPU

4-18 Version 3 ColdFire Core UserÕs Manual MOTOROLA

4.7.8 TRAP Instruction Exceptions
The TRAP #n instruction always forces an exception as part of its execution and is useful
for implementing system calls. The trap instruction may be used to change from the user to
supervisor mode.

4.7.9 Non-Supported Instruction Exceptions
If a ColdFire processor attempts to execute a valid instruction, but the required optional
hardware module is not physically present in the Operand Execution Pipeline, a non-
supported instruction exception is generated (vector number 61). Control is then passed to
an exception handler which can then process the opcode as required by the system.

4.7.10 Interrupt Exception
The interrupt exception processing, with interrupt recognition and vector fetching, includes
uninitialized and spurious interrupts as well as those where the requesting device supplies
the 8-bit interrupt vector. Autovectoring may optionally be supported through the System
Bus Controller.

4.7.11 Fault-on-Fault Halt
If a ColdFire processor encounters any type of fault during the exception processing of
another fault, the processor immediately halts execution with the catastrophic Òfault-on-faultÓ
condition. A reset is required to force the processor to exit this halted state.

4.7.12 Reset Exception
Asserting the reset input signal to the processor causes a reset exception. The reset
exception has the highest priority of any exception; it provides for system initialization and
recovery from catastrophic failure. Reset also aborts any processing in progress when the
reset input is recognized. Processing cannot be recovered.

The reset exception places the processor in the supervisor mode by setting the S-bit and
disables tracing by clearing the T-bit in the SR. This exception clears the M-bit and sets the
processorÕs interrupt priority mask in the SR to the highest level (level 7). The branch
prediction bit in the CCR is also cleared. Next, the VBR is initialized to zero ($00000000).
The control registers specifying the operation of any memories (e.g., cache, RAM and ROM
modules) connected directly to the processor are disabled. Refer to the specific sections
covering those modules for more information.

After the reset signal is negated, the processor waits for sixteen cycles before beginning the
actual reset exception process. During this window of time, certain events are sampled,
including the assertion of the debug breakpoint signal. If the processor is not halted, it then
initiates the reset exception by performing two longword read bus cycles. The first longword
at address 0 is loaded into the stack pointer and the second longword at address 4 is loaded
into the program counter. After the initial instruction is fetched from memory, program
execution begins at the address in the PC. If an access error or address error occurs before
the first instruction is executed, the processor enters the fault-on-fault halted state.

V3 CPU

MOTOROLA Version 3 ColdFire Core UserÕs Manual 4-19

4.8 INTEGER DATA FORMATS
Table 4-5 lists the integer operand data formats. Integer operands can reside in registers,
memory, or instructions. The operand size for each instruction is either explicitly encoded in
the instruction or implicitly defined by the instruction operation.

4.9 ORGANIZATION OF DATA IN REGISTERS
The following paragraphs describe data organization within the data, address, and control
registers.

4.9.1 Organization of Integer Data Formats in Registers
Figure 4-7 shows the integer format for data registers. Each integer data register is 32 bits
wide. Byte and word operands occupy the lower 8- and 16-bit portions of integer data
registers, respectively. Longword operands occupy the entire 32 bits of integer data
registers. A data register that is either a source or destination operand only uses or changes
the appropriate lower 8 or 16 bits in byte or word operations, respectively. The remaining
high-order portion does not change. The least significant bit (LSB) of all integer sizes is bit
zero, the most significant bit (MSB) of a longword integer is bit 31, the MSB of a word integer
is bit 15, and the MSB of a byte integer is bit 7.

Because address registers and stack pointers are 32-bits wide, address registers cannot be
used for byte-size operands. When an address register is a source operand, either the low-
order word or the entire longword operand is used, depending on the operation size. When
an address register is used, the entire register is affected, regardless of the operation size.
If the source operand is a word size, it is sign-extended to 32 bits and then used in the

Table 4-5. Integer Data Formats

OPERAND DATA FORMAT SIZE

Bit 1 Bit
Byte Integer 8 Bits
Word Integer 16 Bits

Longword Integer 32 Bits

Figure 4-7. Organization of Integer Data Formats in Data Registers

LSBMSB

1 031 30
BIT (0 MODULO (OFFSET
< 31,OFFSET OF 0 = MSB)

<_

0731

BYTE

031

16-BIT WORD

031

LONG WORD

15

LOW-ORDER WORD

LONG WORD LSB

LSB

MSB

MSB

LSBMSBNOT USED

NOT USED

V3 CPU

4-20 Version 3 ColdFire Core UserÕs Manual MOTOROLA

operation to an address register destination. Address registers are primarily for addresses
and address computation support.

Control registers vary in size according to function. Some control registers have undefined
bits reserved for future definition by Motorola. Those particular bits read as zeros and must
be written as zeros for future compatibility.

All operations to the SR and CCR are word-size operations. For all CCR operations, the
upper byte is read as all zeros and is ignored when written, regardless of privilege mode.

4.8.2 Organization of Integer Data Formats in Memory
All ColdFire processors use a big-endian addressing scheme. The byte-addressable
organization of memory allows lower addresses to correspond to higher order bytes. The
address N of a longword data item corresponds to the address of the high order word. The
lower order word is located at address N + 2. The address N of a word data item
corresponds to the address of the high order byte. The lower order byte is located at address
N + 1. This organization is shown in Figure 4-8.

31 1615 0
SIGN-EXTENDED 16-BIT ADDRESS OPERAND

31 0
FULL 32-BIT ADDRESS OPERAND

Figure 4-8. Organization of Integer Data Formats in Address Registers

V3 CPU

MOTOROLA Version 3 ColdFire Core UserÕs Manual 4-21

4.10 ADDRESSING MODE SUMMARY
The addressing modes are grouped into categories according to the mode of use. Data
addressing modes refer to data operands. Memory addressing modes refer to memory
operands. Alterable addressing modes refer to alterable (writable) operands. Control
addressing modes refer to memory operands without an associated size.

These categories sometimes combine to form new categories that are more restrictive. Two
combined classifications are alterable memory (both alterable and memory) and data
alterable (both alterable and data). Table 4-6 lists a summary of effective addressing modes

Figure 4-9. Memory Operand Addressing

31 23 15 7 0

BYTE $00000000

WORD $00000000

LONG WORD $00000000

BYTE $00000001 BYTE $00000002 BYTE $00000003

WORD $00000002

BYTE $00000004

WORD $00000004

LONG WORD $00000004

BYTE $00000005 BYTE $00000006 BYTE $00000007

WORD $00000006

BYTE $FFFFFFFC

WORD $FFFFFFFC

LONG WORD $FFFFFFFC

BYTE $FFFFFFFD BYTE $FFFFFFFE BYTE $FFFFFFFF

WORD $FFFFFFFE

V3 CPU

4-22 Version 3 ColdFire Core UserÕs Manual MOTOROLA

and their categories. Twelve of the most commonly used addressing modes from the
M68000 Family are available on ColdFire microprocessors.

4.11 INSTRUCTION SET SUMMARY
Table 4-7 lists the notational conventions used throughout this manual unless otherwise
specified. Table 4-8 lists the ColdFire instruction set by opcode. This instruction set is a
simplified version of the M68000 instruction set. The removed instructions include BCD, bit
field, logical rotate, decrement and branch, and integer multiply with a 64-bit result. In
addition, nine new MAC instructions have been added.

See Appendix B for detailed information on the instruction execution times for the Version 3
ColdFire processor core.

Table 4-6. Effective Addressing Modes and Categories

ADDRESSING MODES SYNTAX
MODE
FIELD

REG.
FIELD

CATEGORY

DATA MEMORY CONTROL ALTERABLE

Register Direct
Data

Address
Dn
An

000
001

reg. no.
reg. no.

X
Ñ

Ñ
Ñ

Ñ
Ñ

X
X

Register Indirect
Address

Address with Postincrement
Address with Predecrement
Address with Displacement

(An)
(An)+
Ð(An)

(d16, An)

010
011
100
101

reg. no.
reg. no.
reg. no.
reg. no.

X
X
X
X

X
X
X
X

X
Ñ
Ñ
X

X
X
X
X

Address Register Indirect with Index
8-Bit Displacement (d8, An, Xi) 110 reg. no. X X X X

Program Counter Indirect
with Displacement (d16, PC) 111 010 X X X Ñ

Program Counter Indirect with Index
8-Bit Displacement (d8, PC, Xi) 111 011 X X X Ñ

Absolute Data Addressing
Short
Long

(xxx).W
(xxx).L

111
111

000
001

X
X

X
X

X
X

Ñ
Ñ

Immediate #<xxx> 111 100 X X Ñ Ñ

Table 4-7. Notational Conventions

OPCODE WILDCARDS

cc Logical Condition (example: NE for not equal)

REGISTER OPERANDS

An Any Address Register n (example: A3 is address register 3)
Ay,Ax Source and destination address registers, respectively

Dn Any Data Register n (example: D5 is data register 5)
Dy,Dx Source and destination data registers, respectively

Rn Any Address or Data Register
Ry,Rx Any source and destination registers, respectively

Rw Any second destination register
Rc Any Control Register (example: VBR is the vector base register)

V3 CPU

MOTOROLA Version 3 ColdFire Core UserÕs Manual 4-23

REGISTER/PORT NAMES

ACC MAC Accumulator
DDATA Debug Data Port

CCR Condition Code Register (lower byte of status register)
MACSR MAC Status Register
MASK Mask Register

PC Program Counter
PST Processor Status Port
SR Status Register

MISCELLANEOUS OPERANDS

 #<data> Immediate data following the instruction word(s)
<ea> Effective Address

<ea>y,<ea>x Source and Destination Effective Addresses, respectively
<label> Assembly Program Label
<list> List of registers (example: D3ÐD0)

<size> Operand data size: Byte (B), Word (W), Longword (L)

OPERATIONS

+ Arithmetic addition or postincrement indicator
Ð Arithmetic subtraction or predecrement indicator
x Arithmetic multiplication
/ Arithmetic division
~ Invert; operand is logically complemented
& Logical AND
| Logical OR
^ Logical exclusive OR

<< Shift left (example: D0 << 3 is shift D0 left 3 bits)
>> Shift right (example: D0 >> 3 is shift D0 right 3 bits)

® Source operand is moved to destination operand
¬® Two operands are exchanged

sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion
If <condition>

then <operations>
else <operations>

Test the condition. If true, the operations after ÔthenÕ are performed. If the condition is false and the optional ÔelseÕ clause
is present, the operations after ÔelseÕ are performed. If the condition is false and else is omitted, the instruction performs no

operation. Refer to the Bcc instruction description as an example.

SUBFIELDS AND QUALIFIERS

{} Optional Operation
() Identifies an indirect address
dn Displacement Value, n-Bits Wide (example: d16 is a 16-bit displacement)

Address Calculated Effective Address (pointer)
Bit Bit Selection (example: Bit 3 of D0)

LSB Least Significant Bit (example: LSB of D0)
LSW Least Significant Word
MSB Most Significant Bit
MSW Most Significant Word

Table 4-7. Notational Conventions (Continued)

V3 CPU

4-24 Version 3 ColdFire Core UserÕs Manual MOTOROLA

CONDITION CODE REGISTER BIT NAMES

P Branch Prediction Bit in CCR
C Carry Bit in CCR
N Negative Bit in CCR
V Overflow Bit in CCR
X Extend Bit in CCR
Z Zero Bit in CCR

Table 4-8. Instruction Set Summary

INSTRUCTION OPERAND SYNTAX OPERAND SIZE OPERATION

ADD Dy,<ea>x
<ea>y,Dx

32
32

Source + Destination ® Destination

ADDA <ea>y,Ax 32 Source + Destination ® Destination
ADDI #<data>,Dx 32 Immediate Data + Destination ® Destination
ADDQ #<data>,<ea>x 32 Immediate Data + Destination ® Destination
ADDX Dy,Dx 32 Source + Destination + X ® Destination
AND Dy,<ea>x

<ea>y,Dx
32
32

Source & Destination ® Destination

ANDI #<data>,Dx 32 Immediate Data & Destination ® Destination
ASL Dy,Dx

#<data>,Dx
32
32

X/C ¬ (Dx << Dy) ¬ 0
X/C ¬ (Dx << #<data>) ¬ 0

ASR Dy,Dx
<data>,Dx

32
32

MSB ® (Dx >> Dy) ® X/C
MSB ® (Dx >> #<data>) ® X/C

Bcc <label> 8,16 If Condition True, Then PC + 2 + dn ® PC

BCHG Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) ® Z,
Bit of Destination

BCLR Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) ® Z;
0 ® Bit of Destination

BRA <label> 8,16 PC + 2 + dn ® PC

BSET Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) ® Z;
1® Bit of Destination

BSR <label> 8,16 SP Ð 4 ® SP; next sequential PC® (SP); PC + 2 + dn ® PC

BTST Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) ® Z

CLR <ea>x 8,16,32 0 ® Destination
CMPI #<data>,Dx 32 Destination Ð Immediate Data
CMP <ea>y,Dx 32 Destination Ð Source

CMPA <ea>y,Ax 32 Destination Ð Source
CPUSHL (Ax) none Push and Invalidate Cache Line

DIVS <ea>y,Dx 16
32

Dx /<ea>y ® Dx {16-bit Remainder; 16-bit Quotient}
Dx /<ea>y ® Dx {32-bit Quotient}

Signed operation
DIVU <ea>y,Dx 16 Dx /<ea>y ® Dx {16-bit Remainder; 16-bit Quotient}

Dx /<ea>y ® Dx {32-bit Quotient}
Unsigned operation

EOR Dy,<ea>x 32 Source ^ Destination ® Destination
EORI #<data>,Dx 32 Immediate Data ^ Destination ® Destination
EXT Dx

Dx
8 ® 16

16 ® 32
Sign-Extended Destination ® Destination

EXTB Dx 8 ® 32 Sign-Extended Destination ® Destination
HALT none none Enter Halted State

Table 4-7. Notational Conventions (Continued)

V3 CPU

MOTOROLA Version 3 ColdFire Core UserÕs Manual 4-25

JMP <ea> none Address of <ea> ® PC
JSR <ea> 32 SP Ð 4 ® SP; next sequential PC ® (SP); <ea> ® PC
LEA <ea>y,Ax 32 <ea> ® Ax
LINK Ax,#<data> 16 SP Ð 4 ® SP; Ax ® (SP); SP ® Ax; SP + d16 ® SP
LSL Dy,Dx

#<data>,Dx
32
32

X/C ¬ (Dx << Dy) ¬ 0
X/C ¬ (Dx << #<data>) ¬ 0

LSR Dy,Dx
#<data>,Dx

32
32

0 ® (Dx >> Dy) ® X/C
0 ® (Dx >> #<data>) ® X/C

MAC Ry,Rx <shift>
Ry,Rx<shift>,<ea>y,Rw

16 ´ 16 + 32 ® 32
32 ® 32

ACC + (Ry ´ Rx){<< 1 | >> 1} ® ACC
ACC + (Ry ´ Rx){<< 1 | >> 1} ® ACC; (<ea>y{&MASK}) ® Rw

MACL Ry,Rx<shift>
Ry,Rx<shift>,<ea>y,Rw

32 ´ 32 + 32 ® 32
32 ® 32

ACC + (Ry ´ Rx){<< 1 | >> 1} ® ACC
ACC + (Ry ´ Rx){<< 1 | >> 1} ® ACC; (<ea>y{&MASK}) ® Rw

MOVE <ea>y,<ea>x 8,16,32 <ea>y ® <ea>x
MOVE from ACC ACC,Rx 32 ACC

MOTOROLA

Version 3 ColdFire Core UserÕs Manual

5-1

SECTION 5
PROCESSOR-LOCAL MEMORIES

5.1 LOCAL MEMORY OVERVIEW

To maximize processor performance, there are three generic memory controllers residing
on the high-speed, local bus: a unified cache controller plus RAM and ROM controllers.
These controllers are designed to support a range of memory sizes, such that when coupled
with the use of compiled memory arrays, provide system designers with the ability to
configure the CF3Core implementation with the optimum amount of local memory for a given
application.

For all three controllers, the interface to the memory arrays is defined as a synchronous one.
As shown in the following figure, the input registers for capturing the reference address and
write data are specified to be

internal

 to the memory module:

Figure 5-1. ColdFire Core Synchronous Memory Interface

CF3Core

Synchronous Memory

RAM

ARRAY

DBIADDR

DBO

PROCESSOR-LOCAL MEMORIES

5-2

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

where the rectangular boxes with the double-bar at the top represent rising-edge, register
storage elements, and the following signals are defined: ADDR is the reference address,
DBI is the data bus input, and DBO is the data bus output.

As shown in the following figure, all input signals have a setup and hold time with respect to
the rising edge of the clock. All outputs transition after a propagation delay from the rising
edge of the clock (clk).

Figure 5-2. Synchronous Memory Timing Diagram

The outputs of the memory are held valid until the next rising edge of the clock.

Consider the generic port list and functionality for a synchronous memory. See the following
Þgure for the Òblack-boxÓ diagram of the synchronous memory:

.

Figure 5-3. Synchronous Memory Interface Block Diagram

where the memory address width is a function of the capacity of the local memory, and the
data bus widths (DBI and DBO) are a function of the type of synchronous memory (UniÞed
Cache, RAM, ROM). The port names for the memory block are deÞned as: A is the reference
address, CSB is an active-low chip select, DBI is the data bus input, RWB is the read/write
control (read = 1, write = 0), CLK is the processorÕs clock, and DBO is the data bus output.

clk

Inputs

Outputs

su hld

su = setup time to rising edge of clk

hld = hold time after rising edge of clk

tpd = propagation time after rising edge
 of clk

tpd

A

CLK

DBI

CSB

DBO
VariableVariable

Variable

RWB

PROCESSOR-LOCAL MEMORIES

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

5-3

The corresponding functional truth table is shown in Table 5-1.

See Appendix D for information detailing the exact CF3Core to memory connections for the
unified cache, RAM and ROM compiled arrays.

5.2 THE TWO-STAGE PIPELINED LOCAL BUS (K-BUS)

Compared to the single-cycle V2 bus structure, the redesign of the processorÕs local KBus
into a 2-stage pipelined bus represented the single largest design activity of the V3
development since the revised bus protocol affected all system elements connected to the
K-Bus. This included the processor and Debug Module, as well as all the K-Bus memory
controllers including the unified cache, the ROM and RAM, and the K-to-M-Bus controller.

In the pipelined K-Bus design, consider a read operation. The first stage (KC1) is dedicated
to the actual memory access, while the second stage (KC2) supports data transmission
back to the processor. This structure provides an optimum time balance of the basic
functions associated with a K-Bus reference, since it effectively provides an entire machine
cycle for the memory array access.

The pipelined operation actually begins with a ÒJ cycleÓ where part of the reference address
and certain control signals are sent from the processor to the K-Bus memory controllers in
the cycle immediately

preceding

 the KC1 stage. This transmission is necessary to allow the
controllers/arrays to have a local registered copy of the time-critical portion of the reference
address.

The KC1 access begins with the reference address contained in a register within the
memory array(s). The memory controller performs the actual access and registers the data
output for a read operation in a local data register in the controller. Thus, the entire operation
is ÒcontainedÓ within the controller and the compiled memory array. During the KC2 stage,
the read operand is selected from the appropriate source (cache, RAM, ROM, or the K-to-
M-Bus {K2M} controller) and routed back onto the K-Bus where it eventually is registered by
the processor or Debug Module.

For operand write references, the data is sourced onto the K-Bus during the KC1 cycle, but
the actual memory array update is delayed until the KC2 cycle so the appropriate memory
unit can be identified.

Table 5-1. Synchronous Memory Truth Table (Sampled @ positive edge of clk)

CSB RWB Operation

1 x idle (minimum power)

0 1 read memory,
DBO = Memory[A]

0 0 write memory,
Memory[A] = DBI

PROCESSOR-LOCAL MEMORIES

5-4

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

To summarize, the basic pipelined K-Bus operations are shown below:

¥

READ
- J: Send the low-order portion of the reference address plus certain

control signals to the memories
- KC1: Broadcast to all memories which may contain data, perform read

access
- KC2: K2M selects appropriate memory as source, and routes data back

to CPU

¥

WRITE
- J: Send the low-order portion of the reference address plus certain

control signals to the memories
- KC1: K2M signals the appropriate memory as destination, so it can

capture data
- KC2: Destination memory performs the actual write access

Given that the write strategy performs the operation during KC2, there are cases where
consecutive write/read accesses may incur a one cycle K-Bus pipeline stall to handle the
read-after-write hazard.

For cache misses or accesses that are not mapped into a K-Bus memory, the access
proceeds to the KC2 stage where it is stalled as an M-Bus transfer is initiated. As the M-Bus
access completes, the KC2 stall is negated and K-Bus operation is terminated.

The following block diagram presents the unified cache functions within the two-stage
pipelined K-Bus structure:

PROCESSOR-LOCAL MEMORIES

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

5-5

Figure 5-4. Version 3 Unified Cache Block Diagram

5.3 UNIFIED CACHE

The CF3Core design contains a non-blocking, 2 KByte,4-way set-associative, unified
(instruction and data) cache with a 16 Byte line size. Cache size is configurable with 2, 4, 8,
16 or 32 KByte capacities available. The cache improves system performance by providing
low-latency data to the CF3Core instruction fetch and operand execution pipelines,

JADDR, J CONTROL

KADDR, KWDATA, K-Bus Control

CACHE HIT

Access Type

Ultimately to KRDATA

Access Mode
Memory Unit Select

CACHE BUSY

ARRAY

COMP

CACHE

BUFFER

TAG

ARRAY

DATA

HIT READ

CACHE

DATA

M-Bus Control

MRDATA

FILL

TO K2M

KC1

KC2

J

PROCESSOR-LOCAL MEMORIES

5-6

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

decoupling processor performance from system memory response speeds, which results in
increased bus availability for alternate bus masters.

The CF3Core non-blocking cache services read hits or write hits from the processor while
a fill (caused by a cache allocation) is in progress.

As shown in Figure 5-5, both instruction and operand accesses are performed using a single
unified bus connected to the cache. All addresses from the processor to the cache are
physical addresses. If the address matches one of the cache entries, the access hits in the
cache. For a read operation, the cache supplies the data to the processor, and for a write
operation, the data from the processor updates the cache. If the access does not match one
of the cache entries (misses in the cache) or a write access must be written through to
memory, the K2M (K-Bus to M-Bus) controller performs a transfer on the M-Bus and
correspondingly on the external bus by way of the system bus controller (SBC). Throughout
this section, all cache accesses on the internal M-Bus are assumed to have a corresponding
access on the external bus performed by the System Bus Controller.

The CF3Core does not implement any type of bus snooping. Accordingly, it is the
responsibility of the system software to maintain cache coherency with other possible bus
masters in shared memory spaces.

5.3.1 Cache Organization

The four-way set-associative cache is organized as four levels (ways) of 32, 64, 128, 256 or
512 sets (for 2, 4, 8, 16 or 32 KByte cache sizes, respectively), with each line containing 16
bytes (four longwords) of storage. Figure 5-6 illustrates the cache organization (as well as
the terminology used) along with the cache line format.

Table 5-2 shows the various cache set counts, line counts, address bits, tag bits, etc. for
each available cache size. For all caches sizes, a 16 Byte line size is used (i.e., column G,
line size, is always 16 Bytes and the in-line address is always A3 - A0) and the level of
associativity is always 4 (i.e., column F, number of levels, is always 4). The number of sets
(column E) is related to the number of bits in the set index by the expression number of sets
equals 2

n

where n is the number of bits in the set index. Any address bits A31 - A0 not used
in the set index or the in-line address are used for the tag address (column B). Finally, the
cache size can be calculated as: cache size = number of sets x number of levels x line size.

Address bits A[12:4] (as needed for the selected cache size) provide an index to select a
set. Levels are selected according to the rules of set association (discussed under

Section
5.3.2 Cache Operation

).

Each line consists of an address tag (upper 19 through 23 bits of the addresses needed for
the selected cache size), two status bits, and four longwords of data. The two status bits
consist of a

valid

 bit (the V-bit) and a

dirty

 bit (the D-bit) for the line. The dirty bit indicates
the line was been written or modified by an operand reference. Address bits A3 and A2
select the longword within the line.

PROCESSOR-LOCAL MEMORIES

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

5-7

5.3.2 Cache Operation

This four-way set-associative cache has a variable number of sets (based on size) of four
16 Byte lines. Each line consists of an address tag (upper 23 bits of the address), two status

Figure 5-5. CF3Core Generic Block Diagram

Table 5-2. CF3Core Unified Cache Sizes and Configurations

A B C D E F G
cache size tag address set index in-line address # of sets # of levels line size

2 KBytes A31 - A09 A08 - A04 A03 - A00 32 4 16 bytes
4 KBytes A31 - A10 A09 - A04 A03 - A00 64 4 16 bytes
8 KBytes A31 - A11 A10 - A04 A03 - A00 128 4 16 bytes
16 KBytes A31 - A12 A11 - A04 A03 - A00 256 4 16 bytes
32 KBytes A31 - A13 A12 - A04 A03 - A00 512 4 16 bytes

System
Bus

Controller

Slave
Module

Slave
Module

Master
Module

S-Bus

E-Bus

M-Bus

DEBUG
CF V3 K2M

CACHEKRAM

K-Bus

KRAM

KROM

CACHEKROM

CACHE

 CTRL CTRL CTRL

MEM
ARRAY

MEM
ARRAY

TAG
ARRAY

DATA
ARRAY

 CPU

CF3Core

D
I
V

M
A
C

PROCESSOR-LOCAL MEMORIES

5-8

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

bits and four long words of data. The two status bits consist of a valid bit and a dirty bit for
the line. Figure 5-7 illustrates the cache line format.

The cache stores an entire line, thereby providing validity on a line-by-line basis. For burst-
mode accesses, only those that successfully read four longwords are cached.

A cache line is always in one of three states: invalid, valid, or dirty. For invalid lines, the V-
bit is clear, causing the cache line to be ignored during lookups. Valid lines have their V-bit
set and D-bit cleared, indicating the line contains valid data consistent with memory. Dirty
cache lines have the V- and D-bits set, indicating that the line has valid entries that have not
been written to memory.

A cache line changes states from valid or dirty to invalid if the execution of the CPUSHL
instruction explicitly invalidates the cache line

.

The cache must be explicitly cleared by
setting the CINVA bit of the CACR

after a hardware reset because reset does not invalidate
the cache lines. Following initial power-up, the cache contents are undefined. The V- and D-
bits may be set on some lines, necessitating the clearing of the cache before it is enabled.

In the following example, a unified cache size of 32 KBytes is assumed.

Figure 5-7 illustrates the general flow of a caching operation.

Figure 5-6. Cache Organization and Line Format (32 KByte cache size shown)

TAG V D LW3 LW2 LW1 LW0

WHERE:
TAGÑ19-23-BIT ADDRESS TAG
VÑVALID BIT FOR LINE
DÑDIRTY BIT FOR LINE
LWnÑLONG WORD n (32-BIT) DATA ENTRY

Figure 5-7. Cache Line Format

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3

LINE

SET 0
SET 1

SET 510
SET 511

¥
¥
¥

¥
¥
¥

¥
¥
¥

¥
¥
¥

TAG V D LW0 LW1 LW2 LW3

WHERE:
TAGÑ19-BIT ADDRESS TAG
VÑVALID BIT FOR LINE
DÑDIRTY BIT FOR LINE
LWnÑLONG WORD n (32-BIT) DATA ENTRY

CACHE LINE FORMAT

PROCESSOR-LOCAL MEMORIES

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

5-9

To determine if the address is already allocated in the cache, (1) the cache set index (A12-
A04) is used to select one cache setsets of cache lines. A set is defined as the grouping of
four lines (one from each level), corresponding to the same index into the cache array. (2)
The address bits of higher order (A31-A13) than the cache set index (A12-A04) are used as
a tag reference or used to update the cache line tag field. (3)The four tags from the selected
cache setset are compared with the tag reference. If any one of the four tags matches the
tag reference and the tag status is either valid or dirty, a cache hit has occurred. (4a) A cache
hit indicates that the data entries (LW0ÐLW3) in that cache line contain valid data (for a read
access), or (4b) can be written with new data (for a write access).

To allocate an entry into the cache, the set index (A12-A04) is used to select one of the

cacheÕs 32512 sets of cache lines. The status of each of the four cache lines for the selected
set is examined. The cache control logic first looks for an invalid cache line to use for the
new entry. If there are multiple invalid entries within a set, the cache uses a fixed priority
scheme to select the level to be filled: level 0 is used first, then level 1, then level 2 and

Figure 5-8. Caching Operation (32KByte cache size shown)

034121331

INDEXTAG DATA / TAG REFERENCE

MUX

COMPARATOR
0

1

2

3

LOGICAL OR

HIT 3

HIT 2

HIT 1

HIT 0

HIT

LEVEL SELECT

SET 0

SET 1

SET 511

¥
¥
¥

ADDRESS
A31ÐA13

LEVEL 0
LEVEL 1

LEVEL 2
LEVEL 3

DATA OR
INSTRUCTION

TAG STATUS LW0 LW1 LW2 LW3

TAG STATUS LW0 LW1 LW2 LW3

¥
¥
¥

¥
¥
¥

¥
¥
¥

¥
¥
¥

¥
¥
¥

¥
¥
¥

ADDRESS

SET
SELECT
A12-A04

PROCESSOR-LOCAL MEMORIES

5-10

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

finally, level 3. If no invalid cache lines are available, a line from one of the four levels must
be deallocated to host the new entry. The cache controller uses a pseudo-round-robin
replacement algorithm to determine which cache line will be deallocated and replaced. After
a cache line is allocated, the replacement pointer increments to point to the next level.
During half-cache lock operation (HLCK equal to 1), the replacement pointer is forced to
either level 2 or level 3.

In the process of deallocation, a cache line that is valid and not dirty is invalidated. A dirty
cache line is placed in a push buffer (to do an external cache line push) before being
invalidated. Once a cache line is invalidated, a new entry can replace it.

When a cache line is selected to host a new entry, three events happen:

1. The new address tag bits A[31:13] are written to the tag;

2. The data bits LW0ÐLW3 are updated with the new memory data;

3. The cache line status changes to a valid state.

Read cycles that miss in the cache allocate normally as previously described. Write cycles
that miss in the cache do not allocate on a cachable writethrough region, but do allocate for
addresses in a cachable copyback region

.

 A copyback byte, word, or longword write miss
will cause the cache to initiate a line fill, allocate space for the new line, set the status bits
to indicate valid and dirty, and write the data into the allocated space. No M-Bus write to
memory occurs. A copyback line write miss will not initiate a line fill, but will allocate space
for the new line, set status bits to indicate valid and dirty, and write the data into the allocated
space. No M-Bus write to memory occurs and no M-Bus line fill occurs. A copyback byte,
word, longword, or line write miss will:

1. Cause the cache to initiate a line fill;

2. Allocate space for a new line;

3. Set the status bits to indicate valid and dirty;

4. Write the data in the allocated space. No write to memory occurs.

Read hits do not change the status of the cache line and no deallocation or replacement
occurs. Write hits in cachable writethrough regions perform an external write cycle; write
hits in cachable copyback regions do

not

 perform an external write cycle. In both cases, the
modified data is written into the appropriate cache entry.

If the cache hits on a read access, data is driven back to the processor core. If the cache
hits on a write access, the data is written to the appropriate portion of the accessed cache
line. If the data access is misaligned, the misalignment module breaks up the access into a
sequence of smaller, aligned accesses. Any misaligned operand reference generates at
least two accesses. Since entry validity is provided only on a line basis, the entire line must
be loaded from system memory on a miss for the cache to contain any valid information for
that line address.

Noncachable write accesses (i.e., those designated as cache-inhibited by the Cache
Control Register (CACR) or Access Control Registers (ACR)) bypass the cache and perform

PROCESSOR-LOCAL MEMORIES

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

5-11

a corresponding external write. Normally, noncachable read accesses bypass the cache
and the read access is performed on the external bus. The exception to this normal
operation occurs when all of the following conditions are true during a noncachable read:

¥ Noncachable fill buffer bit (DNFB) is set in the Cache Control Register (CACR);

¥ Access is an instruction read;

Access is normal (i.e., transfer type (TT) equals 0.

¥ The appropriate noncacheable fill buffer bit (DNFB or NFB) is set

¥ Access is an instruction read

¥ Access is normal (i.e., transfer type (TT) equals 0)

¥ Access longword address is 0, 4, or 8 (i.e., the access is not referencing any of the last
four bytes of a line)

In this case, an entire line is fetched and stored in the fill buffer. It remains valid there and
the cache can service additional read accesses from this buffer until another fill occurs or a
MOVEC cache invalidate all occurs.

Valid cache entries that match during noncachable address accesses are neither pushed
nor invalidated. Such a scenario suggests that the associated cache mode for this address
space was changed.

System software must use the CPUSHL instruction to push and/or
invalidate the cache entry, or set the CINVA bit of the CACR to invalidate the entire cache
before switching cache modes.

5.3.3 Cache Control Register (CACR)

The CACR is a 32-bit register that contains cache control information. The CACR can be
written via the MOVEC instruction (register control field of the MOVEC instruction = $002).
A hardware reset clears the CACR, which disables the cache, but does not affect the tags,
state information, and data within the cache. The CACR format is illustrated below. Note that
all bits shown as Ò0Ó are reserved.

ECÑEnable Cache
0 = cache disabled
1 = cache enabled

31 30 29 28 27 26 24 16 15 14 10 9 8 7 6 5 4 0

EC 0 ESB DPI HLCK 0 0 CINVA 0 0 0 0 0 0 0 0 0 0 0 DNFB DCM 0 0 DW 0 0 0 0 0

PROCESSOR-LOCAL MEMORIES

5-12

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

Bit 30ÑReserved

ESB Ñ Enable Store Buffer
0 = all writes to writethrough or noncachable imprecise space bypass the store buffer

and generate M-Bus cycles directly.
1 = the 4-entry, first-in-first-out (FIFO) store buffer is enabled; this buffer defers pend-

ing writes to writethrough or cache-inhibited imprecise regions to maximize
performance

Accesses to cache-inhibited precise space always bypass the store buffer.

DPIÑDisable CPUSHL Invalidation
0 = each cache line is invalidated as it is pushed
1 = CPUSHLÕd lines remain valid in the cache

HLCKÑ1/2 Cache Lock Mode
0 = cache operates in normal full cache mode
1 = cache operates in one-half cache lock mode

When this mode is enabled, levels 0 and 1 of the cache within a set are locked such that
their lines are never be displaced or allocated. Invalid entries in levels 0 and 1 can still be
allocated. This implementation allows maximum use of the available cache memory and
also provides the flexibility of asserting the HLCK bit before, during, or after the needed
allocations occur.

Bits 26Ð25ÑReserved

CINVAÑCache Invalidate All
0 = no invalidation is performed
1 = initiate an invalidation of the entire cache

Setting this bit initiates invalidation of the entire cache. The cache controller sequences
through all sets, clearing the valid and dirty control bits. Any subsequent K-Bus accesses
are stalled until the invalidation process is finished. Once invalidation is complete, this bit is
automatically returned to 0 (i.e., it does not have to be cleared by software). This bit is
always read as a 0.

Bits 23Ð11ÑReserved

DNFBÑDefault Noncachable Fill Buffer
0 = fill buffer is not used to store noncachable accesses
1 = fill buffer is used to store noncachable accesses

Ñfill buffer used only for normal (TT = 00)

instruction fetches

 of a noncachable region
from longword addresses of 0, 4, or 8

Ñthe instructions are loaded into the fill buffer via a burst access (same as a line fill)

PROCESSOR-LOCAL MEMORIES

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

5-13

Note

It is possible that this feature can cause a coherency problem for
self-modifying code. If enabled and a noncachable access oc-
curs that uses the fill buffer, the instructions remain valid in the
fill buffer until a MOVEC cache-invalidate-all instruction is is-
sued, another noncachable burst, or any miss that initiates a fill
occurs. If a write occurs to the address in the fill buffer, the write
goes to the M-Bus without updating or invalidating the fill buffer.
Any subsequent instruction reads of the given address are ser-
viced by the fill buffer and receive the original (stale) data.

DCMÑDefault Cache Mode
This field selects the default cache mode and access precision as follows:

00 = cachable, writethrough
01 = cachable, copyback
10 = cache-inhibited, precise exception model
11 = cache-inhibited, imprecise exception model

Bits 7,6ÑReserved

DWÑDefault Write Protect
This bit indicates the default write privilege.

0 = read and write accesses permitted
1 = write accesses not permitted

Bits 4Ð0ÑReserved

5.3.4 Access Control Registers

The 32-bit Access Control Registers (ACR0 and ACR1) assign access control attributes to
specific regions of the ÒnormalÓ address space. The ACRs are only examined for accesses
where the transfer type is zero (

TT

 = 00). These registers can be written via the MOVEC
instruction. (ACR0 has register control field of the MOVEC instruction = $004; ACR1 has
register control field of the MOVEC instruction = $005). For overlapping regions, ACR0
takes priority. The control attributes include cache mode specification and write protection.
The register below illustrates the ACR format. The following paragraphs describe the fields
within the ACRs. Bits 12Ð7, 4, 3, 1, and 0 always read as zero. At reset, the enable bit is
forced to zero, disabling the ACR functionality.

31 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRESS BASE ADDRESS MASK E S-FIELD 0 0 0 0 0 0 CM 0 0 W 0 0

PROCESSOR-LOCAL MEMORIES

5-14

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

Bits 31Ð24Ñ Address Base
This 8-bit field is compared with address bits A31ÐA24. Addresses that match in this
comparison (and are otherwise eligible) are assigned the access control attributes of this
register.

Bits 23Ð16Ñ Address Mask
Since this 8-bit field contains a mask for the address base field, setting a bit in this field
causes the corresponding bit in the address base field to be

ignored

. Regions of memory
larger than 16 MBytes can be assigned the access control attributes of this register by
setting some of the address mask bits. The low-order bits of this field can be set to define
contiguous regions larger than 16 MBytes. The mask can define multiple noncontiguous
regions of memory.

EÑEnable
This bit enables or disables the access control attributes of the region defined by this
register:

0 = access control attributes disabled
1 = access control attributes enabled

S-Field ÑSupervisor Mode
This field specifies the way the most significant bit of the transfer modifier field (

TM[2]

) is
used in the address matching:

00 = match only if

TM[2]

 = 0 (user mode access)
01 = match only if

TM[2]

 = 1 (supervisor mode access)
1X = ignore

TM[2]

 when matching

Bits 12Ð7Ñ(Reserved by Motorola)
ÑNoncacheable Fill Buffer (NFB)

0 = fill buffer is not used to store noncacheable accesses
1 = fill buffer is used to store noncacheable accesses

Ñfill buffer used only for normal (TT = 0) instruction reads of a noncacheable region
from longword addresses of 0, 4, or 8

Ñthe instructions are loaded into the fill buffer via a burst access (same as a line fill)

Note

It is possible this feature can cause a coherency problem for self-modifying code. If enabled
and a noncacheable access occurs that uses the fill buffer, the instructions remain valid in
the fill buffer until a MOVEC, another noncacheable burst, or any miss that initiates a fill
occurs. If a write occurs to the line in the fill buffer, the write will go to the M-Bus without

PROCESSOR-LOCAL MEMORIES

MOTOROLA

 Version 3 ColdFire Core UserÕs Manual

5-15

updating or invalidating the fill buffer. Any subsequent reads of that written data will be
serviced by the fill buffer and receive stale information.

CMÑCache Mode
This field selects the cache mode and access precision as follows:

00 = cachable, writethrough
01 = cachable, copyback
10 = cache-inhibited, precise exception model
11 = cache-inhibited, imprecise exception model

WÑWrite Protect
This bit indicates the write privilege of the ACR region.

0 = read and write accesses permitted
1 = write accesses not permitted

Bits 4,3,1,0ÑReserved by Motorola

5.3.5 Cache Management

By using the MOVEC instruction to access the CACR, system software can enable and
configure the cache. A hardware reset clears the CACR, disabling the cache, and removing
all configuration information, but does not affect the tags, state information, and data within
the cache. The system start-up code must set the CINVA bit in the CACR to invalidate the
cache before enabling it.

The CINVA bit of the CACR allows invalidation of the entire cache only. The privileged
CPUSHL instruction supports cache management by selectively pushing and invalidating an
individual cache line. The address register used with the CPUSHL instruction directly
addresses the cacheÕs directory array. The CPUSHL instruction either pushes and
invalidates a line, or pushes and leaves the line valid, depending on the state of the DPI bit
of the CACR. To push the entire cache, a software loop must be implemented which indexes
through all 32 sets and each of the four levels within each set (for a total of 128 lines). The
state of the cache enable bit in the CACR does not affect the operation of CPUSHL
instruction nor the CINVA bit of the CACR.

The CPUSHL instruction pushes a modified cache line to memory and optionally invalidates
the referenced entry. The format for this privileged instruction is shown below, where An is
an address register.

The contents of the An used with the CPUSHL instruction directly specify the cache set and
level indexes. This differs from the MC680x0 implementations where An specified a physical
address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 1 1 0 1 An

PROCESSOR-LOCAL MEMORIES

5-16

Version 3 ColdFire Core UserÕs Manual

MOTOROLA

The format for the An is shown below where bits A12 - A04 specify the cache set select, and
bits A01-A00 define the level select. Address bits A03-A02 are not used for the instruction.

The following code example flushes the entire CF3Core unified cache (the

size

 variable
equals the number of sets for the given cache capacity):

_cache_flush:
nop ; synchronize - flush store buffer
clr.l d0 ; disable cache...
movec d0, cacr ; ... by clearing the cacr

moveq.l #4, d0 ; initialize levelCounter
setup:

sub.l a0, a0 ; clear address register
move.l #size, d1 ; initialize setCounter
lea -1(a0,d0),a0; include (levelCounter - 1) in address

setloop:
cpushl bc,(a0) ; push the cache line identified by a0
lea 0x10(a0),a0 ; increment setSelect by 1
subq.l #1, d1 ; decrement setCounter
bne setloop ; are all sets for current level are done?

subq.l #1, d0 ; decrement levelCounter
bne setup ; are all levels done?

rts

5.3.6 CACHING MODES

For every memory reference generated by the processor or Debug Module, a set of

effective
attributes

 is determined based on the address and the Access Control Registers. An access
can be cachable in either the writethrough or copyback modes, or it can be cache-inhibited
in precise or imprecise modes. For normal accesses, the CM field (from the ACR)
corresponding to the address of the access specifies one of these caching modes. When
the access address does not match either of the ACRs, the default caching mode defined
by the DCM field of the CACR is used. The specific algorithm is:

if (address == ACR0-address including mask)

 effective attributes = ACR0 attributes

else if (address == ACR1-address including mask)

 effective attributes = ACR1 attributes

 else effective attributes = CACR default attributes

Addresses matching an ACR can also be write-protected using the W bit of that ACR.
Addresses that do not match either of the ACRs can be write-protected using the DW bit of
the CACR.

31 13 12 4 3 2 1 0

0 Set Select 00, Level Select

PROCESSOR-LOCAL MEMORIES

MOTOROLA Version 3 ColdFire Core UserÕs Manual 5-17

A hardware reset disables the cache and clears the CACR and ACR bits. Consequently,
after reset, the defaults are writethrough cache mode and no addresses are write-protected.
Note that system start-up codeÑand not resetÑmust invalidate cache entries.

The ACRs allow the defaults to be overridden. In addition, some instructions (e.g., CPUSHL)
and processor core operations perform accesses that have an implicit caching mode
associated with them. The following paragraphs discuss the different caching accesses and
their related cache modes.

5.3.6.1 CACHABLE ACCESSES. If the CM field of an ACR or the default field of the CACR
indicates writethrough or copyback, the access is cachable. A read access to a writethrough
or copyback region is read from the cache if matching data is found. Otherwise, the data is
read from memory and updates the cache. When a line is being read from memory for both
a writethrough read miss and a copyback read miss, the longword within the line that
contains the core-requested data is fetched first, and the requested data is given
immediately to the processor. This operation releases the processor while the remaining
three longwords of the line are read from memory and stored in the cache.

The following paragraphs describe the writethrough and copyback modes in detail.

5.3.6.1.1 Writethrough Mode. Write accesses to regions specified as writethrough are
always passed on to the external bus, although the cycle can be buffered (depending on the
state of the ESB bit in the CACR). Writes in writethrough mode are handled with a no-write-
allocate policy, i.e., writes that miss in the cache are written to the external bus, but do not
cause the corresponding line in memory to be loaded into the cache. Write accesses that hit
always write through to memory and update matching cache lines. The cache supplies data
to instruction or data-read accesses that hit in the cache; read misses cause a new cache
line to be loaded into the cache.

5.3.6.1.2 Copyback Mode. Copyback regions are typically used for local data structures or
stacks to minimize external bus use and reduce write-access latency. Write accesses to
regions specified as copyback that hit in the cache update the cache line and set the
corresponding D-bit without an external bus access. The dirty cache data is written to
memory only if the line is replaced because of a miss or if a CPUSHL instruction pushes the
line. If a byte, word,or longword, or line write access misses in the cache, the required cache
line is read from memory, thereby updating the cache. If a line write access misses in the
cache, the cache line will be completely sourced by the core and thus a cache line read from
memory is avoided. When a miss selects a dirty cache line for replacement, the current
cache data moves to the push buffer. The replacement line is read into the cache and the
push buffer contents are then written to memory.

5.3.6.2 CACHE-INHIBITED ACCESSES. System software can designate as cache-
inhibited those address space regions containing targets such as I/O devices and shared
data structures in multiprocessing systems. If the corresponding CM field (of the ACR) or
DCM field (of the CACR) indicates precise or imprecise, then the access is cache-inhibited.
The caching operation is identical for both cache-inhibited modes. The difference between
these inhibited cache modes has to do with performance issues related to operand writes.

PROCESSOR-LOCAL MEMORIES

5-18 Version 3 ColdFire Core UserÕs Manual MOTOROLA

Noncachable write accesses bypass the cache and a corresponding M-Bus external write
is performed. Normally, noncachable read accesses bypass the cache and the read access
is performed on the external bus. The exception to this normal operation occurs when all of
the following conditions are true during a noncachable read:

¥ The noncachable fill buffer bit (DNFB) is set in the Cache Control Register (CACR)

¥ Access is an instruction read

¥ Access is normal (i.e., transfer type (TT) equals 0)

¥ The appropriate noncacheable fill buffer bit (DNFB or NFB) is set

¥ Access is an instruction read

¥ Access is normal (i.e., transfer type (TT) equals 0)

¥ Access longword address is 0, 4, or 8 (i.e., the access is not referencing any of the last
four bytes of a line).

In this case, an entire line is fetched and stored in the fill buffer. It remains valid there and
the cache can service additional read accesses from this buffer until another fill occurs or a
MOVEC Òcache invalidate allÓ occurs.

If the CM field indicates either noncachable precise or noncachable imprecise modes, the
cache controller bypasses the cache and performs an external transfer. If a cache line
matching the current address is already resident in the cache and the cache mode for that
region is cache-inhibited, the cache does not automatically push the line if it is dirty, nor does
it invalidate the line if it is valid. System software must first execute a CPUSHL instruction
or set the CINVA bit of the CACR (to invalidate the entire cache) prior to switching the cache
mode.

If the CM field indicates precise mode, the sequence of read and write accesses to the
region is guaranteed to match the sequence of the instruction order. In imprecise mode, the
processor core allows read accesses that hit in processor-local memories to occur before
completion of a pending write from a previous instruction. Writes are not deferred past
operand read accesses that miss in the cache (i.e., that must be read from the bus). Precise
operation forces operand read accesses for an instruction to occur only once by preventing
the instruction from being interrupted after the operand-fetch stage. Otherwise, if not in
precise mode and an exception occurs, the instruction is aborted and the operand may be
accessed again when the instruction is restarted. These guarantees apply only when the CM
field indicates the precise mode and the accesses are aligned.

All CPU-space register accesses (e.g., MOVEC) are always treated as noncachable and
precise.

5.3.7 Cache Protocol
The following paragraphs describe the cache protocol for processor accesses and assumes
that the data is cachable (i.e., writethrough or copyback).

PROCESSOR-LOCAL MEMORIES

MOTOROLA Version 3 ColdFire Core UserÕs Manual 5-19

5.3.7.1 READ MISS. A processor read that misses in the cache causes an M-Bus
transaction. This bus transaction reads the needed line from memory and supplies the
required data to the processor core. The line is placed in the cache in the valid state.

5.3.7.2 WRITE MISS. The cache controller handles processor writes that miss in the cache
differently for writethrough and copyback regions. Byte, word, or longword, or line write
misses to copyback regions load the cache line from an M-Bus line read. Line write misses
to copyback regions do not cause an M-Bus line read to load the cache line. The line is
completely sourced by the core, thereby avoiding the line read from memory. The new
cache line is then updated with write data and the D-bit for the line is set, leaving the cache
line in the dirty state. Write misses to writethrough regions write directly to memory without
loading the corresponding cache line into the cache.

5.3.7.3 READ HIT. On a read hit, the cache provides the data to the processor core. No M-
Bus transaction is performed and the cache line state remains unchanged. If the cache
mode changes for a specific region of address space, lines in the cache corresponding to
that region that contain dirty data are not be pushed out to memory when a read hit occurs
within that line. System software must first execute a CPUSHL instruction or set the CINVA
bit of the CACR (to invalidate the entire cache) before switching the cache mode.

5.3.7.4 WRITE HIT. The cache controller handles processor writes that hit in the cache
differently for writethrough and copyback regions. For write hits to a writethrough region, the
portions of the cache line(s) corresponding to the size of the access are updated with the
data. The data is also written to the external memory. The cache line state remains
unchanged. If the access is copyback, the cache controller updates the cache line and sets
the D-bit for the line. An external write is not performed and the cache line state changes to
(or remains in) the dirty state.

5.3.8 Cache Coherency
The CF3Core provides limited support for maintaining cache coherency in multi-master
environments. Both writethrough and copyback memory update techniques are supported
to maintain coherency between the cache and memory.

The cache does not support snooping (i.e., cache coherency is not supported while alternate
masters are using the bus).

5.3.9 Memory Accesses for Cache Maintenance
The cache controller performs all maintenance activities that supply data from the cache to
the processor core. These activities include requesting accesses to the System Bus
Controller for reading new cache lines and writing dirty cache lines to memory. The following
paragraphs describe the memory accesses resulting from cache-fill and push operations.
Refer to Section 3.3.3 M- Bus Operation for detailed information about the required M-Bus
cycles.

PROCESSOR-LOCAL MEMORIES

5-20 Version 3 ColdFire Core UserÕs Manual MOTOROLA

5.3.10 Cache Filling
When a new cache line is required, the K2M internal bus controller requests a line read from
the M-Bus. The M-Bus requests a burst-read transfer by indicating a line access with the
size signals (MSIZ[1:0]).

The responding device supplies four longwords of data in sequence. For all cases of line-
sized transfers, the critical longword defined by bits[3:2] of the miss address is accessed
first, followed by the remaining three longwords, which are accessed by incrementing the
address in a modulo-16 fashion as shown below:

if address[3:2] = 00,fetch sequence = {$0, $4, $8, $C}

if address[3:2] = 01,fetch sequence = {$4, $8, $C, $0}

if address[3:2] = 10,fetch sequence = {$8, $C, $0, $4}

if address[3:2] = 11,fetch sequence = {$C, $0, $4, $8}

5.3.11 Cache Pushes
When the cache controller selects a dirty cache line for replacement, memory must be
updated with the dirty data before the line is replaced. Cache pushes occur for line
replacement and as required for the execution of the CPUSHL instruction. To reduce the
requested dataÕs latency in the new line, the dirty line being replaced is temporarily placed
in the push buffer while the new line is fetched from memory. After the bus transfer for the
new line completes, the dirty cache line is written back to memory and the push buffer is
invalidated.

5.3.12 Push and Store Buffers
The push buffer reduces latency for requested new data on a cache miss by temporarily
holding displaced dirty data while the new data is fetched from memory. The push buffer
contains16 Bytes of storage (one displaced cache line).

If a cache miss displaces a dirty line, the miss read reference is immediately placed on the
M-Bus. While waiting for the response, the current contents of the cache location load into
the push buffer. Once the bus transaction (burst read) completes, the cache controller can
generate the appropriate line-write bus transaction to write the contents of the push buffer
to memory.

The store buffer implements a FIFO buffer that can defer pending writes to imprecise
regions in order to maximize performance. The store buffer can support as many as four
entries (16 Bytes maximum) for this purpose.

For operand writes destined for the store buffer, the processor core incurs no stalls. The
store buffer effectively provides a measure of decoupling between the pipelineÕs ability to
generate writes (one write per cycle maximum) and the ability of the M-Bus to retire those
writes. When writing to imprecise regions, a stall occurs only if the store buffer is full and a
write operation is present on the K-Bus. In this case, the K-Bus write cycle is held, stalling
the processorÕs operand execution pipeline.

PROCESSOR-LOCAL MEMORIES

MOTOROLA Version 3 ColdFire Core UserÕs Manual 5-21

If the store buffer is not used (i.e., store buffer disabled or cache-inhibited precise mode),
M-Bus cycles are generated directly for each pipeline write operation. The next instruction
is held in the AGEX cycle of the operand execution pipeline (OEP) until external bus transfer
termination is received. This means each write operation is stalled for five cycles, making
the minimum write time equal to six cycles when the store buffer is not used.

The store buffer enable bit (ESB bit of the CACR) controls the enabling of the store buffer.
This bit can be set and cleared via the MOVEC instruction. At reset, this bit is cleared and
all writes are precise. The ACR CM field or CACR DCM field generates the mode used when
this bit is set. The cachable writethrough and the cache-inhibited imprecise modes use the
store buffer.

The store buffer can queue as much as four bytes of data per entry. Each entry matches the
corresponding bus cycle it will generate. Therefore, a misaligned longword write to a
writethrough region creates two entries if the address is to an odd-word boundary, three
entries if to an odd-byte boundaryÑone per bus cycle.

5.3.12.1 PUSH AND STORE BUFFER BUS OPERATION. Once the push or store buffer
has valid data, the K2M internal bus controller uses the next available external bus cycle to
generate the appropriate write cycles. In the event that another cache fill is required (e.g.,
cache miss to process) during the continued instruction execution by the processor pipeline,
the pipeline stalls until the push and store buffers are empty before generating the required
M-Bus transaction.

Certain instructions and exception processing that synchronize the processor core
guarantee the push and store buffers are empty before proceeding.

5.3.13 Cache Operation Summary
The following paragraphs summarize the operational details for the cache and present state
diagrams depicting the cache line state transitions.

The cache supports a line-based protocol allowing individual cache lines to be in one of
three states: invalid, valid, or dirty. To maintain coherency with memory, the cache supports
both writethrough and copyback modes, specified by the CM field for the matched ACR or
the DCM field of the CACR if no ACR matches.

Read misses and write misses to copyback regions cause the cache controller to read a new
cache line from memory into the cache. If available, tag and data from memory update an
invalid line in the selected setset. The line state then changes from invalid to valid by setting
the V-bit for the line. If all lines in the set are already valid or dirty, the pseudo-round-robin
replacement algorithm selects one of the four lines and replaces the tag and data contents
of the line with the new line information. Before replacement, dirty lines are temporarily
stored in the push buffer and later copied back to memory after the new line has been read
from memory. Figure 5-9 illustrates the three possible states for a cache line, with the
possible processor-initiated transitions. Transitions are labeled with a capital letter,
indicating the previous state, followed by a number indicating the specific case listed in
Table 5-3.

PROCESSOR-LOCAL MEMORIES

5-22 Version 3 ColdFire Core UserÕs Manual MOTOROLA

Note

The shaded areas indicate that the cache mode has changed for the region
corresponding to this cache line. In writethrough mode, a cache line should
never be dirty.

To avoid these states:

1. Execute a CPUSHL instruction, or

2. Set the CINVA bit of the CACR (to invalidate the entire cache) before
switching the cache mode.

Table 5-3. Cache Line State Transitions

CACHE
OPERATION

CURRENT STATE
INVALID CASES VALID CASES DIRTY CASES

READ
MISS (C,W)I1

Read line from memory
and update cache;
Supply data to processor;
Go to valid state.

(C,W)V1

Read new line from
memory and update
cache;
supply data to processor;
Remain in current state.

CD1

Push dirty cache line to
push buffer;
Read new line from mem-
ory and update cache;
Supply data to processor;
Write push buffer con-
tents to memory;
Go to valid state.

READ HIT (C,W)I2 Not possible. (C,W)V2 Supply data to processor;
Remain in current state. CD2 Supply data to processor;

Remain in current state.

WRITE
MISS

(COPY-
BACK

MODE)

CI3

Read line from memory
and update cache;
Write data to cache;
Go to dirty state.

CV3

Read new line from
memory and update
cache;
Write data to cache;
Go to dirty state.

CD3

Push dirty cache line to
push buffer;
Read new line from mem-
ory and update cache;
Write push buffer con-
tents to memory;
Remain in current state.

WRITE
MISS

(WRITE-
THROUGH

MODE)

WI3 Write data to memory;
Remain in current state. WV3 Write data to memory;

Remain in current state. WD3 Write data to memory;
Remain in current state.

WRITE HIT
(COPY-
BACK

MODE)
CI4 Not possible. CV4 Write data to cache;

Go to dirty state. CD4 Write data to cache;
Remain in current state.

WRITE HIT
(WRITE-

THROUGH
MODE)

WI4 Not possible. WV4
Write data to memory
and to cache;
Remain in current state.

WD4
Write data to memory
and to cache;
Go to valid state.

CACHE
INVALI-
DATE

(C,W)I5 No action;
Remain in current state. (C,W)V5 No action;

Go to invalid state. CD5 No action (dirty data lost);
Go to invalid state.

CACHE
PUSH (C,W)I6 No action;

Remain in current state. (C,W)V6 No action;
Go to invalid state. CD6

Push dirty cache line to
memory;
Go to invalid state.

CACHE
PUSH (C,W)I7 No action;

Remain in current state. (C,W)V7 No action;
Remain in current state. CD7

Push dirty cache line to
memory;
Go to valid state

PROCESSOR-LOCAL MEMORIES

MOTOROLA Version 3 ColdFire Core UserÕs Manual 5-23

Figure 5-9. Cache Line State Diagrams

WI1- CPU READ MISS

WI6 - CPUSHL & DPI WV4 - CPU WRITE HIT

WV5 - CINVA
WV6 - CPUSHL & DPI

WI5 - CINVA
WI3 - CPU WRITE MISS

WV3 - CPU WRITE MISS
WV2 - CPU READ HIT
WV1 - CPU READ MISS

COPYBACK

CI6 - CPUSHL & DPI
CI5 - CINVA

CV2 -CPU READ HIT
CV1 -CPU READ MISS

CD3 - CPU WRITE MISS
CD2- CPU READ HIT

CD4 - CPU WRITE HIT

CV5 - CINVA
CV6 - CPUSHL & DPI

CI1-CPU READ MISS

CD1- CPU
CD5 - CINVA
CD6 - CPUSHL

CV3 - CPU WRITE MISS
CV4 - CPU WRITE HIT

INVALID
COPYBACK

VALID

COPYBACK
DIRTY

WRITE-
THROUGH

INVALID VALID

WRITE-
THROUGH

C13 -CPU

CI7 - CPUSHL & DPI CV7 - CPUSHL & DPI

 & DPI

READ MISS
CD7- CPUSHL & DPI

WV7- CPUSHL & DPIWI7- CPUSHL & DPI

WRITETHROUGH CACHING MODE

COPYBACK CACHING MODE

WRITE MISS

PROCESSOR-LOCAL MEMORIES

5-24 Version 3 ColdFire Core UserÕs Manual MOTOROLA

5.4 PROCESSOR-LOCAL RANDOM ACCESS MEMORY (RAM)
The Version 3 ColdFire processor core supports a local random-access memory with the
following features:

¥ 0 - 32 KByte capacity, organized as (size/4) x 32 Bits

¥ RAM size defined by static core input signals, KRAM_SZ[2:0]

¥ Pipelined Single-Cycle Access

¥ Physically Located on Processor's High-Speed Local Bus

¥ Memory Location Programmable on any (0-Modulo-size) Address

¥ Programmable Memory Address Space Mappings

¥ Byte, Word, Longword Addressable

5.4.1 RAM Operation
The RAM module provides a general-purpose memory region that the ColdFire processor
can access in a single cycle. The location of the memory can be specified to any 0-modulo-
size address within the four gigabyte address space. The memory is ideal for storing critical
code or data structures or for use as the system stack. Since the RAM module is physically
connected to the processor's high-speed local bus, it can service processor-initiated
accesses or memory-referencing commands from the Debug Module.

Depending on configuration information, instruction fetches and operand references may be
sent to all local memory controllers simultaneously. The memory controllers implement a
fixed priority scheme which determines the appropriate responding device. The RAM is
treated as the highest priority memory, followed by the ROM, and then the unified cache. If
the read reference is mapped into the region defined by the RAM, it provides the data back
to the processor, and any ROM or cache data is discarded. Accesses from the RAM module
are not cached.

5.4.2 RAM Programming Model
The configuration information in the RAM Base Address Register (RAMBAR) controls the
operation of the RAM module.

¥ The RAMBAR is the register that holds the base address of the RAM. The RAMBAR is
accessed as control register $C04 using the privileged MOVEC instruction. The
MOVEC instruction provides write-only access to this register.

¥ The RAMBAR register can be accessed from the Debug Module in a similar manner.
From the Debug Module, the register can be read or written.

¥ All undefined bits in the register are reserved. These bits are ignored during writes to
the RAMBAR, and return zeroes when read from the Debug Module.

¥ The RAMBAR valid bit is cleared by reset, disabling the RAM module. All other bits are
unaffected.

PROCESSOR-LOCAL MEMORIES

MOTOROLA Version 3 ColdFire Core UserÕs Manual 5-25

The RAMBAR register contains four control fields. These fields are detailed in the following
subsections. The next illustration defines the format of the RAM Base Address Register
(RAMBAR).

 RAM Base Address Register (RAMBAR)

 RAM Base Address Register (RAMBAR)

BA[31:9] - Base Address

This field defines the 0-modulo-size base address of the RAM module. The RAM memory
occupies a size-space defined by the contents of the Base Address field. By programming
this field, the RAM may be located on any 0-modulo-size boundary within the processorÕs
four gigabyte address space. The number of bits in this field is a function of the RAM size:

WP - Write Protect

This field allows only read accesses to the RAM. When this bit is set, any attempted write
access generates an access error exception to the ColdFire processor core.

0 = Allow read and write accesses to the RAM module
1 = Allow only read accesses to the RAM module

Table 5-4. RAM Base Address Bits

RAM Size BA Field Bits

512 BA[31:09]

1K BA[31:10]

2K BA[31:11]

4K BA[31:12]

8K BA[31:13]

16K BA[31:14]

32K BA[31:15]

BA31 BA30 BA29 BA28 BA27 BA26 BA25 BA24 BA23 BA22 BA21 BA20 BA19 BA18 BA17 BA16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -
RESET:

BA15 BA14 BA13 BA12 BA11 BA10 BA09 WP - - C/I SC SD UC UD V

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - - - - - - 0
RESET:

PROCESSOR-LOCAL MEMORIES

5-26 Version 3 ColdFire Core UserÕs Manual MOTOROLA

C/I, SC, SD, UC, UD - Address Space Masks

This five-bit field allows certain types of accesses to be Òmasked,Ó or inhibited from
accessing the RAM module. The address space mask bits are:

¥ C/I = CPU Space/Interrupt acknowledge cycle mask

¥ SC = Supervisor Code address space mask

¥ SD = Supervisor Data address space mask

¥ UC = User code address space mask

¥ UD = User Data address space mask

For each address space bit:

0 = An access to the RAM module can occur for this address space
1 = Disable this address space from the RAM module. If a reference using this address

space is made, it is inhibited from accessing the RAM module, and is processed
like any other non-RAM reference.

In particular, the C/I mask bit is normally set. These bits are useful for power management
as detailed in Section 5.4.5: RAM Power Management.

V - Valid

The valid bit (V-bit) is specified by RAMBAR[0]. A hardware reset clears this bit. When set,
this bit enables the RAM module; otherwise, the module is disabled.

0 = Contents of RAMBAR are not valid
1 = Contents of RAMBAR are valid

The mapping of a given access into the RAM uses the following algorithm to determine if the
access ÒhitsÓ in the memory:

 if (RAMBAR[0] = 1)
 if (requested address[31:n] = RAMBAR[31:n]
 if (ASn of the requested type = 0)
 Access is mapped to the RAM module
 if (access = read)
 Read the RAM and return the data
 if (access = write)
 if (RAMBAR[8] = 0)
 Write the data into the RAM
 else Signal a write-protect access error

where ASn refers to the five address space masks (C/I, SC, SD, UC, UD).

PROCESSOR-LOCAL MEMORIES

MOTOROLA Version 3 ColdFire Core UserÕs Manual 5-27

5.4.3 RAM Initialization
After a hardware reset, the contents of the RAM module are undefined. The valid bit of the
RAMBAR is cleared, disabling the module. If the RAM needs to be initialized with
instructions or data, perform the following steps:

1. Load the RAMBAR mapping the RAM module to the desired location within the
address space.

2. Read the source data and write it to the RAM. There are various instructions to support
this function, including memory-to-memory move instructions, or the MOVEM opcode.
The MOVEM instruction is optimized to generate line-sized burst fetches on 0-modulo-
16 addresses, so this opcode generally provides maximum performance.

3. After the data has been loaded into the RAM, it may be appropriate to load a revised
value into the RAMBAR with a new set of Òattributes.Ó These attributes consist of the
write-protect and address space mask fields.

The ColdFire processor or an external emulator using the Debug Module can perform these
initialization functions.

5.4.4 RAM Initialization Code
The code segment below describes how to initialize a 4 KByte RAM. The code sets the base
address of the RAM at $20000000 and then initializes it to zeros.

RAMBAR_BAEQU$20000000 ;define the RAMBAR Base Address +
;set this variable to $20000000

RAMBAR_VEQU$1 ;define the RAMBAR valid bit

move.l #RAMBAR_BA+RAMBAR_V,D0 ;load RAMBAR base address + valid into D0
movec.lD0, RAMBAR ;load RAMBAR and enable RAM

; the following loop initializes the entire RAM to zero

lea.l RAMBAR_BA,A0 ;load base address pointer to RAM
move.l #1024,D0 ;load loop counter into D0

RAM_INIT_LOOP:
clr.l (A0)+ ;clear 4 bytes of RAM
subq.l #1,D0 ;decrement loop counter
bne RAM_INIT_LOOP ;if done, then exit; else continue looping

5.4.5 RAM Power Management
As noted previously, depending on the configuration defined by the RAMBAR, instruction
fetch and operand read accesses may be sent to the RAM and unified cache
simultaneously. If the access is mapped to the RAM module, it sources the read data, and
the unified cache access is discarded. If the RAM is used only for data operands, asserting
the ASn bits associated with instruction fetches can decrease power dissipation.
Additionally, if the RAM contains only instructions, masking operand accesses can reduce
power dissipation.

PROCESSOR-LOCAL MEMORIES

5-28 Version 3 ColdFire Core UserÕs Manual MOTOROLA

Consider the examples in Table 5-5 of typical RAMBAR settings:

5.5 PROCESSOR-LOCAL READ-ONLY MEMORY (ROM)
The Version 3 ColdFire processor core supports a local read-only memory with the following
features:

¥ 0 - 32 KByte capacity, organized as (size/4) x 32 Bits

¥ ROM size defined by static core input signals, KROM_SZ[2:0]

¥ Pipelined Single-Cycle Access

¥ Physically Located on Processor's High-Speed Local Bus

¥ Memory Location Programmable on any (0-Modulo-size) Address

¥ Programmable Memory Address Space Mappings

¥ Byte, Word, Longword Addressable

¥ Configurable at reset to serve as boot memory

5.5.1 ROM Operation
The ROM module provides a general-purpose memory region that the ColdFire processor
can access in a single cycle. The location of the memory can be specified to any 0-modulo-
size address within the four gigabyte address space. The memory is ideal for storing critical
code or read-only data structures. By asserting a CF3Core input signal, the ROM can be
configured to act as the boot memory device, i.e., the ROM can be based at address 0 and
made valid at reset. Since the ROM module is physically connected to the processor's high-
speed local bus, it can service processor-initiated accesses or memory-referencing
commands from the Debug Module.

Depending on configuration information, instruction fetches and operand references may be
sent to all local memory controllers simultaneously. The memory controllers implement a
fixed priority scheme which determines the appropriate responding device. The RAM is
treated as the highest priority memory, followed by the ROM, and then the unified cache. If
the read reference is mapped into the region defined by the RAM, it provides the data back
to the processor, and any ROM or cache data is discarded. Accesses from the ROM module
are not cached.

5.5.2 ROM Programming Model
The configuration information in the ROM Base Address Register (ROMBAR) controls the
operation of the ROM module.

Table 5-5. Examples of Typical RAMBAR Settings
DATA CONTAINED IN RAM RAMBAR[7:0]

Code Only $2B
Data Only $35

Both Code And Data $21

PROCESSOR-LOCAL MEMORIES

MOTOROLA Version 3 ColdFire Core UserÕs Manual 5-29

¥ The ROMBAR is the register that holds the base address of the ROM. The ROMBAR
is accessed as control register $C00 using the privileged MOVEC instruction. The
MOVEC instruction provides write-only access to this register.

¥ The ROMBAR register can be accessed from the Debug Module in a similar manner.
From the Debug Module, the register can be read or written.

¥ All undefined bits in the register are reserved. These bits are ignored during writes to
the ROMBAR, and return zeroes when read from the Debug Module.

¥ The initial value of the ROMBAR is controlled by the state of a CF3Core input pin. If the
input signal KROMVLDRST is set at reset time, the contents of the ROMBAR is forced
to $0000_0121. This defines a valid ROM memory, based at address 0, write-protected
with the CPU space/interrupt acknowledge accesses masked. If KROMVLDRST is ne-
gated, the ROMBAR valid bit is cleared by reset, disabling the ROM module. All other
bits are unaffected.

The ROMBAR register contains four control fields. These fields are detailed in the following
subsections.

 ROM Base Address Register (ROMBAR)

 ROM Base Address Register (ROMBAR)

BA[31:9] - Base Address

This field defines the 0-modulo-size base address of the ROM module. The ROM memory
occupies a size-space defined by the contents of the Base Address field. By programming
this field, the ROM may be located on any 0-modulo-size boundary within the processorÕs
four gigabyte address space. The number of bits in this field is a function of the ROM size:

Table 5-6. ROM Base Address Bits

ROM Size BA Field Bits

512 BA[31:09]

1K BA[31:10]

2K BA[31:11]

BA31 BA30 BA29 BA28 BA27 BA26 BA25 BA24 BA23 BA22 BA21 BA20 BA19 BA18 BA17 BA16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -
RESET:

BA15 BA14 BA13 BA12 BA11 BA10 BA09 WP - - C/I SC SD UC UD V

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - - - - - - 0
RESET:

PROCESSOR-LOCAL MEMORIES

5-30 Version 3 ColdFire Core UserÕs Manual MOTOROLA

WP - Write Protect

This field is reserved for future use. It can be used for debugging purposes, since if this bit
is set, any attempted write access generates an access error exception to the ColdFire
processor core.

0 = Allow read and write accesses to the ROM module
1 = Allow only read accesses to the ROM module

C/I, SC, SD, UC, UD - Address Space Masks

This five bit field allows certain types of accesses to be Òmasked,Ó or inhibited from
accessing the ROM module. The address space mask bits are:

¥ C/I = CPU Space/Interrupt acknowledge cycle mask

¥ SC = Supervisor Code address space mask

¥ SD = Supervisor Data address space mask

¥ UC = User code address space mask

¥ UD = User Data address space mask

For each address space bit:

0 = An access to the ROM module can occur for this address space
1 = Disable this address space from the ROM module. If a reference using this address

space is made, it is inhibited from accessing the ROM module, and is processed
like any other non-ROM reference.

In particular, the C/I mask bit is normally set. These bits are useful for power management
as detailed in Section 5.5.3: ROM Power Management.

V - Valid

The initial state of the ROMBAR valid bit is controlled by the value of a CF3Core input pin.
If the input signal KROMVLDRST is set at reset time, the contents of the ROMBAR is forced
to $0000_0121. This defines a valid ROM memory, based at address 0, write-protected with
the CPU space/interrupt acknowledge accesses masked. If KROMVLDRST is negated,
the ROMBAR valid bit is cleared by reset, disabling the ROM module.

4K BA[31:12]

8K BA[31:13]

16K BA[31:14]

32K BA[31:15]

Table 5-6. ROM Base Address Bits

ROM Size BA Field Bits

PROCESSOR-LOCAL MEMORIES

MOTOROLA Version 3 ColdFire Core UserÕs Manual 5-31

When set, this bit enables the ROM module; otherwise, the module is disabled.

0 = Contents of ROMBAR are not valid
1 = Contents of ROMBAR are valid

The mapping of a given access into the ROM uses the following algorithm to determine if
the access ÒhitsÓ in the memory:

 if (ROMBAR[0] = 1)
 if (requested address[31:n] = ROMBAR[31:n]
 if (ASn of the requested type = 0)
 Access is mapped to the ROM module
 if (access = read)
 Read the ROM and return the data
 if (access = write)
 if (ROMBAR[8] = 1)
 Signal a write-protect access error

where ASn refers to the five address space masks (C/I, SC, SD, UC, UD).

5.5.3 ROM Power Management
As noted previously, depending on the configuration defined by the ROMBAR, instruction
fetch and operand read accesses may be sent to the local memory controllers
simultaneously. If the access is mapped to the ROM module, it sources the read data, and
the unified cache access is discarded. If the ROM is used only for data operands, asserting
the ASn bits associated with instruction fetches can decrease power dissipation.
Additionally, if the ROM contains only instructions, masking operand accesses can reduce
power dissipation.

Consider the examples in Table 5-7 of typical ROMBAR settings:

5.6 INTERACTIONS BETWEEN THE KBUS MEMORIES
Depending on configuration information, instruction fetches and operand read accesses
may be sent to all three of the K-Bus memory controllers, i.e., the RAM, the ROM and the
unified cache simultaneously. This approach is required since all three controllers are
memory-mapped devices and the hit/miss determination is made concurrently with the read
data access. As previously discussed, power dissipation can be minimized by configuring
the RAMBAR and ROMBAR control registers to mask unused address spaces whenever
possible.

If the access address is mapped into the region defined by the RAM (and this region is not
masked), the RAM provides the data back to the processor, and the ROM and unified cache
data is discarded. Accesses from the RAM module are never encached. The ROM behaves

Table 5-7. Examples of Typical ROMBAR Settings
DATA CONTAINED IN ROM ROMBAR[7:0]

Code Only $2B
Read-Only Data Only $35
Both Code And Data $21

PROCESSOR-LOCAL MEMORIES

5-32 Version 3 ColdFire Core UserÕs Manual MOTOROLA

similarly, although its priority is below that of the RAM. The complete definition of the
processorÕs local bus priority scheme for read references is:

if (RAM ÒhitsÓ)

 RAM supplies data to the processor

else if (ROM ÒhitsÓ)

 ROM supplies data to the processor

 else if (unified cache ÒhitsÓ)

 unified cache supplies data to the processor

 else M-Bus reference to access data

For operand write references, the memory-mapping into the local memories is resolved
before the appropriate destination memory is accessed. Accordingly, only the targeted
local memory is accessed for operand write transfers.

MOTOROLA

Version 3 ColdFire Core User’s Manual 6-1

SECTION 6
DEBUG SUPPORT

This section details the hardware debug support functions within the ColdFire family of
processors. The Version 3 ColdFire implements an enhanced debug architecture compared
to the original specification. The original design plus these enhancements is known as
Revision B (or Rev. B), while the initial definition is Revision A (or Rev. A). The enhanced
functionality is clearly identified in this section. The Rev. B enhancements are backward
compatible with the original ColdFire debug definition.

The general topic of debug support is divided into three separate areas:

• Real-Time Trace Support

• Background Debug Mode (BDM)

• Real-Time Debug Support

Each of the three areas is addressed in detail in the following subsections.

Version 3 ColdFire processors implement the enhanced Revision B debug module
definition. Enhancements include the following:

• Serial BDM command to display current program counter without halting the CPU

• Added capability to logically OR hardware breakpoint triggers

• Added registers to support concurrent BDM commands and active breakpoints

• An external mechanism to generate a debug interrupt

• A program-visible register field to identify the debug module revision

The logic required to support these three areas is contained in a Debug Module, which is
shown in the system block diagram in Figure 6-1.

DEBUG SUPPORT

6-2 Version 3 ColdFire Core User’s Manual MOTOROLA

6.1 SIGNAL DESCRIPTION

This section describes the ColdFire signals associated with the Debug Module. All ColdFire
debug signals are unidirectional and related to the rising-edge of the processor core’s clock
signal.

6.1.1 Breakpoint (BKPT)

6.1.1.1 REV A FUNCTIONALITY.

This active-low, input signal is used to request a manual
breakpoint. It’s assertion causes the processor to enter a halted state after the completion
of the current instruction. The halt status is reflected on the processor status (

PST

) pins as
the value $F.

6.1.1.2 REV. B ENHANCEMENT.

In addition to the baseline functionality, if the BKD bit of
the Configuration/Status Register is set (CSR[18]), the assertion of the BKPT signal
generates a debug interrupt exception in the processor.

6.1.2 Debug Data (DDATA[3:0])

These output signals display the hardware register breakpoint status as a default, or
optionally, captured address and operand values. The capturing of data values is controlled
by the setting of the CSR. Additionally, execution of the WDDATA instruction by the
processor captures operands which are displayed on DDATA. These signals are updated
each processor cycle.

6.1.3 Development Serial Clock (DSCLK)

This input signal is synchronized internally and provides the clock for the serial
communication port to the Debug Module. The maximum frequency is 1/5 the speed of the
processor’s clock (

CLK

). At the synchronized rising edge of DSCLK, the data input on DSI is
sampled, and the DSO output changes state.

Figure 6-1. Processor/Debug Module Interface

COLDFIRE CPU

DEBUG

MODULE

HIGH SPEEDCORE

TRACE PORT
DDATA, PST, PSTCLK

COMMUNICATION PORT
DSCLK, DSI, DSOCONTROL

BKPT

LOCAL BUS

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-3

6.1.4 Development Serial Input (DSI)

The input signal is synchronized internally and provides the data input for the serial
communication port to the Debug Module.

6.1.5 Development Serial Output (DSO)

This signal provides serial output communication for the Debug Module responses.

6.1.6 Processor Status (PST[3:0])

These output signals report the processor status. Table 6-1 shows the encoding of these
signals. These outputs indicate the current status of the processor pipeline and, as a result,
are not related to the current bus transfer. The PST value is updated each processor cycle.

6.1.7 Processor Status Clock (PSTCLK)

Since the debug trace port signals transition each processor cycle and are not related to the
external bus frequency, an additional signal is output from the ColdFire microprocessor. The
PSTCLK signal is a delayed version of the processor’s high-speed clock and its rising-edge
is used by the development system to sample the values on the PST and DDATA output
buses. The PSTCLK signal is intended for use in the standard 26-pin debug connector.

If the real-time trace functionality is not being used, the PCD bit of the CSR may be set
(CSR[17] = 1) to force the PSTCLK, PST and DDATA outputs to be quiescent and not toggle
at the processor’s clock speed.

.

Table 6-1. Processor Status Encoding

PST[3:0]
DEFINITION

(HEX) (BINARY)

$0 0000 Continue execution
$1 0001 Begin execution of an instruction
$2 0010 Reserved
$3 0011 Entry into user-mode
$4 0100 Begin execution of

PULSE

and

WDDATA

instructions
$5 0101 Begin execution of taken branch or Sync_PC

1

$6 0110 Reserved
$7 0111 Begin execution of

RTE

 instruction
$8 1000 Begin 1-byte transfer on DDATA
$9 1001 Begin 2-byte transfer on DDATA
$A 1010 Begin 3-byte transfer on DDATA
$B 1011 Begin 4-byte transfer on DDATA
$C 1100 Exception processing†
$D 1101 Emulator-mode entry exception processing†
$E 1110 Processor is stopped, waiting for interrupt†
$F 1111 Processor is halted †

NOTE: †These encodings are asserted for multiple cycles.

1 Rev. B ehnancement.

DEBUG SUPPORT

6-4 Version 3 ColdFire Core User’s Manual MOTOROLA

6.2 REAL-TIME TRACE SUPPORT

In the area of debug functions, one fundamental requirement is support for real-time trace
functionality, i.e., definition of the dynamic execution path. The ColdFire solution is to include
a parallel output port providing encoded processor status and data to an external
development system. This port is partitioned into two nibbles (4 bits): one nibble allows the
processor to transmit information concerning the execution status of the core (processor
status

,

PST

), while the other nibble allows operand data to be displayed (debug data

,

DDATA

).
The processor status (PST) timing is synchronous with the processor clock (

CLK

) and may
not be related to the current bus transfer. Table 6-1 shows the encoding of these signals.

The processor status (

PST

) outputs can be used with an external image of the program to
completely track the dynamic execution path of the machine when used with external
development systems. The tracking of this dynamic path is complicated by any change-of-
flow operation. This is especially evident when the branch target address is calculated
based on the contents of a program-visible register (variant addressing.) For this reason, the
debug data (

DDATA

) outputs can be configured to display the target address of these types of
change-of-flow instructions. Because the DDATA bus is only 4 bits wide, the address is
displayed a nibble at a time across multiple clock cycles.

The Debug Module includes two 32-bit storage elements for capturing the internal ColdFire
bus information. These two elements effectively form a FIFO buffer connecting the
processor’s high-speed local bus to the external development system through the

DDATA

signals. The FIFO buffer captures branch target addresses along with certain operand data
values for eventual display on the DDATA

output port on nibble at a time starting with the
least-significant bit. The execution speed of the ColdFire processor is affected only when
both storage elements contain valid data

waiting to be dumped onto the DDATA port. In this
case, the processor core is stalled until one FIFO entry is available. In all other cases, data
output on the DDATA port does not impact execution speed.

6.2.1 Processor Status Signal Encoding

The processor status (

PST

) signals are encoded to reflect the state of the Operand Execution
Pipeline, and are generally not related to the current external bus transfer.

6.2.1.1 CONTINUE EXECUTION (PST = $0).

Many instructions complete in a single
processor cycle. If an instruction requires more clock cycles, the subsequent clock cycles
are indicated by driving the

PST

outputs with this encoding.

6.2.1.2 BEGIN EXECUTION OF AN INSTRUCTION (PST = $1).

For most instructions,
this encoding signals the

first clock cycle

of an instruction’s execution. Certain change-of-
flow opcodes, plus the PULSE and WDDATA instructions generate different encodings.

6.2.1.3 ENTRY INTO USER MODE (PST = $3).

This encoding indicates the ColdFire
processor has entered user mode. This encoding is signaled after the instruction which
caused the user mode entry has executed (signaled with the appropriate encoding.)

6.2.1.4 BEGIN EXECUTION OF PULSE OR WDDATA INSTRUCTIONS (PST = $4).

The
ColdFire instruction set architecture includes a PULSE opcode. This opcode generates a

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-5

unique

PST

 encoding, $4, when executed. This instruction can define logic analyzer triggers
for debug and/or performance analysis. Additionally, a WDDATA instruction is supported
that allows the processor core to write any operand (byte, word, longword) directly to the

DDATA

 port, independent of any Debug Module configuration. This opcode also generates the
special PST encoding ($4) when executed, followed by the appropriate marker and then the
data transfer on the DDATA outputs. The length of the data transfer is dependent on the
operand size of the WDDATA instruction.

6.2.1.5 BEGIN EXECUTION OF TAKEN BRANCH (PST = $5).

This valueis generated
whenever a taken branch is executed. For certain opcodes, the branch target address may
be optionally displayed on

DDATA

 depending on the control parameters contained in the
configuration/status register (

CSR

). The number of bytes of the address to be displayed is
also controlled in the CSR and indicated by the PST marker value immediately preceding
the DDATA outputs.

The bytes are always displayed in a least-significant to most-significant order. The
processor captures only those target addresses associated with taken branches using a
variant addressing mode, i.e., all JMP and JSR instructions using address register indirect
or indexed addressing modes, all RTE and RTS instructions as well as all exception vectors.

The simplest example of a branch instruction using a variant address is the compiled code
for a C language “case” statement. Typically, the evaluation of this statement uses the
variable of an expression as an index into a table of offsets, where each offset points to a
unique case within the structure. For these types of change-of-flow operations, the ColdFire
processor uses the debug pins to output a sequence of information on successive processor
clock cycles

1. Identify a taken branch has been executed using the

PST

pins ($5).

2. Using the

PST

pins, optionally signal the target address is to be displayed on the

DDATA

pins. The encoding ($9, $A, $B) identifies the number of bytes that are displayed

.

3. The new target address is optionally available on subsequent cycles using the nibble-
wide

DDATA

 port. The number of bytes of the target address displayed on this port is a
configurable parameter (2, 3, or 4 bytes).

Another example of a variant branch instruction would be a JMP (A0) instruction. If the

CSR

was programmed to display the lower two bytes of an address, the outputs of the

PST

 and
DDATA signals when this instruction executed are shown in Figure 6-2.

Figure 6-2. Example PST/DDATA Diagram

CLK

$5 $9 $0PST

$0 $0 A[3:0] A[7:4] A[11:8] A[15:12]DDATA

PSTCLK

DEBUG SUPPORT

6-6 Version 3 ColdFire Core User’s Manual MOTOROLA

PST

 is driven with a $5 indicating a taken branch. In the second cycle, PST is driven with a
marker value of $9 indicating a two-byte address that is displayed four bits at a time on the

DDATA

 signals over the next four clock cycles. The remaining four clock cycles display the
lower two-bytes of the address (A0), least significant nibble to most significant nibble. The
output of the PST signals after the JMP instruction completes is dependent on the target
instruction. The PST can continue with the next instruction before the address has
completely displayed on the DDATA because of the DDATA FIFO. If the FIFO is full and the
next instruction needs to display captured values on DDATA, the pipeline stalls (PST = $0)
until space is available in the FIFO.

6.2.1.6 BEGIN EXECUTION OF RTE INSTRUCTION (PST = $7).

The unique encoding is
generated whenever the return-from-exception (RTE) instruction is executed.

6.2.1.7 BEGIN DATA TRANSFER (PST = $8 - $B).

These encodings serve as markers to
indicate the number of bytes to be displayed on the

DDATA

 port on subsequent clock cycles.
This encoding is driven onto the

PST

 port one processor cycle before the actual data is
displayed on DDATA. When PST outputs a $8/$9/$A/$B marker value, the DDATA port
outputs 1/2/3/4 bytes of captured data respectively on consecutive processor cycles.

6.2.1.8 EXCEPTION PROCESSING (PST = $C).

This encoding is displayed during normal
exception processing. Exceptions which enter emulation mode (debug interrupt, or
optionally trace) generate a different encoding. Because this encoding defines a multicycle
mode, the

PST

 outputs are driven with this value until exception processing is completed.

6.2.1.9 EMULATOR MODE EXCEPTION PROCESSING (PST = $D).

This encoding is
displayed during emulation mode (debug interrupt, or optionally trace). Because this
encoding defines a multicycle mode, the

PST

 outputs are driven with this value until exception
processing is completed.

6.2.1.10 PROCESSOR STOPPED (PST = $E).

This encoding is generated as a result of
the STOP instruction. The ColdFire processor remains in the stopped state until an interrupt
occurs. Because this encoding defines a multicycle mode, the

PST

 outputs are driven with
this value until the stopped mode is exited.

6.2.1.11 PROCESSOR HALTED (PST = $F).

This encoding is generated when the
ColdFire processor is halted (see

Section 6.3.1 CPU Halt

.) Because this encoding defines
a multicycle mode, the

PST

 outputs are driven with this value until the processor is restarted,
or reset.

6.3 BACKGROUND-DEBUG MODE (BDM)

The ColdFire Family supports a modified version of the background debug mode (BDM)
functionality found on Motorola’s CPU32 family of parts. BDM implements a low-level
system debugger in the microprocessor hardware. Communication with the development
system is handled via a dedicated, high-speed serial command interface.

Unless noted otherwise, the BDM functionality provided by ColdFire is a proper subset of
the CPU32 functionality. The main differences include the following:

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-7

• ColdFire implements the BDM controller in a dedicated hardware module. Although
some BDM operations do require the CPU to be halted (e.g. CPU register accesses),
other BDM commands such as memory accesses can be executed while the processor
is running.

• On CPU32 parts, the

DSO

 signal can inform hardware that a serial transfer can start.
ColdFire clocking schemes restrict the use of this bit. Because DSO changes only when

DSCLK

 is high, DSO cannot be used to indicate the start of a serial transfer. The
development system count the number of clocks in any given transfer.

• The read/write system register commands, RSREG and WSREG, have been replaced
by read/write control register commands, RCREG and WCREG. These commands use
the register coding scheme from the MOVEC instruction.

• The read/write Debug Module register commands, RDMREG and WDMREG, have
been added to support Debug Module register accesses.

• CALL and RST commands are not supported and generates an illegal command
response.

• Illegal command responses can be returned using the FILL and DUMP commands, if
not immediately preceded by certain, specific BDM commands.

• For any command performing a byte-sized memory read operation, the upper 8 bits of
the response data are undefined. The referenced data is returned in the lower 8 bits of
the response.

• The Debug Module forces alignment for memory-referencing operations: long accesses
are forced to a 0-modulo-4 address; word accesses are forced to a 0-modulo-2
address. An address error response is never returned.

6.3.1 CPU Halt

Although many BDM operations can occur in parallel with CPU operation, unrestricted BDM
operation requires the CPU to be halted. A number of sources can cause the CPU to halt,
including the following as shown in order of priority:

1. The occurrence of the catastrophic fault-on-fault condition automatically halts the
processor.

2. The occurrence of a hardware breakpoint can be configured to generate a pending halt
condition in a manner similar to the assertion of the

BKPT

 signal. In all cases, the
assertion of this type of halt is first made pending in the processor. Next, the processor
samples for pending halt and interrupt conditions once per instruction. Once the
pending condition is asserted, the processor halts execution at the next sample point.
See

Section 6.4.1 Theory of Operation

 for more detail.

3. The execution of the HALT instruction

,

also known as BGND on the 683xx devices,
immediately suspends execution. By default this is a supervisor instruction and
attempted execution while in user mode generates a privilege violation exception. A
User Halt Enable (UHE) control bit is provided in the Configuration/Status Register
(

CSR

) to allow execution of HALT in user mode. The processor may be restarted after
the execution of the HALT instruction by serial shifting a “GO” command into the debug
module. Execution continues at the instruction following the HALT opcode.

DEBUG SUPPORT

6-8 Version 3 ColdFire Core User’s Manual MOTOROLA

4. The assertion of the

BKPT

 input pin is treated as a pseudo-interrupt, i.e., the halt
condition is made pending until the processor core samples for halts/interrupts. The
processor samples for these conditions once during the execution of each instruction.
If there is a pending halt condition at the sample time, the processor suspends
execution and enters the halted state.

There are two special cases involving the assertion of the

BKPT

 pin to be considered.

After the system reset signal is negated, the processor waits for 16 clock cycles before
beginning reset exception processing. If the

BKPT

 input pin is asserted within the first eight
cycles after RSTI is negated, the processor enters the halt state, signaling that halt status,(
$F), on the

PST

 outputs. While in this state, all resources accessible via the Debug Module
can be referenced. This is the only opportunity to force the ColdFire processor into
emulation mode via the EMU bit in the configuration/status register (

CSR

). Once the system
initialization is complete, the processor response to a BDM GO command is dependent on
the set of BDM commands performed while breakpointed. Specifically, if the processor’s

PC

register was loaded, then the GO command simply causes the processor to exit the halted
state and pass control to the instruction address contained in the PC. Note in this case, the
normal reset exception processing is bypassed. Conversely, if the PC register was not
loaded, then the GO command causes the processor to exit the halted state and continue
with reset exception processing.

ColdFire also handles a special case of the assertion of

BKPT

 while the processor is stopped
by execution of the STOP instruction. For this case, the processor exits the stopped mode
and enters the halted state. Once halted, all BDM commands may be exercised. When the
processor is restarted, it continues with the execution of the next sequential instruction, i.e.,
the instruction following the STOP opcode.

The halt source is indicated in

CSR

[27:24]. For simultaneous halt conditions, the highest
priority source is indicated.

6.3.2 BDM Serial Interface

Once the CPU is halted and the halt status reflected on the

PST

 outputs, the development
system may send unrestricted commands to the Debug Module. The Debug Module
implements a synchronous protocol using a three-pin interface: development serial clock
(

DSCLK

), development serial input (

DSI

), and

development serial output

(

DSO

). The
development system serves as the serial communication channel master and is responsible
for generation of the clock (DSCLK). The operating range of the serial channel is DC to 1/5
of the processor frequency. The channel uses a full duplex mode, where data is transmitted
and received simultaneously by both master and slave devices. The transmission consists
of 17-bit packets composed of a status/control bit and a 16-bit data word. As seen in Figure
6-3, all state transitions are enabled on a rising edge of the processor clock when DSCLK
is high, i.e., DSI is sampled and DSIis driven. The DSCLK signal must also be sampled low
(on a positive edge of CLK) between each bit exchange. The MSB is transferred first.

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-9

Both

DSCLK

 and

DSI

 are synchronized inputs.The DSCLK signal essentially acts as a pseudo
“clock enable” and is sampled on the rising edge of CLK as well as the DSI. The

DSO

 output
is delayed from the DSCLK-enabled CLK rising edge. All events in the Debug Module’s
serial state machine are based on the rising edge of the microprocessor clock (see Figure
6-4 below).

Figure 6-4. BDM Signal Sampling

6.3.2.1 RECEIVE PACKET FORMAT.

The basic receive packet of information is 17 bits
long,16 data bits plus a status bit, as shown below in Figure 6-5.

Status[16]
The status bit indicates the status of CPU-generated messages as listed in Table 6-2.

Figure 6-3. BDM Serial Transfer

16 15 0

S DATA FIELD [15:0]

Figure 6-5. Receive BDM Packet

PSTCLK

DSCLK

CPU CLK

NEXT STATE
BDM STATE
MACHINE

DSO

DSII

CLK

DSCLK

DSI

DSO

DEBUG SUPPORT

6-10 Version 3 ColdFire Core User’s Manual MOTOROLA

Data Field[15:0]
The data field contains the message data to be communicated from the Debug Module to
the development system. The response message is always a single word, with the data field
encoded as shown in Table 6-2.

6.3.2.2 TRANSMIT PACKET FORMAT.

The basic transmit packet of information is 17 bits
long,16 data bits plus a control bit, as shown below in Figure 6-6.

Control[16]
The control bit is not used but is reserved by Motorola for future use. Command and data
transfers initiated by the development system should clear bit 16.

Data Field[15:0]
The data field contains the message data to be communicated from the development
system to the Debug Module.

6.3.3 BDM Command Set

ColdFire supports a subset of BDM instructions from the MC683xx parts, as well as
extensions to provide access to new hardware features. The BDM commands must not be
issued whenever the ColdFire processor is accessing the Debug Module registers using the
WDEBUG instruction, or the resulting behaviour is undefined.

6.3.3.1 BDM COMMAND SET SUMMARY.

The BDM command set is summarized in
Table 6-3. Subsequent paragraphs contain detailed descriptions of each command.

Table 6-2. CPU-Generated Message Encoding

S BIT DATA MESSAGE TYPE

0 xxxx Valid Data Transfer
0 $FFFF Status Ok
1 $0000 Not Ready with Response; Come Again
1 $0001 Error - Terminated Bus Cycle; Data Invalid
1 $FFFF Illegal Command

16 15 0

C DATA FIELD [15:0]

Figure 6-6. Transmit BDM Packet

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-11

6.3.3.2 COLDFIRE BDM COMMANDS.

All ColdFire Family BDM commands include a 16-
bit operation word followed by an optional set of one or more extension words.

Operation Field
The operation field specifies the command.

Table 6-3. BDM Command Summary

COMMAND MNEMONIC DESCRIPTION
CPU

IMPACT

1

PAGE

READ A/D REGISTER RAREG/RDREG Read the selected address or data register and
return the results via the serial interface.

HALTED 6-14

WRITE A/D REGISTER WAREG/WDREG The data operand is written to the specified
address or data register.

HALTED 6-15

READ MEMORY
LOCATION

READ Read the data at the memory location specified
by the longword address.

STEAL 6-16

WRITE MEMORY
LOCATION

WRITE Write the operand data to the memory location
specified by the longword address.

STEAL 6-18

DUMP MEMORY
BLOCK

DUMP Used in conjunction with the READ command
to dump large blocks of memory. An initial
READ is executed to set up the starting
address of the block and to retrieve the first
result. Subsequent operands are retrieved with
the DUMP command.

STEAL 6-20

FILL MEMORY BLOCK FILL Used in conjunction with the WRITE command
to fill large blocks of memory. An initial WRITE
is executed to set up the starting address of the
block and to supply the first operand.
Subsequent operands are written with the FILL
command.

STEAL 6-22

RESUME EXECUTION GO The pipeline is flushed and refilled before
resuming instruction execution at the current

PC

.

HALTED 6-24

NO OPERATION NOP NOP performs no operation and may be used
as a null command.

PARALLEL 6-25

OUTPUTS THE
CURRENT PC

SYNC_PC Captures the current PC and displays it on the
PST/DDATA output pins.

PARALLEL 6-26

READ CONTROL
REGISTER

RCREG Read the system control register. HALTED 6-26

WRITE CONTROL
REGISTER

WCREG Write the operand data to the system control
register.

HALTED 6-28

READ DEBUG MODULE
REGISTER

RDMREG Read the Debug Module register. PARALLEL 6-29

WRITE DEBUG
MODULE REGISTER

WDMREG Write the operand data to the Debug Module
register.

PARALLEL 6-29

NOTE: 1. General command effect and/or requirements on CPU operation:

Halted - The CPU must be halted to perform this command

Steal - Command generates bus cycles which can be interleaved with CPU accesses

Parallel - Command is executed in parallel with CPU activity

Refer to command summaries for detailed operation descriptions.

15 10 9 8 7 6 5 4 3 2 0

OPERATION 0 R/W OP SIZE 0 0 A/D REGISTER

EXTENSION WORD(S)

BDM Command Format

DEBUG SUPPORT

6-12 Version 3 ColdFire Core User’s Manual MOTOROLA

R/W Field
The R/W field specifies the direction of operand transfer. When the bit is set, the transfer is
from the CPU to the development system. When the bit is cleared, data is written to the CPU
or to memory from the development system.

Operand Size
For sized operations, this field specifies the operand data size. All addresses are expressed
as 32-bit absolute values. The size field is encoded as listed in Table 6-4.

Address / Data (A/D) Field
The A/D field is used in commands that operate on address and data registers in the
processor. It determines whether the register field specifies a data or address register. A one
indicates an address register; zero, a data register.

Register Field
In commands that operate on processor registers, this field specifies which register is
selected. The field value contains the register number.

Extension Word(s) (as required):
Certain commands require extension words for addresses and/or immediate data.
Addresses require two extension words because only absolute long addressing is permitted.
Immediate data can be either one or two words in length—byte and word data each require
a single extension word; longword data requires two words. Both operands and addresses
are transferred most significant word first. In the following descriptions of the BDM command
set, the optional set of extension words is defined as “Address”, “Dta” or “Operand Data.”

6.3.3.3 COMMAND SEQUENCE DIAGRAM.

A command sequence diagram (see Figure
6-7) illustrates the serial bus traffic for each command. Each bubble in the diagram
represents a single 17-bit transfer across the bus. The top half in each bubble corresponds
to the data transmitted by the development system to the Debug Module; the bottom half
corresponds to the data returned by the Debug Module in response to the previous
development system commands. Command and result transactions are overlapped to
minimize latency.

The cycle in which the command is issued contains the development system command
mnemonic (in this example, “read memory location”). During the same cycle, the Debug
Module responds with either the low-order results of the previous command or a command
complete status (if no results were required).

Table 6-4. BDM Size Field Encoding

ENCODING OPERAND SIZE BIT VALUES

00 Byte 8 bits
01 Word 16 bits
10 Longword 32 bits
11 Reserved

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-13

During the second cycle, the development system supplies the high-order 16 bits of the
memory address. The Debug Module returns a “not ready” response unless the received
command was decoded as unimplemented, in which case the response data is the illegal
command encoding. If an illegal command response occurs, the development system
should retransmit the command.

NOTE

The “not ready” response can be ignored unless a memory-
referencing cycle is in progress. Otherwise, the Debug Module
can accept a new serial transfer after 32 processor clock
periods.

In the third cycle, the development system supplies the low-order 16 bits of a memory
address. The Debug Module always returns the “not ready” response in this cycle. At the
completion of the third cycle, the Debug Module initiates a memory read operation. Any
serial transfers that begin while the memory access is in progress return the “not ready”
response.

Results are returned in the two serial transfer cycles following the completion of the memory
access. The data transmitted to the Debug Module during the final transfer is the opcode for
the following command. If a memory or register access is terminated with a bus error, the
error status (S=1, DATA=$0001) is returned in place of the result data.

DEBUG SUPPORT

6-14 Version 3 ColdFire Core User’s Manual MOTOROLA

6.3.3.4 COMMAND SET DESCRIPTIONS.

The BDM command set is summarized in
Table 6-3. Subsequent paragraphs contain detailed descriptions of each command.

Note

The BDM status bit (S) is zero for normally-completed
commands, while illegal commands, “not ready” responses and
bus-errored transfers return a logic one in the S bit. Refer to

Section 6.3.2 BDM Serial Interface

 for information on the serial
packet receive packet format

Unassigned command opcodes are reserved by Motorola for future expansion. All unused
command formats within any revision level performs a NOP and return the ILLEGAL
command response.

6.3.3.4.1 Read A/D Register (RAREG/RDREG).

Read the selected address or data
register and return the 32-bit result. A bus error response is returned if the CPU core is not
halted.

Figure 6-7. Command Sequence Diagram

 COMMANDS TRANSMITTED TO THE DEBUG MODULE

COMMAND CODE TRANSMITTED DURING THIS CYCLE

HIGH-ORDER 16 BITS OF MEMORY ADDRESS

LOW-ORDER 16 BITS OF MEMORY ADDRESS

SEQUENCE TAKEN IF
OPERATION HAS NOT
COMPLETED

DATA UNUSED FROM
THIS TRANSFER

SEQUENCE TAKEN IF
ILLEGAL COMMAND
IS RECEIVED BY DEBUG MODULE

RESULTS FROM PREVIOUS COMMAND

 RESPONSES FROM THE DEBUG MODULE

NONSERIAL-RELATED ACTIVITY

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

READ (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXXXX

XXX
BERR

MS RESULT
NEXT CMD
LS RESULT

READ
MEMORY

LOCATION

NEXT
COMMAND

CODE

SEQUENCE TAKEN IF BUS

 ERROR OCCURS ON
MEMORY ACCESS

HIGH- AND LOW-ORDER
16 BITS OF RESULT

XXX

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-15

Formats:

\

Command Sequence:

Operand Data:
None

Result Data:
The contents of the selected register are returned as a longword value. The data is returned
most significant word first.

6.3.3.4.2 Write A/D Register (WAREG/WDREG).

The operand longword data is written to
the specified address or data register. All 32 register bits are altered by the write. A bus error
response is returned if the CPU core is not halted.

Command Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $1 $8 A/D REGISTER

RAREG/RDREG Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

RAREG/RDREG Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $0 $8 A/D REGISTER

DATA [31:16]

DATA [15:0]

WAREG/WDREG Command

XXX
MS RESULT

NEXT CMD
LS RESULT

RAREG/RDREG
???

XXX
BERR

NEXT CMD
"NOT READY"

DEBUG SUPPORT

6-16 Version 3 ColdFire Core User’s Manual MOTOROLA

Command Sequence:

Operand Data:
Longword data is written into the specified address or data register. The data is supplied
most significant word first.

Result Data:
Command complete status is indicated by returning the data $FFFF (with the status bit
cleared) when the register write is complete.

6.3.3.4.3 Read Memory Location (READ).

Read the operand data from the memory
location specified by the longword address. The address space is defined by the contents
of the low-order 5 bits {TT, TM} of the BDM Address Attribute Register (BAAR). The
hardware forces the low-order bits of the address to zeros for word and longword accesses
to ensure that operands are always accessed on natural boundaries: words on 0-modulo-2
addresses, longwords on 0-modulo-4 addresses.

Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $0 $0

ADDRESS [31:16]

ADDRESS [15:0]

Byte READ Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X DATA [7:0]

Byte READ Result

MS DATA
"NOT READY"

XXX

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

WDREG/WAREG
???

NEXT CMD
"CMD COMPLETE"

BERR

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-17

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $4 $0

ADDRESS [31:16]

ADDRESS [15:0]

Word READ Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [15:0]

Word READ Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $8 $0

ADDRESS [31:16]

ADDRESS [15:0]

Long READ Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

Long READ Result

DEBUG SUPPORT

6-18 Version 3 ColdFire Core User’s Manual MOTOROLA

Command Sequence:

Operand Data:
The single operand is the longword address of the requested memory location.

Result Data:
The requested data is returned as either a word or longword. Byte data is returned in the
least significant byte of a word result, with the upper byte undefined. Word results return 16
bits of significant data; longword results return 32 bits. A value of $0001 (with the status bit
set) is returned if a bus error occurs.

6.3.3.4.4 Write Memory Location (WRITE).

Write the operand data to the memory
location specified by the longword address. The address space is defined by the contents
of the low-order 5 bits {TT, TM} of the BDM Address Attribute Register (BAAR). The
hardware forces the low-order bits of the address to zeros for word and longword accesses
to ensure that operands are always accessed on natural boundaries: words on 0-modulo-2
addresses, longwords on 0-modulo-4 addresses.

Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $0 $0

ADDRESS [31:16]

ADDRESS [15:0]

X X X X X X X X DATA [7:0]

Byte WRITE Command

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

READ (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 RESULT
NEXT CMD

READ
MEMORY

LOCATION

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

READ (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 MS RESULT
XXX

READ
MEMORY

LOCATION

NEXT CMD
LS RESULT

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-19

Command Sequence:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $4 $0

ADDRESS [31:16]

ADDRESS [15:0]

DATA [15:0]

Word WRITE Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $8 $0

ADDRESS [31:16]

ADDRESS [15:0]

DATA [31:16]

DATA [15:0]

Long WRITE Command

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

WRITE (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 "CMD COMPLETE"
NEXT CMD

WRITE
MEMORY

LOCATION

DATA
"NOT READY"

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

WRITE (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 "CMD COMPLETE"
NEXT CMD

WRITE
MEMORY

LOCATION

MS DATA
"NOT READY"

LS DATA
"NOT READY"

DEBUG SUPPORT

6-20 Version 3 ColdFire Core User’s Manual MOTOROLA

Operand Data:
Two operands are required for this instruction. The first operand is a longword absolute
address that specifies a location to which the operand data is to be written. The second
operand is the data. Byte data is transmitted as a 16-bit word, justified in the least significant
byte; 16- and 32-bit operands are transmitted as 16 and 32 bits, respectively.

Result Data:
Command complete status is indicated by returning the data $FFFF (with the status bit
cleared) when the register write is complete. A value of $0001 (with the status bit set) is
returned if a bus error occurs.

6.3.3.4.5 Dump Memory Block (DUMP).

DUMP is used in conjunction with the READ
command to access large blocks of memory. An initial READ is executed to set up the
starting address of the block and to retrieve the first result. The DUMP command retrieves
subsequent operands. The initial address is incremented by the operand size (1, 2, or 4) and
saved in a temporary register. Subsequent DUMP commands use this address, perform the
memory read, increment it by the current operand size, and store the updated address in
the temporary register.

NOTE

The DUMP command does not check for a valid address —
DUMP is a valid command only when preceded by another
DUMP, NOP or by a READ command. Otherwise, an illegal
command response is returned. The NOP command can be
used for intercommand padding without corrupting the address
pointer.

The size field is examined each time a DUMP command is processed, allowing the operand
size to be dynamically altered.

Command Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $D $0 $0

Byte DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X DATA [7:0]

Byte DUMP Result

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-21

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $D $4 $0

Word DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [15:0]

Word DUMP Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $D $8 $0

Long DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

Long DUMP Result

DEBUG SUPPORT

6-22 Version 3 ColdFire Core User’s Manual MOTOROLA

Command Sequence:

Operand Data:
None

Result Data:
Requested data is returned as either a word or longword. Byte data is returned in the least
significant byte of a word result. Word results return 16 bits of significant data; longword
results return 32 bits. A value of $0001 (with the status bit set) is returned if a bus error
occurs.

6.3.3.4.6 Fill Memory Block (FILL).

FILL is used in conjunction with the WRITE command
to access large blocks of memory. An initial WRITE is executed to set up the starting
address of the block and to supply the first operand. The FILL command writes subsequent
operands. The initial address is incremented by the operand size (1, 2, or 4) and saved in a
temporary register after the memory write. Subsequent FILL commands use this address,
perform the write, increment it by the current operand size, and store the updated address
in the temporary register.

NOTE

The FILL command does not check for a valid address —FILL is
a valid command only when preceded by another FILL, NOP or
by a WRITE command. Otherwise, an illegal command
response is returned. The NOP command can be used for
intercommand padding without corrupting the address pointer.

The size field is examined each time a FILL command is processed, allowing the operand
size to be altered dynamically.

XXX
"NOT READY"

NEXT CMD
 RESULT

XXX
BERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ

MEMORY

LOCATION

DUMP (B/W)
???

XXX
"NOT READY"

NEXT CMD
 MS RESULT

XXX
BERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ

MEMORY

LOCATION

DUMP (LONG)
???

NEXT CMD
LS RESULT

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-23

Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $0 $0

X X X X X X X X DATA [7:0]

Byte FILL Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $4 $0

DATA [15:0]

Word FILL Command

DEBUG SUPPORT

6-24 Version 3 ColdFire Core User’s Manual MOTOROLA

Command Sequence:

Operand Data:
A single operand is data to be written to the memory location. Byte data is transmitted as a
16-bit word, justified in the least significant byte; 16- and 32-bit operands are transmitted as
16 and 32 bits, respectively.

Result Data:
Command complete status is indicated by returning the data $FFFF (with the status bit
cleared) when the register write is complete. A value of $0001 (with the status bit set) is
returned if a bus error occurs.

6.3.3.4.7 Resume Execution (GO).

The pipeline is flushed and refilled before resuming
normal instruction execution. Prefetching begins at the current

PC

 and current privilege level.
If any register (e.g., the PC or

SR)

 was altered by a BDM command while halted, the updated
value is used as the prefetching resumes.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $8 $0

DATA [31:16]

DATA [15:0]

Long FILL Command

NEXT CMD
"NOT READY"

"NOT READY"

XXX
BERR

"CMD COMPLETE"

DATA
"NOT READY"

XXX

NEXT CMDXXX
"ILLEGAL"

NEXT CMD
"NOT READY"

FILL (LONG)
???

WRITE

MEMORY

LOCATION

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX
BERR

"CMD COMPLETE"

MS DATA
"NOT READY"

NEXT CMDXXX
"ILLEGAL"

NEXT CMD
"NOT READY"

LS DATA
"NOT READY"

WRITE

MEMORY

LOCATION

FILL (B/W)
???

FILL (LONG)

FILL (B/W)

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-25

Formats:

Command Sequence:

Operand Data:
None

Result Data:
The “command complete” response ($0FFFF) is returned during the next shift operation.

6.3.3.4.8 No Operation (NOP).

NOP performs no operation and may be used as a null
command where required.

Formats:

Command Sequence:

Operand Data:
None

Result Data:
The “command complete” response, $FFFF (with the status bit cleared), is returned during
the next shift operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$0 $C $0 $0

GO Command

15 12 11 8 7 4 3 0

$0 $0 $0 $0

GO
???

NEXT CMD
"CMD COMPLETE"

NOP
???

NEXT CMD

"CMD COMPLETE"

DEBUG SUPPORT

6-26 Version 3 ColdFire Core User’s Manual MOTOROLA

6.3.3.4.9 Synchronize PC to the PST/DDATA Lines(SYNC_PC).

Capture the current PC
and display it on the PST/DDATA outputs. After the Debug Module receives the command,
it sends a signal to the ColdFire processor that the current PC must be displayed. The
processor then forces an instruction fetch at the next PC with the address being captured in
the DDATA logic under control of the BTB bits of the CSR (CSR [9:8]). The specific
sequence of PST and DDATA values is defined below :

Debug signals a SYNC_PC command is pending. CPU completes the current instruction.
CPU forces an instruction fetch to the next PC, generates a PST = $5 value indicating a
“taken branch” and signals DDATA. DDATA captures the instruction address corresponding
to the PC. DDATA generates a PST marker ($9 - $B) as defined by CSR.BTB and displays
the captured PC address.

This command can beused to dynamically access the PC for performance monitoring. The
execution of this command is considerably less obtrusive to the real-time operation of an
application than a “halt-CPU/read-PC/resume” command sequence.

Format:

Command Sequence:

Operand Data:
None

Result Data:
The "command complete" response, $FFFF (with the status bit cleared), is returned during
the next shift operation.

6.3.3.4.10 Read Control Register (RCREG).

Read the selected control register and
return the 32-bit result. Accesses to the processor/memory control registers are always 32
bits in size, regardless of the implemented register width. The second and third words of the
command effectively form a 32-bit address used by the Debug Module to generate a special

15 12 11 8 7 4 3 0

$0 $0 $0 $1

SYNC_PC REG Command

NOP
???

NEXT CMD

"CMD COMPLETE"

Sync_PC

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-27

bus cycle to access the specified control register. The 12-bit Rc field is the same as that
used by the MOVEC instruction.

Formats:

Rc encoding:

Command Sequence:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $9 $8 $0

$0 $0 $0 $0

$0 Rc

RCREG Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

RCREG Result

Table 6-5. Control Register Map

Rc REGISTER DEFINITION

$002 Cache Control Register (

CACR

)
$004 Access Control Register 0 (

ACR0

)
$005 Access Control Register 1 (

ACR1

)
$801 Vector Base Register (

VBR

)
$804 MAC Status Register (

MACSR

)†
$805 MAC Mask Register (

MASK

)†
$806 MAC Accumulator (

ACC

)†
$80E Status Register (

SR

)
$80F Program Register (

PC

)
$C00 ROM Base Address Register (

ROMBAR

)
$C04 RAM Base Address Register (

RAMBAR

)
NOTE: †Available if the optional MAC unit is present.

EXT WORD
"NOT READY"

EXT WORD
"NOT READY"

RCREG
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

MS RESULT

READ
MEMORY

LOCATION
NEXT CMD
LS RESULT

XXX

MS ADDR MS ADDR
CONTROL
REGISTER

DEBUG SUPPORT

6-28 Version 3 ColdFire Core User’s Manual MOTOROLA

Operand Data:
The single operand is the 32-bit Rc control register select field.

Result Data:
The contents of the selected control register are returned as a longword value. The data is
returned most significant word first. For those control registers with widths less than 32 bits,
only the implemented portion of the register is guaranteed to be correct. The remaining bits
of the longword are undefined.

6.3.3.4.11 Write Control Register (WCREG).

The operand (longword) data is written to
the specified control register. The write alters all 32 register bits.

Formats:

Command Sequence:

Operand Data:
Two operands are required for this instruction. The first long operand selects the register to
which the operand data is to be written. The second operand is the data.

Result Data:
Successful write operations return a $FFFF. Bus errors on the write cycle are indicated by
the assertion of bit 16 in the status message and by a data pattern of $0001.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $8 $8 $0

$0 $0 $0 $0

$0 Rc

DATA [31:16]

DATA [15:0]

WCREG Command

EXT WORD
"NOT READY"

EXT WORD
"NOT READY"

WCREG
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 "CMD COMPLETE"
NEXT CMD

WRITE
MEMORY

LOCATION

MS DATA
"NOT READY"

LS DATA
"NOT READY"

 CONTROL
REGISTER

MS ADDR MS ADDR

WRITE

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-29

6.3.3.4.12 Read Debug Module Register (RDMREG).

Read the selected Debug Module
register and return the 32-bit result. The only valid register selection for the RDMREG
command is the

CSR

 (DRc = $0).

Command Formats:

DRc encoding:

Command Sequence:

Operand Data:
None

Result Data:
The contents of the selected debug register are returned as a longword value. The data is
returned most significant word first.

6.3.3.4.13 Write Debug Module Register (WDMREG).

The operand (longword) data is
written to the specified Debug Module register. All 32 bits of the register are altered by the
write. The

DSCLK

 signal must be inactive while debug module register writes from the CPU
accesses are performed using the WDEBUG instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $D $8 DRc

RDMREG BDM Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

RDMREG BDM Result

Table 6-6. Definition of DRc Encoding - Read

DRc[3:0] DEBUG REGISTER DEFINITION MNEMONIC INITIAL STATE

$0 Configuration/Status

CSR

$0
$1-$F Reserved - –

XXX
MS RESULT

XXX
"ILLEGAL"

NEXT CMD
LS RESULT

NEXT CMD
"NOT READY"

RDMREG
???

DEBUG SUPPORT

6-30 Version 3 ColdFire Core User’s Manual MOTOROLA

Command Format:

DRc encoding:

Command Sequence:

Operand Data:
Longword data is written into the specified debug register. The data is supplied most
significant word first.

Result Data:
Command complete status ($0FFFF) is returned when register write is complete.

6.3.3.4.14 Unassigned Opcodes.

Unassigned command opcodes are reserved by
Motorola. All unused command formats within any revision level performs a NOP and return
the ILLEGAL command response

.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $C $8 DRc

DATA [31:16]

DATA [15:0]

WDMREG BDM Command

Table 6-7. Definition of DRc Encoding - Write

DRc[3:0] DEBUG REGISTER DEFINITION MNEMONIC INITIAL STATE

$0 Configuration/Status

CSR

$0
$1-$4 Reserved - –

$5 BDM Address Attribute

BAAR

$5
$6 Bus Attributes and Mask

AATR

$5
$7 Trigger Definition

TDR

$0
$8 PC Breakpoint

PBR

–
$9 PC Breakpoint Mask

PBMR

–
$A-$B Reserved – –

$C Operand Address High Breakpoint

ABHR

–
$D Operand Address Low Breakpoint

ABLR

–
$E Data Breakpoint

DBR

–
$F Data Breakpoint Mask

DBMR

–

MS DATA
"NOT READY"

XXX
"ILLEGAL"

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

WDMREG
???

NEXT CMD
"CMD COMPLETE"

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-31

6.4 REAL-TIME DEBUG SUPPORT

The ColdFire Family provides support for the debug of real-time applications. For these
types of embedded systems, the processor cannot be halted during debug, but must
continue to operate. The foundation of this area of debug support is that while the processor
cannot be halted to allow debugging, the system can generally tolerate small intrusions into
the real-time operation.

The Debug Module provides a number of hardware resources to support various hardware
breakpoint functions. Specifically, three types of breakpoints are supported: PC with mask,
operand address range, and data with mask. These three basic breakpoints can be
configured into one- or two-level triggers with the exact trigger response also
programmable. The Debug Module programming model is accessible from either the
external development system using the serial interface or from the processor’s supervisor
programming model using the WDEBUG instruction.

6.4.1 Theory of Operation

The breakpoint hardware can be configured to respond to triggers in several ways. The
desired response is programmed into the Trigger Definition Register. In all situations where
a breakpoint triggers, an indication is provided on the

DDATA

 output port, when not displaying
captured operands or branch addresses, as shown in Table 6-8.

The breakpoint status is also posted in the

CSR

.

The BDM instructions load and configure the desired breakpoints using the appropriate
registers. As the system operates, a breakpoint trigger generates a response as defined in
the

TDR

. If the system can tolerate the processor being halted, a BDM-entry can be used.
With the TRC bits of the TDR

equal to $1, the breakpoint trigger causes the core to halt as
reflected in the

PST

 = $F status. For PC breakpoints, the halt occurs before the targeted
instruction is executed. For address and data breakpoints, the processor may have
executed several additional instructions. As a result, trigger reporting is considered
imprecise.

If the processor core cannot be halted, the special debug interrupt can be used. With this
configuration, TRC bits of the

TDR

 equal to $2, the breakpoint trigger is converted into a
debug interrupt to the processor. This interrupt is treated higher than the nonmaskable level
7 interrupt request. As with all interrupts, it is made pending until the processor reaches a
sample point, which occurs once per instruction. Again, the hardware forces the

PC

Table 6-8. DDATA[3:0], CSR[31:28] Breakpoint Response

DDATA[3:0], CSR[31:28] BREAKPOINT STATUS

$000x No Breakpoints Enabled
$001x Waiting for Level 1 Breakpoint
$010x Level 1 Breakpoint Triggered
$101x Waiting for Level 2 Breakpoint
$110x Level 2 Breakpoint Triggered
All other encodings are reserved for future use.

DEBUG SUPPORT

6-32 Version 3 ColdFire Core User’s Manual MOTOROLA

breakpoint to occur immediately (before the execution of the targeted instruction). This is
possible because the PC breakpoint comparison is enabled at the same time the interrupt
sampling occurs. For the address and data breakpoints, the reporting is considered
imprecise because several additional instructions may be executed after the triggering
address or data is seen.

Once the debug interrupt is recognized, the processor aborts execution and initiates
exception processing. At the initiation of the exception processing, the core enters emulator
mode. After the standard 8-byte exception stack is created, the processor fetches a unique
exception vector, 12, from the vector table (Refer to the

ColdFire Programmer’s Reference
Manual Rev 1.0

 MCF5200PRM/AD).

Execution continues at the instruction address contained in this exception vector. All
interrupts are ignored while in emulator mode. You can program the debug-interrupt handler
to perform the necessary context saves using the supervisor instruction set. As an example,
this handler may save the state of all the program-visible registers as well as the current
context into a reserved memory area.

Once the required operations are completed, the return-from-exception (RTE) instruction is
executed and the processor exits emulator mode. Once the debug interrupt handler has
completed its execution, the external development system can then access the reserved
memory locations using the BDM commands to read memory.

In the Rev. A implementation, if a hardware breakpoint (e.g., a PC trigger) is left unmodified
by the debug interrupt service routine, another debug interrupt is generated after the RTE
instruction completes execution. In the Rev. B design, the hardware has been modified to
inhibit the generation of another debug interrupt during the first instruction after the RTE
exits emulator mode. This behaviour is consistent with the existing logic involving trace
mode, where the execution of the first instruction occurs before another trace exception is
generated. This Rev. B enhancement disables all hardware breakpoints until the first
instruction after the RTE has completed execution, regardless of the programmed trigger
response.

6.4.1.1 EMULATOR MODE.

Emulator mode is used to facilitate non-intrusive emulator
functionality. This mode can be entered in three different ways:

• The EMU bit in the

CSR

 may be programmed to force the ColdFire processor to begin
execution in emulator mode. This bit is only examined when RSTI is negated and the
processor begins reset exception processing. It may be set while the processor is
halted before the reset exception processing begins. Refer to

Section 6.3.1 CPU Halt

.

• A debug interrupt always enters emulation mode when the debug interrupt exception
processing begins.

• The TCR bit in the

CSR

 may be programmed to force the processor into emulation mode
when trace exception processing begins.

During emulation mode, the ColdFire processor exhibits the following properties:

• All interrupts are ignored, including level seven.

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-33

• If the MAP bit of the

CSR

 is set, all memory accesses are forced into a specially mapped
address space signalled by TT = $2, TM = $5 or $6. This includes the stack frame writes
and the vector fetch for the exception which forced entry into this mode.

• If the MAP bit in the

CSR

 is set, all caching of memory accesses is disabled. Additionally,
the SRAM module is disabled while in this mode.

The return-from-exception (RTE) instruction exits emulation mode. The processor status
output port provides a unique encoding for emulator mode entry ($D) and exit ($7).

6.4.1.2 DEBUG MODULE HARDWARE.

6.4.1.2.1 Reuse of Debug Module Hardware (Rev. A).

The Debug Module
implementation provides a common hardware structure for both BDM and breakpoint
functionality. Several structures are used for both BDM and breakpoint purposes. Table 6-
9 identifies the shared hardware structures.

The shared use of these hardware structures means the loading of the register to perform
any specified function is destructive to the shared function. For example, if an operand
address breakpoint is loaded into the Debug Module, a BDM command to access memory
overwrites the breakpoint. If a data breakpoint is configured, a BDM write command
overwrites the breakpoint contents.

6.4.1.2.2 The New Debug Module Hardware (Rev. B).

The new Debug Module
implementation has added hardware registers so that there are no restrictions concerning
the interaction between BDM commands and the use of the hardware breakpoint logic. In
some cases, the additional hardware is not program-visible, while in other cases, there have
been extensions to the Debug Module programming model. As example, consider the
following two registers:

The hardware register containing the BDM memory address is not a program-visible
resource. Rather, it is a hardware register loaded automatically during the execution of a
BDM commands. In the Rev B design, the execution of a BDM command does not affect
the hardware breakpoint logic unless those registers are specifically accessed.

The other register added to the Debug Module programming model is the BDM Address
Attribute Register (BAAR). It is mapped to an DRc[3:0] address of $5. This 8-bit register is
equivalent in the format of the low-order byte of the AATR register (Refer to section15.4.2.7).
This register specifies the memory space attributes associated with all BDM memory-
referencing commands.

Table 6-9. Shared BDM/Breakpoint Hardware

REGISTER BDM FUNCTION BREAKPOINT FUNCTION

AATR

Bus Attributes for All Memory
Commands

Attributes for Address
Breakpoint

ABHR

Address for All Memory Commands Address for Address
Breakpoint

DBR

Data for All BDM Write Commands Data for Data Breakpoint

DEBUG SUPPORT

6-34 Version 3 ColdFire Core User’s Manual MOTOROLA

6.4.2 Programming Model

In addition to the existing BDM commands that provide access to the processor’s registers
and the memory subsystem, the Debug Module contains nine registers to support the
required functionality. All of these registers are treated as 32-bit quantities, regardless of the
actual number of bits in the implementation. The registers, known as the debug control
registers, are accessed through the BDM port using two new BDM commands:

WDMREG

 and

RDMREG

. These commands contain a 4-bit field, DRc, which specifies the particular register
being accessed.

These registers are also accessible from the processor’s supervisor programming model
through the execution of the WDEBUG instruction. Thus, the breakpoint hardware within the
Debug Module may be accessed by the external development system using the serial
interface, or by the operating system running on the processor core. It is the responsibility
of the software to guarantee that all accesses to these resources are serialized and logically
consistent. The hardware provides a locking mechanism in the CSR to allow the external
development system to disable any attempted writes by the processor to the breakpoint
registers (setting IPW = 1). The BDM commands must not be issued if the ColdFire
processor is accessing the Debug Module registers using the WDEBUG instruction.

Figure 6-8 illustrates the Debug Module programming model.

6.4.2.1 ADDRESS BREAKPOINT REGISTERS (ABLR, ABHR).

The address breakpoint
registers define a region in the operand address space of the processor that can be used as
part of the trigger. The full 32-bits of the ABLR and ABHR values are compared with the
address for all transfers on the processor’s high-speed local bus. The trigger definition
register (

TDR

) determines if the trigger is the inclusive range bound by ABLR and ABHR, all
addresses outside this range, or the address in ABLR only. The ABHR is accessible in
supervisor mode as debug control register $C using the WDEBUG instruction and via the
BDM port using the RDMREG and WDMREG commands. The ABLR is accessible in

Figure 6-8. Debug Programming Model

ADDRESS
BREAKPOINT REGISTERS

PC BREAKPOINT
REGISTERS

DATA BREAKPOINT
REGISTERS

ABLR
ABHR

PBR
PBMR

DBMR
DBR

TDR

15

0

31

TRIGGER DEFINITION
REGISTER

ADDRESS ATTRIBUTE
TRIGGER REGISTERAATR

7

0

15

CSR
CONFIGURATION/
STATUS

BDM ADDRESS
ATTRIBUTE REGISTERBAAR

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-35

supervisor mode as debug control register $D using the WDEBUG instruction and via the
BDM port using the WDMREG commands. The ABHR is overwritten by the BDM hardware
when accessing memory as described in

Section 6.4.1.2 Debug Module Hardware

.

Field Definition:

ADDRESS[31:0]–Low Address
This field contains the 32-bit address which marks the lower bound of the address
breakpoint range. Additionally, if a breakpoint on a specific adrdess is required, the value is
programmed into the ABLR.

Field Definition:

ADDRESS[31:0]–High Address
This field contains the 32-bit address which marks the upper bound of the address
breakpoint range.

6.4.2.2 ADDRESS ATTRIBUTE TRIGGER REGISTER (AATR).

The AATR defines the
address attributes and a mask to be matched in the trigger. The AATR value is compared
with the address attribute signals from the processor’s local high-speed bus, as defined by
the setting of the

TDR

. The AATR is accessible in supervisor mode as debug control register
$6 using the WDEBUG instruction and via the BDM port using the WDMREG command. The
lower five bits of the AATR are also used for BDM command definition to define the address
space for memory references as described in

Section 6.4.1.2 Debug Module Hardware

.

BITS 31 0

FIELD

ADDRESS

RESET

-

R/W

W

 Address Breakpoint Low Register (ABLR)

BITS 31 0

FIELD

ADDRESS

RESET

-

R/W

W

 Address Breakpoint High Register (ABHR)

DEBUG SUPPORT

6-36 Version 3 ColdFire Core User’s Manual MOTOROLA

Field Definitions:

RM[15]–Read/Write Mask
This field corresponds to the R-field. Setting this bit causes R to be ignored in address
comparisons.

SZM[14:13]–Size Mask
This field corresponds to the SZ field. Setting a bit in this field causes the corresponding bit
in SZ to be ignored in address comparisons.

TTM[12:11]–Transfer Type Mask
This field corresponds to the TT field. Setting a bit in this field causes the corresponding bit
in TT to be ignored in address comparisons.

TMM[10:8]–Transfer Modifier Mask
This field corresponds to the TM field. Setting a bit in this field causes the corresponding bit
in TM to be ignored in address comparisons.

R[7]–Read/Write
This field is compared with the R/W signal of the processor’s local bus.

SZ[6:5]—Size
This field is compared to the size signals of the processor’s local bus. These signals indicate
the data size for the bus transfer.

00 = Longword
01 = Byte
10 = Word
11 = Reserved

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIELD

RM SZM TTM TMM R SZ TT TM

RESET

0 0 0 0 0 0 0 101

R/W

W W W W W W W W

 Address Attribute Trigger Register (AATR)

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-37

TT[4:3]—Transfer Type
This field is compared with the transfer type signals of the processor’s local bus. These
signals indicate the transfer type for the bus transfer. These signals are always encoded as
if the ColdFire is in the ColdFire IACK mode.

00 = Normal Processor Access
01 = Reserved
10 = Emulator Mode Access
11 = Acknowledge/CPU Space Access

These bits also define the TT encoding for BDM memory commands. In this case, the 01
encoding generates an alternate master access (For backward compatibility).

TM[2:0]—Transfer Modifier
This field is compared with the transfer modifier signals of the processor’s local bus. These
signals provide supplemental information for each transfer type. These signals are always
encoded as if the processor is operating in the ColdFire IACK mode. The encoding for
normal processor transfers (TT = 0) is:

000 = Explicit Cache Line Push
001 = User Data Access
010 = User Code Access
011 = Reserved
100 = Reserved
101 = Supervisor Data Access
110 = Supervisor Code Access
111 = Reserved

The encoding for emulator mode transfers (TT = 10) is:

0xx = Reserved
100 = Reserved
101 = Emulator Mode Data Access
110 = Emulator Mode Code Access
111 = Reserved

The encoding for acknowledge/CPU space transfers (TT = 11) is:

000 = CPU Space Access
001 = Interrupt Acknowledge Level 1
010 = Interrupt Acknowledge Level 2
011 = Interrupt Acknowledge Level 3
100 = Interrupt Acknowledge Level 4
101 = Interrupt Acknowledge Level 5
110 = Interrupt Acknowledge Level 6
111 = Interrupt Acknowledge Level 7

DEBUG SUPPORT

6-38 Version 3 ColdFire Core User’s Manual MOTOROLA

These bits also define the TM encoding for BDM memory commands (For backward
compatibility).

6.4.2.3 PROGRAM COUNTER BREAKPOINT REGISTER (PBR, PBMR).

The PC
breakpoint registers define a region in the code address space of the processor that can be
used as part of the trigger. The PBR value is masked by the PBMR value, allowing only
those bits in PBR that have a corresponding zero in PBMR to be compared with the
processor’s program counter register, as defined in the

TDR

. The PBR is accessible in
supervisor mode as debug control register $8 using the WDEBUG instruction and via the
BDM port using the RDMREG and WDMREG commands. The PBMR is accessible in
supervisor mode as debug control register $9 using the WDEBUG instruction and via the
BDM port using the WDMREG command.

Field Definition:

ADDRESS[31:0]–PC Breakpoint Address
This field contains the 32-bit address to be compared with the PC as a breakpoint trigger.

Field Definition:

MASK[31:0]–PC Breakpoint Mask
This field contains the 32-bit mask for the PC breakpoint trigger. A zero in a bit position
causes the corresponding bit in the PBR to be compared to the appropriate bit of the PC. A
one causes that bit to be ignored.

6.4.2.4 DATA BREAKPOINT REGISTER (DBR, DBMR).

The data breakpoint registers
define a specific data pattern that can be used as part of the trigger into debug mode.The
DBR value is masked by the DBMR value, allowing only those bits in DBR that have a
corresponding zero in DBMR to be compared with the data value from the processor’s local

BITS 31 0

FIELD

ADDRESS

RESET

-

R/W

W

 Program Counter Breakpoint Register (PBR)

BITS 31 0

FIELD

MASK

RESET

-

R/W

W

 Program Counter Breakpoint Mask Register (PBMR)

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-39

bus, as defined in the

TDR

. The DBR is accessible in supervisor mode as debug control
register $E using the WDEBUG instruction and via the BDM port using the RDMREG and
WDMREG commands. The DBMR is accessible in supervisor mode as debug control
register $F using the WDEBUG instruction and via the BDM port using the WDMREG
command. The DBR is overwritten by the BDM hardware when accessing memory as
described in

Section 6.4.1.2 Debug Module Hardware

.

Field Definition:

DATA[31:0]–Data Breakpoint Value
This field contains the 32-bit value to be compared with the data value from the processor’s
local bus as a breakpoint trigger.

Field Definition:

MASK[31:0]–Data Breakpoint Mask
This field contains the 32-bit mask for the data breakpoint trigger. A zero in a bit position
causes the corresponding bit in the DBR to be compared to the appropriate bit of the internal
data bus. A one causes that bit to be ignored.

The data breakpoint register supports both aligned and misaligned references. The
relationship between the processor address, the access size, and the corresponding
location within the 32-bit data bus is shown in Table 6-10.

BITS 31 0

FIELD

ADDRESS

RESET

R/W

W

 Data Breakpoint Register (DBR)

BITS 31 0

FIELD

MASK

RESET

-

R/W

W

 Data Breakpoint Mask Register (DBMR)

DEBUG SUPPORT

6-40 Version 3 ColdFire Core User’s Manual MOTOROLA

6.4.2.5 TRIGGER DEFINITION REGISTER (TDR).

The TDR configures the operation of
the hardware breakpoint logic within the Debug Module and controls the actions taken under
the defined conditions. The breakpoint logic may be configured as a one- or two-level
trigger, where bits [31:16] of the TDR define the 2nd level trigger and bits [15:0] define the
first level trigger. The TDR is accessible in supervisor mode as debug control register $7
using the WDEBUG instruction and via the BDM port using the WDMREG command.

Field Definitions:

TRC–Trigger Response Control
The trigger response control determines how the processor is to respond to a completed
trigger condition. The trigger response is always displayed on the

DDATA

 pins.

00 = display on DDATA only
01 = processor halt
10 = debug interrupt
11 = reserved

LxT–Level-x Trigger

This is a Rev. B function. The Level-x Trigger bit determines the logic operation for the
trigger between the PC_condition and the (Address_range & Data_condition) where the

Table 6-10. Access Size and Operand Data Location

ADDRESS[1:0] ACCESS SIZE OPERAND LOCATION

00 Byte Data[31:24]
01 Byte Data[23:16]
10 Byte Data[15:8]
11 Byte Data[7:0]
0x Word Data[31:16]
1x Word Data[15:0]
xx Long Data[31:0]

BITS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FIELD

TRC EBL EDLW EDWL EDWU EDLL EDLM EDUM EDUU DI EAI EAR EAL EPC PCI

RESET

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W

W W W W W W W W W W W W W W W

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIELD

LXT EBL EDLW EDWL EDWU EDLL EDLM EDUM EDUU DI EAI EAR EAL EPC PCI

RESET

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W

W W W W W W W W W W W W W W W

 Trigger Definition Register (TDR)

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-41

inclusion of a Data condition is optional. The ColdFire debug architecture supports the
creation of single or double-level triggers.

TDR[15]
0 Level-2 trigger = PC_condition & Address_range & Data_condition
1 Level-2 trigger = PC_condition | (Address_range & Data_condition)

TDR[14]
0 Level-1 trigger = PC_condition & Address_range & Data_condition
1 Level-1 trigger = PC_condition | (Address_range & Data_condition)

EBL–Enable Breakpoint Level
If set, this bit serves as the global enable for the breakpoint trigger. If cleared, all breakpoints
are disabled.

EDLW–Enable Data Breakpoint for the Data Longword
If set, this bit enables the data breakpoint based on the entire processor’s local data bus.
The assertion of any of the ED bits enables the data breakpoint. If all bits are cleared, the
data breakpoint is disabled.

EDWL–Enable Data Breakpoint for the Lower Data Word
If set, this bit enables the data breakpoint based on the low-order word of the processor’s
local data bus.

EDWU–Enable Data Breakpoint for the Upper Data Word
If set, this bit enables the data breakpoint trigger based on the high-order word of the
processor’s local data bus.

EDLL–Enable Data Breakpoint for the Lower Lower Data Byte
If set, this bit enables the data breakpoint trigger based on the low-order byte of the low-
order word of the processor’s local data bus.

EDLM–Enable Data Breakpoint for the Lower Middle Data Byte
If set, this bit enables the data breakpoint trigger based on the high-order byte of the low-
order word of the processor’s local data bus.

EDUM–Enable Data Breakpoint for the Upper Middle Data Byte
If set, this bit enables the data breakpoint trigger on the low-order byte of the high-order word
of the processor’s local data bus.

EDUU–Enable Data Breakpoint for the Upper Upper Data Byte
If set, this bit enables the data breakpoint trigger on the high-order byte of the high-order
word of the processor’s local data bus.

DI–Data Breakpoint Invert
This bit provides a mechanism to invert the logical sense of all the data breakpoint
comparators. This can develop a trigger based on the occurrence of a data value not equal
to the one programmed into the DBR.

DEBUG SUPPORT

6-42 Version 3 ColdFire Core User’s Manual MOTOROLA

EAI–Enable Address Breakpoint Inverted
If set, this bit enables the address breakpoint based outside the range defined by ABLR and
ABHR. The assertion of any of the EA bits enables the address breakpoint. If all three bits
are cleared, this breakpoint is disabled.

EAR–Enable Address Breakpoint Range
If set, this bit enables the address breakpoint based on the inclusive range defined by ABLR
and ABHR.

EAL–Enable Address Breakpoint Low
If set, this bit enables the address breakpoint based on the address contained in the ABLR.

EPC–Enable PC Breakpoint
If set, this bit enables the PC breakpoint.

PCI–PC Breakpoint Invert
If set, this bit allows execution outside a given region as defined by PBR and PBMR to
enable a trigger.If cleared, the PC breakpoint is defined within the region defined by PBR
and PBMR.

6.4.2.6 CONFIGURATION/STATUS REGISTER (CSR).

The CSR defines the debug
configuration for the processor and memory subsystem. In addition to defining the
microprocessor configuration, this register also contains status information from the
breakpoint logic. The CSR is cleared during system reset. The CSR can be read and written
by the external development system and written by the supervisor programming model. The
CSR is accessible in supervisor mode as debug control register $0 using the WDEBUG
instruction and via the BDM port using the RDMREG and WDMREG commands.

BITS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FIELD

STATUS FOF TRG HALT BKPT HRL - BKD - IPW

RST

0 0 0 0 0 - - - - 0

R/W†

R R R R R R - - - R/W

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIELD

MAP TRC EMU DDC UHE BTB - NPL IPI SSM -

RESET

0 0 0 0 0 0 0 0 0 0 -

R/W†

R/W R/W R/W R/W R/W R/W R R/W R/W R/W -

NOTE: †The CSR is a write only register from the programming model. It can be read from and written to via the BDM
port.

 Configuration/Status Register (CSR)

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-43

Field Definitions:

STATUS[31:28]–Breakpoint Status
This 4-bit field provides read-only status information concerning the hardware breakpoints.
This field is defined as follows:

000x = no breakpoints enabled
001x = waiting for level 1 breakpoint
010x = level 1 breakpoint triggered
101x = waiting for level 2 breakpoint
110x = level 2 breakpoint triggered

The breakpoint status is also output on the DDATA port when it is not busy displaying other
processor data. A write to the TDR resets this field.

FOF[27]–Fault-on-Fault
If this read-only status bit is set, a catastrophic halt has occurred and forced entry into BDM.
This bit is cleared on a read from the CSR.

TRG[26]–Hardware Breakpoint Trigger
If this read-only status bit is set, a hardware breakpoint has halted the processor core and
forced entry into BDM. This bit is cleared by reading CSR.

HALT[25]–Processor Halt
If this read-only status bit is set, the processor has executed the HALT instruction and forced
entry into BDM. This bit is cleared by reading the CSR.

BKPT[24]–Breakpoint Assert
If this read-only status bit is set, the BKPT signal was asserted, forcing the processor into
BDM. This bit is cleared on a read from the CSR.

HRL[23:20]-Hardware Revision Level
This hardware revision level indicates the level of functionality implemented in the Debug
Module. This information could be used by an emulator to identify the level of functionality
supported. A zero value would indicate the initial debug functionality. For example, a value
of 1 would represent Revision B while a value of 0 would represent the earlier release of
Revision A.

BKD[18]-Disable the Normal BKPT Input Signal Functionality
This bit is used to disable the normal BKPT input signal functionality, and allow the assertion
of this pin to generate a debug interrupt. If set, the assertion of the BKPT pin is treated as
an edge-sensitive event. Specifically, a high-to-low edge on the BKPT pin generates a signal
to the processor indicating a debug interrupt. The processor makes this interrupt request
pending until the next sample point occurs. At that time, the debug interrupt exception is
initiated. In the ColdFire architecture, the interrupt sample point occurs once per instruction.
There is no support for any type of “nesting” of debug interrupts.

DEBUG SUPPORT

6-44 Version 3 ColdFire Core User’s Manual MOTOROLA

PCD[17]–PSTCLK Disable
If set, this bit disables the generation of the PSTCLK output signal, and forces this signal to
remain quiescent.

IPW[16]–Inhibit Processor Writes to Debug Registers
If set, this bit inhibits any processor-initiated writes to the Debug Module’s programming
model registers. This bit can only be modified by commands from the external development
system.

MAP[15]–Force Processor References in Emulator Mode
If set, this bit forces the processor to map all references while in emulator mode to a special
address space, TT = $2, TM = $5 or $6. If cleared, all emulator-mode references are
mapped into supervisor code and data spaces.

TRC[14]–Force Emulation Mode on Trace Exception
If set, this bit forces the processor to enter emulator mode when a trace exception occurs.

EMU[13]–Force Emulation Mode
If set, this bit forces the processor to begin execution in emulator mode. Refer to

Section
6.4.1.1 Emulator Mode

.

DDC[12:11]–Debug Data Control
This 2-bit field provides configuration control for capturing operand data for display on the

DDATA

 port. The encoding is:

00 = no operand data is displayed
01 = capture all M-Bus write data
10 = capture all M-Bus read data
11 = capture all M-Bus read and write data

In all cases, the DDATA port displays the number of bytes defined by the operand reference
size, i.e., byte displays 8 bits, word displays 16 bits, and long displays 32 bits (one nibble at
a time across multiple clock cycles.) Refer to

Section 6.2.1.7 Begin Data Transfer (PST =
$8 - $B)

.

UHE[10]-User Halt Enable
This bit selects the CPU privilege level required to execute the HALT instruction.

0 = HALT is a privileged, supervisor-only instruction
1 = HALT is a non-privileged, supervisor/user instruction

DEBUG SUPPORT

MOTOROLA Version 3 ColdFire Core User’s Manual 6-45

BTB[9:8]–Branch Target Bytes
This 2-bit field defines the number of bytes of branch target address to be displayed on the
DDATA

outputs. The encoding is

00 = 0 bytes
01 = lower two bytes of the target address
10 = lower three bytes of the target address
11 = entire four-byte target address

Refer to

Section 6.2.1.5 Begin Execution of Taken Branch (PST = $5)

.

NPL[6]–Non-Pipelined Mode
If set, this bit forces the processor core to operate in a nonpipeline mode of operation. In this
mode, the processor effectively executes a single instruction at a time with no overlap.

When operating in non-pipilined mode, performance is severely degraded. For the V3
design, operation in this mode essentially adds 6 cycles to the execution time of each
instruction. Given that the measured Effective Cycles per Instruction for V3 is ~2 cycles/
instruction, meaning performance in non-pipeline mode would be ~8 cycles/instruction, or
approximately 25% compared to the pipelined performance.

Regardless of the state of CSR[6], if a PC breakpoint is triggered, it is always reported
before the instruction with the breakpoint is executed. The occurrence of an address and/or
data breakpoint trigger is imprecise in normal pipeline operation. When operating in non-
pipeline mode, these triggers are always reported before the next instruction begins
execution. In this mode, the trigger reporting can be considered to be precise.

As previously discussed, the occurrence of an address and/or data breakpoint should
always happen before the next instruction begins execution. Therefore the occurrence of the
address/data breakpoints should be guaranteed.

IPI[5]–Ignore Pending Interrupts
If set, this bit forces the processor core to ignore any pending interrupt requests signalled
while executing in single-instruction-step mode.

SSM[4]–Single-Step Mode
If set, this bit forces the processor core to operate in a single-instruction-step mode. While
in this mode, the processor executes a single instruction and then halts. While halted, any
of the BDM commands may be executed. On receipt of the GO command, the processor
executes the next instruction and then halts again. This process continues until the single-
instruction-step mode is disabled.

6.4.2.7 BDM ADDRESS ATTRIBUTE (BAAR).

TThe BAAR register defines the address
space for memory-referencing BDM commands. Bits [7:5] are loaded directly from the BDM
command, while the low-order 5 bits can be programmed from the external development
system. To maintain compatibility with the Rev. A implementation, this register is loaded any
time the AATR is written. The BAR is initialized to a value of $5, setting “supervisor data” as
the default address space.

DEBUG SUPPORT

6-46 Version 3 ColdFire Core User’s Manual MOTOROLA

Field Definitions:

R[7]–Read/Write
0 = Write
1 = Read

SZ[6:5]—Size
00 = Longword
01 = Byte
10 = Word
11 = Reserved

TT[4:3]—Transfer Type
See the TT definition in the AATR description,

Section 6.4.2.2.

TM[2:0]—Transfer Modifier

See the TM definition in the AATR description,

Section 6.4.2.2

.

6.4.3 Concurrent BDM and Processor Operation

The Debug Module supports concurrent operation of both the processor and most BDM
commands. BDM commands may be executed while the processor is running, except for
the operations that access processor/memory registers:

• Read/Write Address and Data Registers

• Read/Write Control Registers

For BDM commands that access memory, the Debug Module requests the processor’s local
bus. The processor responds by stalling the instruction fetch pipeline and then waiting until
all current bus activity is complete. At that time, the processor relinquishes the local bus to
allow the Debug Module to perform the required operation. After the conclusion of the Debug
Module bus cycle, the processor reclaims ownership of the bus.

The development system must use caution in configuring the breakpoint registers if the
processor is executing. The Debug Module does not contain any hardware interlocks, so
Motorola recommends that the

TDR

 be disabled while the breakpoint registers are being

BITS 7 6 5 4 3 2 1 0

FIELD

R SZ TT TM

RESET

0 0 0 1 0 1

R/W

W W W W

 BDM ADDRESS ATTRIBUTE REGISTER (BAAR)

DEBUG SUPPORT

6-47 Version 3 ColdFire Core User’s Manual MOTOROLA

loaded. At the conclusion of this process, the

TDR

can be written to define the exact trigger.
This approach guarantees that no spurious breakpoint triggers occur.

Because there are no hardware interlocks in the debug unit, no BDM operations are allowed
while the CPU is writing the debug’s registers (BKPTDSCLK must be inactive).

6.4.4 Motorola-Recommended BDM Pinout

The ColdFire BDM connector is a 26-pin Berg Connector arranged 2x13, shown in Figure
6-9.

NOTES: 1. Supplied by target

2. Pins reserved for BDM developer use. Contact developer.

Figure 6-9. Recommended BDM Connector

1

3

5

7

9

11

13

15

17

19

21

23

25

2

4

6

8

10

12

14

16

18

20

22

24

26

DEVELOPER RESERVED2

GND

GND

RESET

+3.3V1

GND

PST2

PST0

DDATA2

DDATA0

MOTOROLA RESERVED

GND

VDD_CPU

BKPT

DSCLK

DEVELOPER RESERVED2

DSI

DSO

PST3

PST1

DDATA3

DDATA1

GND

MOTOROLA RESERVED

CLK_CPU

TA

MOTOROLA

Version 3 ColdFire Core User’s Manual 7-1

SECTION 7
TEST

7.1 INTRODUCTION
This section describes how to use and integrate the test features of the Version 3 ColdFire
embedded core (hereafter referred to as CF3Core). It is separated into several sub-sections
that address the following topics:

• How to use the CF3Core test features.

• Understanding the CF3Core test wrapper (CF3TW).

• Interfacing and integrating the CF3Core test features within a chip.

• Reusing the CF3Core scan vectors and integrating them in the chip test program.

7.2 CF3CORE DESIGN-FOR-TEST

7.2.1 CF3Core Test Goals
The CF3Core embeddable core product has been designed to be tested in “isolation” with
a self-contained “virtual test socket” known as a test wrapper. This allows the CF3Core to
be delivered and integrated so that an existing vector set can be reused regardless of the
ultimate chip configuration.

The purpose of the CF3Core test architecture and vector set is to verify that the
manufacturing process did not introduce any faults, and that the “data sheet” specifications
of the functional operation (structure), the frequency (clock speed) of operation of internal
logic, and the signal timing involved with the CF3Core interface, are met.

The CF3Core has also been designed to support the ability to measure the quality level of
the core in line with the manufacturing test requirements stipulated by Motorola’s Imaging
Systems Division (ISD) as a standard requirement for all parts made and manufactured by
Motorola. In addition to general logic and memory verification, these goals may include, logic
retention, memory retention, power measurement (Idd current), and current leakage (Iddq).

7.2.2 CF3Core Test Features
To meet the defined test goals for the CF3Core, the core design includes test architectures
for At-Speed Multiple-Chain Internal Full-Scan and At-Speed Test Wrapper Scan. The core
design is also configured to allow for static operation and current measurement testing.
Each of the test architectures is described more fully in the following sections.

TEST

7-2 Version 3 ColdFire Core User’s Manual MOTOROLA

7.2.2.1 FUNCTIONAL MODE WITH DEBUG.

This mode represents the use of the core in
normal operational mode with no test features active.

During functional mode, at the core/test wrapper boundary, the scan architecture is
quiescent as long as the core and test wrapper scan enable signals are deasserted (placed
to logic 0). Note that toggling of the scan enable signals of the core logic, or of the wrapper,
can interfere with the functional operation of the CF3Core, so a quiescent default state must
be guaranteed during chip design.

7.2.2.2 THE SCAN MODES.

The scan modes enable the 32 CF3Core scan chains which
are used to verify the general sequential and combinational logic for structure. Since the
scan modes are designed to operate at the rated frequency, the scan chains are also used
to verify the internal timing and the interface specifications. When the scan mode is coupled
with a static verification (i.e., a tester pause - chip clock stop function) and/or a current
measurement, then general logic retention and I

ddq

 testing are accomplished.

The production scan mode is designed to allow the scan architecture to operate at the full
rated frequency with some memory protection logic enabled, whereas the burn-in scan
mode is designed to allow the scan architecture to operate at a lower frequency with the
memory arrays contributing to the high activity level.

7.2.2.3 THE CPU LOCK MODE.

The CPU lock mode is provided to keep the processor in
a quiescent state after the negation of the reset signal. This is required to minimize any core
toggling while a chip-level non-core module is being tested, or executing some type of self-
test. This encoding has been supplied because the test operation may apply clocks to the
CF3Core logic. Note that the CPU is similarly locked when in any MBIST mode.

7.2.3 Alternate, Non-Covered Fault Models, Specialty Logic Test Support

Testing of alternate fault models and non-covered logic of the CF3Core is done in a similar
manner to the static operation test, but using a current measurement technique during the
pause (I

ddq

). In scan mode, no extra step aside from stopping the clock is required.

7.3 CF3TW TEST ARCHITECTURE AND TEST INTERFACE

Since the ColdFire CF3Core was designed to be fully embedded and tested in isolation, a
scannable Test Wrapper (CF3TW) interface was developed to provide dedicated test
access in an optimized manner. The CF3TW is a dedicated test interface that is separate
from the functional interface, but resides at the same hierarchical boundary. The goals of
the CF3TW are:

• To allow the test wrapper to be a “virtual test socket” so the CF3Core can be
tested independently of the rest of the chip in all test modes

• To allow all CF3Core functional signals to transparently pass through the test
wrapper boundary during functional mode

• To allow a dedicated and minimized test interface that consists of a set of test
mode signals, scan data and scan control signals

• To allow the non-core chip logic to be tested up to the CF3Core interface with
no reliance on internal core logic or specific core test modes

TEST

MOTOROLA Version 3 ColdFire Core User’s Manual 7-3

• To use internal core and test wrapper-based at-speed scan chains to meet
cost-of-test and fault coverage requirements of all logic within the core
boundary

• To use a registered scan interface to allow a measure of independence from
“external route timing”

• To allow the existing CF3Core vectors to be reused

The CF3TW can be viewed as the self-contained test access port for the internal CF3Core
scan test architecture, the CF3Core/non-core interface boundary scan test architecture, and
the internal memory BIST architecture. The test port signals are described in the table
below.

7.3.1 Access to the CF3Core Internal Scan Architecture

The CF3TW provides access to the CF3Core scan architecture. The CF3Core scan
architecture consists of 32 scan chains with a target shift bit depth of 151 scan cells each.
Access to the scan architecture is through the

si

,

so

, and

se

 signals that pass through the
CF3TW boundary. To use the scan architecture, the

mtmod

 signals must be placed in either
the $9 or $B encodings to configure the internal core features for scan operation. The
internal scan architecture must be operated in conjunction with the test wrapper scan chains
which are accessed through the

tbsi, tbso, tbte, tbsei

, and

tbseo

.

Table 7-1. CF3TW Test Features and Signals

Test Signal Name Test Use Connection

si[31:0]

CF3Core Parallel Scan Inputs Input to CF3Core

so[31:0]

CF3Core Parallel Scan Outputs Output from CF3Core

se

CF3Core Parallel Scan Enable Input to CF3Core

tbsi[3:0]

CF3TW Interface Scan Inputs Input to CF3TW

tbso[3:0]

CF3TW Interface Scan Outputs Output from CF3TW

tbsei

CF3TW Interface Input Scan Enable Input to CF3TW

tbseo

CF3TW Interface Output Scan Enable Output from CF3TW

tbte

CF3TW Interface Test Enable Input to CF3TW

TEST

7-4 Version 3 ColdFire Core User’s Manual MOTOROLA

D Q

SDI

CLK

D Q

CLK

D Q

CLK

CF3TW
Hierarchy

Independent
Shift Bits to

Enable Logic
Transitions

D Q

SDI

CLK

Figure 7-1. Example Registered CF3TW Architecture

Functional
Input

Functional
Output

Non-Core
Logic

Non-Core
Logic

D Q

SDI

CLK

Functional
Input

D Q

SDI

CLK

Functional
Output

D Q

CLK

D Q

CLK

Scan
Inputs

/
32

Scan
Outputs

/
32

S
c
a
n

T
a
i
l
sCF3CoreTcu

Test Controller
Unit

Mode
Inputs

/
4

Test

To CF3Core
Scan
Logic

From CF3Core
Scan
Logic

Functional Mode
Scan Modes

MBIST Modes

ISB

ISB

ISB

ISB

S
c
a
n

H
e
a
d
s

tbso[3:0]

tbsi[3:0]

si[31:0] so[31:0]

To CF3Core
Functional

From Core
Functional

Logic

Logic

To CF3Core
Functional

Logic

From Core
Functional

Logic

Scan
Inputs

/
4

Scan
Outputs

/
4

mtmod[3:0]

TEST

MOTOROLA Version 3 ColdFire Core User’s Manual 7-5

7.3.2 The CF3TW Boundary Scan Architecture

The CF3TW scan architecture is provided as a separate scan architecture so it may be used
in conjunction with CF3Core testing and non-core logic testing. In cases where intellectual
property concerns do not allow a gate-level netlist to be delivered to the integrator, a
structural interface model is needed for vector generation of the non-core logic. The CF3TW
was developed for this purpose.

The CF3TW is a scan architecture made from existing CF3Core registers since this
particular test wrapper relies on the fact that almost all of the input and output functional
signals of the CF3Core are naturally registered. The at-speed CF3TW test wrapper scan
chain is the collection of these functional registers into scan chains.

The placing of the functional input and output registers into the test wrapper scan chains
allows the control and observation of interface logic values without requiring the connection
of the functional interface signals to the chip-level package pins. It must also be noted that
any at-speed data transfers to and from the CF3TW verify the functional interface timing
since the included registers within the wrapper are the functional registers.

The main purpose of the CF3TW is to provide a boundary scan architecture for the CF3Core
to allow the core to be tested in isolation. The basic CF3TW operation allows the functional
input signals to be applied and the output signals to be observed for both AC and DC
structural verification without bringing the entire functional interface to chip-level package
pins. A secondary purpose of the CF3TW is to provide a similar function for the non-core
logic. Here, the core’s output registers can be loaded and driven into the non-core logic, and
the results from the non-core logic observed on the CF3TW’s input registers.

The CF3TW scan test architecture consists of four scan chains that begin on the

tbsi[3:0]

signals (wrapper scan inputs), and end on the

tbso[3:0]

 signals (wrapper scan outputs).
One scan chain includes all of the functional input signal registers, and the remaining three
scan chains include all of the functional output registers. Each scan chain contains a number
of shift bits as described in the table below.

Table 7-2. CF3TW Scan Architecture Signals

Wrapper Scan
Ports

 Bit Length/ Fanout Comment

tbsi[0]->tbso[0]

TBD (42) Functional Input Signals

tbsi[1]->tbso[1]

TBD (31) Functional Output Signals

tbsi[2]->tbso[2]

TBD (31) Functional Output Signals

tbsi[3]->tbso[3]

TBD (31) Functional Output Signals

tbsei

TBD (83) Scan Enable Input Side

tbseo

TBD (180) Scan Enable Output Side

tbte

TBD (2) Non-Register Test Enable

TEST

7-6 Version 3 ColdFire Core User’s Manual MOTOROLA

7.3.2.1 CF3TW TESTING OF NON-CORE INPUTS.

The CF3TW has been designed to be
used as a stand-alone device that does not need the CF3Core scan architecture to conduct
all testing. The CF3TW can be appended to the Non-Core logic to become part of it’s test
structure. This requires the use of a gate-level netlist of the CF3TW to be included as part
of the Non-Core logic netlist when vector generation is to be accomplished.

One of the ways that the CF3TW has been designed to operate is in the “Wrapper Scan
Launch Mode”. This is a test mode that uses the ability of the CF3TW to launch single logic
values or vector-pair logic transition values into the Non-Core logic. This type of testing is
accomplished by utilizing the

tbseo

 signal which enables the CF3TW scan architecture to
either shift data through the CF3TW output side scan chains (launching data into the Non-
Core logic), or to capture data from the CF3Core logic. The CF3TW can be operated
coincidentally with the Non-Core logic test structures, and can be used to enable structural
testing or timing delay testing.

The

tbseo

 signal in conjunction with the Non-Core logic scan or functional test mode control
signals will allow the launching of a single logic value to conduct structural stuck-at testing,
or will allow the launching of 2 consecutive differing logic values (vector-pairs) on targeted
input signals, while holding other signals stable for 2 cycles (applying the same value). The
two-cycle transition type of sequence that holds “off-path” values stable results in what is
known as a Robust Delay Test.

TEST

MOTOROLA Version 3 ColdFire Core User’s Manual 7-7

Figure 7-2. CF3TW to Non-Core Input Scan Stuck-At Vector

clkfast

tbsei

Last Scan Shift In First Scan Shift OutFunctional
Sample

registered
Data Data

Register Setup

wrapper
output

tbseo

Data Data

non-core
Data Datalogic input

register Data Data

Time Point

Note: inputs not
required for this

example

non-core input
signal register

for non-core logic

Sample Point

tbte

shifting will apply
the necessary
logic values

Clock-to-Out
Data Valid Point
from core logic

to non-core logic

To apply values
from non-registered

CF3TW output
signals

Fault
Exercise

Fault
Effect

non-core
Scan se

TEST

7-8 Version 3 ColdFire Core User’s Manual MOTOROLA

Figure 7-3. CF3TW to Non-Core Delay Scan Vector Example

clkfast

tbsei

Last Scan Shift In First Scan Shift OutFunctional
Sample

registered

Data Data

Register Setup

CF3TW
output

tbseo

Data Data

non-core

Data Data
logic input

register Data Data

Time Point

Note: inputs not
required for
this example

non-core logic
input register

for non-core logic
to wrapper

Sample Point

tbte

shifting will apply
the necessary
logic values

N-1 Scan Shift In

To apply values
from non-registered

CF3TW output
signals

Logic
Transition

Data

Opposite
Transition

Capture
Path

non-core
Scan SE

TEST

MOTOROLA Version 3 ColdFire Core User’s Manual 7-9

7.3.2.2 CF3TW TESTING OF NON-CORE OUTPUTS.

Another of the CF3TW stand-alone
modes (operation independent of the CF3Core scan architecture) is the Wrapper Scan
Capture Mode. The CF3TW can be appended to the Non-Core logic to become the capture
part of it’s test structure. Using the CF3TW to launch or capture logic values associated with
the Non-Core logic requires the use of a gate-level netlist of the CF3TW to be included as
part of the Non-Core logic netlist when vector generation is to be accomplished.

One of the ways that the CF3TW has been designed to operate is in the Wrapper Scan
Capture Mode. This is a test mode that uses the ability of the CF3TW to capture logic values
or logic transition values launched from the Non-Core logic. The CF3TW can be operated
coincidentally with the Non-Core logic test structures, and can be used to enable structural
testing or timing delay testing.

The Wrapper Scan Capture Mode testing is accomplished by utilizing the

tbsei

 signal in
conjunction with the Non-Core logic scan or functional test mode control signals to allow the
capture of single logic values, or 2 consecutive differing logic values on targeted input
signals.

The

tbsei

 signal will enable the CF3TW scan architecture to either shift data through the
CF3TW input side scan chains (launching logic values into the CF3Core), or to capture data
from the non-core logic. If the Non-Core logic has the ability to launch transitions (vector
pairs), then the wrapper can be used to capture one or both cycles of the transitioning test.
It must be noted, however, that having the ability to capture vector-pairs launched from the
Non-Core logic requires that the Non-Core logic supports the logic test structures to launch
the vector-pairs.

TEST

7-10 Version 3 ColdFire Core User’s Manual MOTOROLA

Figure 7-4. Non-Core to CF3TW Input Scan Stuck-At Vector Example

clkfast

tbsei

Last Scan Shift In First Scan Shift OutFunctional
Sample

non-core

Data

Register Setup

logic
output

tbseo

Data Data

registered

Data
CF3TW
input Data Data

Time Point

Note: CF3TW inputs
come from

non-core logic only

CF3TW input
functional register

for non-core logic
to CF3TW input

Sample Point

tbte

inputs to non-core
logic from CF3TW only

non-core logic
functional register

sample point

non-core

Fault
Exercise

Scan SE

Data

Fault
Capture

samples non-core logic

Data

Fault
Capture

not needed for this
example

TEST

7-11 Version 3 ColdFire Core User’s Manual MOTOROLA

Figure 7-5. Non-Core to CF3TW Input Scan Delay Vector Example

clkfast

tbsei

Last Scan Shift In First Scan Shift OutFunctional
Sample

registered
Data Data

Register Setup

non-core
output

tbseo

Data Data

CF3TW
Data Datafunctional

input Data Data

Time Point

Note: Sample
Needs to be done

by the CF3TW inputs

Capture Point
for Transition Effectfor CF3TW

input register
into CF3TW input

tbte

Outputs to non-core
logic not considered

in this example

Establish
logic transition
launched into

CF3TW

non-core

Path

Opposite
Transition

N-1 Scan Shift In

Data

Logic
Transition

Capture

Scan SE

TEST

7-12 Version 3 ColdFire Core User’s Manual MOTOROLA

7.4 CHIP-LEVEL INTEGRATION & TEST ISSUES

At the chip level, the CF3Core may be just one of several design units to be integrated into
the overall device. It is the task of the chip integrator to understand and to connect the
CF3Core test features to meet the overall test goals of the final chip, and to allow reuse of
the existing vectors. In order to understand the trade-offs for the several possible ways to
connect the CF3Core test architecture, and to design the interplay between the CF3Core
test features and the test features of other Non-CF3Core design units, the chip-level test
goals need to be understood and described.

The basic test goal of any chip is to ensure that the design includes the test architecture
features that provide a high level of quality measurement at an economical cost. Since the
CF3Core has been designed with “testing in isolation” as a goal, this section describes the
goals and issues of this type of methodology.

When multiple embedded cores are included within a chip, and they are to be tested in
isolation, there are chip-level issues and architectures that must be addressed. Also, at the
chip-level, there may be test issues independent of the embedded cores (such as the
inclusion of IEEE 1149.1 - JTAG on the chip). The first step in addressing these issues is
specification of the chip-level test goals. For example, some chip-level test goals may be:

• Providing a chip-level test architecture for board-level chip integration (e.g., JTAG, De-
bug/Real-Time Trace)

• Conducting “whole chip” I

ddq

 testing

• Conducting “whole chip” burn-in testing

• Meeting a “whole chip” test time, or test cost budget

• Meeting a “whole chip” test program size limitation

• Meeting a “whole chip” structural (stuck-at) standard

• Meeting an individual chip component’s structural (stuck-at) standard (e.g., Core A
must meet M%, Core B must meet N%, etc.)

• Meeting a “whole chip” frequency, timing and delay fault standard

• Meeting an individual chip component frequency, timing and delay fault standard

• Applying pre-existing vectors for chip components (e.g., Core A, Core B, etc.) on silicon
in an economical fashion

• Providing access to individual chip component test architectures without significantly
compromising “whole chip” design goals such as silicon area/die size, frequency, archi-
tectural performance, power consumption, etc.

• Testing individual chip components simultaneously if power consumption permits (i.e.,
test time reduction)

7.4.1 Chip-Level Test Program Goals

Motorola understands the core test program is just one portion of the overall test program,
and has designed the test features to produce a cost-optimized vestor set. The chip test
program may include DC parametrics, scan vectors, memory test vectors, retention vectors,
and any specialty logic vectors (e.g., PLL, A/D, etc.). A chip containing cores that are meant

TEST

7-13 Version 3 ColdFire Core User’s Manual MOTOROLA

to be tested in isolation, however, may have a complete test program for each core. This
means that the overall chip-level test program has DC parametrics, then the whole test
program for Core A, the whole test program for Core B, and then some Core A/Core B
interaction vectors (where each test program may have I

ddq

 and retention vectors included).

Integration options can impact test time and cost. If the core test program can be operated
simultaneously with other chip test program components, then test time may be optimized.

During the chip-level integration of individual cores, the goals involving test program
optimization need to be addressed. One of the most significant time impacts is retention
testing. It is advisable to reduce the tester pause operations to a minimal number.

The vectors for the core are generated for the specific deployed configuration, and can be
adjusted to the chip environment through the ISD test kit. The test kit can translate the core
test ports to their ultimate chip-level pins, and can add any chip-level vector preamble to put
the chip in core test mode.

7.4.2 CF3Core Integration Connections

To reuse the vectors delivered with the CF3Core, the core test features must be integrated
in a particular manner. This section will discuss the proper connection requirements.

The four

mtmod

 test input signals must be routed from the package pins to the
CF3CoreTcu. This can be a direct connection from the package pins to the CF3Core, or can
be some other form of dedicated chip-level test selection that creates the four

mtmod

signals in a chip-level test controller.

The method of connection of the

mtmod

 signals is fundamental to the integration options of
the CF3Core. The different possible connections can limit the ability to share test resources
between the CF3Core and non-core logic. If the integration decision is to map the chip test
modes into the unused encoding space of the four

mtmod

s, then the non-core test modes
are mutually exclusive from the CF3Core test modes. In some cases, it would be advisable
for the non-core test logic and the CF3Core test logic to operate simultaneously to reduce
test time.

Also, the predetermined or predesigned integration of mutual exclusivity or shared modes

Figure 7-6. Two Allowed Methods of mtmod distribution

mtmod

[3:0]

Test
Decode

To CF3CoreTcu
inputs

To Non-Core
Logic or Pin

Control

Using the Free Space in
the

mtmod test encodings

tmode[4:0]

Test
Decode

To CF3CoreTcu
inputs

To Non-Core
Logic or Pin

Control

Creating the 4

mtmod signals
in a chip-level test controller

TEST

7-14 Version 3 ColdFire Core User’s Manual MOTOROLA

can limit the ability to meet some test goals. For example, mutual exclusivity would not allow
“whole chip” I

ddq

 or burn-in.

Another method that can be used to distribute the

mtmod

 to the CF3Core is to create them,
or pass them through, a chip-level test controller. For example, five package pins can be
used to create up to 32 possible test modes. The lower four signals may be passed on to
the CF3Core only when the fifth signal (MSB) is a logic 0, and the four signals can be forced
to place the CF3Core in the production scan mode when the fifth signal is set to a logic 1
(where these represent non-core logic or chip-level test modes).

Using a chip-level test controller allows the ability to encompass both the mutually exclusive
and the shared modes. The production scan test mode for the CF3Core, for example, may
be a mutually exclusive mode when the fifth

mtmod

 package pin is a logic 0 and the four
lower

mtmod

 signals are set to the $B encoding; the non-core logic may be in a mutually
exclusive scan test mode when the fifth

mtmod

 is at a logic 0 and the lower four

mtmod

signals are in one of the unused encodings such as $8; but when the fifth package pin is set
to a logic 1 with the lower four

mtmod

 encoding of $B, then both scan architectures may be
active.

Another example would be having one mode for CF3Core scan burn-in mode, one mode for
non-core logic burn-in mode, and then one mode which has all of the scan inputs (CF3Core
and non-core logic) being fed from the same pins, but having outputs on different pins. This
allows an external pseudo-random pattern generator (PRPG) to place random patterns into
both functions at the same time. However, the response evaluation must still come from the
endpoints of each separate scan chain.

In summary:

• The four

mtmod

 signals can be passed directly to the CF3Core from the package pins

• The remaining four

mtmod

 encodings can be used to make mutually exclusive non-
core or chip-level test modes

• The twelve

mtmod

 encodings used for the CF3Core can be shared if hardware re-
sources or power consumption permits

• The four

mtmod

 signals can be created within a chip-level TCU and distributed to the
CF3Core

• Both mutually exclusive modes and shared modes can exist if the chip-level TCU me-
diates more than 16 test modes

• The chip-level TCU can use any method to create the test modes (e.g., the test register,
state machine, combinational encoding).

7.4.3 CF3Core Scan Connections

The rules for the connection of the CF3Core scan interface are straightforward. When the

mtmod

 encoding distributed to the CF3Core is either $B or $9, then the

si

, and

tbsi

 scan
inputs must be connected to package pins as inputs; the

so

 and

tbso

 scan outputs must be
connected to package pins as outputs; and the

se, tbte, tbsei

, and

tbseo

 scan shift control
signals must be connected to package pins as inputs.

When a scan mode is not selected, then the parallel scan inputs must be driven to a logic 0,
and the parallel scan outputs must be ignored. Since the test wrapper scan architecture is

TEST

7-15 Version 3 ColdFire Core User’s Manual MOTOROLA

also used by the non-core logic, then these connections should not be mode-gated to be
limited to use during CF3Core scan modes.

The CF3TW is a shared test resource for the CF3Core and the non-core logic alike. This
means that access to the CF3TW connections must be provided in both test modes.

The CF3Core parallel scan connections can be gated off whenever they are not being used
in a scan mode (when encodings $B and $9 are not selected), but the CF3TW scan
connections may be used across several test modes. The package pin connections used for
the CF3Core scan can be used, but the select signal must allow more test modes to access
the scan architecture. This should include any CF3Core scan test mode, any non-core logic

Figure 7-7. Chip-Level CF3Core Parallel Scan Input Connection

to a si or se

CF3Core scan mode enable
defaults scan input to 0

Functional
Input Pin D Q

when not selected

Functional
Input

Register

mtmod[4:0]

Test
Decode

Figure 7-8. Chip-Level CF3Core Parallel Scan Output Connection

D Q

a
b
c
d

Functional
Output

D QJTAG
Output

ASIC
Scan CF3Core

Scan
Output

Output

Functional
Output Pin

mtmod[4:0]

Test
Decode

MOTOROLA

Version 3 ColdFire Core User’s Manual A-i

APPENDIX A
CF3CORE INTERFACE TIMING CONSTRAINTS

This appendix provides a Synopsys-compatible timing budget constraint file, which details
the relative input arrival times and output delays for every interface signal in the CF3Core
design. The relative timings are expressed as a fraction of the processor’s cycle time which
essentially provides a technology-independent budget. Note this timing budget file is
provided as reference, and the actual timing specification on each interconnection pin is a
function of the process technology, synthesis methodology, place-and-route details and
external signal loading.

In this timing constraint budget,

clk_max_period defines the period of the processor’s fast
clk, and VCLK is simply a virtual clock reference with the same period as the
clk_max_period. The virtual clock is used as a method to reference input and output
timings.

/**/

/**/

//

// Version 3 ColdFire Reference Design INPUT/OUTPUT SIGNALS

//

/**/

/**/

/* OUTPUTS */

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, maddr*)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, mtt*)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, mtm[*])

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, mrw)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, msiz*)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, mwdata[*])

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, mwdataoe)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, mapb)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, mdpb)

CF3Core Interface Timing Constraints

A-ii Version 3 ColdFire Core User’s Manual MOTOROLA

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, cpustopb)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, cpuhaltb)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, enpstclk)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, pst[*])

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, ddata*)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, dsdo)

/* core scan and test boundary output signals */

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, so)

set_output_delay { clk_max_period - (0.20 * clk_max_period)} -clock VCLK

 find(port, tbso)

/* outputs to the Unified Cache tag and data arrays */

/* outputs to tag */

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

 find(port, nsentb)

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

 find(port, nswrttb)

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

 find(port, nswlvt*)

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

 find(port, nsinvat)

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

 find(port, nsrowst*)

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

 find(port, nsaddrt*)

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

 find(port, nssw)

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

 find(port, nssv)

/* outputs to array */

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

 find(port, nsendb)

set_output_delay { clk_max_period - (0.80 * clk_max_period)} -clock VCLK

 find(port, nswrtdb*)

set_output_delay { clk_max_period - (0.80 * clk_max_period)} -clock VCLK

 find(port, nswtbyted*)

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

 find(port, nsrowsd*)

set_output_delay { clk_max_period - (0.82 * clk_max_period)} -clock VCLK

CF3Core Interface Timing Constraints

MOTOROLA Version 3 ColdFire Core User’s Manual A-iii

 find(port, nscwrdata*)

/* outputs to the KRAM data array */

set_output_delay { clk_max_period - (0.85 * clk_max_period)} -clock VCLK

 find(port, kramaddr*)

set_output_delay { clk_max_period - (0.85 * clk_max_period)} -clock VCLK

 find(port, kramdi*)

set_output_delay { clk_max_period - (0.75 * clk_max_period)} -clock VCLK

 find(port, kramweb*)

set_output_delay { clk_max_period - (0.85 * clk_max_period)} -clock VCLK

 find(port, kramcsb)

/* output to the KROM data array */

set_output_delay { clk_max_period - (0.85 * clk_max_period)} -clock VCLK

 find(port, kromaddr*)

set_output_delay { clk_max_period - (0.85 * clk_max_period)} -clock VCLK

 find(port, kromcsb)

/**/

/* INPUTS */

set_input_delay { 0.75 * clk_max_period } -clock VCLK find(port, mrdata*)

set_input_delay { 0.25 * clk_max_period } -clock VCLK find(port, mtab)

set_input_delay { 0.25 * clk_max_period } -clock VCLK find(port, mahb)

set_input_delay { 0.75 * clk_max_period } -clock VCLK find(port, miplb*)

set_input_delay { 0.75 * clk_max_period } -clock VCLK find(port, mrstib)

set_input_delay { 0.75 * clk_max_period } -clock VCLK find(port, dsclk)

set_input_delay { 0.75 * clk_max_period } -clock VCLK find(port, dsdi)

set_input_delay { 0.75 * clk_max_period } -clock VCLK find(port, mbkptb)

/* core scan and test boundary input signals */

/* test mode select */

set_input_delay { 0.10 * clk_max_period } -clock VCLK find(port, bistplltest)

/* parallel core scan input signals */

set_input_delay { 0.50 * clk_max_period } -clock VCLK find(port, si*)

set_input_delay { 0.50 * clk_max_period } -clock VCLK find(port, se)

/* test boundary input signals */

set_input_delay { 0.50 * clk_max_period } -clock VCLK find(port, tbsi*)

set_input_delay { 0.50 * clk_max_period } -clock VCLK find(port, tbsei)

set_input_delay { 0.50 * clk_max_period } -clock VCLK find(port, tbseo)

set_input_delay { 0.50 * clk_max_period } -clock VCLK find(port, tbte)

CF3Core Interface Timing Constraints

MOTOROLA Version 3 ColdFire Core User’s Manual A-v

/* inputs from the U-Cache memory arrays + configuration */

set_input_delay { 0.0 * clk_max_period } -clock VCLK find(port, ucsz)

set_input_delay { 0.0 * clk_max_period } -clock VCLK find(port, ucnoif)

set_input_delay { 0.0 * clk_max_period } -clock VCLK find(port, ucnoop)

/* inputs from the Unified Cache tag and data arrays */

/* inputs - from tag */

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, uctag3do*)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, ucw3do)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, ucv3do)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, uctag2do*)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, ucw2do)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, ucv2do)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, uctag1do*)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, ucw1do)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, ucv1do)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, uctag0do*)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, ucw0do)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, ucv0do)

/* inputs - from array */

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, uclvl3do*)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, uclvl2do*)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, uclvl1do*)

set_input_delay { 0.45 * clk_max_period } -clock VCLK find(port, uclvl0do*)

/* inputs from the KRAM memory + configuration */

set_input_delay { 0.0 * clk_max_period } -clock VCLK find(port, kramsz)

set_input_delay { 0.0 * clk_max_period } -clock VCLK find(port, encf5307kram)

set_input_delay { 0.0 * clk_max_period } -clock VCLK find(port, enraptorkram)

set_input_delay { 0.50 * clk_max_period } -clock VCLK find(port, kramdo*)

/* inputs from the KROM memory + configuration */

set_input_delay { 0.0 * clk_max_period } -clock VCLK find(port, kromsz)

set_input_delay { 0.0 * clk_max_period } -clock VCLK find(port, kromvldrst)

set_input_delay { 0.50 * clk_max_period } -clock VCLK find(port, kromdo*)

/* processor clock enables */

set_input_delay { 0.70 * clk_max_period } -clock VCLK find(port, mclken)

set_load -pin_load 0.5 all_outputs()

MOTOROLA

Version 3 ColdFire Core User’s Manual B-i

APPENDIX B
INSTRUCTION EXECUTION TIMES

This appendix provides detailed instruction execution timings for the CF3Core processor
complex.

B.1 TIMING ASSUMPTIONS
For the timing data presented in this section, the following assumptions apply:

1. The operand execution pipeline (OEP) is loaded with the opword and all required
extension words at the beginning of each instruction execution. This implies that the
OEP does not wait for the instruction fetch pipeline (IFP) to supply opwords and/or
extension words.

2. The OEP does not experience any sequence-related pipeline stalls. For Version 2 and
Version 3 ColdFire processors, the most common example of this type of stall involves
consecutive store operations, excluding the MOVEM instruction. For all STORE
operations (except MOVEM), certain hardware resources within the processor are
marked as “busy” for two clock cycles after the final DSOC cycle of the store
instruction. If a subsequent STORE instruction is encountered within this 2-cycle
window, it is stalled until the resource again becomes available. Thus, the maximum
pipeline stall involving consecutive STORE operations is 2 cycles. The MOVEM
instruction uses a different set of resources and this stall does not apply.

3. The OEP completes all memory accesses without any stall conditions caused by the
memory itself. Thus, the timing details provided in this section assume that an infinite
zero-wait state memory is attached to the processor core.

4. All operand data accesses are aligned on the same byte boundary as the operand
size, i.e., 16-bit operands aligned on 0-modulo-2 addresses, 32-bit operands aligned
on 0-modulo-4 addresses.

If the operand alignment fails these guidelines, it is misaligned. The processor core
decomposes the misaligned operand reference into a series of aligned accesses as shown
in Table B-1..

INSTRUCTION EXECUTION TIMES

B-ii Version 3 ColdFire Core User’s Manual MOTOROLA

B.2 MOVE INSTRUCTION EXECUTION TIMES

The execution times for the MOVE.{B,W} instructions are shown in Table 2, while Table 3
provides the timing for MOVE.L.

For all

tables in this section, the execution time of any instruction using the PC-relative
effective addressing modes is the same for the comparable An-relative mode.

The nomenclature “xxx.wl” refers to both forms of absolute addressing, xxx.w and xxx.l.

Table B-1. Misaligned Operand References

ADDRESS[1:0] SIZE
BUS

OPERATIONS
ADDITIONAL

C(R/W)

X1 Word Byte, Byte 2(1/0) if read
1(0/1) if write

X1 Long Byte, Word, Byte 3(2/0) if read
2(0/2) if write

10 Long Word, Word 2(1/0) if read
1(0/1) if write

Table B-2. Move Byte and Word Execution Times

SOURCE
DESTINATION

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi*SF) xxx.wl

Dy

1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

Ay

1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay)

4(1/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1)

(Ay)+

4(1/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1)

-(Ay)

4(1/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1)

(d16,Ay)

4(1/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1)

— —
(d8,Ay,Xi*SF)

5(1/0) 5(1/1) 5(1/1) 5(1/1)

— — —
xxx.w

4(1/0) 4(1/1) 4(1/1) 4(1/1)

— — —
xxx.l

4(1/0) 4(1/1) 4(1/1) 4(1/1)

— — —
(d16,PC)

4(1/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1)

— —
(d8,PC,Xi*SF)

5(1/0) 5(1/1) 5(1/1) 5(1/1)

— — —
#xxx

1(0/0) 2(0/1) 2(0/1) 2(0/1)

— — —

Table B-3. Move Long Execution Times

SOURCE
DESTINATION

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi*SF) xxx.wl

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

(Ay)+ 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

-(Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

(d16,Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — —
(d8,Ay,Xi*SF) 4(1/0) 4(1/1) 4(1/1) 4(1/1) — — —

xxx.w 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
xxx.l 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

INSTRUCTION EXECUTION TIMES

MOTOROLA Version 3 ColdFire Core User’s Manual B-iii

The following table specifies the execution times for the Move Long instructions accessing
the program-visible registers of the MAC unit.

Table B-4. MAC Move Long Instruction Execution Times

B.3 STANDARD ONE OPERAND INSTRUCTION EXECUTION TIMES

(d16,PC) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — —
(d8,PC,Xi*SF) 4(1/0) 4(1/1) 4(1/1) 4(1/1) — — —

#xxx 1(0/0) 2(0/1) 2(0/1) 2(0/1) — — —

OPCODE <EA>

EFFECTIVE ADDRESS

Rn (An) (An)+ -(An) (d16,An)
(d8,An,Xi*

SF)
xxx.wl #xxx

move.l <ea>,ACC 1(0/0) — — — — — — 1(0/0)
move.l <ea>,MACSR 1(0/0) — — — — — — 1(0/0)
move.l <ea>,MASK 1(0/0) — — — — — — 1(0/0)
move.l ACC,Rx 3(0/0) — — — — — — —
move.l MACSR,CCR 3(0/0) — — — — — — —
move.l MACSR,Rx 3(0/0) — — — — — — —
move.l MASK,Rx 3(0/0) — — — — — — —

Table B-5. One Operand Instruction Execution Times

OPCODE <EA>
EFFECTIVE ADDRESS

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xi*SF) xxx.wl #xxx

clr.b <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
clr.w <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
clr.l <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

ext.w Dx 1(0/0) — — — — — — —
ext.l Dx 1(0/0) — — — — — — —
extb.l Dx 1(0/0) — — — — — — —
neg.l Dx 1(0/0) — — — — — — —
negx.l Dx 1(0/0) — — — — — — —
not.l Dx 1(0/0) — — — — — — —
scc Dx 1(0/0) — — — — — — —

swap Dx 1(0/0) — — — — — — —

tst.b <ea> 1(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) 5(1/0) 4(1/0) 1(0/0)

tst.w <ea> 1(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) 5(1/0) 4(1/0) 1(0/0)

tst.l <ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

Table B-3. Move Long Execution Times (Continued)

SOURCE
DESTINATION

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi*SF) xxx.wl

INSTRUCTION EXECUTION TIMES

B-iv Version 3 ColdFire Core User’s Manual MOTOROLA

B.4 STANDARD TWO OPERAND INSTRUCTION EXECUTION TIMES

Table B-6. Two Operand Instruction Execution Times

OPCODE <EA>

EFFECTIVE ADDRESS

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xi*SF)
(d8,PC,Xi*SF)

xxx.wl #xxx

add.l <ea>,Rx 1(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) 5(1/0) 4(1/0) 1(0/0)

add.l Dy,<ea> — 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —
addi.l #imm,Dx 1(0/0) — — — — — — —
addq.l #imm,<ea> 1(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —
addx.l Dy,Dx 1(0/0) — — — — — — —
and.l <ea>,Rx 1(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) 5(1/0) 4(1/0) 1(0/0)

and.l Dy,<ea> — 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

andi.l #imm,Dx 1(0/0) — — — — — — —

asl.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)

asr.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)

bchg Dy,<ea> 2(0/0) 5(1/1) 5(1/1) 5(1/1) 5(1/1) 6(1/1) 5(1/1) —

bchg #imm,<ea> 2(0/0) 5(1/1) 5(1/1) 5(1/1) 5(1/1) — — —

bclr Dy,<ea> 2(0/0) 5(1/1) 5(1/1) 5(1/1) 5(1/1) 6(1/1) 5(1/1) —

bclr #imm,<ea> 2(0/0) 5(1/1) 5(1/1) 5(1/1) 5(1/1) — — —

bset Dy,<ea> 2(0/0) 5(1/1) 5(1/1) 5(1/1) 5(1/1) 6(1/1) 5(1/1) —

bset #imm,<ea> 2(0/0) 5(1/1) 5(1/1) 5(1/1) 5(1/1) — — —

btst Dy,<ea> 1(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) 5(1/0) 4(1/0) —

btst #imm,<ea> 1(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) — — —

cmp.l <ea>,Rx 1(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) 5(1/0) 4(1/0) 1(0/0)

cmpi.l #imm,Dx 1(0/0) — — — — — — —

divs.w <ea>,Dx 20(0/0) 23(1/0) 23(1/0) 23(1/0) 23(1/0) 24(1/0) 23(1/0) 20(0/0)
divu.w <ea>,Dx 20(0/0) 23(1/0) 23(1/0) 23(1/0) 23(1/0) 24(1/0) 23(1/0) 20(0/0)
divs.l <ea>,Dx 35(0/0) 35(1/0) 35(1/0) 35(1/0) 35(1/0) — — —

divu.l <ea>,Dx 35(0/0) 35(1/0) 35(1/0) 35(1/0) 35(1/0) — — —

eor.l Dy,<ea> 1(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

eori.l #imm,Dx 1(0/0) — — — — — — —

lea <ea>,Ax — 1(0/0) — — 1(0/0) 2(0/0) 1(0/0) —

lsl.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)

lsr.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)

mac.w Ry,Rx 1(0/0) — — — — — — —

mac.l Ry,Rx 3(0/0) — — — — — — —

msac.w Ry,Rx 1(0/0) — — — — — — —

msac.l Ry,Rx 3(0/0) — — — — — — —

mac.w Ry,Rx,ea,Rw — 3(1/0) 3(1/0) 3(1/0) 3(1/0) — — —

mac.l Ry,Rx,ea,Rw — 5(1/0) 5(1/0) 5(1/0) 5(1/0) — — —

msac.w Ry,Rx,ea,Rw — 3(1/0) 3(1/0) 3(1/0) 3(1/0) — — —

msac.l Ry,Rx,ea,Rw — 5(1/0) 5(1/0) 5(1/0) 5(1/0) — — —

moveq #imm,Dx — — — — — — — 1(0/0)

muls.w <ea>,Dx 3(0/0) 6(1/0) 6(1/0) 6(1/0) 6(1/0) 7(1/0) 6(1/0) 3(0/0)

mulu.w <ea>,Dx 3(0/0) 6(1/0) 6(1/0) 6(1/0) 6(1/0) 7(1/0) 6(1/0) 3(0/0)

muls.l <ea>,Dx 5(0/0) 8(1/0) 8(1/0) 8(1/0) 8(1/0) — — —
mulu.l <ea>,Dx 5(0/0) 8(1/0) 8(1/0) 8(1/0) 8(1/0) — — —

or.l <ea>,Rx 1(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) 5(1/0) 4(1/0) 1(0/0)

or.l Dy,<ea> — 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

INSTRUCTION EXECUTION TIMES

MOTOROLA Version 3 ColdFire Core User’s Manual B-v

B.5 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

ori.l #imm,Dx 1(0/0) — — — — — — —
rems.l <ea>,Dx:Dw 35(0/0) 35(1/0) 35(1/0) 35(1/0) 35(1/0) — — —

remu.l <ea>,Dx:Dw 35(0/0) 35(1/0) 35(1/0) 35(1/0) 35(1/0) — — —

sub.l <ea>,Rx 1(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) 5(1/0) 4(1/0) 1(0/0)

sub.l Dy,<ea> — 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

subi.l #imm,Dx 1(0/0) — — — — — — —
subq.l #imm,<ea> 1(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

subx.l Dy,Dx 1(0/0) — — — — — — —

Table B-7. Miscellaneous Instruction Execution Times

OPCODE <EA>
EFFECTIVE ADDRESS

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xi*SF) xxx.wl #xxx

cpushl (Ax) — 11(0/1) — — — — — —
halt 6(0/0) — — — — — — —

link.w Ay,#imm 2(0/1) — — — — — — —
move.w CCR,Dx 1(0/0) — — — — — — —
move.w <ea>,CCR 1(0/0) — — — — — — 1(0/0)
move.w SR,Dx 1(0/0) — — — — — — —

move.w <ea>,SR 9(0/0) — — — — — — 9(0/0)

1

movec Ry,Rc 11(0/1) — — — — — — —

movem.l <ea>,&list — 2+n(n/0)

2

— — 2+n(n/0)

2

— — —

movem.l &list,<ea> — 2+n(0/n)

2

— — 2+n(0/n)

2

— — —

nop 3(0/0) — — — — — — —

pea <ea> — 2(0/1) — — 2(0/1)

4

3(0/1)

5

2(0/1) —

pulse 1(0/0) — — — — — — —

stop #imm — — — — — — — 3(0/0)

3

trap #imm — — — — — — — 18(1/2)
trapf 1(0/0) — — — — — — —

trapf.w 1(0/0) — — — — — — —
trapf.l 1(0/0) — — — — — — —
unlk Ax 3(1/0) — — — — — — —

wddata <ea> — 7(1/0) 7(1/0) 7(1/0) 7(1/0) 8(1/0) 7(1/0) —
wdebug <ea> — 10(2/0) — — 10(2/0) — — —

1

If a MOVE.W #imm,SR instruction is executed and #imm[13] = 1, the execution time is 1(0/0).

2

n is the number of registers transferred by the MOVEM opcode.

3

The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.

4

PEA execution times are the same for (d16,PC).

5

PEA execution times are the same for (d8,PC,Xi*SF).

Table B-6. Two Operand Instruction Execution Times

OPCODE <EA>

EFFECTIVE ADDRESS

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xi*SF)
(d8,PC,Xi*SF)

xxx.wl #xxx

INSTRUCTION EXECUTION TIMES

B-vi Version 3 ColdFire Core User’s Manual MOTOROLA

B.6 BRANCH INSTRUCTION EXECUTION TIMES

The following notes apply to the branch execution times:

1. For the jmp <ea> instructions, where <ea> is (d16,PC) or xxx.wl, the branch acceleration
logic of the Instruction Fetch Pipeline calculates the target address and begins prefetching
the new path. Since the Instruction Fetch and Operand Execution Pipelines are decoupled
by the FIFO instruction buffer, the execution time can vary from 1 to 3 cycles, depending on
the amount of decoupling.

This same mechanism is used for the bra opcode.

For all other <ea> values of the jmp instruction, the branch acceleration logic is not used,
and the execution times are fixed.

2. For the jsr xxx.wl opcodes, the same branch acceleration mechanism is used to initiate
the fetch of the target instruction. Depending on the amount of decoupling between the IFP
and OEP, the resulting execution times can vary from 1 to 3 cycles.

The same acceleration techniques are applied to the bsr opcode.

For the remaining <ea> values for the jsr instruction, the branch acceleration logic is not
used, and the execution times are fixed.

3. For conditional branch opcodes (bcc), there is a static algorithm used to determine the
prediction state of the branch. This algorithm is:

Table B-8. General Branch Instruction Execution Times

OPCODE <EA>

EFFECTIVE ADDRESS

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xi*SF)
(d8,PC,Xi*SF)

xxx.wl #xxx

bsr — — — — 1(0/1)

2

— — —

jmp <ea> — 5(0/0) — — 5(0/0)

1

6(0/0) 1(0/0)

1

—

jsr <ea> — 5(0/1) — — 5(0/1) 6(0/1) 1(0/1)

2

—

rte — — 14(2/0) — — — — —

rts — — 8(1/0) — — — — —

Table B-9. BRA, Bcc Instruction Execution Times

OPCODE
FORWARD

TAKEN
FORWARD

NOT TAKEN
BACKWARD

TAKEN
BACKWARD
NOT TAKEN

bra 1(0/0)

1

— 1(0/0)

1

—

bcc 5(0/0) 1(0/0) 1(0/0)

3

5(0/0)

INSTRUCTION EXECUTION TIMES

MOTOROLA Version 3 ColdFire Core User’s Manual B-vii

if bcc is a forward branch && CCR[7] == 0
then the bcc is predicted as not-taken

if bcc is a forward branch && CCR[7] == 1
then the bcc is predicted as taken

else if bcc is a backward branch
then the bcc is predicted as taken

The execution times in the BRA, Bcc Table assume that CCR[7] is negated. Another
representation of the Bcc execution times is shown below:

Table B-10. Another Table of Bcc Instruction Execution Times

The execution time for the “predicted correctly as taken” column can vary between 1 to 3
cycles depending on the amount of decoupling between the Instruction Fetch and Operand
Execution Pipelines as previously discussed.

OPCODE
PREDICTED

CORRECTLY AS
TAKEN

PREDICTED
CORRECTLY AS

NOT-TAKEN
MISPREDICTED

bcc 1(0/0) 1(0/0) 5(0/0)

MOTOROLA

Version 3 ColdFire Core User’s Manual C-i

APPENDIX C
PROCESSOR STATUS, DDATA DEFINITION

This section specifies the Version 3 ColdFire processor’s generation of the Processor
STatus (PST) and Debug DATA (DDATA) output pins for each instruction.

The instruction set of the ColdFire processor can be separated into 2 groups: user and
supervisor opcodes. In general, the PST/DDATA outputs for an instruction are defined as:

PST = 1, {PST = [89B], DDATA= operand}

where the {...} definition is optional operand information defined by the setting of the Debug
Module's Configuration/Status Register (CSR). The CSR provides capabilities to display M-
Bus operands based on reference type (read, write, or both). Additionally, for certain
change-of-flow branch instructions, another CSR field provides the capability to display
{2,3,4} bytes of the target instruction address. For both situations, an optional PST value
{8,9,B} provides the marker identifying the size and presence of valid data on the DDATA
outputs.

C.1 USER INSTRUCTION SET
The PST/DDATA specification for the user-mode instructions is defined by the following list.
Throughout the document, the “DD” nomenclature refers to the DDATA outputs:

add.l <ea>y,Rx PST = 1, {PST = B, DD = source operand}
add.l Dy,<ea>x PST = 1, {PST = B, DD = source}, {PST = B, DD = destination}
addi.l #imm,Dx PST = 1
addq.l #imm,<ea>x PST = 1, {PST = B, DD = source}, {PST = B, DD = destination}
addx.l Dy,Dx PST = 1
and.l <ea>y,Dx PST = 1, {PST = B, DD = source operand}
and.l Dy,<ea>x PST = 1, {PST = B, DD = source}, {PST = B, DD = destination}
andi.l #imm,Dx PST = 1
asl.l {Dy,#imm},Dx PST = 1
asr.l {Dy,#imm},Dx PST = 1
bcc.{b,w} if taken, then PST = 5, else PST = 1
bchg Dy,<ea>x PST = 1, {PST = 8, DD = source}, {PST = 8, DD = destination}
bchg #imm,<ea>x PST = 1, {PST = 8, DD = source}, {PST = 8, DD = destination}
bclr Dy,<ea>x PST = 1, {PST = 8, DD = source}, {PST = 8, DD = destination}
bclr #imm,<ea>x PST = 1, {PST = 8, DD = source}, {PST = 8, DD = destination}
bra.{b,w} PST = 5
bset Dy,<ea>x PST = 1, {PST = 8, DD = source}, {PST = 8, DD = destination}
bset #imm,<ea>x PST = 1, {PST = 8, DD = source}, {PST = 8, DD = destination}

Processor Status, DDATA Definition

C-ii Version 3 ColdFire Core User’s Manual MOTOROLA

bsr.{b,w} PST = 5, {PST = B, DD = destination operand}
btst Dy,<ea>x PST = 1, {PST = 8, DD = source operand}
btst #imm,<ea>x PST = 1, {PST = 8, DD = source operand}
clr.b <ea>x PST = 1, {PST = 8, DD = destination operand}
clr.w <ea>x PST = 1, {PST = 9, DD = destination operand}
clr.l <ea>x PST = 1, {PST = B, DD = destination operand}
cmp.l <ea>y,Rx PST = 1, {PST = B, DD = source operand}
cmpi.l #imm,Dx PST = 1
divs.w <ea>y,Dx PST = 1, {PST = 9, DD = source operand}
divu.w <ea>y,Dx PST = 1, {PST = 9, DD = source operand}
divs.l <ea>y,Dx PST = 1, {PST = B, DD = source operand}
divu.l <ea>y,Dx PST = 1, {PST = B, DD = source operand}
eor.l Dy,<ea>x PST = 1, {PST = B, DD = source}, {PST = B, DD = destination}
eori.l #imm,Dx PST = 1
ext.w Dx PST = 1
ext.l Dx PST = 1
extb.l Dx PST = 1
jmp <ea>x PST = 5, {PST = [9AB], DD = target address} (See Notes)
jsr <ea>x PST = 5, {PST = [9AB], DD = target address},

{PST = B, DD= destination operand} (See Notes)
lea <ea>y,Ax PST = 1
link.w Ay,#imm PST = 1, {PST = B, DD = destination operand}
lsl.l {Dy,#imm},Dx PST = 1
lsr.l {Dy,#imm},Dx PST = 1
mac.w Ry,Rx PST = 1
mac.l Ry,Rx PST = 1
mac.w Ry,Rx,ea,Rw PST = 1, {PST = B, DD = source operand}
mac.l Ry,Rx,ea,Rw PST = 1, {PST = B, DD = source operand}
move.b <ea>y,<ea>x PST = 1, {PST = 8, DD = source}, {PST = 8, DD = destination}
move.w <ea>y,<ea>x PST = 1, {PST = 9, DD = source}, {PST = 9, DD = destination}
move.l <ea>y,<ea>x PST = 1, {PST = B, DD = source}, {PST = B, DD = destination}
move.l <ea>y,ACC PST = 1
move.l <ea>y,MACSRPST = 1
move.l <ea>y,MASK PST = 1
move.l ACC,Rx PST = 1
move.l MACSR,CCR PST = 1
move.l MACSR,Rx PST = 1
move.l MASK,Rx PST = 1
move.w CCR,Dx PST = 1
move.w {Dy,#imm},

CCR

PST = 1
movem.l <ea>y,#list PST = 1, {PST = B, DD = source},... (See Notes)
movem.l #list,<ea>x PST = 1, {PST = B, DD = destination},... (See Notes)

Processor Status, DDATA Definition

MOTOROLA Version 3 ColdFire Core User’s Manual C-iii

moveq #imm,Dx PST = 1
msac.w Ry,Rx PST = 1
msac.l Ry,Rx PST = 1
msac.w Ry,Rx,ea,Rw PST = 1, {PST = B, DD = source operand}
msac.l Ry,Rx,ea,Rw PST = 1, {PST = B, DD = source operand}
muls.w <ea>y,Dx PST = 1, {PST = 9, DD = source operand}
mulu.w <ea>y,Dx PST = 1, {PST = 9, DD = source operand}
muls.l <ea>y,Dx PST = 1, {PST = B, DD = source operand}
mulu.l <ea>y,Dx PST = 1, {PST = B, DD = source operand}
neg.l Dx PST = 1
negx.l Dx PST = 1
nop PST = 1
not.l Dx PST = 1
or.l <ea>y,Dx PST = 1, {PST = B, DD = source operand}
or.l Dy,<ea>x PST = 1, {PST = B, DD = source}, {PST = B, DD = destination}
ori.l #imm,Dx PST = 1
pea <ea>y PST = 1, {PST = B, DD = destination operand}
pulse PST = 4
rems.l <ea>y,Dx:Dw PST = 1, {PST = B, DD = source operand}
remu.l <ea>y,Dx:Dw PST = 1, {PST = B, DD = source operand}
rts PST = 1, {PST = B, DD = source operand},

PST = 5, {PST = [9AB], DD = target address}
scc Dx PST = 1
sub.l <ea>y,Rx PST = 1, {PST = B, DD = source operand}
sub.l Dy,<ea>x PST = 1, {PST = B, DD = source}, {PST = B, DD = destination}
subi.l #imm,Dx PST = 1
subq.l #imm,<ea>x PST = 1, {PST = B, DD = source}, {PST = B, DD = destination}
subx.l Dy,Dx PST = 1
swap Dx PST = 1
trap #imm PST = 1 (See Notes)
trapf PST = 1
trapf.w PST = 1
trapf.l PST = 1
tst.b <ea>x PST = 1, {PST = 8, DD = source operand}
tst.w <ea>x PST = 1, {PST = 9, DD = source operand}
tst.l <ea>x PST = 1, {PST = B, DD = source operand}
unlk Ax PST = 1, {PST = B, DD = destination operand}
wddata.b <ea>y PST = 4, PST = 8, DD = source operand
wddata.w <ea>y PST = 4, PST = 9, DD = source operand
wddata.l <ea>y PST = 4, PST = B, DD = source operand

Processor Status, DDATA Definition

C-iv Version 3 ColdFire Core User’s Manual MOTOROLA

where Rn represents any {Dn, An} register. In this definition, the “y” suffix is generally used
to denote the source operand and the “x” suffix is used for the destination operand. For any
given instruction, the optional operand data is displayed only for those effective addresses
referencing memory.

NOTES

1. For the JMP and JSR instructions, the optional target instruction address is only displayed
for those effective address fields defining

variant

addressing modes. This includes the
following <ea>x values: (An), (d16,An), (d8, An,Xi), (d8,PC,Xi).

2. For the Move Multiple instructions (MOVEM), the processor automatically generates line-
sized transfers if the operand address reaches a 0-modulo-16 boundary and there are four
or more registers to be transferred. For these line-sized transfers, the operand data is

never

captured nor displayed, regardless of the CSR value.

The automatic line-sized burst transfers are provided to maximize performance during these
sequential memory access operations.

3. During normal exception processing, the

PST

 output is driven to a $C indicating the
exception processing state. The exception stack write operands, as well as the vector read
and target address of the exception handler may also be displayed.

Exception Processing PST = C, {PST = B, DD = destination}, // stack frame write

{PST = B, DD = destination}, // stack frame write

{PST = B, DD = source}, // vector read

PST = 5, {PST = [9AB], DD = target} // PC of handler

The

PST/DDATA

specification for the

reset exception

 is shown below:

Exception Processing PST = C,

PST = 5, {PST = [9AB], DD = target} // initial PC

The initial references at address 0 and 4 are never captured nor displayed since these
accesses are treated as instruction fetches.

For all types of exception processing, the

PST

 = $C value is driven at all times, unless the

PST

 output is needed for one of the optional marker values or the taken branch indicator
($5).

C.2 SUPERVISOR INSTRUCTION SET

The supervisor instruction set has complete access to the user mode instructions plus the
opcodes shown below. The

PST/DDATA

 specification for these opcodes is:

cpushl (Ax) PST = 1
halt PST = 1, PST = F
move.w SR,Dx PST = 1
move.w {Dy,#imm},SR PST = 1, {PST = 3}
movec Ry,Rc PST = 1
rte PST = 7, {PST = B, DD = source operand}, {PST = 3},

Processor Status, DDATA Definition

MOTOROLA Version 3 ColdFire Core User’s Manual C-v

{PST = B, DD = source operand},
PST = 5, {PST = [9AB], DD = target address}

stop #imm PST = 1, PST = E
wdebug <ea>y PST = 1, {PST = B, DD = source, PST = B, DD = source}

The move-to-SR and RTE instructions include an optional

PST

 = $3 value, indicating an
entry into user mode.

Similar to the exception processing mode, the stopped state (

PST

 = $E) and the halted state
(

PST

 = $F) display the PST status throughout the entire time the ColdFire processor is in
the given mode.

MOTOROLA

Version 3 ColdFire Core User’s Manual D-i

APPENDIX D
LOCAL MEMORY CONNECTIONS

This appendix provides an example Verilog file showing the instantiation of the processor-
local memories (Unified Cache, RAM and ROM) and the appropriate connections with the
CF3Core.

This example is defined with maximum-sized memories, i.e., a 32 KByte Unified Cache, a
32 KByte RAM and a 32 KByte ROM.

The memory array instantiations appear in the following order: Unified Cache tag storage,
Unified Cache data storage, RAM storage, and finally, the ROM storage.

//**

//**

//

// KBUS UNIFIED CACHE TAG & DATA ARRAY MEMORIES

//

//**

//**

//**

// Cache Tag SRAM arrays - 4 x sram512x25 = tags for a 32 KByte cache

//**

// LEVEL 3 TAG

sram512x25 ucTag0SramLevel3(

 .dbo ({uctag3do[31:9], ucw3do, ucv3do}),

 .a (nsrowst[8:0]),

 .dbi ({nsaddrt[31:9], nssw, nssv}),

 .csB (nsentb),

 .rwB (~nswlvt[3]),

 .clk (clkfast));

// LEVEL 2 TAG

sram512x25 ucTag0SramLevel2(

 .dbo ({uctag2do[31:9], ucw2do, ucv2do}),

Local Memory Connections

D-ii Version 3 ColdFire Core User’s Manual MOTOROLA

 .a (nsrowst[8:0]),

 .dbi ({nsaddrt[31:9], nssw, nssv}),

 .csB (nsentb),

 .rwB (~nswlvt[2]),

 .clk (clkfast));

// LEVEL 1 TAG

sram512x25 ucTag0SramLevel1(

 .dbo ({uctag1do[31:9], ucw1do, ucv1do}),

 .a (nsrowst[8:0]),

 .dbi ({nsaddrt[31:9], nssw, nssv}),

 .csB (nsentb),

 .rwB (~nswlvt[1]),

 .clk (clkfast));

// LEVEL 0 TAG

sram512x25 ucTag0SramLevel0(

 .dbo ({uctag0do[31:9], ucw0do, ucv0do}),

 .a (nsrowst[8:0]),

 .dbi ({nsaddrt[31:9], nssw, nssv}),

 .csB (nsentb),

 .rwB (~nswlvt[0]),

 .clk (clkfast));

//**

// Cache Data SRAM arrays - 4 x [4 x sram2048x8] = data for a 32

// KByte cache

//**

// LEVEL 3 DATA

sram2048x8 ucData3SramByte0 (

 .dbo (uclvl3do[31:24]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[31:24]),

 .csB (nsendb),

 .rwB (nswrtdb[3] | ~nswtbyted[0]),

 .clk (clkfast));

Local Memory Connections

MOTOROLA Version 3 ColdFire Core User’s Manual D-iii

sram2048x8 ucData3SramByte1 (

 .dbo (uclvl3do[23:16]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[23:16]),

 .csB (nsendb),

 .rwB (nswrtdb[3] | ~nswtbyted[1]),

 .clk (clkfast));

sram2048x8 ucData3SramByte2 (

 .dbo (uclvl3do[15:8]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[15:8]),

 .csB (nsendb),

 .rwB (nswrtdb[3] | ~nswtbyted[2]),

 .clk (clkfast));

sram2048x8 ucData3SramByte3 (

 .dbo (uclvl3do[7:0]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[7:0]),

 .csB (nsendb),

 .rwB (nswrtdb[3] | ~nswtbyted[3]),

 .clk (clkfast));

// LEVEL 2 DATA

sram2048x8 ucData2SramByte0 (

 .dbo (uclvl2do[31:24]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[31:24]),

 .csB (nsendb),

 .rwB (nswrtdb[2] | ~nswtbyted[0]),

 .clk (clkfast));

sram2048x8 ucData2SramByte1 (

 .dbo (uclvl2do[23:16]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[23:16]),

Local Memory Connections

D-iv Version 3 ColdFire Core User’s Manual MOTOROLA

 .csB (nsendb),

 .rwB (nswrtdb[2] | ~nswtbyted[1]),

 .clk (clkfast));

sram2048x8 ucData2SramByte2 (

 .dbo (uclvl2do[15:8]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[15:8]),

 .csB (nsendb),

 .rwB (nswrtdb[2] | ~nswtbyted[2]),

 .clk (clkfast));

sram2048x8 ucData2SramByte3 (

 .dbo (uclvl2do[7:0]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[7:0]),

 .csB (nsendb),

 .rwB (nswrtdb[2] | ~nswtbyted[3]),

 .clk (clkfast));

// LEVEL 1 DATA

sram2048x8 ucData1SramByte0 (

 .dbo (uclvl1do[31:24]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[31:24]),

 .csB (nsendb),

 .rwB (nswrtdb[1] | ~nswtbyted[0]),

 .clk (clkfast));

sram2048x8 ucData1SramByte1 (

 .dbo (uclvl1do[23:16]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[23:16]),

 .csB (nsendb),

 .rwB (nswrtdb[1] | ~nswtbyted[1]),

 .clk (clkfast));

sram2048x8 ucData1SramByte2 (

Local Memory Connections

MOTOROLA Version 3 ColdFire Core User’s Manual D-v

 .dbo (uclvl1do[15:8]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[15:8]),

 .csB (nsendb),

 .rwB (nswrtdb[1] | ~nswtbyted[2]),

 .clk (clkfast));

sram2048x8 ucData1SramByte3 (

 .dbo (uclvl1do[7:0]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[7:0]),

 .csB (nsendb),

 .rwB (nswrtdb[1] | ~nswtbyted[3]),

 .clk (clkfast));

// LEVEL 0 DATA

sram2048x8 ucData0SramByte0 (

 .dbo (uclvl0do[31:24]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[31:24]),

 .csB (nsendb),

 .rwB (nswrtdb[0] | ~nswtbyted[0]),

 .clk (clkfast));

sram2048x8 ucData0SramByte1 (

 .dbo (uclvl0do[23:16]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[23:16]),

 .csB (nsendb),

 .rwB (nswrtdb[0] | ~nswtbyted[1]),

 .clk (clkfast));

sram2048x8 ucData0SramByte2 (

 .dbo (uclvl0do[15:8]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[15:8]),

 .csB (nsendb),

Local Memory Connections

D-vi Version 3 ColdFire Core User’s Manual MOTOROLA

 .rwB (nswrtdb[0] | ~nswtbyted[2]),

 .clk (clkfast));

sram2048x8 ucData0SramByte3 (

 .dbo (uclvl0do[7:0]),

 .a (nsrowsd[10:0]),

 .dbi (nscwrdata[7:0]),

 .csB (nsendb),

 .rwB (nswrtdb[0] | ~nswtbyted[3]),

 .clk (clkfast));

//**

//**

//

// KBUS RANDOM ACCESS MEMORY

//

//**

//**

sram8192x8 KramByte0(

 .dbo (kramdo[31:24]),

 .a (kramaddr[14:2]),

 .dbi (kramdi[31:24]),

 .csB (kramcsb),

 .rwB (kramweb[0]),

 .clk (clkfast));

sram8192x8 KramByte1 (

 .dbo (kramdo[23:16]),

 .a (kramaddr[14:2]),

 .dbi (kramdi[23:16]),

 .csB (kramcsb),

 .rwB (kramweb[1]),

 .clk (clkfast));

sram8192x8 KramByte2 (

 .dbo (kramdo[15:8]),

 .a (kramaddr[14:2]),

Local Memory Connections

MOTOROLA Version 3 ColdFire Core User’s Manual D-vii

 .dbi (kramdi[15:8]),

 .csB (kramcsb),

 .rwB (kramweb[2]),

 .clk (clkfast));

sram8192x8 KramByte3 (

 .dbo (kramdo[7:0]),

 .a (kramaddr[14:2]),

 .dbi (kramdi[7:0]),

 .csB (kramcsb),

 .rwB (kramweb[3]),

 .clk (clkfast));

//**

//**

//

// KBUS READ-ONLY MEMORY

//

//**

//**

rom8192x16 KromWord0 (

 .dbo (kromdo[31:16]),

 .a (kromaddr[14:2]),

 .csB (kromcsb),

 .clk (clkfast));

rom8192x16 KromWord2 (

 .dbo (kromdo[15:0]),

 .a (kromaddr[14:2]),

 .csB (kromcsb),

 .clk (clkfast));

MOTOROLA

Version 3 ColdFire Core User’s Manual Index-1

INDEX

A
A0 - A7 4-8
AABR 6-35, 6-36, 6-38, 6-39, 6-46
AATR 6-33, 6-35
ABLR/ABHR 6-33, 6-34
ACC 4-10
accumulator (ACC) 4-10
address registers (A0 – A6) 4-8
addressing mode summary 4-21

B
BDM

command sequence diagram 6-12, 6-14
dump memory block (DUMP) 6-20
fill memory block (FILL) 6-22
no operation (NOP) 6-25
read A/D Register (RAREG/RDREG) 6-14
read control register (RCREG) 6-26
read debug module register (RDMREG) 6-29
read memory location (READ) 6-16
recommended connector 6-47
resume execution (GO) 6-24
serial interface 6-8
serial transfer diagram 6-9
write A/D register (WAREG/WDREG) 6-15
write control register (WCREG) 6-28
write debug module register (WDMREG) 6-29
write memory location (WRITE) 6-18

BKPTB 6-2, 6-7, 6-8
breakpoint response (table 16-8) 6-31

C
Cache

copyback mode 5-16
writethrough mode 5-16

Cache Coherency 5-6, 5-19
cache inhibited 5-16
Cache Line Format 5-8
Cache Mode 5-15
CCR 4-8, 4-9
condition code register (CCR) 4-9
CPU halt 6-7
CPUSH instruction 5-20
CSR 6-42

D
D0 - D7 4-8
data formats 4-19
data registers (D0 – D7) 4-8
DBR/DBMR 6-33, 6-38
DDATA 6-4, 6-5, 6-6
Debug 6-1
debug module

BDM
DUMP 6-20
FILL 6-22
GO 6-24
NOP 6-25
RAREG/RDREG 6-14
RCREG 6-26
RDMREG 6-29
READ 6-16
serial interface 6-8
WAREG/WDREG 6-15
WCREG 6-28
WDMREG 6-29
WRITE 6-18

CPU halt 6-7
emulator mode 6-32, 6-44
hardware reuse 6-33
interrupt 6-31
real-time support 6-31
registers

address attribute (AATR) 6-35
address attribute breakpoint (AABR) 6-35,

6-36, 6-38, 6-39, 6-46
address breakpoint (ABLR, ABHR) 6-34
configuration/status register (CSR) 6-42
data breakpoint (DBR, DBMR) 6-38
program counter breakpoint (PBR, PBMR)

6-38
trigger definition (TDR) 6-40

signals
break point (BKPTB) 6-2

theory of operation 6-31
Debug Support 6-1

background debug mode (BDM)
BDM command set

BDM command set summary 6-10
command set descriptions

read debug module register
(RDMREG) 6-29

definition of DRc encoding

Index

Index-2 Version 3 ColdFire Core User’s Manual MOTOROLA

- read (table 16-6) 6-
29

unassigned opcodes 6-30
write control register (WCREG) 6-28
write debug module register

(WDMREG) 6-29

definition of DRc encoding-
write (table 16-7) 6-
30

background-debug mode
BDM command set

ColdFire BDM commands 6-11
background-debug mode (6-9
background-debug mode (BDM) 6-6

BDM command set 6-10
BDM command set summary

BDM command summary (table 16-
3) 6-11

ColdFire BDM commands
BDM size field encoding (table 16-4)

6-12
command sequence diagram 6-12
command sequence diagram (figure 16-

6) 6-14
command set descriptions

fill memory block (FILL) 6-22
no operation (NOP) 6-25
read A/D register (RAREG/RDREG)

6-14
read control register (RCREG) 6-26

control register map (table
16-5) 6-27

read memory location (READ) 6-16
resume execution (GO) 6-24
synchronize PC to the PST/DDATA

lines (SYNC_PC) 6-26
write A/D register (WAREG/

WDREG) 6-15
write memory location (WRITE) 6-

18
BDM serial interface 6-8

BDM serial transfer (figure 16-3) 6-9
receive packet format 6-9

CPU-generated message encoding
(figure 16-4) 6-10

receive BDM packet (figure 16-4) 6-
9

transmit packet format 6-10
BDM serial transfer

transmit packet format
transmit BDM packet (figure 16-5)

6-10
CPU halt 6-7

background-debug support (BDM)

BDM command set
command sequence diagram (figure

16-6) 6-14
BDM command set summary

command set descriptions
dump memory block (DUMP) 6-20

processor/debug module interface 6-2
processor/debug module interface (figure 16-1)

6-2
real-time debug support 6-31

concurrent BDM and processor operation
6-46

Motorola-recommended BDM pinout 6-47
Motorola-recommended BDM pinout

(figure 16-8) 6-47
programming model 6-34

address attribute trigger register
(AATR) 6-35

address breakpoint registers (ABLR,
ABHR) 6-34

BDM address attribute (BAAR) 6-45
configuration/status register (CSR) 6-

42
data breakpoint register (DBR, DBMR)

6-38
access size and operand data

location (table 16-10) 6-40
debug programming model (figure 16-

7) 6-34
program counter breakpoint register

(PBR, PBMR) 6-38
trigger definition register (TDR) 6-40

theory of operation 6-31
debug module hardware 6-33

new debug module hardware (Rev.
B)

shared BDM/breakpoint
hardware (table 16-
9) 6-33

reuse of debug module hardware
(Rev. A) 6-33

shared BDM/breakpoint
hardware (table 16-
9) 6-33

the new debug module hardware
(Rev. B) 6-33

emulator mode 6-32
real-time trace support 6-4

processor status signal encoding 6-4
begin data transfer (PST=$8-$B) 6-6
begin execution of an instruction

(PST=$1) 6-4
begin execution of PULSE or

WDDATA instructions (PST=$4) 6-4

Index

MOTOROLA Version 3 ColdFire Core User’s Manual Index-3

begin execution of PULSE or WDDATA
instructions (PST=$5)

example PST/DDATA diagram
(figure 16-2) 6-5

begin execution of RTE instruction
(PST=$7) 6-6

begin execution of taken branch
(PST=$5) 6-5

continue execution (PST=$0) 6-4
emulator mode exception processing

(PST=$D) 6-6
entry into user mode (PST=$3) 6-4
exception processing (PST = $C) 6-6
processor halted (PST=$F) 6-6
processor stopped (PST=$E) 6-6

signal description 6-2
breakpoint (BKPT) 6-2

Rev A functionality 6-2
Rev B enhancement 6-2

development serial clock (DSCLK) 6-2
development serial input (DSI) 6-3
development serial output (DSO) 6-3
processor status clock (PSTCLK) 6-3

processor status encoding (table 16-1)
6-3

diagrams
BDM command sequence 6-14
BDM serial transfer 6-9
integer address formats 4-20
integer data formats 4-19
memory operand addressing 4-21
processor status 6-5
processor/debug module interface 6-2
recommended BDM connector 6-47

DSCLK 6-9
DUMP 6-20

E

emulator mode 6-32, 6-44
exceptions

debug interrupt 6-31

F

fault-on-fault halt 6-7
FILL 6-22

G

GO 6-24

H

HALT 6-7

I

instruction set summary 4-22
integer data formats 4-19
interrupts

debug 6-31

M

MAC status register (MACSR) 4-10
MAC unit

programming model 4-10
MACSR 4-10
memory operand addressing diagram 4-21
memory organization 4-20
MOVEC instruction 5-15, 6-27

N

NOP 6-25
notational conventions 4-22

P

PBMR 6-38
PBR 6-38
PC 4-8
processor status diagram 6-5
program counter (PC) 4-8
programming model 4-7

MAC unit 4-10
supervisor 4-10

PST 6-4
PULSE instruction 6-3, 6-4

R

RAREG/RDREG 6-14
RCREG 6-26
RDMREG 6-29
READ 6-16
real-time debug support 6-31
registers

access control
ACR 4-11

debug module
AABR 6-35, 6-36, 6-38, 6-39, 6-46
AATR 6-33, 6-35
ABLR/ABHR 6-33, 6-34
CSR 6-42

Index

Index-4 Version 3 ColdFire Core User’s Manual MOTOROLA

DBR/DBMR 6-33, 6-38
PBR/PBMR 6-38
TDR 6-40

instruction cache
CACR 4-11

integer unit
A0 - A6 4-8
CCR 4-9
D0 - D7 4-8
PC 4-8
SP 4-8

MAC unit
ACC 4-10
MACSR 4-10

ROM module
ROMBAR0 4-11

supervisor
SR 4-12
VBR 4-11

RTE instruction 6-3, 6-5, 6-6, 6-32, 6-33

S

signals
debug module

BKPTB 6-2
SP 4-8
SR 4-12
stack pointer (A7,SP) 4-8
status register (SR) 4-12
STOP instruction 6-6, 6-8
supervisor programming model 4-10
System Bus Controller 5-6

T

TDR 6-40
transparent translation registers 5-13

V

variant addressing 6-4, 6-5
VBR 4-11
vector base register (VBR) 4-11

W

WAREG/WDREG 6-15
WCREG 6-28
WDDATA instruction 6-3, 6-4
WDMREG 6-29
WRITE 6-18

	Return to Main Menu
	Return to ColdFire Product Page
	
	Table of Contents
	List of Illustrations
	List of Tables
	Sec. 1- Introduction
	1.1 Why ColdFire!

	Sec. 2- Architectural Overview
	Sec. 3- Version 3 Core
	3.1 Introduction
	3.2 CF3Core Signals
	3.3 ColdFire Master Bus

	Sec. 4- V3 CPU
	4.1 Introduction
	4.2 Version 3 Processor Microarchitecture
	4.3 ColdFire Processor Programming Model
	4.4 User Programming Model
	4.5 MAC Programming Model
	4.6 Supervisor Programming Model
	4.7 Exception Processing Overview
	4.8 Integer Data Formats
	4.9 Organization of Data in Registers
	4.10 Addressing Mode Summary
	4.11 Instruction Set Summary

	Sec. 5- Processor-Local Memories
	5.1 Local Memory Overview
	5.2 The Two-Stage Pipelined Local Bus (K-Bus)
	5.3 Unified Cache
	5.4 Processor-Local Random Access Memory (RAM)
	5.5 Processor-Local Read-Only Memory (ROM)
	5.6 Interactions Between the KBUS Memories

	Sec. 6- Debug Support
	6.1 Signal Description
	6.2 Real-Time Trace Support
	6.3 Background-Debug Mode (BDM)
	6.4 Real-Time Debug Support

	Sec. 7- Test
	7.1 Introduction
	7.2 CF3Core Design-for-Test
	7.3 CF3TW Test Architecture and Test Interface
	7.4 Chip-Level Integration & Test Issues

	Appx. A- CF3Core Interface Timing Constraints
	Appx. B- Instruction Execution Times
	B.1 Timing Assumptions
	B.2 Move Instruction Execution Times
	B.3 Standard One Operand Instruction Execution Times
	B.4 Standard Two Operand Instruction Execution Times
	B.5 Miscellaneous Instruction Execution Times
	B.6 Branch Instruction Execution Times

	Appx. C- Processor Status, DDATA Definition
	C.1 User Instruction Set
	C.2 Supervisor Instruction Set

	Appx. D- Local Memory Connections
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	N
	P
	R
	S
	T
	V
	W

