Parts Not Suitable for New Designs

For Additional Information

End-Of-Life Product Change Notice

http://www.mot.com/SPS/HPESD/prod/eol/68341_eol.html

@ MOTOROLA

MC68341

Integrated Processor
User’'s Manual

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated wit| h
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and re
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA, 1993

PREFACE

The complete documentation package for the MC68341 consists of the MC68341UM/AD,
MC68341 Integrated Processor User’s Manual, M68000PM/AD, MC68000 Family
Programmer’s Reference Manual, and the MC68341P/D, MC68341 Integrated Processor
Product Brief.

The MC68341 Integrated Processor User’s Manual describes the programming,
capabilities, registers, and operation of the MC68341; the MC68000 Family Programmer’s
Reference Manual provides instruction details for the MC68341; and the MC68341
Integrated Processor Product Brief provides a brief description of the MC68341
capabilities.

This user’'s manual is organized as follows:

Section 1 Device Overview Section 9 Queued Serial Peripheral
Section 2 Signal Descriptions Module

Section 3 Bus Operation Section 10 IEEE 1149.1 Test Access
Section 4 System Integration Module Port

Section 5 CPU32 Section 11 Applications

Section 6 DMA Controller Module Section 12 Electrical Characteristics
Section 7 Serial Module Section 13 Ordering Information and
Section 8 Timer Modules Mechanical Data

68K FAX-IT — Documentation Comments
FAX 512-891-8593—Documentation Comments Only

The Motorola High-End Technical Publications Department provides a fax number for you
to submit any questions or comments about this document or how to order other
documents. We welcome your suggestions for improving our documentation. Please do
not fax technical questions.

Please provide the part number and revision number (located in upper right-hand corner
of the cover) and the title of the document. When referring to items in the manual, please
reference by the page number, paragraph number, figure number, table number, and line
number if needed.

When sending a fax, please provide your name, company, fax number, and phone
number including area code.

Applications and Technical Information

For questions or comments pertaining to technical information, questions, and
applications, please contact one of the following sales offices nearest you.

UNITED STATES

ALABAMA, Huntsville

ARIZONA, Tempe

CALIFORNIA, Agoura Hills

CALIFORNIA, Los Angeles

CALIFORNIA, Irvine

CALIFORNIA, Rosevllle

CALIFORNIA, San Diego

CALIFORNIA, Sunnyvale

COLORADO, Colorado Springs

COLORADO, Denver

CONNECTICUT, Wallingford

FLORIDA, Maitland

FLORIDA, Pompano Beach/Fort.
Lauderdale

FLORIDA, Clearwater

GEORGIA, Atlanta

IDAHO, Boise

ILLINOIS, Chicago/Hoffman Estates

INDIANA, Fort Wayne

INDIANA, Indianapolis

INDIANA, Kokomo

IOWA, Cedar Rapids

KANSAS, Kansas City/Mission

MARYLAND, Columbia

MASSACHUSETTS, Marborough

MASSACHUSETTS, Woburn

MICHIGAN, Detroit

MINNESOTA, Minnetonka

MISSOURI, St. Louis

NEW JERSEY, Fairfield

NEW YORK, Fairport

NEW YORK, Hauppauge

NEW YORK, Poughkeepsie/Fishkill

NORTH CAROLINA, Raleigh

OHIO, Cleveland

OHIO, Columbus Worthington

OHIO, Dayton

OKLAHOMA, Tulsa

OREGON, Portland

PENNSYLVANIA, Colmar
Philadelphia/Horsham

TENNESSEE, Knoxville

TEXAS, Austin

TEXAS, Houston

TEXAS, Plano

VIRGINIA, Richmond

WASHINGTON, Bellevue
Seattle Access

WISCONSIN, Milwaukee/Brookfield

— Sales Offices —

(205) 464-6800
(602) 897-5056
(818) 706-1929
(310) 417-8848
(714) 753-7360
(916) 922-7152
(619) 541-2163
(408) 749-0510
(719) 599-7497
(303) 337-3434
(203) 949-4100
(407) 628-2636

(305) 486-9776
(813) 538-7750
(404) 729-7100
(208) 323-9413
(708) 490-9500
(219) 436-5818
(317) 571-0400
(317) 457-6634
(319) 373-1328
(913) 451-8555
(410) 381-1570
(508) 481-8100
(617) 932-9700
(313) 347-6800
(612) 932-1500
(314) 275-7380
(201) 808-2400
(716) 425-4000
(516) 361-7000
(914) 473-8102
(919) 870-4355
(216) 349-3100
(614) 431-8492
(513) 495-6800
(800) 544-9496
(503) 641-3681
(215) 997-1020
(215) 957-4100
(615) 690-5593
(512) 873-2000
(800) 343-2692
(214) 516-5100
(804) 285-2100
(206) 454-4160
(206) 622-9960
(414) 792-0122

Field Applications Engineering Available
Through All Sales Offices

CANADA

BRITISH COLUMBIA, Vancouver
ONTARIO, Toronto
ONTARIO, Ottawa
QUEBEC, Montreal

INTERNATIONAL

AUSTRALIA, Melbourne
AUSTRALIA, Sydney
BRAZIL, Sao Paulo
CHINA, Beijing

(604) 293-7605
(416) 497-8181
(613) 226-3491
(514) 731-6881

(61-3)887-0711
(61(2)906-3855
55(11)815-4200

86 505-2180

FINLAND, Helsinki

Car Phone
FRANCE, Paris/Vanves
GERMANY, Langenhagen/ Hanover
GERMANY, Munich
GERMANY, Nuremberg
GERMANY, Sindelfingen
GERMANY ,Wiesbaden
HONG KONG, Kwai Fong
Tai Po
INDIA , Bangalore
ISRAEL, Tel Aviv
ITALY, Milan
JAPAN, Aizu
JAPAN, Atsugi
JAPAN, Kumagaya
JAPAN, Kyushu
JAPAN, Mito
JAPAN, Nagoya
JAPAN, Osaka
JAPAN, Sendai
JAPAN, Tachikawa
JAPAN, Tokyo
JAPAN, Yokohama
KOREA, Pusan
KOREA, Seoul
MALAYSIA, Penang
MEXICO, Mexico City
MEXICO, Guadalajara
Marketing

Customer Service
NETHERLANDS, Best
PUERTO RICO, San Juan
SINGAPORE
SPAIN, Madrid

or
SWEDEN, Solna
SWITZERLAND, Geneva
SWITZERLAND, Zurich
TAIWAN, Taipei
THAILAND, Bangkok
UNITED KINGDOM, Aylesbury

FULL LINE REPRESENTATIVES

COLORADO, Grand Junction
Cheryl Lee Whitely

KANSAS, Wichita

Melinda Shores/Kelly Greiving
NEVADA, Reno

Galena Technology Group
NEW MEXICO, Albuquerque
S&S Technologies, Inc.
UTAH, Salt Lake City

Utah Component Sales, Inc.
WASHINGTON, Spokane
Doug Kenley

ARGENTINA, Buenos Aires
Argonics, S.A.

358-0-35161191
358(49)211501
33(1)40 955 900
49(511)789911
49 89 92103-0
49 911 64-3044
49 7031 69 910
49 611 761921
852-4808333
852-6668333
(91-812)627094
972(3)753-8222
39(2)82201
81(241)272231
81(0462)23-0761
81(0485)26-2600
81(092)771-4212
81(0292)26-2340
81(052)232-1621
81(06)305-1801
81(22)268-4333
81(0425)23-6700
81(03)3440-3311
81(045)472-2751
82(51)4635-035
82(2)554-5188
60(4)374514
52(5)282-2864
52(36)21-8977
52(36)21-9023
52(36)669-9160
(31)49988 612 11
(809)793-2170
(65)2945438
34(1)457-8204
34(1)457-8254
46(8)734-8800
41(22)7991111
41(1)730 4074
886(2)717-7089
(66-2)254-4910
44(296)395-252

(303) 243-9658
(316) 838 0190
(702) 746 0642
(505) 298-7177
(801) 561-5099
(509) 924-2322

(541) 343-1787

HYBRID COMPONENTS RESELLERS

Elmo Semiconductor
Minco Technology Labs Inc.
Semi Dice Inc.

(818) 768-7400
(512) 834-2022
(310) 594-4631

10/31/95

Paragraph
Number

11

21
2.2
221
2211
2.2.1.2
2.2.2
2.2.3
224
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.3
2.3.1
24
24.1
2.4.2
2.4.3
244
25
251
25.2
253
2.6
2.6.1
2.6.2

MOTOROLA

SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS

Page
Title Number
Section 1
Device Overview
FRATUIES ... e 1-2
Section 2
Signal Descriptions
SIGNAI INAEX i e 2-3
BUS SIGNAIS ...eeiiiiiiiii e e e e e e 2-5
AArESS BUS ... e 2-6
Address BUS (A23—A0) ...ooooiiiiiiiiiiiiiiieeeees e 2-6
AdAress BUS (ASL—A24)uuuureiiiiiiieieee e ceriieas e aa e e e aaaaaaaaa s 2-6
AdAress Strobe (AS)coeeeeieeeeeeeee e e 2-6
M68000 Address Strobe (B8KAS)cooovviiiviiiiiiiiiiees e 2-6
Data BUS (D15-D0) ...uuuiiiiiieeiiiee e e 2-6
Data StrODE (DS) ...eueeeiiiiieieee e e 2-7
Upper And Lower Data Strobes (UDS, LDS)ccccoveveveerveneenne 2-7
Byte Write Enable (UWE, LWE)cccooveiiiieieeieee e, 2-7
REAA/WIEE (RIW) et s 2-7
Transfer Size (SIZ1, SIZ0) ... e 2-8
Function Codes (FC3—FCO)........ccooiiiiiiiiiieeeeeeeee e 2-8
Chip Selects (CS7—CS1, CSO/AVEQC)........ccooiiiiiiiiiiiiiiieeee e 2-8
Interrupt Request Level (IRQ7 — IRQ1)ccceevveevveeeiecieeeeee e, 2-9
BUS Control SIgNalS.........couuiiiiiiieiii e 2-9
Data and Size Acknowledge (DSACK1, DSACKO)ccoeevuvvvrnnnnn. 2-9
Bus Arbitration SIgNaAlSeevuviiiiiiiii e 2-9
R RN (LI A (1) IR 2-9
BUS Grant (BG) ...cuveuveueeeieeeieeiecieetee ettt ettt ne s 2-10
Bus Grant Acknowledge (BGACK)ccoovviiiiiiiiiiiiiiiiiie e 2-10
Read-Modify-Write Cycle (RMC/RTCOUT)cccvevveieeecieecieereen e, 2-10
Exception Control Signalscoooiiiiiiiiiies e 2-10
RESEL (RESET) .eiiiiiiiiiiiiiii s et 2-10
HAI (HALT) ©eeeeeeieeee et e et e e e e e e e e e ee e e e e e e e e e 2-10
BUS Error (BERR) ... 2-10
ClOCK SIGNAIScoeveiiiiieeeeeeet e 2-11
System CIOCK (CLKOUT) ...uuiiiiiiiiiiiees e e 2-11
Crystal Oscillator (EXTAL, XTAL) ...uuuriiiiiieeiiiiiiiiiiiieie e 2-11
MC68341 USER'S MANUAL ii

10/31/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
2.6.3 External CloCK (EXTCLK)oviiiiiiiiiiiiiiiiieieee oo 2-11
2.6.4 External Filter Capacitor (XFC)ccovvviiiiiie e, 2-11
2.6.5 Clock Mode Select (MODCK, Port BO)cccvvviiiieiiiiiiiiiiiis ceeeeeeeeans 2-11
2.7 Instrumentation and Emulation Signals................ccocciiiiiii s 2-11
2.7.1 Instruction Fetch (IFETCH)coooiiiiiiiiieeees e 2-11
2.7.2 Instruction Pipe (IPIPE)coooiriii e, 2-12
2.7.3 Breakpoint (BKPT) ..o e 2-12
2.7.4 Freeze (FREEZE)uuuiiiiiiiiiiiii e 2-12
2.8 DMA Module SIgnalSeuiiiiiiieee e e 2-12
2.8.1 DMA Request (DREQ2, DREQT) ..coovvieiiiiiiiiiiiiicieeees s 2-12
2.8.2 DMA Acknowledge (DACK2, DACK1/DDACK2, DDACK1) 2-13
2.8.3 DMA Done (DONE2, DONET) ...cccoiiiiiiiiiiiiiieeee e st e e e 2-13
2.8.4 Data Transfer Complete (DTC)c.ooveeveeeeeeeeieeecie e e 2-13
2.8.5 DMA Ready (RDY2, RDYL) ..uuuiiiiiiiiieeeeeeiiiiiiiiis e 2-13
2.9 Serial Module SIgNalSuueiiiiiiiii e 2-13
291 Serial Crystal Oscillator (X2, X1)coooiiiiiiiiiiiiiiiiieeees e 2-13
2.9.2 Serial External Clock Input (SCLK)uuiiiiiiiiiiiiiiiiieeieee e, 2-13
293 Receive Data (RXDA, RXDB)ccooiiiiiiiiiiiiiiiiie e 2-14
294 Transmit Data (TXDA, TXDB).....uuuuuuuiiiiiiiieiiieeeeeee e, 2-14
295 Clear to Send (CTSA, CTSB)uuviiiiiiiiiiieeeiiiiiiit e 2-14
2.9.6 Request to Send (RTSA, RTSB)ovviiiiiiiiiiiiiiiiiii e 2-14
2.9.7 Transmitter Ready (TXRDYA) ...uuiiiiiiiii e, 2-14
2.9.8 Receiver Ready (RXRDYA) ...ouiiiiiiiiieiiieeeeeeeet et 2-14
2.10 Queued Serial Module Signalsccceveiiiiiiii 2-15
2.10.1 Master In Slave Out (MISO)ciiiiiiiiiiieiee e s 2-15
2.10.2 Master Out Slave In (MOSI)uiiiiiiiii e e 2-15
2.10.3 QSPI Serial Clock (QSCLK)uvviiiiiiiiiieeeeeeeeeei et 2-15
2.10.4 QSPI Peripheral Chip Select (PCS1, PCS0)cvvviiiiiiiiiiieeeeee . 2-15
2.11 TIMEI SIGNAIS .coieiiiiiiiieee et s 2-15
2111 Timer Gate (TGATE2) ..ot e 2-15
2.11.2 TIMer INPUL (TIN) oo e 2-16
2.11.3 Timer OUPUL (TOUT) i e 2-16
2.12 TESE SIGNAIS e e 2-16
2.12.1 TSt ClOCK (TCK) eviiiieeiiiiiiiiiiiit ettt 2-16
2.12.2 Test Mode Select (TMS) ..ot e 2-16
2.12.3 Test Data IN (TDI) cooeieeiiiie e e 2-16
2.12.4 Test Data OuUt (TDO) ...uuueiiiiiiiiiiie et e a e e 2-16
2.13 Real Time Clock Mode Signals ...t e 2-16
2.13.1 Battery SWItCh (BSW)ooveeeeieeeee et ettt 2-16
2.13.2 Battery VOIAgEe (VBATT) ceereerrerrrrmmrriiiiiieeeees eerernsinaeeeesesessssnnnnns 2-16
2.13.3 Real Time Clock Output (RMC/RTCOUT)coevveieieneeieciecieeie e, 2-17
2.14 System Power and Ground (VCC AND GND)iiiiiiiiiiiiiiiin e 2-17

iv MC68341 USER’S MANUAL MOTOROLA

10/31/95 SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
Section 3
Bus Operation
3.1 68000 BUS MOAE ...ttt e 3-1
3.2 Bus Transfer SIgNalSccooooiiiiiiiiii e e 3-2
3.2.1 BUS CONrol SIGNAISouviiiiiiiiieeeet e 3-3
3.2.2 FUNCLION Code SIGNAIScevviiiiiiiiiiiiii e e e 3-4
3.23 Address BUS (A3L1—AD) ...t e e e e aaaa 3-5
3.24 AdAress SIrobe (AS) ..o 3-5
3.25 68000 Address Strobe (ASB8BK)eeerriiiiiieeiiiiiiiii e 3-5
3.2.6 Data BUS (D15-D0)cooeiiiiieeee s 3-5
3.2.7 D =R 0] o LN (D15 FE OO 35
3.2.8 Upper and Lower Data Strobes (UDS and LDS)cccoovvviivviiiiieennes v 3-6
3.29 Upper and Lower Write Enables (UWE and LWE) ... 3-6
3.2.10 Data Transfer Complete (DTC)ccceeveeeereieeieeiecies e, 3-6
3.2.11 Bus Cycle Termination Signalseuuuiiiiiiiiiis v 3-6
3.211.1 Data Transfer and Size Acknowledge Signals
(DSACKT and DSACKOD). ...ccooiiiiiiieiieee et e e e 3-6
3.1.11.2 Bus Error (BERR)ccoooiiiiiiieeeeeeeeee e 3-7
3.2.11.3 AULOVECTON (AVEC) ... it et 3-7
3.3 Data Transfer MeChaniSmcoooiiiiiiiiiiiiiiiit e 3-7
3.3.1 Dynamic BUS SIZINGcoooviiiiiiiiiiec e e 3-7
3.3.2 Misaligned OPErandscc.uuuiiiiiiiiieeii e 3-9
3.3.3 Operand TranSfer CaSES......uiiiiiii i et 3-10
3.3.31 Byte Operand to 8-Bit Port, Odd or Even (A0 =X)coovvvvieiieeeiennnns 3-10
3.3.3.2 Byte Operand to 16-Bit Port, Even (A0 = 0)evvvveieeeiiiiiiiiiiiie e, 3-10
3.3.3.3 Byte Operand to 16-Bit Port, Odd (A0 =1) ..c.ccooeeieiieiiiiiiiieeeeee e 3-11
3.3.34 Word Operand to 8-Bit Port, Alignedcoeeeiiiiiiiiiiiies e, 3-11
3.3.35 Word Operand to 16-Bit Port, Aligned ... i, 3-12
3.3.3.6 Long-word Operand to 8-Bit Port, Aligned.ooovvvveiiviiiiiinnn e 3-12
3.3.3.7 Long-Word Operand to 16-Bit Port, Alignedcccoeviiiiiiiieenn . 3-14
3.34 BUS OPEIALION ...ttt e e e e e e 3-16
3.35 Synchronous Operation With DSACKXuuuiiiiiiiiieiiiiii e 3-16
3.3.6 Fast Termination CYCIESuiiiiiiiiie e 3-17
34 Data Transfer CYCIEScooiiiiiiiieiiieee e e 3-18
34.1 MB8300 REAU CYCIEcee ettt ettt 3-18
3.4.2 68000 REAA CYCIE ...t e 3-21
3.4.3 MB8300 WIItE CYCIE ...eeveeeeeeei et e e e e e e 3-23
344 68000 WIEE CYCIE ...t ettt 3-26
3.4.5 Read-Modify-Wrte CYCIEouiiiiiiiiiiiiiit e 3-29
35 CPU SPACE CYCIES....oeeeieiiiiiiiee e ettt 3-31
3.5.1 Breakpoint Acknowledge CyCle........coovviiiiiiiiiiiics e, 3-31

MOTOROLA MC68341 USER'S MANUAL v

10/31/95

Paragraph
Number

3.5.2
3.5.3
3.54
3541
3.54.2
3.54.3
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.8

4.1

4.2

42.1
4.2.2
4221
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6
42.2.6.1
4.2.2.6.2
4.2.2.7
4.2.3
4231
4.2.3.2
4.2.3.3
4.2.4
4241
4.2.4.2

Vi

SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Page
Title Number
LPSTOP Broadcast CYCIe.........ccuuiiiiiiiiieeeeeeei e 3-32
Module Base Address RegiSter ACCESSuuurriiiiiiiiiiieieeeees eeeeeaaeeannenen 3-36
Interrupt Acknowledge Bus CYCIEScoovviiiiiiiiiiiii e 3-36
Interrupt Acknowledge Cycle—Terminated Normally.......................... 3-36
Autovector Interrupt Acknowledge CyCle..........uuviiiiiiiiiiiiiies e, 3-38
Spurious INLErruUPt CYCIEui i e 3-39
Bus Exception Control CYCIES..........uueviiiiiiiiiiiii e 3-41
BUS EITOIS ..t e e 3-43
RELIY OPEIALIONuvviiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e aa e e e e eeees 3-45
Halt OPEIatioN ... e 3-47
Double BUS FaUItoueiiiiiiiiiie e 3-48
BUS AIDITIrAtION ...oeeiiiiiiiiiiiii e 3-49
BUS REQUEST ...t e e e 3-52
BUS GraNnt ... e e 3-52
Bus Grant ACKNOWIEAQGEcooiiiiiiiiieeee e 3-52
Bus Arbitration CONLIOLuueeeiiieii e e 3-53
SNOW CYCIES ..ttt et e e e e e e e e e e e e e e e e e e eaees 3-53
RESEE OPEIALION ...ttt e 3-55
Section 4
System Integration Module
MOAUIE OVEIVIEW ...t s 4-1
MOdUIE OPEIALION ...t e 4-2
Module Base Address Register Operationccccceeeveeeeeeeeeeeee e, 4-2
System Configuration and Protection Operationccccvvvveeennn. .4-3
System ConfiQUIationooiiiiiiiiiiiiiieees e 4-5
INternal BUS MONITONuuiiiiiiiiiiiiiieee e sttt 4-6
Double Bus Fault MONITONccoooiieiiieiieeeeeee e 4-6
Spurious INLErrUPt MONITOTovviiiiiiiiiiiiiiie e e 4-6
Software WatChdOgcevvviiiiiiiiiiiiiiiin i 4-6
Periodic INterrupt TIMET ..o e 4-7
Periodic Timer Period Calculationccccceeeeiiiiineees ceieeieeeeeenn, 4-8
Using the Periodic Timer as a Real-Time ClocK........................... 4-9
Simultaneous Interrupts by Sources inthe SIM41c..eeveeees 4-9
Clock Synthesizer Operationccccuuiiiiiiiiiiies e 4-9
Phase Comparator and Filter...............uuvviiiiiiiiis i, 4-12
Frequency DIVIAEN.ooo e e 4-12
(©4 o Tox 10 o1 £ PRSPPI 4-15
Chip Select Operationooeeveiuiiiiiii e e e e e e 4-15
Programmable FEatUrescccuuviiiiiiiiiieees e 4-15
Global Chip Select Operation ... e 4-16
MC68341 USER’S MANUAL MOTOROLA

10/31/95 SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
4.2.5 External Bus Interface Operationccccuvviiiiiiiiies o 4-17
4.25.1 POIT A e e e e e e 4-17
4252 POIE B ettt e e e e e e e a e e e e e e e e e 4-17
4.2.6 LOW-POWET STOP ...ciiiiiiiiiiieeieeii i e e e e e e e e e e e e e e 4-18
4.2.7 FrEEZE ... e e 4-19
4.3 Programming MOElcoooumiiiiiiii e e 4-19
4.3.1 Module Base Address Register (MBAR)cccuviiiiiiiiiiiiiii e 4-22
4.3.2 System Configuration and Protection Registers.........ccccvvvvvvvvvvnvnnnnnn 4-23
4321 Module Configuration Register (MCR) ... e 4-23
4.3.2.2 Autovector Register (AVR)ooo oo e 4-25
4.3.2.3 Reset Status Register (RSR)ovvvviiviiiiiiiiiiii s e 4-25
4324 Software Interrupt Vector Register (SWIV) ..o 4-26
4.3.2.5 System Protection Control Register (SYPCR)ccvvvvviiiiiiiiiiiiiinne. .4-26
4.3.2.6 Periodic Interrupt Control Register (PICR)......ccccoovvveiiiieiiiiiiieeee e, 4-28
4.3.2.7 Periodic Interrupt Timer Register (PITR) ... 4-28
4.3.2.8 Software Service Register (SWSR)coooiiiiiiiiiiiiiiiii e, 4-29
4.3.3 Clock Synthesizer Control Register (SYNCR)cooovviiiiiiviiiiiiiiiin e, 4-29
4.3.4 Chip SeleCt REQISIEIS ..o e 4-31
4.3.4.1 Base SeleCt REQISIEISuuviiiiiiiiiiiiee s e 4-31
4.3.4.2 Address Mask REQISIEISuiiiiiiiiiiiiiii s e 4-33
4.3.4.3 BUS SeleCt REQISIENuiiiiiiiiiiee et e 4-35
4.3.4.4 Map SeleCt REQISIENuviieiiiiiieee e e 4-35
4.3.4.5 Chip Select Registers Programming Examplecccccceeieeeinennn. .4-35
4.3.5 External Bus Interface Control.........cceeeieeieiiiie e 4-36
4.3.5.1 Port A Pin Assignment Register 1 (PPARAL)coovvvvivvvvvvvviinnnn 4-36
4.35.2 Port A Pin Assignment Register 2 (PPARA2)ccoooevvviiiiiiiieeeeenn, 4-36
4.3.5.3 Port A Data Direction Register (DDRA).ooooiiiiiiiiiiiiiieeeees i 4-37
4.3.5.4 Port A Data Register (PORTA) ...uuuiiiiiiiiiei e e, 4-37
4355 Port B Pin Assignment Register (PPARB)coooiiiiiiiiiiiiiiiin s 4-37
4.3.5.6 Port B Data Direction Register (DDRB)cccoeeiiiiiiiiiiiiees e, 4-38
4.3.5.7 Port B Data Register (PORTB, PORTBL)cccvvviviiiiiiiiiiiiiinn s 4-38
4.35.8 Port C Pin Assignment Register (PPARC) ... 4-38
4.4 Real TIME CIOCKuuuuiiiiiiiiiiiiiiiiiiiiit eeeeeeeeseeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeenseneneeees 4-39
441 RS . e s 4-39
4.4.2 RTC Interrupt Control Register (RICR)........cccoiiiiiiiiiiiiieeeee e 4-39
443 RTC Control/Status Register (RCR)ccovvviiiiiiiiiiiiiiiiie e 4-40
4.4.3 RTC Calibration Control Register (RCCR)ceviiiiiiiiiiiiiiieeeee e, 4-41
4.4.4 RTC Time of Day REQISLEISovviiiiiiiiiiiiiieiee e 4-43
4.4.5 RTC Alarm ReQISIEIS......ccoe et et 4-45
4.4.6 RTC Power Up OPerationcccccuveeeiiiiiiieeeeeis ceiiiiee e e eeeeeeavine e e e e e aennnns 4-46
4.4.7 RTC Power DOWN OPEIatiONuueeiiiiiiiieeeeeeaaiasiiiiiieeieeeeee e e e e e e e 4-46

MOTOROLA MC68341 USER'S MANUAL vii

10/31/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph Page

Number Title Number
4.5 MC68340 Initialization SEQUENCE.........ccoeiiiiiiiiiiiiit e 4-46
45.1 0 = 1 (1] o PRSP 4-47
45.2 SIM41 Module Configurationcceeuuuiiiiiiiieii e 4-47
4.5.3 SIM41 Example Configuration Codeeeevviiieeiiiiiiiiit e 4-48

SECTION 5
CPU32

51 L@ YT VT 5-1
5.1.1 FEALUIES ... e e 5-2
5.1.2 RV (U F= LY/ =T 0 T o P 5-2
5.1.3 Loop Mode INStruction EXECULIONeuvveuvuuevuieiiiiisvveneviennnnnnnanns 5-3
514 VeCtor Base REQISIENuuiiiiiiiiiieeeeeeiei e 5-4
5.15 Exception HandliNg............oooiiiiiiiiiiee e 5-4
5.1.6 Addressing MOAEScooviiiiiiiiiiiiiiiiiie e 5-5
5.2 ArchiteCture SUMMANYcoooiiiiiiiiiiie et e 5-5
5.2.1 Programming MOdelcoovvviiiiiiiiiiiiiie e 5-6
5.2.2 REGISTEIS ..t et e e 5-7
5.3 1 IS (U T 1o TS = 5-8
5.3.1 M68000 Family Compatibilitycceieeiiiiiiiiiiies e 5-10
53.1.1 NEW INSITUCTIONS ...eeviiiiiiiiiiiiiiiiiiiiiiiiis e 5-10
53.1.1.1 Low-Power Stop (LPSTOP) ...ccooeeeieeeee e 5-10
53.1.1.2 Table Lookup and Interpolate (TBL)........ccccoeeeiiiiiiiiviiiiis e, 5-10
5.3.1.2 Unimplemented INSTUCHIONSevvviiiiiiiiiiiiii e 5-10
5.3.2 Instruction Format and NOtationeeeeeviiiiiiiiinns e 5-10
5.3.3 INSLIUCTION SUMMANY ... e 5-13
5331 Condition Code REQISTETuuiiiiiiieieieiiiiiit e 5-18
5.3.3.2 Data Movement INStrUCLIONSoooviiiiiiiiiiiiiee e 5-19
5.3.3.3 Integer Arithmetic Operationsccceeeeeiiiiiiiiieee e 5-20
5.3.34 LOQIC INSIUCTIONS ...ttt 5-22
5.3.35 Shift and Rotate INStrUCtiONSuuviiiiiiiiiiiiieees e 5-22
5.3.3.6 Bit Manipulation INStrUCHIONSueeiiiiieiieeeee e e 5-23
5.3.3.7 Binary-Coded Decimal (BCD) INStruCtionS...........ccccceeeeeeiniiinnnnne 5-24
5.3.3.8 Program Control INStrUCHIONSuuvveueieiiiiiiieeees e 5-24
5.3.3.9 System Control INSTFUCHIONSuvvuveeiiiiii e 5-25
5.3.3.10 (@] a0 [1110] o I I =S £ 5-27
5.34 Using the TBL INSLrUCLIONScooviiiiiiiiiiiiiie e 5-27
5.34.1 Table Example 1 Standard Usageccccvevvviieeiiniiii e, 5-28
5.3.4.2 Table Example 2 Compressed Table..........ccccccceeiiiiii i, 5-29
5.3.4.3 Table Example 3 8-Bit Independent Variable.......................... 5-30
5.3.4.4 Table Example 4 Maintaining PreciSionccccccceeviniiinnnene 5-32
5.3.4.5 Table Example 5 Surface Interpolationscccceeeeeeiiiiieenenn . 5-34
5.35 Nested Subrouting CallS.............ueeueeiiiiii 5-34

viii MC68341 USER’S MANUAL MOTOROLA

10/31/95

Paragraph
Number

5.3.6

5.4

54.1
5.4.2
54.2.1
5.4.2.2
5.4.2.3
5.5

5.5.1
5511
5.5.1.2
5.5.1.3
5514
5.5.2
5.5.2.1
55.2.2
5.5.2.3
5.5.24
5.5.2.5
5.5.2.6
5.5.2.7
5.5.2.8
5.5.2.9
5.5.2.10
5.5.2.11
5.5.2.12
5.5.3
5.5.3.1
5.5.3.11
5.5.3.1.2
5.5.3.1.3
5.5.3.14
5.5.3.2
5.5.3.2.1
5.5.3.2.2
5.5.3.2.3
5.5.3.24
5.5.3.25
5.5.3.2.6
5.5.3.2.7
554
5.54.1

MOTOROLA

SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Page

Title Number
Pipeline Synchronization with the NOP Instruction 5-34
o ToT TS o IR = L1 5-34
State TranSItIONScovviiiiiiiiiiiiiiiiiin s 5-35
Privilege LEVEISouiiiiiiiiiieieeee e 5-35
Supervisor Privilege Level ... e, 5-35
User Privilege LEVEIcooviiiiiiei e 5-36
Changing Privilege Level ... it 5-36
EXCeption ProCeSSINGcccoveeiiiiii e e, 5-36
EXCEPLON VECIOIS ...t et 5-37
TYPES Of EXCEPLIONS.......uuiiiiiiiiiiieeee e ettt 5-38
Exception Processing SEQUENCEuuvvueeiiiiiiiiiieiees ceeeeeeeeaeeeenn 5-38
Exception Stack Frame. ...t e 5-39
MUILIPIE EXCEPLIONS ...t ettt 5-39
Processing of Specific EXCepPioNS........cccooeeeeeiiiiiiiiiiieie e, 5-41
RESEL ... e 5-41
BUS EITON ... et 5-43
AArESS EITON ...ttt et 5-43
INSTFUCHION TTAPS .evveeeeiieeee et e 5-44
Software BreakpointS...........coooiiiiiiiiiiiiiiiie e 5-44
Hardware Breakpointscoooviiiiiiiiiiiiee e 5-45
FOIMAL EFTONeeeee e e 5-45
lllegal or Unimplemented InStructions...............cccccoeevvvvvvviee veveee, 5-45
Privilege VIolationsS...........oiiiiiiiiiis e 5-46
THACING ettt e e e e e 5-47
INTEITUPTS ..t e e 5-48
Return from EXCEPLIONcccoiiiiiiiiiee et e 5-49
FauUlt RECOVEIY ... e 5-50
Types Of FAUILScooeveeieieiiece s e 5-52
Type |[—Released Write FaultS.........ccoooiiiiiiiiiiii s 5-52
Type Il—Prefetch, Operand, RMW, and MOVEP Faults........... 5-53
Type lll—Faults During MOVEM Operand Transfer 5-54
Type IV—Faults During Exception Processing..........cccccvvuunn... 5-54
Correcting @ FauUlt.........ooooiiiiiiie e 5-55
Type I—Completing Released Writes via Software 5-55
Type —Completing Released Writes via RTE...............uvvvueee. 5-55
Type Il—Correcting Faults via RTE..........cccccoiiiiiiiiiiii e 5-56
Type lll—Correcting Faults via Softwareccceccninnnnn . 5-56
Type lll—Correcting Faults by Conversion and Restart........... 5-56
Type lll—Correcting Faults via RTE..............uvviviieeiiiiiiien e, 5-57
Type IV—Correcting Faults via Softwarecccccceeeeeeeeeen. 5-57
CPU32 Stack Frames ... e 5-58
Four-Word Stack Frame ... e 5-58

MC68341 USER'S MANUAL iX

10/31/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
554.2 SiX-Word Stack Framecccoooooiiiiiiieiiii e 5-58
5543 Bus Error Stack Frame ..o it 5-58
5.6 Development SUPPOITcooiiiiiee s e 5-61
5.6.1 CPU32 Integrated Development SUPPOIt.........cccccvviiiiieieeeeeens e, 5-61
5.6.1.1 Background Debug Mode (BDM) OVerview...........cccceeeeeeeeeeeennn. . 5-62
5.6.1.2 Deterministic Opcode Tracking OVervieW...........cccoevvvvvvvviiieeeee can. 5-62
5.6.1.3 On-Chip Hardware Breakpoint OVErvieW...........cccoeeeviiiiiiiinnnn e 5-63
5.6.2 Background Debug MOAE...........uuuuiiiiiiiiiiiee s s 5-63
5.6.2.1 =T gt=T o] TaTo TN =5 RN 5-63
5.6.2.2 BDM SOUICES ... it ettt eeeenes 5-64
5.6.2.2.1 External BKPT Signal ..., 5-64
5.6.2.2.2 BGND INSTIUCHION ... e 5-64
5.6.2.2.3 Double BUS FaUIL.uuuiin eiiiieieeeneneeeeeeeeneeenneeees 5-64
5.6.2.3 ENtering BDMuuuuiiiiiiiiiiiiiiiiiis eevsiesvvesevseaseseanssannsnnssnnennnennnnns 5-64
5.6.24 CommaNd EXECULIONciiiiiiieiieeee e e 5-65
5.6.2.5 BDM REQISIEISt et ettt a e e e e e 5-65
5.6.25.1 Fault Address Register (FAR) ..ccoooovieiiiiiiii 5-65
5.6.2.5.2 Return Program Counter (RPC)coooiiiiiiiiiiiiiiieee e 5-65
5.6.2.5.3 Current Instruction Program Counter (PCC).cevvvvvvvvnnnnnns 5-65
5.6.2.6 Returning from BDMouiiiiiiiii e i 5-66
5.6.2.7 Serial INterface ... 5-66
5.6.2.7.1 CPU Serial LOQIC ..vvvvvvriireiiiiiiiiiiieseses serisssee s e e eeee e e e e aaaaeaaaaaaaaaaes 5-67
5.6.2.7.2 Development System Serial LOgICcooveevivveiiiiiiiieeeieee v, 5-69
5.6.2.8 ComMMANd SeL....cceieeiiieee 5-71
5.6.2.8.1 Command FOrMALccuuvviiiiiiieiiiiie e 5-71
5.6.2.8.2 Command Sequence Diagramccoovvvviiiiiiiiiiees ceereeeiiiinn 5-72
5.6.2.8.3 Command Set SUMMANYooouiiiiiiiiieee et e 5-73
5.6.2.8.4 Read A/D Register (RAREG/RDREG)cccoovviiiiiiiiiiieeenns e 5-74
5.6.2.8.5 Write A/D Register (WAREG/WDREG).......cccooviiiiiiiiiiiiiie e 5-75
5.6.2.8.6 Read System Register (RSREG)ccccuuviieiiiiiiiiiii e 5-75
5.6.2.8.7 Write System Register (WSREG)cccoooeiiiiiiiiiiiici i, 5-76
5.6.2.8.8 Read Memory Location (READ)coooeiiiiiiiiiiiiiiiie e 5-77
5.6.2.8.9 Write Memory Location (WRITE) ... e 5-78
5.6.2.8.10 Dump Memory BIock (DUMP).ouuiiiiiiiiieiiieee e e 5-79
5.6.2.8.11 Fill Memory BIOCK (FILL) ooooeeeeeiieeeeee e 5-80
5.6.2.8.12 Resume EXecution (GO)ccuuvieiiiiiiiiiiiiiiieees e 5-81
5.6.2.8.13 Call User Code (CALL) .oovviieeieiiiiiiieiieeee e et e e e 5-82
5.6.2.8.14 Reset Peripherals (RST) ..ooovvviiiiiiiiiieeees e 5-84
5.6.2.8.15 NO Operation (NOP)uuuuuuumeiiiiiiiiieins cerieeernnnnnernnnrnnnrn. 5-84
5.6.2.8.16 Future CoOmMMANGAS........uueeiiieee s e 5-85
5.6.3 Deterministic Opcode Trackingcccccevvieieriiiiiii e 5-85
5.6.3.1 Instruction Fetch (IFETCH)coooiiiiiiiieeeeeeeee e 5-85

X MC68341 USER’S MANUAL MOTOROLA

10/31/95 SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
5.6.3.2 Instruction Pipe (IPIPE) ... 5-85
5.6.3.3 Opcode Tracking During Loop Modeccceeeeeeiiiiiiiiiie e, 5-87
5.7 Instruction EXecution TiMINGoviiiiiiiiiiiiee e e 5-87
57.1 Resource SCheduling ..o e 5-87
5.7.1.1 Y o f0 = To U 1] o= P 5-87
5.7.1.2 Instruction PIpeline...........oviiiii i e 5-87
5.7.1.3 Bus Controller RESOUICEScooiviiiiiiiieiieeeiee e 5-88
5.7.1.3.1 Prefetch CoNtroller ... e 5-89
5.7.1.3.2 Write-Pending BUffer. ... 5-89
5.7.1.3.3 Microbus Controller ..o 5-89
5.7.1.4 Instruction Execution Overlapoooovvvvvviiiiiiiiiiie e, 5-89
5.7.1.5 Effects of Wait States ... e 5-90
5.7.1.6 Instruction Execution Time Calculationcccevvvvvvvvviieeen veeeee, 5-91
5.7.1.7 Effects of Negative TailScccceviiiiiiiiiii 5-92
5.7.2 Instruction Stream Timing EXamplesccccoviiiiiiiiiiiiee e 5-92
57.21 Timing Example 1—Execution Overlapcccccoovviiiiiiiiiin e, 5-93
5.7.2.2 Timing Example 2—Branch InStructionsccccceeeeeeeeeeeeeeee . 5-93
5.7.2.3 Timing Example 3—Negative TailSccooviiiiiiiiiiiieies e 5-94
5.7.3 Instruction TiMING TabIes ... e 5-95
5.7.3.1 Fetch Effective ADAress ... 5-97
5.7.3.2 Calculate EffeCtive AAAreSSuuveeriurirmiii e 5-98
5.7.3.3 MOVE INSTIUCTION ...ttt it 5-99
5.7.3.5 Arithmetic/LogiC INStrUCtiONScoovviiiiiiieie e e, 5-101
5.7.3.6 Immediate Arithmetic/Logic INStrUCtionsccccccveeeeniiniiiii e 5-102
5.7.3.7 Binary-Coded Decimal and Extended Instructions 5-103
5.7.3.8 Single Operand INSrUCIONS...........uviiiiiiiiiiice e e, 5-103
5.7.3.9 Shift/Rotate INStrUCLIONScevvviiiiiiiiicieees s 5-104
5.7.3.10 Bit Manipulation INStruCtioNSceeeiiiiiiiiieeeeeeeee e, 5-105
5.7.3.11 Conditional Branch INStructionsecciiiiiiiiiiieeee e 5-105
5.7.3.12 (@] a1 o] I 1 511 £ ¥ od1 o] o USSP 5-106
5.7.3.13 Exception-Related Instructions and Operations............c.......vueeee. 5-107
5.7.3.14 Save and Restore OperationsS...............eecceiereeeeeees eeeeeeeeeee e 5-108

MOTOROLA MC68341 USER'S MANUAL

Xi

10/31/95

Paragraph
Number

6.1

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.2
6.4.2.1
6.4.2.2
6.5

6.6
6.6.1
6.6.2
6.6.2.1
6.6.2.2
6.6.3
6.6.3.1
6.6.3.2
6.6.3.3
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6

Xii

SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Page
Title Number
Section 6
DMA Controller Module
DMA MOAUIE OVEIVIEWeviiiiiiiiiee ittt et 6-2
DMA Module Signal DefinitioNS..........ccovvviiiiiiiiiiii i 6-4
DMA Request (DREQL, DREQ2)ccuvviiiieieeieeeiieicit eeveeeee e 6-4
DMA Acknowledge (DACKL,DACK2).......uuuuuuiiiiiiiiiiiieeeeee ceeeeeeeeeaaeee 6-4
Ready (RDY1, RDY2) ...ttt e e 6-4
DMA Done (DONEZL, DONE2).......cccccuuiiiiiiiiee e et 6-4
Data Transfer Complete (DTC)ceevueeieireeiieiieiee e 6-4
Transfer Request Generation..........coooovveiioeeiiiiieeee e 6-4
Internal Request GENErationcccveeeiiiiiiit e 6-5
Internal Request, Maximum Rateccccceiiiiiii e 6-6
Internal Request, Limited Ratecouviiiiiiiiiiiiiiiis e 6-6
External Request GENErationeeeeiviiieeieiins it 6-6
External BUrSt MOOEooooiiiiiiiiiiiiiiieee e it 6-6
External Cycle Steal Mode............coooviiiiiiiiiiiiit e 6-6
External Request With Other Modules.........ccccccoviiiiiiiiiie e, 6-7
Data Transfer MOUEScoviiiiiiiiiiie e e e e 6-8
SINGIe-AdAreSS MOEcoooiiiiiiiiieee e 6-8
Single-Address Readoevuviiiiiiiiiiiiiiit i 6-8
SINGIE-AdAreSS WILEcoeiiieiiie e e 6-11
DUAIl-AdAreSS MOUE........cueiiiiiiiiiiiiiiiiiiiin et e e e e 6-13
Dual-AddresSS REAdoooviiiiiiiiiiiiieee s et 6-13
DUAI-AAAIESS WIHEE ...t ettt 6-16
BUS AIDITIrAtiONceeeiiiiiiiiiiiiiiiiiiiiiiie e 6-19
DMA Channel Operation ... e, 6-19
Channel Initialization and Startup...........cceuiiiieeeiieiiiiis e, 6-19
D= 1= I =T 1 1= £ 6-20
Internal Request TranSfersooovvvvvvviiiiiiii e 6-20
External Request Transfers ...t e 6-20
Channel TermiNationeuueeiiiiiiirees s e e e e e e e e e e e e e eaeaees 6-21
Channel TermiNatioNceuiiieeiiiiiiit e 6-21
INterrupt OPEratioNcoovviiiiii e e, 6-21
Fast Termination OPLiONcccvuiiiiiiiieiiii e 6-22
Register DESCHPLON.........coiiiiiiieiiieeeeeeeeee ettt 6-23
Byte Transfer Counter Register (BTC)oooiiiiiiiiiiiiiiiieeeee e 6-25
Channel Control Register (CCR)coooviiiiiiiiiiiiiiieiees e 6-25
Channel Status Register (CSR)uuuuriiiiiiiiiiii s 6-29
Destination Address Register (DAR)ooooeiiiiiiiiiiiiiiiiiie e 6-30
Function Code Register (FCR) ...cccoovviiiiiei e, 6-31
Interrupt Register (INTR) ... e 6-32
MC68341 USER’S MANUAL MOTOROLA

10/31/95

Paragraph
Number

6.7.7
6.7.8
6.8

6.9
6.9.1
6.9.1.1
6.9.1.2
6.9.2
6.10
6.10.1
6.10.2
6.10.3
6.10.4

7.1
7.11
7.1.2
7.1.3
7.1.4
7.15
7.2
7.2.1
7.2.2
7.2.3
71.2.4
7.2.5
7.2.6
1.2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.2.12
7.2.13
7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3

MOTOROLA

SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Page
Title Number
Module Configuration Register (MCR) ..ot e 6-33
Source Address Register (SAR)oovivivieiiieieeeeeeeeeeee e 6-35
Data PacCKingcuuiiiiiiiiie s e 6-36
DMA Channel Initialization SEQUENCEeeeviiiiiiiiiiiiiiii e 6-36
DMA Channel Configuration ... e, 6-37
DMA Channel Operation In Single-Address Modeccccvvuunnn... 6-38
DMA Channel Operation In Dual-Address Modeccccceevveeeeennn. 6-39
DMA Channel Example Configuration Codecccooeeeeeeeeeeeeeen . 6-40
MC68341 DMA ENhanCemMENTS.........cuuuuiuiiiiiiiiiiiiiiis evvniiiinninnnnee s 6-47
RDY X ittt ettt et et e et e e e e e e e e e ——raaaaaeaeeaa e e 6-47
Delayed DACKX ... ettt 6-47
DTC et ettt ettt es e 6-47
TIMING EXAMPIES oo e 6-48
Section 7
Serial Module
MOAUIE OVEIVIEW ...t ettt 7-2
Serial Communication Channels Aand B...........cccccccieeiiiiii i, 7-3
Baud Rate Generator LOQICccoovviiiiiiiiiiiiiis e 7-3
Internal Channel Control LOGICcuvvviieiiiiiiiiie e 7-3
T (=T g 0T o] A @] o] o] I 1o [o PP 7-3
Comparison of the Serial Module to the MC68681.......................... 7-4
Serial Module Signal DefinitioNS...........cocciiiiiiiiiieieees e 7-4
Crystal Input or External CloCK (X1) ...ccvvvveeveiiiiiiiiiiiiiie v 7-5
Crystal OULPUL (X2) wvvvreiee et s e s 7-5
External INput (SCLK) ..o e 7-6
Channel A Transmitter Serial Data Output (TXDA)cccceveeieeeeennn. 7-6
Channel A Receiver Serial Data Input (RXDA)coooeevvviiiiiiiieenennns 7-6
Channel B Transmitter Serial Data Output (TXDB)cccccvvenneee. 7-6
Channel B Receiver Serial Data Input (RXDB)vvvvvvviiiiiinnnnnnn. 7-6
Channel A Request-To-Send (RTSA) ..o, 7-6
Channel B Request-To-Send (RTSB)ccuvviieiiiiiiiiiiiiieees e 7-7
Channel A Clear-To-Send (CTSA) ..o e 7-7
Channel B Clear-To-Send (CTSB)cuuuueiiiiiiiimiiiiiiiins eeeeeeeeeeeeeen 7-7
Channel A Transmitter Ready (TXRDYA)cooviiiiiiiiiiiiieeeeei e, 7-7
Channel A Receiver Ready (RXRDYA)oovvvvvviiiiiiiiiiiieeee ceeeeeeenn 7-7
OPEIALION ...ttt e e e e e e e 7-8
Baud Rate GENEIALOLuueiiiiiiiiieei e e ee e cee e e e e e e e e e a e 7-8
Transmitter and Receiver Operating Modes...............ooovvviviviinnnnn s 7-8
TraNSMITEET ..o e 7-10
RECEIVET ..o e 7-11
FIFO STACK .t e 7-13

MC68341 USER'S MANUAL Xiii

10/31/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.3.3 LOOPING MOUES ...ttt 7-14
7.3.3.1 Automatic EChO MOdE..........coooiiiiiiiiiiiiiiie e 7-14
7.3.3.2 Local Loopback Mode............uuiiiiiiiiiiiiies e 7-14
7.3.3.3 Remote Loopback MOdeoooiiiiiiiiiiiiies e 7-14
7.3.4 YT Lo 0T oI 1Y, Yo [7-15
7.3.5 =TT @] o1=T =Y i o] o IO PUSPPRTURR 7-17
7.35.1 REAU CYCIES ..o s 7-17
7.3.5.2 WIEE CYCIES ..coiiiiiiiieeeeeeeeeei e e e e e e e e e e e 7-17
7.3.5.3 Interrupt Acknowledge CyCIesooooviiiiiiiiiiiiiii e 7-17
7.4 Register Description and Programmingccceeeeeninniiiins ceeeeeennnnnns 7-18
7.4.1 Register DeSCHPLONocoviiiiiieeeeeeeeeeeeee et 7-18
7411 Auxiliary Control Register (ACR)ooovvviiiiiiiiiiiiiiiiiiiet e 7-20
74.1.2 Clock-Select Register (CSR)ooovviiiiiiiiiiiiiieeee e 7-20
7.4.1.3 Command Register (CR)ccoooeiiiiiiiei e 7-22
74.1.4 Input Port Change Register (IPCR)cccuvvviiiiiiiiiiiiii e 7-25
7.4.15 Input Port Register (IP) ..o e 7-26
7.4.1.6 Interrupt Enable Register (IER)ooovviviiiiiiiiiieiiiiiie e, 7-27
7.4.1.7 Interrupt Level Register (ILR)oovvviiiriiiiiiiee e 7-28
7.4.1.8 Interrupt Status Register (ISR)ccceveeeeieeeiieeieeeee e 7-28
7.4.1.9 Interrupt Vector Register (IVR)ooovviiiiiiiiiiee e 7-30
7.4.1.10 Module Configuration Register (MCR)covvviiiiiiiiiiiiiiie e, 7-31
7.4.1.11 Mode Register 1 (MRL)ccoooviiiiiiiiiiieiiiiiiis e 7-33
7.4.1.12 Mode Register 2 (MR2)oiiiiiiiiiiee e e 7-35
7.4.1.13 Output Port Data Register (OP)uueviiiiiieiiiiiiiiin e 7-37
7.4.1.14 Outport Port Control Register (OPCR).........cccovvvviiiiiiiieiieeie e, 7-38
7.4.1.15 Receiver Buffer (RB)coooooiviiiiii e e, 7-39
7.4.1.16 Status RegiSter (SR) ...covviiiiiiiiiiiiee s e 7-39
7.4.1.17 Transmitter Buffer (TB)ooviviiiiieeeeeet e 7-41
7.4.2 Programmingccoooooeoeeee 7-42
7421 Serial Module Initialization.ccccceieeiiii 7-42
7.4.2.2 I/O Driver EXample.........cooooiviiiiiiiiiiieiies e 7-42
7.4.2.3 Interrupt Handlingeeeiiieee e 7-42
7.5 Serial Module Initialization SEQUENCEccvvvieiiiieiiiieeeees e 7-48
7.5.1 Serial Module Configurationoevviiiiiiiiiic e 7-48
7.5.2 Serial Module Example Configuration Codeccccccceeviiiiiiiiinnne 7-50

Xiv MC68341 USER’S MANUAL MOTOROLA

10/31/95

Paragraph
Number

8.1
8.1.1
8.1.11
8.1.1.2
8.1.1.3
8.1.14
8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.9.1
8.3.9.2
8.3.9.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.5
8.5.1
8.5.2

MOTOROLA

SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Page
Title Number
Section 8
Timer Module
MOAUIE OVEIVIEW ...cooiiiiiiiiiiiitieieee e sttt e e e e e e e e e 8-1
Timer and Counter FUNCLIONSooooiiiiiiiiiiiiiieee e 8-2
Prescaler and CoUNter ... e 8-2
TIMeE-OUL DELECHIONceeeeiiiiiiiiiiieeeeeee s e 8-2
(O00] 0] o= -1 (o] USRS 8-2
Clock SeleCtion LOGICccevveieeiiiiiiiiiiiieees e 8-3
Internal CoNtrol LOQICcvvvvvvvieiiiiiiiiiiiiiiiiis rvvviiinin s 8-3
INterrupt CONIrOl LOGIC ...vvveeiiiiieee e e 8-4
Timer Modules Signal DefinitioNnS...........ooocciiiiiiiiiieies e 8-4
TIMer INPUL (TIN) oeveeeiee s eees 8-5
Timer Gate (TGATE) ... e 8-5
Timer OULPUL (TOUT) .ooiiiiiiiiiiiieee s e 8-5
Operating MOAES...........uuuuuiiiiiiiie s et 8-5
Input Capture/Output COMPANEeveiiiiieeeeeeaeieiee e 8-5
Square-Wave GENETALOrcccoiiuuuiiiiiiiin i 8-7
Variable Duty-Cycle Square-Wave Generator..................ovvvvvvvnnnnnn . 8-8
Variable-Width Single-Shot Pulse Generatorccccoovvvvvvveenn . 8-10
Pulse-Width Measurementccciviiiiiiiiiiiiees e 8-11
Period MeasuremMent ..ot e 8-12
EVENT COUNT ..ot e eeeeaes 8-13
TIMEI BYPASS ...eiiiiiiiiiiiiiiiiiiiiis s s s s s s s e e e s n e e e e aaaaaaaaaaaaaaaaaaaees 8-15
=TT @] o1=T =Y 1 o] ISP 8-16
REAU CYCIESt e 8-16
WIEE CYCIES ..ottt et 8-16
Interrupt Acknowledge CYCIeSccovvviiiiiiiiiiiii e, 8-16
RegiSter DESCIIPLIONcooiiiiiiiei et ettt e e 8-16
Module Configuration Register (MCR)cccooeviviiiiiiiiii e 8-17
Interrupt ReGISLEr (IR) ...cvvvieiiiiiiiiiiiiiiiiiiiiiie et 8-18
Control RegiSter (CR)oooiiiiiiiiiee ettt 8-19
Status ReQISIEr (SR) ...uueeiiiiiiii e e 8-22
Counter Register (CNTR) ...ccoiiiiiiiiiiiiiiiiiiiiiiiiis ceeeeeeeeeeeeeeeeeeeeeeeeneennnes 8-24
Preload 1 Register (PRELL)ccooviiiiiiiiiiiiiiiieees et 8-24
Preload 2 Register (PREL2) ..., 8-25
Compare Register (COM)ccivviiiiiiiiiiiiee e 8-25
Timer Module Initialization SEQUENCEcoovviiiiiiiiiiiiiee e 8-26
Timer Module Configurationuuviiiiiiiis e 8-26
Timer Module Example Configuration Code.............ccccvvviireeeeeeee e 8-27
MC68341 USER'S MANUAL XV

10/31/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
Section 9
Queued Serial Peripheral Module

9.1 =] [oTod 1 1 =T | > o PSP 9-1
9.2 1 L=T0 g 10 VA \Y = o PSPPI 9-2
9.3 QSPM PINS oottt e e e e e e e e e e a e e e e e e e 9-3
94 S0 1 (= £ R 9-4
94.1 Overall QSPM Configuration SUMmMary........cccceeeeeeieveiiiiiinies eeeeennnns 9-7
9.4.2 QSPM Global REQISTEISuviiiiiiiiieeiieiit e 9-8
9.4.2.1 QSPM Configuration Register (QMCR)coooeiiiiiiiiiiiiiieieec s 9-8
9422 QSPM Test Register (QTEST) ..ccuviiiiiiiiiiiiiiieee e 9-10
9.4.2.3 QSPM Interrupt Level Register (QILR)ooovviiviiiiiiiiiiiiiee i 9-10
9.4.2.4 QSPM Interrupt Vector Register (QIVR)ovvvvviiieiiiiiiiieeeeee e, 9-11
9.4.3 QSPM Pin Control REQISIEISccoiieeeeeeeeeeeieeeeeeeeee e 9-11
9431 QSPM Port Data Register (QPDR)uuviiiiiiiiiiiiiiiiiie e 9-12
9.4.3.2 QSPM Pin Assignment Register (QPAR)ovvvvvievivvviriennnnn e, 9-12
9.4.3.3 QSPM Data Direction Register (QDDR)ccooevviiiiiiiiiiiiiiiiiieee e 9-13
95 (@ 1] o IS T U o .o o 11] - 9-13
951 FERALUINES ... e e 9-14
9511 Programmable QUEUEcc.uviiiiiiiiiiii e 9-14
9.5.1.2 Programmable Peripheral Chip Selects..........ccccccvvvvvviviiiiieen e, 9-14
9.5.1.3 Wraparound Transfer Mode.........cooouviiiiiiiiiiiiiis e 9-14
9514 Programmable Transfer Lengthcccooiiiiiiii i 9-15
9.5.15 Programmable Transfer Delayoooevvviiiiiiiiiiis i 9-15
9.5.1.6 Programmable Queue POINErccvvviiiiiiiiiiies e, 9-15
9.5.1.7 Continuous Transfer MOde ... e 9-15
9.5.2 BlOCK Diagramccoooiiiiiiiiiieeee et 9-16
9.5.3 QSPI PINS oottt et a e 9-16
954 Programmer's Model and RegiSterscccccvviiiiiiiiiiiiee e 9-17
9.54.1 QSPI Control Register 0 (SPCRO)coovvvveeeiiiiiii e 9-18
9.54.2 QSPI Control Register 1 (SPCRL)coovviiiiiiiiiiiiiii e 9-20
9.54.3 QSPI Control Register 2 (SPCR2)cccccuvvviiiiiiiiiiiiee s i 9-22
9.5.4.4 QSPI Control Register 3 (SPCR3)coovvvvveeeeiiie e 9-24
9.54.5 QSPI Status Register (SPSR)coooiiiiiiiiiiiieiiiiie 9-25
9.5.4.6 QSPIRAM .o e ———————— 9-26
9.54.6.1 Receive Data RAM (REC.RAM)ooiiiiiiiiiiiiieee e e 9-27
9.5.4.6.2 Transmit Data RAM (TRAN.RAM)uuuuiiriiiriiiiiiiiiiinn evennnnnens 9-27
9.5.4.6.3 Command RAM (COMD.RAM)cuuiiiiiiiieieeeiiiiit e 9-27
9.55 Operating Modes and Flowchartsccccoeeoiiiiiiiiiiis i, 9-30
9.5.5.1 MASEEI MOAE ... e 9-37
9.55.1.1 Master Mode OPErationcccccceeeeeeeeeeeeiiees e 9-37
9.55.1.2 Master Wraparound Mode...........ccooeeiiiiiiiiiiiiies e, 9-38

Xvi MC68341 USER’S MANUAL MOTOROLA

10/31/95 SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Paragraph
Number Title
9.5.5.2 Slave MOE ... s
9.55.2.1 Description of Slave Operationccevvvvvvveevienseveennee.
9.55.2.2 Slave Wraparound Modecccooveiiiiiiiiiiiiis i,
Section 10
IEEE 1149.1 Test Access Port
10.1 OVEIVIEW ..ttt ettt e e s sttt e e e e e e st e e e e e e e e e s nnnneeeees
10.2 Tap CoNtroller ..o s
10.3 Boundary SCan REQISIENuueiiiiiieiiiiiiiiit e
10.4 Instruction RegiSterccooovvviiiiiii e,
10.4.1 EXTEST (000) .eveeiiiiieeeeeeiiiiiiiieeiees ceeeessiiiiieeeeeaa e e e e e e e s annnnnneees
10.4.2 Sample/Preload (001)ccooeeiiiiiiiiiiiiieieees et
10.4.3 BYPASS (X1X, 10L) eeieiiiiiiiieeeeeiiiiiiieeees eeeniiieeeee e e
10.4.4 A 101) USSP
10.5 MCB834L RESHICHONS ..evvvveeiiniiieieeeeeeeeeeees eeeeeee e e e e e eeeeeeeaeeeneennnnnns
10.6 NON-IEEE 1149.1 Operation..........cccccuvviiiriiieeeeeesciiiiiiieeeeeeeeenennns
Section 11
Applications
111 Minimum System Configurationcccccvviiieiiiiees e,
11.1.1 Processor Clock CirCUItryccoooeeeiiiiiiii e,
11.1.2 RESEL CIICUILIY .t e
11.1.3 SRAM INTEITACEvviiiiiiiiiee it e
1114 ROM INterface ... s
11.1.5 Serial INterfaceovvviviiiiiiiiiiiiieee e
11.2 Memory Interface Informationccccceii
11.2.1 Using an 8-Bit BOOt ROMccoooiiiiiiiiiiiiiiiee e
11.2.2 Access Time CalCulatioNS..........ueeeeeiiiieireeeees s
11.2.3 Calculating Frequency-Adjusted Output...........ccevvvvvvvveevvnvnnnn.e.
11.2.4 Interfacing an 8-Bit Device to 16-Bit Memory Using
Single-Address DMA MOAEoooiiiiiiiiiiieeeees e
11.3 Power Consumption Considerationscccoeevveiiiieiiieeeeee ceeeeeeenn.
114 MCBB3ALY (B3 V) ittt e e

MOTOROLA MC68341 USER'S MANUAL

Page
Number

XVii

10/31/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Concluded)

Paragraph Page
Number Title Number

Section 12
Electrical Characteristics

12.1 Maximum RatiNgScooviiiiiiiiiieeeeeeeeeee et 12-1
12.2 Thermal CharacCteriStiCSuuuuuuuuuiii e 12-1
12.3 POWEr CONSIAEIALIONSuveiiiiiieiieeeee e ceree eeees 12-2
12.4 AC Electrical Specification Definitionscccceeevviiiiiiiiiiies e, 12-2
12.5 DC Electrical SpecCifiCationscouuuiiiiieiiiiiii s 12-5
12.6 AC Electrical Specifications Control Timingccccvvvveeeeeeeeinniin e, 12-6
12.7 AC Timing SPeCificationsccceeeeiiiiiii e 12-7
12.8 DMA Module AC Electrical Specificationsccccccviviiiiiiiie e, 12-22
12.9 Timer Module Electrical SPecifiCationscccceeeiiiiiiiiineeeeeeeeeens 12-24
12.10 Serial Module Electrical Specificationsccccceeiiiiiiiiiiiieee e, 12-26
12.11 QSPM Electrical Specificationscuuuuvuiiiiiiiiias i 12-29
12.12 IEEE 1149.1 Electrical SPecifiCationsccccccveeeeeiiiiiiineeeeeeeee e 12-32

XViii MC68341 USER’S MANUAL MOTOROLA

10/31/95 SECTION 1: OVERVIEW UM Rev 1

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
1-1 MC68341 Simplified BIOCK Diagramc.eeeeeeiiiieeiiiii e 1-1
2-1 Functional Signal GrOoUPSooviiiiiiii e e e e enens 2-2
3-1 INput Sample WINAOWcoooeieiii i e 3-3
3-2 MC68341 Interface to Various Port Sizes ..o e, 3-9
3-3 Long-Word Operand Read Timing from 8-Bit Port...........cccoovvvvivvviiiiiiin e 3-13
3-4 Long-Word Operand Write Timing to 8-Bit POrtoevvvviiiiiiiiiiinciiiinnnnns 3-14
3-5 Long-Word and Word Read and Write Timing—216-Bit Port............c............ 3-15
3-6 Fast Termination TIMINGcouuiiiire e 3-17
3-7 Word Read Cycle FIOWChart...........oooooiiiiii e 3-19
3-8 Read CyCle TIMINGcoooiiiiiiie s e e e e e e aeens 3-20
3-9 68000 Word Read Cycle FIOWChArTccccuiiiiiiiiiiiie e 3-21
3-10 68000 Read CYCle TiMINGuuvururiiiiiiiiaeiieeeeeees teeeeeeee e e e e e e 3-23
3-11 Word Write Cycle FIOWChAIT ... e 3-24
3-12 M68300 Write CyCle TiMING ...ccooeiiiiiiiiiiiiiiiiieeees cee e e e e e e e e 3-25
3-13 68000 Word Write Cycle Flowchart................uviiiiiiiieiis e, 3-26
3-14 68000 Write CYCle TIMING ..uuureiiiiieiiieeeeee e e s 3-28
3-15 Read-Modify-Write Cycle TiMiNgccoooiiiiiiiiiiiiiiiees e 3-29
3-16 CPU Space Address ENCOAiNgccoovviiiiiiiiiiiiiiiies et 3-31
3-17 Breakpoint Operation Flowchart..............coveiiiiiiii e 3-33
3-18 Breakpoint Acknowledge Cycle Timing (Opcode Returned)cc.eeeeee. 3-34
3-19 Breakpoint Acknowledge Cycle Timing (Exception Signaled)...................... 3-35
3-20 Interrupt Acknowledge Cycle FIOWChArT..........ccoooiiiiiiiiiiii e 3-37
3-21 Interrupt Acknowledge Cycle TimMINgG........uuuuurrimiiiiiiiiieeees eeeeeeeeeeeeeeeeeeeeeeeee 3-38
3-22 Autovector Operation TIMINGocieeeeieeiiiieee s e e e e s eeraaa 3-40
3-23 BuUS Error WithOUt DSACKXccoeiiiiieieeeeeeeeeeeeeee e e, 3-44
3-24 Late Bus Error With DSACKXoouiiiiiiiieee et e 3-45
3-25 REtIY SEUUENCEceeiiiiiiiie et ettt e et e et e e e e e e eanan 3-46
3-26 Late REtrY SEQUEINCE ... et e e 3-47
3-27 HALT TIMNG ittt ettt e e e e e e s st e e e e e e e e e e s s anbabaeeeeeeaeaeen s 3-48
3-28 Bus Arbitration Flowchart for Single Requestcccooovviiiiiiiiiiiie e, 3-50
3-29 Bus Arbitration Timing Diagram—Idle Bus Casecccceeveeiiiiiiiiiii i, 3-51
3-30 Bus Arbitration Timing Diagram—Active Bus Casecccceeeevvvveeveennn e, 3-51
3-31 Bus Arbitration State Diagram ... e 3-54
3-32 Show Cycle Timing DIagramcceeeiieiiiiiiiiiiit e 3-55

MOTOROLA MC68341 USER'S MANUAL XiX

10/31/95 SECTION 1: OVERVIEW UM Rev.1.0

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
3-33 Timing for External Devices Driving RESetccccuviiiiiiiiiiiiiii e 3-56
3-34 Power-Up Reset Timing Diagramccccoeeeeeiiiiiiiiiiiie e 3-57
4-1 SIM41 Module Register BIOCK..........couuiiiiiiiiiiiiit e 4-3
4-2 System Configuration and Protection FUNCLIONcccoeeeeeeeiiiiieeee e, 4-5
4-3 Software Watchdog BIOCK Diagramcceieeeiiiiiiiiiiies e 4-7
4-4 Clock Block Diagram for Crystal and EXTCLK Operationcccccoeeeeenn... 4-10
4-5 MCB8341 Crystal OSCIlatorevvvuviviiiiiiiiiiis s 4-10
4-6 Block Diagram for External Clock Operationcccooveeviiiiiiiiiee eveeeiiiinnn. 4-11
5-1 CPUS32 BIOCK DIAQIamuuueeeeiiiiiniiiiiieee s s s s s s s s s s e e e s e e e e e aaaaaaaaaaaaaaaaaaaees 5-3
5-2 Loop Mode INStruCtion SEQUENCEuuiiiiiiiiiiiiiee e et e e e e e eeanns 5-3
5-3 User Programming MOEloooiiiiiiiiiiii e 5-6
5-4 Supervisor Programming Model Supplementcccovvriiiiiiiiiin e, 5-7
5-5 StAtUS REGISTIEN ...t e e e e e e e e e e e e e e e e eeeeeeeraanee 5-8
5-6 Instruction Word General FOrMALuuuvuueiimimi s e e e e e e e e 5-11
5-7 LI L o1 TN =T]][PP 5-28
5-8 Table EXAMPIE 2 ... e 5-29
5-9 Table EXamPIE 3 s 5-31
5-10 EXCeption Stack Framecovvviiiiiiiiiiiiiiis e e e 5-39
5-11 Reset Operation FIOWChArtcooiiiiiiiiiii e 5-42
5-12 Format $0—Four-Word Stack Frame...........ccccooooiieiiiiiiiin e, 5-58
5-13 Format $2—Six-Word Stack Framecccccoocviiiee i e 5-58
5-14 Internal Transfer CoUNt REQISTEIcooiiiiiiiiiiiiiiei e e 5-59
5-15 Format $C—BERR Stack for Prefetches and Operandsccccccceevuveeen. 5-60
5-16 Format $C—BERR Stack on MOVEM Operand..........cccccvvveeeeeeeeeesiis cevvnnnn 5-60
5-17 Format $C—Four- and Six-Word BERR Stackccccccvvvviiieeii i, 5-61
5-18 In-Circuit Emulator Configurationeeeieiee v e s e e e 5-62
5-19 Bus State Analyzer Configurationccouuuiiiiiieeieiiis e eeeeens 5-62
5-20 BDM BIOCK DIQQIamccuuiiiiiiiiiieeeeeeeie ettt e e 5-63
5-21 BDM Command Execution Flowchartccccccveiiiiiiiii i 5-66
5-22 Debug Serial /0O BIOCK Diagramccooeuuuiiiiiiieeiieis e eee e eeeeeans 5-68
5-23 Serial Interface TimMiNg DIAgramoceeiiiieiiiiiiiiit e 5-69
5-24 BKPT Timing for Single BUuS CYCleccoooiiiiiiiiie e 5-70
5-25 BKPT Timing for FOrcing BDM...........oooiiiiiiiiiiiiiiiiie et 5-70
5-26 BKPT/DSCLK LOGIC DIagram......cccoeiiiiiiiiiiiiiiiiiees seaeiiiiieeeeee e e e e 5-70
5-27 Command Sequence Diagram..........cccevvviiiiieeiiieies ceeeeeeeeeeeereeeresaennannnnanaa—.s 5-73
5-28 Functional Model of Instruction Pipeling ... i 5-86
5-29 Instruction Pipeline Timing Diagramcccciiieiiiiiiis e 5-86
5-30 Block Diagram of Independent RESOUICEScevvvvevvveiiiiiiiis ciiieeeeeeeeeeenn 5-88
5-31 Simultaneous INStruCtioN EXECULIONuuuuuermiiiiiiiriees s e e 5-90
5-32 Attributed INSTrUCION TIMES ...cvevviiiiiiiiiiieee e ceee e e e e e e e e e e e e 5-90

XX MC68341 USER’S MANUAL MOTOROLA

10/31/95 SECTION 1: OVERVIEW UM Rev 1

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
5-33 Example 1—INStruction Sreameeeeeiiiiiiiiiiiaa it e e 5-93
5-34 Example 2—Branch TaKeNcccoiiiiiiiiiiiei s et 5-93
5-35 Example 2—Branch NOt TaKeN.......cccoooeiiiiiiiiiiiiieeceee e 5-94
5-36 Example 3—Branch Negative Tail ... e 5-94
6-1 D1V VAN =] (oo 1 B IF=To | =1 o USSR 6-1
6-2 Single-Address TranSTerS ... e 6-3
6-3 DUAl-AdAress TranSTeIcooiiiiiiiiiiiiiiee s e 6-3
6-4 DMA External Connections to Serial Module ..., 6-7
6-5 Single-Address Read Timing (External BUrst).........ccccooveiiiviiiiieees e, 6-9
6-6 Single-Address Read Timing (Cycle Steal)cccceeviiiiiiiiiiii e, 6-10
6-7 Single-Address Write Timing (External BUrst) ... e, 6-11
6-8 Single-Address Write Timing (Cycle Steal)cccovviiiiiiiiiiiiie e 6-12
6-9 Dual-Address Read Timing (External Burst-Source Requesting) 6-14
6-10 Dual-Address Read Timing (Cycle Steal-Source Requesting)..................... 6-15
6-11 Dual-Address Write Timing (External Burst-Destination Requesting) 6-17
6-12 Dual-Address Write Timing (Cycle Steal-Destination Requesting) 6-18
6-13 Fast Termination Option Timing (Cycle Steal) ..o i 6-22
6-14 Fast Termination Option Timing (External Burst-Source Requesting) 6-23
6-15 DMA Module Programming MOEluuuuuiiimmiiiiin s 6-24
6-16 Packing and Unpacking of Operands.............ccooccuiiriiiiiiee e 6-36
6-17 M68300 Single Address Read with RDYXccoooeiiiiiiiiiiiiiee e 6-49
6-18 M68300 Single Address Write With RDYXcoooeviiiiiiiiiiiieeccccei e 6-50
6-19 M68300 Single Address Read with Delayed DACKx and RDYX 6-51
6-20 M68300 Single Address Write with Delayed DACKx and RDYX 6-52
6-21 68000 Single Address Read wWith RDYXciiiiiiiiiiiiiiiiiieecee e 6-53
6-22 68000 Single Address Write With RDYXuuuiiiiiiieiiiiiiiiie e 6-54
6-23 68000 Single Address Read with Delayed DACKx and RDYXccvvveeeee. 6-55
6-24 68000 Single Address Write with Delayed DACKx and RDYXcccceeee... 6-56
6-25 68000 Single Address Read with Delayed DACKXccccvvveiiiieiiiiiiii e 6-57
7-1 Simplified BIOCK DIagQramcouuuiiiiiiiiiiiiis ceeee et eeeeeanans 7-1
7-2 External and Internal Interface Signals ... e, 7-5
7-3 Baud Rate Generator Block Diagram............cccoovviiiiiiiiiieis e 7-8
7-4 Transmitter and Receiver Functional Diagram.............ccoooeviiiiiiiiiie eveeiiinnns 7-9
7-5 Transmitter TimiNg DIAgIamooiioiuiiiiiiiiiieee e s 7-10
7-6 Receiver TIming DIagramcooviiiiiiiiiiiiiies ceeeeeeeeeeeeeeeeaveeaees e 7-12
7-7 Looping Modes Functional Diagram.............cceeeviiiiiiiiiiiis eeeeeiieiiiiiiiiiinennnnnens 7-15
7-8 Multidrop Mode Timing DIiagramuuueeieiiieeeeenii e 7-16
7-9 Serial Module Programming Model Programming Model 7-19
7-10 Serial Module Programming FIOWChartccccoiiiiiiiiiies e 7-43

MOTOROLA MC68341 USER'S MANUAL XXi

10/31/95 SECTION 1: OVERVIEW UM Rev.1.0

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
8-1 Simplified BIOCK DIAQIamccuuiiiiiiiiiieeeeeie e 8-1
8-2 Timer Functional Diagramccooeeeieeiiiiiecee e 8-3
8-3 External and Internal Interface Signals ... i, 8-4
8-4 Input Capture/Output Compare MOUE...........ceeviiiieiiiiiiiii e 8-6
8-5 Square-Wave Generator MOAEciiiiiiieiiiieeeeees e 8-8
8-6 Variable Duty-Cycle Square-Wave Generator Modeccooeeeevviiiiiineee . 8-9
8-7 Variable-Width Single-Shot Pulse Generator Mode..........cccooevviiiiiiiieeeenn e, 8-11
8-8 Pulse-Width Measurement MOOEcoooiiiiiiiiiiiiiie e 8-12
8-9 Period Measurement MOGEuuuiiiiiiiiiiiiiiis e 8-13
8-10 EVENt COUNE MOMEuiiieieieei e e 8-14
8-11 Timer Module Programming Modelccooeiiiiiiiiiiiieee e, 8-17
9-1 QSPM BIOCK DIBQIAM ...ccoeeiiiiiiiiiiie et sttt e e e e e e 9-1
9-2 QSPM MEMOIY MAP ..eeiiiiiiiiie e ettt eaaa s 9-2
9-3 QSPI Submodule Diagram..........coooeiiiiiiiiieeeeee e 9-16
9-4 Organization of the QSPI RAMuuiiiiiiiiit e 9-27
9-5 COMMANT RAM ...t e e e e e e e e e e e 9-28
9-6 Flowchart of QSPI Initialization Operationc.eevevveeeieiiiiis e 9-31
9-7 Flowchart of QSPI Master Operationooouiiiiiiiiiiiee eeeeeeeeeeiieeeeee 9-32
9-8 Flowchart of QSPI Slave Operationcoovvvivviiiiiiiiseveeeeieiviisrenennean. 9-35
10-1 Test Access Port BIOCK Diagramccoooeoiiiiiiiiiiiis e 10-2
10-2 TAP Controller State MacChingcccceeiiiiiiiiiiiiie e 10-3
10-3 Output Latch Cell (O.LatCh)c.ceiiiiiiiiiiiieeeeeeee e 10-7
10-4 Input Pin Cell (ILPIN) ..o e 10-8
10-5 Active-High Output Control Cell (I0.CtlL)cccoeiiviiiiiiiiieieeces e, 10-8
10-6 Active-Low Output Control Cell (I0.CtO) ..o e 10-9
10-7 Bidirectional Data Cell (IO.Cell)uuumureeieecee e e 10-9
10-8 General Arrangement for Bidirectional PiNS............ccccoeeiiiiiiiiiin cineeeeeeeii, 10-10
10-9 BYPASS REGISTENuiieiiiiiiiiiie e ettt 10-12
11-1 Minimum System Configuration Block Diagramcccccvvviiiiieeie evvnnnnnn, 11-1
11-2 Sample Crystal CirCUILuuiiiiiiiiieee e e 11-2
11-3 Statek Corporation Crystal CirCUIt.........ccooeeeiiiiiiiiiii e, 11-2
11-4 XFC and VCCSYN Capacitor CONNECLIONS..........uceiieeiiiiiiiiiieeeee ceviiiiiaeeeeaenns 11-3
11-5 SRAM INEITACE ..ceeiviiieiieieeeeeeeit et e e e e n e e e e e e as 11-4
11-6 ROM INEITACEcciiiiiiieee et ettt 11-4
11-7 Serial INTEITACE ...ueeieiiiiie e e 11-5
11-8 External Circuitry for 8-Bit BOOt ROMoeiiiiiiiiiiiiiiiit e 11-5
11-9 8-bit BOOt ROM TiMING ..oieiiiiee i e 11-6
11-10 Access Time Computation DIiagrameeeeeeeeemmeenn e 11-6
11-11 Signal Relationships t0 CLKOUTuuiiiiiiiiiiiiiiiit e 11-7

XXii MC68341 USER’S MANUAL MOTOROLA

10/31/95 SECTION 1: OVERVIEW UM Rev 1

LIST OF ILLUSTRATIONS (Concluded)

Figure Page
Number Title Number
11-12 Signal Width SPecCIfiCatiONSocoiiiiiiiiiiiiiieee e 11-8
11-13 Skew between TWO OULPULS........uuvurirriiiiriee e e e es ceeeeee e e e e e e e e e eeeeeeeeeeeneeeennnnnnnn 11-9
11-14 Circuitry for Interfacing 8-Bit Device to 16-Bit Memory

IN Single-AddressS DMA MOGE.........coooiiiiiiiiiiiiiiie e 11-10
12-1 Drive Levels and Test Points for AC Specificationscccceeevveeeviviinnn e, 12-4
12-2 M68300 Read Cycle Timing Diagramccccccooiiiiiiiiiiiiee eeeeesiriiiiieeeeeeen 12-10
12-3 M68300 Write Cycle Timing Diagramc.coeeeeieieiiiiiee e, 12-11

12-4 68000 Three-Clock Read Cycle Timing Diagram Using Internal DSACK1 .. 12-12
12-5 68000 Three-Clock Write Cycle Timing Diagram Using Internal DSACK1 .. 12-13

12-6 68000 Four-Clock Read Cycle Timing Diagramcccccceeevvviiiiieie eeeeee, 12-14
12-7 68000 Four-Clock 16-Bit Write Timing Diagram.................eueeeveeeenennnuveennnnns 12-15
12-8 M68300 Fast Termination Read Cycle Timing Diagramccccvvvvveeeeee. 12-16
12-9 M68300 Fast Termination Write Cycle Timing Diagram.............cccccceeeeeeennn. 12-17
12-10 Bus Arbitation Timing—ACctive BUS CaS€ceeeeiiiiiiiiiiiiiiiiiie e 12-18
12-11 Bus Arbitration Timing—Idle BuS CaSeccoiiuiviiiiiiiiiee oo 12-19
12-12 Show Cycle Timing Diagramccccoveeiiiiiiiiieeeeee e e, 12-19
12-13 1ACK Cycle Timing Diagramcccccuiiiiiiiiiiieeees seeeeeiiiirreee e e e e e e e e e 12-20
12-14 Background Debug Mode Serial Port Timingccccuvvviviiieiiiiieeees i, 12-21
12-15 Background Debug Mode FREEZE TiMiNGceveiiiiiiiiiieeeeeeeiees e, 12-21
12-16 DMA Signal Timing DIagramccoeeeiiiiiiiiiiiiiiies e 12-22
12-17 DMA Enhancements Timing Diagramccccceeeeeiiiiiiiiees coieeeeeeeeeeeeeeeeeeeee 12-23
12-18 Timer Module Clock Signal Timing Diagramccoeeeevvviiiiiiiiees ceeereeiiiinnn, 12-24
12-19 Timer Module Signal Timing Diagramccceeiiiiiiin e 12-25
12-20 Serial Module General Timing Diagrameuvvvvuerriiueninserenneennnnnnnnnnn.. 12-27
12-21 Serial Module Asynchronous Mode Timing (X1)covieeiiiiiiiiiiiiieeeeeees v, 12-27
12-22 Serial Module Asynchronous Mode Timing (SCLK—16X)cccccccuvvvvrrnnnne. 12-28
12-23 Serial Module Synchronous Mode Timing Diagramccccevvvvvvvvivvnnn e, 12-28
12-24 QSPI Timing Master, CPHA Ouuuiiiiiiiiieeeeeeeeeie et 12-30
12-25 QSPI Timing Master, CPHA 1ooiiiiiieieiiin e e e e e e e 12-30
12-26 QSPI TimiNgG Slave, CPHA Ooeviiiiieeiiiiiiiiiee e 12-31
12-27 QSPITiming Slave, CPHA L ..., 12-31
12-28 Test Clock Input Timing DIagramcooeuueiiiiiiiiieeeees st 12-32
12-29 Boundary Scan Timing Diagrameeeiiiiiiiiieiees cereiisesse e s ee e e e e e e e e aeeaeas 12-33
12-30 Test Access Port TIMING DIagramuueeeeeeeeeimmmii e 12-33

MOTOROLA MC68341 USER'S MANUAL XXiii

10/31/95 SECTION 1: OVERVIEW UM Rev.1.0

LIST OF TABLES
Table Page

Number Title Number
2-1 BUS Signal SUMMATYoooiiiiiiiiiiiie s 2-3
2-2 CPUB2 Serial POI......ooiiiiiiieeee ettt et 2-4
2-3 Serial MOAUIE ..o s 2-4
2-4 Queued Serial MOAUIEcccooeiieiieie e 2-4
2-5 DMA MOUIE ...ttt ettt e e e e e e e 2-4
2-6 TIMEI MOAUIE ..o e 2-5
2-7 IEEE L1140.0 . ettt a e e e e aaaa s 2-5
2-8 Power, Clock, and CONtrolueeeiiiiiiiiiii e 2-5
2-9 Data Strobe Control of Data BUS ..o s 2-7
2-10 SIZX Signal ENCOTING ...ttt et 2-8
2-11 Address Space ENcodingccoooeiiiiiiiiiiii e 2-8
2-12 DSACKX ENCOAING ...cooeieieeeeeeeeeee e 2-9
3-1 SIZX SIgNal ENCOING ...c.vvevveiveeie ettt ettt eae e, 3-4
3-2 Address Space ENCOAINGccooiiiiiiiiiiiiiiiiiiiies ettt 3-5
3-3 DSACKX ENCOAING ..vevvieiiieiiiiiiiiiieiiee s et e e e e e e e 3-8
3-4 DSACKXx, BERR, and HALT Assertion ReSultSccccovveveviiieenns i, 3-42
4-1 Clock Operating MOUESccuuiiiiiiiiie et 4-9
4-2 System Frequencies from 32.768-kHz Referencecccoooeeieiiini 4-13
4-3 Clock CONtrol SIGNAISeeeiiiieiiii e e 4-15
4-4 Port B Pin ASSIGNMENT REGISIENuiiiiiiiiiiiiiieii e et 4-17
4-5 Port A Pin AsSignment REQISTEN..........ccoiiiiiiiieie e 4-17
4-6 Port B Pin ASSIGNMENT REGISIEN ...ttt e 4-18
4-7 SHENX CONIOI BILS ...uvvviiiiiiiieeee it ettt 4-24
4-8 Deriving Software Watchdog TimeouUtcooevviiiiiiiiiiiiie e, 4-27
4-9 BMTX ENCOQING ...eeeiiiiiieiieeet et et e e e e e e e 4-27
v O B = | @ | I = o o' Yo [T o S 4-28
4-11 DDX ENCOGING .ovuiiiiiiiiiiiiiis et ettt e e et e e e e e e e et e e e e e eaene 4-34
4-12 PSX ENCOAINGtiiiiiiiiiiiiiiiiiiiiit ettt e e e e e e e e e e e e s neeeeees 4-34
72 S T = 41 = (@ I =1 o oo o [Vo [4-40

XXV MC68341 USER’S MANUAL MOTOROLA

10/31/95 SECTION 1: OVERVIEW UM Rev 1

LIST OF TABLES (Continued)

Table Page
Number Title Number
5-1 1 IS T 1T TS = P 5-9
5-2 INSLrUCLION SEt SUMMAIY ...covviiiiiiiieeeieiitiiis et e e e 5-14
5-3 Condition Code COMPULALIONSuiiieeiiiiiiiiiiieeeeees et e e e e e e eeanes 5-18
5-4 Data Movement OPEratioNSooouiiiiiiriiiiiiies ceeeariiie e e e e e 5-19
5-5 Integer ArithmetiC OPErationScccooeeiiiiiieeeeiceeeee e 5-21
5-6 (oo [[o @ o 1] = 1 o] 1< PRSPPI 5-22
5-7 Shift and Rotate OPEratioNScooeieiiiiiiiiiiiiit e 5-23
5-8 Bit Manipulation OPEerationsoovvvviiiiiiiiiis v e e e e e e e e e e eeees 5-23
5-9 Binary-Coded Decimal OperationsS.......... ..o e 5-24
5-10 Program Control OPErationsSoouiiiuiuiiiiiiiiies seeiiiiiieeeeee e 5-24
5-11 System Control OPerationsSceeeeieiiiiee e e 5-26
S 52 O] o o [11 To] g N I TS ST 5-27
5-13 Standard Usage ENLMESooooiiiiiiiiiiiie e 5-28
5-14 Compressed Table ENrES.......uuuuuuueiiiiiiiiice s e e e e e e e e e 5-30
5-15 8-Bit INdEPENUENTcci it e 5-31
5-16 Exception VecCtor ASSINMENLTScuiiiiiiiiiiiiiiiiiiiie aeeeeeessiirireeee e e e e e e e e e 5-37
5-17 EXception Priority GrOUPScoooviiiiieeiiiiiiiiii siiisa s e e e e e e e e aeeaeeeeaeeeeeseessannnnns 5-40
5-18 Tracing CONTrOl.........uuiiiiiiiiiiee i e 5-47
5-19 BDM SOUICE SUMMAIYciiiiiiiiiiiiie et e et e e e e e e e eana s 5-64
5-20 Polling the BDM ENtry SOUICEcuuuiiiiiiiiiiiiiiiie s ceeeeeiis e e e e e e eeens 5-65
5-21 CPU Generated Message ENCOAINGcovvviiiiiiiiiiiiiiiiiiie e 5-67
5-22 Size Field ENCOAINGcccooiiiiiiiiieeeeeeeeeit et s e s e e e e e e e e e e e e e e aeeeeeeeennnnnne 5-71
5-23 BDM Command SUMMATYuiiiiiiiiiiiiiiiiiiieees ceeeeeeessiiise e e e e e e eeeessann e eee e 5-74
5-24 Register Field for RSREG and WSREG...........coooiiiiiiiiiiiiiies e 5-76
6-1 S35 74 =5 Q=1 g o 1o |1 5o SRR 6-27
6-2 DSIZEX ENCOAING ...ceiiiieiiiiiiiiiiiitie s eee sttt e e ee e e e e e e e e s e nnens 6-27
6-3 REQX ENCOAINGiiiiiie i e 6-28
6-4 BBx Encoding and Bus Bandwidth..............cccoooiiiiiiii i 6-28
6-5 Address SPace ENCOAINGuuvuiiiiiiiiaiiiiiiiit e 6-31
6-6 FRZX CONIOl BILS ..coiiiiiiiiiiiiiiieiieee s sttt 6-33
7-1 Oy O] o1 1o =1 £ 7-21
7-2 TCSX CONIOI BIES ...vvviiiiiiiieiii it e e e e e e e 7-22
7-3 MISCX CONIOl BILS ... et 7-23
7-4 LIS Q0] o1 0] 1 =1 S 7-24
7-5 RCX CONLIOI BILS ... ettt e e e e 7-25
7-6 FRZX CONrOl BItS ... e 7-31
7-7 PMX and PT CONrol BitSccvvvviiiiiiiiiiiiiiiiins erieriineiiinssssns s e e s s e e e eeeeas 7-34
7-8 B/CX CONIOI BILS ..ceeiiieieiiiiiiiiiieieee s ettt e e e e e e e e 7-34
7-9 CMX CONrOl BItS ..o e 7-35
O Y = 5 o o1 {0 I = | £ 7-36

MOTOROLA MC68341 USER'S MANUAL XXV

10/31/95 SECTION 1: OVERVIEW UM Rev.1.0

LIST OF TABLES (Continued)

Table Page
Number Title Number
8-1 OCX ENCOAING ...ciiiiieeiiiiiiit ettt ettt e e e e e e e e 8-16
8-2 FRZX CONIOl BILS ..ooiiiiiiiiiiiiiie et ettt 8-18
8-3 IEX ENCOAING ..viiiiiiiiieie et it e et e e e e e e et e e e e e e eaanans 8-20
8-4 POT ENCOOING ...ttt ittt e e e e e e e e e e e e e e e e 8-21
8-5 MODEX ENCOAINGcciiiiiiieeeeee e e 8-21
8-6 (@ 1 @5 Q=1 aTolo To |1 o TR USSP 8-21
9-1 QSPM Pin SUMMAIY ..o ettt 9-4
9-2 QSPM ReQISter SUMMAIYccvviiiiiieeiiiiiiiie e ceeee s e e e e e e e eanaas 9-5
9-3 Bit/Field Quick Reference GUIdE...........uuuuuumiiiiiiiiiie e 9-6
9-4 QSPM GIlobal REQISIEIScevvvveeiiiiiiiiiiiees crrrre s e e e e e e e e e e e e e e e e e eeeeeeeerannnes 9-8
9-5 QSPM Pin CoNtrol REQISIEI'Svuuiiiiiiiiiiiieeee e e 9-11
9-6 External Pin Inputs/Outputs to the QSPl.........ciiiiii e 9-17
9-7 (@ 1S I LT[5] (] £ PP 9-17
9.8 Bits per Transfer if Command Control Bit BITSE =1cooovviiiiiiiiiiiiinnnne 9-19
9-9 Examples of SCK FIreQUENCIEScoooviiiiiiiiiiiiiiiiees et 9-20
10-1 Boundary Scan Control BitSuuuuuiuiiiiiiiaieees e 10-4
10-2 Boundary Scan Bit DEfiNITIONSccoiiiiiiiiiiiiiiiiis e 10-5
0 T 1 E1 1 £ U T 1o L PSR PTR P 10-10
11-1 Memory Access Times at 16.78 MHZooovvviiiiiiiiiiiii e 11-7
11-2 Typical Electrical CharacteriStiCScccceevviiiiiiiiiieiieee e e, 11-11

XXVi MC68341 USER’S MANUAL MOTOROLA

SECTION 1
DEVICE OVERVIEW

The MC68341 is a member of the M68300 family of integrated processors designed
specifically for the compact disc-interactive (CD-I) market. It improves on the feature set of
the MC68340 for a more complete and cost effective integrated system solution to CD-I's
specific needs.

The MC68341 contains a 68020-based CPU32, a two channel DMA controller, two serial
channels, a timer, and a queued serial peripheral interface. The 68341's system
integration module (SIM41) contains clock circuitry, system protection, external bus
interface, timers, and additional chip selects. New to the SIM is the real time clock and an
MC68000 bus interface. The MC68000 bus interface is dynamically selectable to give a
glueless interface to peripherals and memory designed for the MC68000 while allowing
higher performance transfers using the standard 68300 bus interface. Complete code
compatibility with the MC68000 affords the designer access to a broad base of
established real-time kernels, operating systems, languages, applications, and
development tools—many oriented towards embedded control.

As a low voltage part, the MC68341V can operate with a 3.3-V power supply and is
particularly useful for battery applications. MC68341 is used throughout this document to
refer to both the low voltage and standard 5-V parts since both are functionally equivalent.
Figure 1-1 illustrates a block diagram of the MC68341.

SYSTEM
INTEGRATION MODULE
(SIM41)

SYSTEM
TIMER TWO-CHANNEL PROTECTION | [32.BIT ADDRESS BUS >
DMA CONTROLLER
CLOCK
|/\| ﬁ SYNTHESIZER
CPUS2 N EXTERNAL
(68000-BASED INTERMODULE BUS | sus wrereace

PROCESSOR)

BUS ARBITRATION

d
16-BIT DATABUS >
TWO-CHANNEL

SERIAL IO REAL TIME CLOCK

QUEUED SERIAL
PERIPHERAL
INTERFACE

|IEEE 1149.1 TEST

Figure 1-1. MC68341 Simplified Block Diagram

MOTOROLA MC68341 USER’S MANUAL 1-1

MC68341 FEATURES

The primary features of the MC68341 are as follows:

1-2

High Performance CPU32 Core Processor
— Upward Object-Code Compatible with MC68000 and MC68010

— Additional 32-Bit MC68020 Instructions and Addressing Modes
— Fast Two-Clock Register Instructions

High-Speed Dual DMA Controllers for Low-Latency Transfers
— 50-Mbyte/Sec Sustained Transfer Rate

— Dual or Single Address Transfers

— 8-, 16-, or 32-Bit Transfers

Counter/Timer

— 16-Bit Timer with 8-Bit Prescaler

— Multi-mode Operation

— 80 nS Resolution

Dual Serial Communication Ports

— Synchronous or Asynchronous Operation

— 3-Mbit/Sec Sustained Transfer Rate

— Modem Control

— Baud Rate Generation

— 68681/261 Compatible

Queued Serial Peripheral Interface (QSPI)

— Communications with Slow Peripherals without Tying Up the CPU

— Queued Transmit and Receive Buffers
— Programmable for Master or Slave SPI Operation

System Integration Module for Flexible and Cost-Effective System Interface

— 32-Bit Address Bus; 16-Bit Data Bus with Dynamic Bus Sizing
— System Protection, Reset, and Configuration Control

— Periodic Interrupt/System Timer

— Chip-Select, Wait State Generation, Bus Watchdog

— Interrupt Controller

— IEEE 1149.1 Boundary Scan (JTAG)

— Dual 8-Bit Parallel Ports

— Real Time Clock

— Time and Date with Leap Year Correction

— Programmable Alarm for Interrupt or External Output

— Calibration Register Eliminates Need for Trim Capacitor

— Battery Backup Capability

Power Management

— 5V or 3.3V Operation

— Fully Static HCMOS Technology

— Programmable Clock Synthesizer for Full Frequency Control
— Power-Down/Low Power Stop Capabilities

— Idle Modules Can Be Individually Powered Down

0-16 or 25 MHz Operation
160-Pin Plastic Quad Flat Pack (QFP)

MC68341 USER’S MANUAL

MOTOROLA

CENTRAL PROCESSING UNIT

The CPU32 is a powerful central processor that supervises system function, makes
decisions, manipulates data, and directs I/0O. A special debugging mode simplifies
processor emulation during system debug.

CPU32

The CPU32 is a 68000-based microprocessor that can execute most 32-bit operations in
two clock periods. Additional instructions enhance lookup table interpolation and power
consumption control. In addition to performing basic instruction execution, the CPU32
provides a sophisticated background debug port for non-invasive instrumentation in the
software development and debug environments.

On-Chip Peripherals

To improve total system throughput and reduce part count, board size, and cost of system
implementation, the M68300 family integrates on-chip, intelligent peripheral modules, and
typical glue logic. These functions on the MC68341 include the SIM41, a DMA controller,
a serial module, a queued serial peripheral interface, and a timer.

The IMB is the backbone of the MC68341, and is similar to traditional external buses with
address, data, clock, interrupt, arbitration, and handshake signals. Because bus masters
(like the CPU32 and DMA), peripherals, and the SIM41 are on the same processor, the
IMB ensures that communication between these modules is fully synchronized and that
arbitration and interrupts can be handled in parallel with data transfers, greatly improving
system performance. Internal accesses across the IMB can be monitored from outside of
the processor.

System Integration Module

The MC68341 system integration module (SIM41) handles a wide array of functions,
eliminating the need for much of the glue logic which typically supports the microprocessor
and its interface with peripherals and external memory. The SIM41 includes:

» External Bus Interface—Transfers information between the CPU32 or DMA controller
and external memory or peripherals by providing up to 32 address lines and 16 data
lines. Both the 68300 bus interface and the original MC68000 bus interface are
provided.

» System Configuration and Protection—Achieves maximum system protection by
providing various monitors and timers to prevent system lockup, recover from
catastrophic failure, exit infinite loops, provide refresh, etc.

» Clock Synthesizer—Generates the clock signals used by all internal operations as
well as a clock output used by external devices.

» Chip Select and Wait State Generation—Offers eight programmable chip selects
which provide signals to enable external memory and peripheral circuits and create all
external handshaking and timing signals. Up to six wait states can be automatically
inserted.

MOTOROLA MC68341 USER’S MANUAL 1-3

« Interrupt Control—Provides up to seven discrete interrupt inputs for external devices.

* |EEE 1149.1 Test Access Port (JTAG)—AIds in system diagnostics by providing
dedicated, user-accessible test logic that is fully compliant with the IEEE 1149.1
standard for boundary scan testability.

« Real Time Clock—The real time clock can be sustained on a separate power supply
for battery backup. This simple counter is driven by 32.768 KHz clock for low power
consumption. The real time clock counts seconds, minutes, hours, days, day of the
week, date of the month, and year with leap year compensation. The real time clock
has internal interrupt generation capability and includes a programmable output pin,
which can provide an interrupt or other output signal based upon an alarm or time
matching function. Software calibration eliminates the need for an external trim
capacitor.

Queued Serial Peripheral Interface (QSPI) Module

The QSPI eases peripheral expansion or interprocessor communications. This function
allows interface to and control of other integrated controllers (such as, MC6805 or
MC68HC11 family devices) and peripherals (such as, LCD drivers, A/D-D/A converters,
digital signal processors, EEPROM). The QSPI can handle up to 16 serial transfers of 8 to
16 bits each or transmit a stream of data up to 256 bits long without CPU intervention,
because of a small RAM in the QSPI. A special wrap-around mode allows the QSPI to
continuously sample a serial peripheral, automatically updating the QSPI RAM for efficient
interfacing to serial analog-to-digital converters.

Timer Module

The timer consists of a 16-bit countdown counter with an 8-bit countdown prescaler for a
composite 24-bit resolution. The finest resolution of the timer is 80 ns with a 25-MHz
system clock (125 ns @ 16.78 MHz). The programmable timer operating modes are input
capture, output compare, square-wave generation, variable duty-cycle square-wave
generation, variable-width single-shot pulse generation, event counting, period
measurement, and pulse-width measurement.

POWER CONSUMPTION MANAGEMENT

The MC68341 is very power efficient due to its advanced 0.8-u HCMOS process
technology and its static logic design. The resulting power consumption is typically
500 mW in full operation—far less than the comparable discrete component
implementation the MC68341 can replace. For applications employing reduced voltage
operation, selection of the MC68341V, which requires only a 3.3-V power supply, reduces
current consumption by 40-60% in all modes of operation (as well as reducing noise
emissions).

1-4 MC68341 USER’S MANUAL MOTOROLA

COMPACT DISC-INTERACTIVE

The MC68341 was designed to meet the needs of many markets, including compact disc-
interactive (CD-I). CD-I is an standard for a publishing medium that will bring multimedia to
a broad general audience—the consumer. CD-I players combine television and stereo
systems as output devices, with interactive control using a TV remote-control-like device
to provide a multimedia experience selected from software titles contained in compressed
form on standard compact discs.

The on-chip real-time clock eliminates the need for a separate chip to keep time-of-day.
The 68000 bus interface simplifies the use of existing CD-DA and CD-I peripherals and
ASICs that were designed for use with the 68000.

The highly integrated MC68341 is ideal as the central processor for CD-I players. It
provides the M68000 microprocessor code compatibility and DMA functions required by
the CD-I Green Book specification as well as many other useful on-chip functions for a
very cost-effective solution. The extra demands of full-motion video CD-I systems make
the best use of the MC68341 high performance. The MC68341 is CD-I compliant and has
been CD-I qualified. With its low voltage operation, the MC68341V is the only practical
choice for portable CD-I.

MOTOROLA MC68341 USER’S MANUAL 1-5

SECTION 2
SIGNAL DESCRIPTIONS

This section contains brief descriptions of the MC68341 input and output signals in their
functional groups as shown in Figure 2-1.

MOTOROLA MC68341 USER’S MANUAL 2-1

A3L/PORT A7IIACKT =~ ™
A30/PORT AB/IACKE =~ |
A29/PORT AS/IACKS <
A28/PORT A4/IACKA =<~

x _
[%2]
2 L8809
el S =]E=
= W w| O ~
SEEE .
& Flaje » XX
<—— RxDA
L———> TxDA
CPU32 TWO-CHANNEL |«—— cTsA
CORE SERIAL <—— RxDB
110 —> TxDB
~<—— CTSB
——— TXRDYA/OP6
OUTPUT [——> RxRDYA/FFULLA/OP4
PORT [—> RTSB/OP1
[—> RTSA/OP0

A27IPORT A3/IACK3 =™ PORTA § (,j%) 8 ,8
A26/PORT A2/IACK2 =<~
A25/PORT ALIACKL =~
A24/PORT A0 < J ‘ J]
TEST
A23-A0 <
D15-D0 <:>
FC2-FCO <:
FC3/DTC <—
RESET <—>
BERR —>
HALT <—>
AS = EXTERNAL
DS <— Bus
RW <——— INTERFACE SYSTEM
SIZL <— INTEGRATION
SIZ0 < MODULE
DSACKL —>
DSACKO —>]
6BKAS <
UDS <
LDS <
UWE <—
LWE <—
RMC/RTCOUT <——
BR —> Bus
BG <—|ARBITRATION
BGACK ——> CLOCK
- 111
- 32259
cst e
CS6 < w o
CS5<——1 cup
CS4 < SELECTS
CS3<—
€S2 <
CS1 <—
IRQ7/PORT B7 <=—>
IRQ6/PORT B <—>|
IRQ5/PORT B5 <—>
|IRQ4/PORT B4 <—>
IRQ3/PORT B3 <—>| PORTB
IRQ2/PORT B2 <—>
IRQ1/PORT Bl <—>
CSO/AVEC <—>
MODCK/PORT B0 <—>

2-2

Figure 2-1. Functional Signal Groups

MC68341 USER’S MANUAL

IMB
l<—> MISO
TWO-CHANNEL < > MOSI
TIMER QUEUED
N'PF'QAALLER MODULE SERIAL [<—> PCS1
© ° MODULE |<——> PCS0
[<—— QSCLK
= IERIERY - —
xr|<|O|xe |<|O z 292
alalalglal’a c g
‘}— =
< F
[0}
[t
MOTOROLA

2.1 SIGNAL INDEX

The input and output signals for the MC68341 are listed in Table 2-1 through 2-8. The
name, mnemonic, and brief functional description are presented. For more detail on each
signal, refer to the signal paragraph. Guaranteed timing specifications for the signals listed
in the following tables can be found in Section 12 Electrical Characteristics.

Table 2-1. Bus Signal Summary

Input/ Three-State During
Signal Name Mnemonic Output Bus Arbitration
Address Bus A23-A0 Out Yes
Address Bus/Port A7-A0/ Interrupt A31-A24/ Out/l/O/ Yes
Acknowledge7-1 IACK7-1 Out
Data Bus D15-D0 I/10 Yes
Function Code 3/DTC, FC3/DTC Out Yes
Function Code 2-0 FC2-FCO Out Yes
Chip Select 7-1 CS7-Cs1 Out Yes
Interrupt Request Level/ RQ7-1/B7-B1 In, I/O -
Port B7-B1
Chip Select 0/Autovector CSO/AVEC Out/In -
Bus Request BR In -
Bus Grant BG Out No
Bus Grant Acknowledge BGACK In -
Data and Size Acknowledge DSACK1, DSACKO In -
Read-Modify-Write Cycle/ RMC/RTCOUT Out Yes/No
Real-Time Clock Out
Address Strobe AS Out Yes
Data Strobe DS out Yes
M68000 Address Strobe 68KAS Out Yes
Upper Data Strobe uDS Out Yes
Lower Data Strobe LDS Out Yes
Upper Write Enable UWE Out Yes
Lower Write Enable LWE Out Yes
Size SlIz1, SIzo Out Yes
Read/Write R'W Out Yes
Reset RESET I/10 No
Halt HALT 1’0 No
Bus Error BERR In -
MOTOROLA MC68341 USER’S MANUAL 2-3

Table 2-2. CPU32 Serial Port

Input/
Signal Name Mnemonic Output
Instruction Fetch/ IFETCH /DSI Out/In
Development Serial In
Instruction Pipe/ IPIPE/DSO Out/Out
Development Serial Out
Breakpoint/Development Serial Clock BKPT/DSCLK In/—
Freeze FREEZE Out
Table 2-3. Serial Module
Input/
Signal Name Mnemonic Output
Receive Data RxDB, RxDA In
Transmit Data TxDB, TxDA Out
Clear-to-Send CTSB, CTSA In
Request-to-Send/OP1, OP0 RTSB, RTSA Out/Out
Serial Crystal Oscillator X1, X2 In
Serial Clock SCLK In
Transmitter Ready/OP6 TxRDYA Out/Out
Receiver Ready/FIFO Full/OP4 RxRDYA Out/Out/
Out
Table 2-4. Queued Serial Module
Input/
Signal Name Mnemonic Output
QSPI Peripheral Chip Slect PCS1, PCSO I/0
QSPI Serial Clock QSCLK In
Master-In Slave-Out MISO I/10
Master-Out Slave-In MOSI I/10
Table 2-5. DMA Module
Input/
Signal Name Mnemonic Output
DMA Request DREQ2, In
DREQ1
DMA Acknowledge DACK2 Out
DACK1
DMA Done DONE2, DONET 1’0
DMA RDY1/Timer Gate TGATE, RDY1 In
DMA RDY2/Timer Input TIN, RDY2 In
DTC/FC3 TIN, RDY2 In
MC68341 USER’'S MANUAL

MOTOROLA

Table 2-6. Timer Module

Input/
Signal Name Mnemonic Output
Timer Gate/DMA RDY1 TGATE, RDY1 In
Timer Input/DMA RDY2 TIN, RDY2 In
Timer Output TOUT Out
Table 2-7. IEEE 1149.1
Input/
Signal Name Mnemonic Output
Test Clock TCK In
Test Mode Select ™S In
Test Data In TDI In
Test Data Out TDO Out
Table 2-8. Power, Clock, and Control
Input/
Signal Name Mnemonic Output
Clock Mode Select/ MODCK/Port BO In/l/O
Port BO
Battery Switch BSW
Battery Power In VBATT In
System Power Supply and Ground Vce, GND —
System Clock CLKOUT Out
Crystal Oscillator EXTAL, XTAL In, Out
External Clock EXTCLK In
External Filter Capacitor XFC In

NOTE

The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

2.2 BUS SIGNALS

The MC68341 can interface using either a 68000 family bus or an MC68341 Family bus.
Many of the signals are common to both bus types. Refer to Section 3 Bus Operation for

more information on the two types of buses.

MOTOROLA

MC68341 USER’S MANUAL

2-5

2.2.1 Address Bus

The address bus signals are outputs that define the address of the byte (or the most
significant byte) to be transferred during a bus cycle. The MC68341 places the address on
the bus at the beginning of a bus cycle. The address is valid while AS is asserted.

The address bus consists of the following two groups. Refer to Section 3 Bus Operation
for information on the address bus and its relationship to bus operation.

2.2.1.1 Address Bus (A23—-A0). These three-state outputs (along with A31-A24) provide
the address for the current bus cycle, except in the CPU address space.

2.2.1.2 Address Bus (A31-A24). These pins can be programmed as the most significant
eight address bits, port A parallel 1/0, or interrupt acknowledge signals. These pins can be
used for more than one of their multiplexed functions as long as the external
demultiplexing circuit properly resolves interaction between the different functions.

A31-A24
These pins can function as the most significant eight address bits.

Port A7-A0

These eight pins can serve as a dedicated parallel I/O port. See Section 4 System
Integration Module for more information on programming these pins.

IACK7—-1ACK1

The MC68341 asserts one of these pins to indicate the level of an external interrupt
during an interrupt acknowledge cycle. Peripherals can use the IACKx signals instead of
monitoring the address bus and function codes to determine that an interrupt
acknowledge cycle is in progress and to obtain the current interrupt level.

2.2.2 Address Strobe (AS)

AS is an output timing signal for MC68300 cycles that indicates the validity of both an
address on the address bus and many control signals. AS is asserted approximately one-
half clock cycle after the beginning of a bus cycle.

2.2.3 M68000 Address Strobe (AS68K)

AS68K is an output timing signal for MC68000 cycles that indicates that the information on
the address bus is a valid address.

2.2.4 Data Bus (D15-DO0)

This bidirectional, nonmultiplexed, parallel bus contains the data being transferred to or
from the MC68341. A read or write operation may transfer 8 or 16 bits of data (one or two
bytes) in one bus cycle. During a read cycle, the data is latched by the MC68341 on the
last falling edge of the clock for that bus cycle. For a write cycle, all 16 bits of the data bus
are driven, regardless of the port width or operand size. The MC68341 places the data on
the data bus approximately one-half clock cycle after AS is asserted in a write cycle.

2-6 MC68341 USER’S MANUAL MOTOROLA

2.2.5 Data Strobe (DS)

DS is an output timing signal for M68300 transfers that applies to the data bus. For a read
cycle, the MC68341 asserts DS and AS simultaneously to signal the external device to
place data on the bus. For a write cycle, DS signals to the external device that the data to
be written is valid. The MC68341 asserts DS approximately one clock cycle after the
assertion of AS during a write cycle.

2.2.6 Upper And Lower Data Strobes (UDS, LDS)

These three-state signals and R/W control the flow of data on the data bus for M68000
transfers. Table 2-9 lists the combinations of these signals and the corresponding data on
the bus. UDS and LDS assert with AS68K for read cycles, and one clock after AS for write
cycles. The equations of the data strobes are as follows:

UDS = A0
LDS = A0 x SIZ1 x SIZ0

Table 2-9. Data Strobe Control of Data Bus

uDS LDS R'W D15-D8 D7-DO

Low Low High Valid Data Bits Valid Data Bits
15-8 7-0

High Low High No Valid Data Valid Data Bits

7-0

Low High High Valid Data Bits No Valid Data
15-8

Low Low Low Valid Data Bits Valid Data Bits
15-8 7-0

2.2.7 Byte Write Enable (UWE, LWE)

On a write cycle to a 16-bit port, these active-low output signals indicate when the upper
or lower eight bits of the data bus contain valid data. The upper write enable (UWE)
indicates that the upper eight bits of the data bus contain valid data during a write cycle.
The lower write enable (LWE) indicates that the lower eight bits of the data bus contain
valid data during a write cycle. UWE and LWE assert with DS for an MC68300 write and
with UDS/LDS for a 68000 write cycle. The equations of the byte write enables are as
follows:

UWE = R/W + AS + A0
LWE = R/W + AS + (A0 x SIZ0)

2.2.8 Read/Write (R/W)

This active-high output signal is driven by the bus master to indicate the direction of a data
transfer on the bus. A logic one indicates a read from a slave device; a logic zero indicates
a write to a slave device.

MOTOROLA MC68341 USER’S MANUAL 2-7

2.2.9 Transfer Size (SIZ1, SIZ0)

These output signals are driven by the bus master to indicate the number of operand
bytes remaining to be transferred in the current bus cycle as noted in Table 2-10.

Table 2-10. SIZx Signal Encoding

Siz1 SI1Z0 Transfer Size
0 1 Byte
1 0 Word
1 1 Three Byte
0 0 Long Word

2.2.10 Function Codes (FC3-FCO0)

These signals are outputs that indicate one of 16 address spaces to which the address
applies. Fifteen of these spaces are designated as either user or supervisor, program or
data, and normal or direct memory access (DMA) spaces. One other address space is
designated as CPU space to allow the CPU32 to acquire specific control information not
normally associated with read or write bus cycles. The function code signals are valid
while AS is asserted. See Table 2-11 for more information.

Table 2-11. Address Space Encoding

Function Code Bits

3 2 1 0 Address Spaces

0 0 0 0 Reserved (Motorola)

0 0 0 1 User Data Space

0 0 1 0 User Program Space

0 0 1 1 Reserved (User)

0 1 0 0 Reserved (Motorola)

0 1 0 1 Supervisor Data Space

0 1 1 0 Supervisor Program Space
0 1 1 1 CPU Space

1 X X X DMA Space

2.2.11 Chip Selects (CS7-CS1, CSO0/AVEC)

The chip select output signals (CS7-CS1)
addresses. These signals are inactive high (not high impedance) after reset.

enable peripherals at programmed

CSO is the chip select for a boot ROM containing the reset vector and initialization
program. It functions as the boot chip select immediately after reset. AVEC requests an
automatic vector during an interrupt acknowledge cycle.

2-8

MC68341 USER’S MANUAL

MOTOROLA

2.2.12 Interrupt Request Level (IRQ7 - IRQ1)

These pins can be programmed to be either prioritized interrupt request lines or port B
parallel I/0.

IRQ7 — IRQ1

IRQ7, the highest priority, is nonmaskable. IRQ6-IRQ1 are internally maskable
interrupts. Refer to Section 5 CPU32 for more information on interrupt request lines.

Port B7 —B1

These pins can be used as port B parallel 1/0. Refer to Section 4 System Integration
Module for more information on parallel 1/O signals.

2.3 BUS CONTROL SIGNALS

These signals control the bus transfer operations of the MC68341. Refer to Section 3
Bus Operation for more information on these signals.

2.3.1 Data and Size Acknowledge (DSACK1, DSACKO)

These two active-low input signals allow asynchronous data transfers and dynamic data
bus sizing between the MC68341 and external devices as listed in Table 2-12. During bus
cycles, external devices assert DSACK1 and/or DSACKO as part of the bus protocol.
During a read cycle, this signals the MC68341 to terminate the bus cycle and to latch the
data. During a write cycle, this indicates that the external device has successfully stored
the data and that the cycle may terminate.

Table 2-12. DSACKx Encoding

DSACK1 | DSACKO Result
1 1 Insert Wait States in Current Bus Cycle
1 0 Complete Cycle—Data Bus Port Size Is 8 Bits
0 1 Complete Cycle—Data Bus Port Size Is 16 Bits
0 0 Reserved—Defaults to 16-Bit Port Size. Can Be
Used for 32-Bit DMA Cycles

2.4 BUS ARBITRATION SIGNALS

The following signals are the bus arbitration control signals used to determine the bus
master. Refer to Section 3 Bus Operation for more information on these signals.

2.4.1 Bus Request (BR)

This active-low input signal indicates that an external device needs to become the bus
master.

MOTOROLA MC68341 USER’S MANUAL 2-9

2.4.2 Bus Grant (BG)

Assertion of this active-low output signal indicates that the MC68341 has relinquished the
bus.

2.4.3 Bus Grant Acknowledge (BGACK)

Assertion of this active-low input indicates that an external device has become the bus
master.

2.4.4 Read-Modify-Write Cycle (RMC/RTCOUT)

RMC is an output signal that identifies the bus cycle as part of an indivisible read-modify-
write operation. It remains asserted during all bus cycles of the read-modify-write
operation to indicate that bus ownership cannot be transferred.

RTCOUT is an output signal from the real-time clock in the SIM41.

2.5 EXCEPTION CONTROL SIGNALS

These signals are used by the MC68341 to recover from an exception.

2.5.1 Reset (RESET)

This active-low, open-drain, bidirectional signal is used to initiate a system reset. An
external reset signal (as well as a reset from the SIM41) resets the MC68341 and all
external devices. A reset signal from the CPU32 (asserted as part of the RESET
instruction) resets external devices; the internal state of the CPU32 is not affected. The
on-chip modules are reset, except for the SIM41. However, the module configuration
register for each on-chip module is not altered. When asserted by the MC68341, this
signal is guaranteed to be asserted for a minimum of 512 clock cycles. Refer to Section 3
Bus Operation for a description of bus reset operation and Section 5 CPU32 for
information about the reset exception.

2.5.2 Halt (HALT)

This active-low, open-drain, bidirectional signal is asserted to suspend external bus
activity, to request a retry when used with BERR, or to perform a single-step operation. As
an output, HALT indicates a double bus fault by the CPU32. Refer to Section 3 Bus
Operation for a description of the effects of HALT on bus operation.

2.5.3 Bus Error (BERR)

This active-low input signal indicates that an invalid bus operation is being attempted or,
when used with HALT, that the processor should retry the current cycle. Refer to Section
3 Bus Operation for a description of the effects of BERR on bus operation.

2-10 MC68341 USER’S MANUAL MOTOROLA

2.6 CLOCK SIGNALS

These signals are used by the MC68341 for controlling or generating the system clocks.
See Section 4 System Integration Module for more information on the various clocking
methods and frequencies.

2.6.1 System Clock (CLKOUT)

This output signal is the system clock output and is used as the bus timing reference by
external devices. CLKOUT can be varied in frequency or slowed in low power stop mode
to conserve power.

2.6.2 Crystal Oscillator (EXTAL, XTAL)

These two pins are the connections for an external crystal to the internal oscillator circuit.

2.6.3 External Clock (EXTCLK)

This pin used to connect an external clcok source. This input is divided by two until the V-
bit in the SYNCR is set.

2.6.4 External Filter Capacitor (XFC)

This pin is used to add an external capacitor to the filter circuit of the phase-locked loop.
The capacitor should be connected between XFC and VCCSYN.

2.6.5 Clock Mode Select (MODCK, Port B0)

This pin selects the source of the internal system clock during reset. After reset, it can be
programmed to be port B parallel 1/O.

MODCK

The state of this active-high input signal during reset selects the source of the internal
system clock. If MODCK is high during reset, the internal voltage-controlled oscillator
(VCO) furnishes the system clock in crystal mode. If MODCK is low during reset, an
external clock source at the EXTCLK pin furnishes the system clock output in external
clock mode.

Port BO
This pin can be used as a port B parallel I/O.

2.7 INSTRUMENTATION AND EMULATION SIGNALS

These signals are used for test or software debugging. See Section 5 CPU32 for more
information on these signals and background debug mode.

2.7.1 Instruction Fetch (IFETCH/ DSI)

This pin functions as IFETCH in normal operation and as DSI in background debug mode.

MOTOROLA MC68341 USER’S MANUAL 2-11

TFETCH

This active-low output signal indicates when the CPU32 is performing an instruction
word prefetch and when the instruction pipeline has been flushed.

DSI

This development serial input signal helps to provide serial communications for
background debug mode.

2.7.2 Instruction Pipe (IPIPE/DSO)
This pin functions as IPIPE in normal operation and as DSO in background debug mode.

IPIPE

This active-low output signal is used to track movement of words through the instruction
pipeline.

DSO

This development serial output signal helps to provide serial communications for
background debug mode.

2.7.3 Breakpoint (BKPT/DSCLK)

This pin functions as BKPT in normal operation and as DSCLK in background debug
mode.

BKPT
This active-low input signal is used to signal a hardware breakpoint to the CPU32.

DSCLK

This development serial clock input helps to provide serial communications for
background debug mode.

2.7.4 Freeze (FREEZE)

Assertion of this active-high output signal indicates that the CPU32 has acknowledged a
breakpoint and has initiated background mode operation.

2.8 DMA MODULE SIGNALS

The following signals are used by the direct memory access (DMA) controller module to
provide external handshake for either a source or destination. See Section 6 DMA
Module for additional information on these signals.

2.8.1 DMA Request (DREQ2, DREQ1)

This active-low input is asserted by a peripheral device to request an operand transfer
between that peripheral and memory. The assertion of DREQx starts the DMA process.

2-12 MC68341 USER’S MANUAL MOTOROLA

The assertion level in external burst mode is level sensitive; in external cycle steal mode,
it is falling-edge sensitive.

2.8.2 DMA Acknowledge (DACK2, DACK1)

DACKXx is asserted by the DMA to signal to a peripheral that an operand is being
transferred in response to a previous transfer request. A delayed version of DACKXx is
provided to allow operation with differing speed memories. The delayed form of DACK2
and DACK1 can be selected by setting bits 4 and 5 in the PPARC (See Section 6 DMA
Controller Module).

2.8.3 DMA Done (DONE2, DONE1)

This active-low output signal is asserted by the DMA or a peripheral device during any
DMA bus cycle to indicate that the last data transfer is being performed. DONEXx is an
active input in any mode. As an output, it is only active in external request mode. An
external pullup resistor is required even during operation in the internal request mode.

2.8.4 Data Transfer Complete (DTC)

This active-low bidirectional signal is asserted on all bus cycles (DMA and CPU initiated)
as an extra signal in standard bus timing. DTC is multiplexed with FC3, and is selected by
setting PPARC bit 3.

2.8.5 DMA Ready (RDY2, RDY?)

These active-low bidirectional signal is only asserted on DMA single-address transfers to
indicate that the device has supplied data or is ready to receive data from memory. RDY2
Is multiplexed with TIN, and RDY1 is multiplexed with TGATE. RDY2 is selected by setting
PPARC bit 0, and RDY1 is selected by setting PPARC bit 1.

2.9 SERIAL MODULE SIGNALS

The following signals are used by the serial module for data and clock signals. See
Section 7 Serial Module for more information on these signals.

2.9.1 Serial Crystal Oscillator (X2, X1)

These pins furnish the connection to a crystal or external clock, which must be supplied
when using the baud rate generator. An external clock can be connected to the X1 pin; X2
is left floating in this case.

2.9.2 Serial External Clock Input (SCLK)

This input can be used as the external clock input for channel A or channel B, bypassing
the baud rate generator.

MOTOROLA MC68341 USER’S MANUAL 2-13

2.9.3 Receive Data (RxDA, RxDB)

These signals are the receiver serial data input for each channel. Data received on this
signal is sampled on the rising edge of the clock source, with the least significant bit
received first.

2.9.4 Transmit Data (TxDA, TxDB)

These signals are the transmitter serial data output for each channel. The output is held
high (‘'mark’' condition) when the transmitter is disabled, idle, or operating in the local
loopback mode. Data is shifted out on this signal at the falling edge of the clock source,
with the least significant bit transmitted first.

2.9.5 Clear to Send (CTSA, CTSB)

These active-low signals can be programmed as the clear-to-send inputs for each
channel.

2.9.6 Request to Send (RTSA/OPO, RTSB / OP1)

These active-low signals can be programmed as request-to-send outputs or used as
discrete outputs.

RTSB, RTSA
When used for this function, these signals function as the request-to-send outputs.

OP1, OPO

When used for this function, these outputs are controlled by the value of bit 1 and bit O,
respectively, in the output port data registers.

2.9.7 Transmitter Ready (TxRDYA/OP6)

This active-low output can be programmed as the channel A transmitter ready status
indicator or used as a discrete output.

TxRDYA

When used for this function, this signal reflects the complement of the status of bit 2 of
the channel A status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the transmitter contains a character.

OP6

When used for this function, this output is controlled by bit 6 in the output port data
registers.

2.9.8 Receiver Ready (RxRDYA/FFULLA/ OP4)

This active-low output signal can be programmed as the channel A receiver ready,
channel A FIFO full indicator, or a dedicated parallel output.

2-14 MC68341 USER’S MANUAL MOTOROLA

RxRDYA

When used for this function, this signal reflects the complement of the status of bit 1 of
the interrupt status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the receiver contains a character.

FFULLA

When used for this function, this signal reflects the complement of the status of bit 1 of
the interrupt status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the receiver FIFO is full.

OP4

When used for this function, this output is controlled by bit 4 in the output port data
registers.

2.10 QUEUED SERIAL MODULE SIGNALS

The following external signals are used by the queued serial peripheral module. See
Section 9 QSPM for additional information on these signals.

2.10.1 Master In Slave Out (MISO)

This bidirectional signal can be the serial data input to the QSPI when the QSPI is the
master device, or the the serial data output when using an external master.

2.10.2 Master Out Slave In (MOSI)

This bidirectional signal can be the serial data input to the QSPI when using an external
master, or the the serial data output when the QSPI is the master device.

2.10.3 QSPI Serial Clock (QSCLK)
This input is the external clock input for the QSPI.

2.10.4 QSPI Peripheral Chip Select (PCS1, PCSO0)

These output signals are the chip selects for the QSPI.

2.11 TIMER SIGNALS

The following external signals are used by the timer modules. See Section 8 Timer
Modules for additional information on these signals.

2.11.1 Timer Gate (TGATE2)

This active-low input can be programmed to enable and disable the counters and
prescalers. TGATE can also be programmed as a simple input.

MOTOROLA MC68341 USER’S MANUAL 2-15

2.11.2 Timer Input (TIN)

This input can be programmed as a clock that causes events to occur in the counters and
prescalers.

2.11.3 Timer Output (TOUT)

This output drives the various output waveforms generated by the timers.

2.12 TEST SIGNALS

The following signals are used with the on-board test logic defined by the IEEE 1149.1
standard. See Section 10 IEEE 1149.1 Test Access Port for more information on the use
of these signals.

2.12.1 Test Clock (TCK)
This input provides a clock for on-board test logic defined by the IEEE 1149.1 standard.

2.12.2 Test Mode Select (TMS)

This input controls test mode operations for on-board test logic defined by the IEEE
1149.1 standard.

2.12.3 Test Data In (TDI)

This input is used for serial test instructions and test data for on-board test logic defined
by the IEEE 1149.1 standard.

2.12.4 Test Data Out (TDO)

This output is used for serial test instructions and test data for on-board test logic defined
by the IEEE 1149.1 standard.

2.13 REAL TIME CLOCK SIGNALS
2.13.1 Battery Switch (BSW)

This signal determines whether the entire chip is powered from V¢ or only the real-time
clock is powered from VBATT or VCC. See Section 4 System Integration Module for
more information.

2.13.2 Battery Voltage (VBATT)

This pin supplies power to maintain the real-time clock when the rest of the chip is
powered down. See Section 4 System Integration Module for more information.

2-16 MC68341 USER’S MANUAL MOTOROLA

2.13.3 Real Time Clock Output (RMC/RTCOUT)

RTCOUT is an output signal that is selected by setting PPARC bit 2. The function is
defined by RCR bits 3 and 4.

2.14 SYSTEM POWER AND GROUND (Vcc AND GND)

These pins provide system power and ground to the MC68341. Multiple pins are provided
for adequate current capability. All power supply pins must have adequate bypass
capacitance for high-frequency noise suppression.

MOTOROLA MC68341 USER’S MANUAL 2-17

SECTION 3
BUS OPERATION

This section provides a functional description of the bus, the signals that control it, and the
bus cycles provided for data transfer operations. It also describes the error and halt
conditions, bus arbitration, and reset operation. Operation of the external bus is the same
whether the MC68341 or an external device is the bus master; the names and
descriptions of bus cycles are from the viewpoint of the bus master. For exact timing
specifications, refer to Section 12 Electrical Characteristics.

The MC68341 architecture supports byte, word, and long-word operands allowing access
to 8- and 16-bit data ports through the use of asynchronous cycles controlled by the
S1Z1/S1Z0 outputs and DSACK1/DSACKO inputs. The MC68341 requires word and long-
word operands to be located in memory on word boundaries. The only type of transfer that
can be performed to an odd address is a single-byte transfer, referred to as an odd-byte
transfer. For an 8-bit port, multiple bus cycles may be required for an operand transfer due
to either misalignment or a word or long-word operand.

The MC68341 also supports basic MC68000 bus interface timing compatibility, in addition
to the normal M68300 bus interface timing used by other members of the M68300 family
such as the MC68332 and MC68340. This 68000 bus support allows ASICs and other
custom logic developed for MC68000-style buses to more easily migrate to the MC68341.
In this section, reference to 68000 bus timing refers to bus cycle timing used by the
MC68000, MC68EC000, MC68HC000, MC68HC001, MC68008, and MC68010.

3.1 68000 BUS MODE

The MC68341 bus interface is dynamically selectable between M68300 and 68000 bus
timing, and is individually controlled for each chip select by programming the Bus Select
Register (BSR) in the SIM41. Accesses which match a chip select configured for 68000
bus timing cause an 68000 bus access. All other accesses use normal M68300 bus cycle
signals and timing.

NOTE

Bus cycle examples in this section show normal M68300 bus
cycle timing unless specifically noted as an 68000 bus cycle.

The three strobe signals AS68K, UDS, and LDS are dedicated for 68000 bus cycles.
These signals assert only for 68000 bus cycles, while AS and DS assert only for M68300
bus cycles. The timing of shared signals CSx, UWE, and LWE is modified depending on

MOTOROLA MC68341 USER’S MANUAL 31

selection of the bus cycle type. All other bus interface signals retain the same timing and
functionality between the two bus timing modes.

The dual nature of the MC68341 bus interface can result in 68000 bus functionality which
is not supported by the original MC68000. Designs which are intended to provide reverse
compatibility to the MC68000 should not utilize this superset functionality. The following
list notes differences between the 68000 bus timing implemented on the MC68341 and
bus timing on the MC68000.

» Address strobe AS68K negates between the read and write cycles of a read-modify-
write operation.

« R/W transitions with address timing instead of with address strobe, and does not
negate between writes.

* On write cycles, the data bus is driven 1/2 clock sooner (during S2 rather than S3).

 DSACKx and BERR can be recognized on the falling edge of state S2 (one clock
earlier than on the MC68000), allowing a three clock 68000 bus cycle.

» Data strobes and write enables are asserted for aproximately one-half clock for a
three-clock write cycle.

* 68000 chip selects can be programmed for zero wait-state (three clock bus cycles)
internal termination. Programming a 68000 chip select for fast termination (two clock
bus cycles) results in undefined strobe timing.

» The MC68341 recognizes late bus error and late retry on 68000 accesses.

* The MC68341 supports dynamic bus sizing on 68000 accesses, allowing both 8-bit
(DSACKO termination) and 16-bit (DSACK1 termination) port sizes. For an 8-bit port,
UDS and LDS must be combined externally to obtain a single 68000 data strobe
signal, since DS does not assert for 68000 bus accesses.

* 68000 chip selects are programmed with AS68K timing instead of UDS/LDS. These
selects contain the byte address information of UDS/LDS.

» Upper and lower write enables (UWE and LWE) are provided to support a glueless
interface to external SRAM.

« DACKXx asserts with AS timing for both M68300 and 68000 bus cycles.

3.2 BUS TRANSFER SIGNALS

The bus transfers information between the MC68341 and external memory or a peripheral
device. External devices can accept or provide 8 bits or 16 bits in parallel and must follow
the handshake protocol described in this section. The maximum number of bits accepted
or provided during a bus transfer is defined as the port width. The MC68341 contains an
address bus that specifies the address for the transfer and a data bus that transfers the
data. Control signals indicate the beginning and type of the cycle as well as the address
space and size of the transfer. The selected device then controls the length of the cycle
with the signal(s) used to terminate the cycle. Strobe signals, one for the address bus and
another for the data bus, indicate the validity of the address and provide timing information
for the data. Both asynchronous and synchronous operation is possible for any port width.

32 MC68341 USER’S MANUAL MOTOROLA

In asynchronous operation, the bus and control input signals are internally synchronized to
the MC68341 clock, introducing a delay. This delay is the time required for the MC68341
to sample an input signal, synchronize the input to the internal clocks, and determine
whether it is high or low. In synchronous mode, the bus and control input signals must be
timed to setup and hold times. Since no synchronization is needed, bus cycles can be
completed in three clock cycles in this mode. Additionally, using the fast-termination option
of the chip select signals, two-clock operation is possible.

Furthermore, for all inputs, the MC68341 latches the level of the input during a sample
window around the falling edge of the clock signal. This window is illustrated in Figure 3-1,
where tgy and th are the input setup and hold times, respectively. To ensure that an input
signal is recognized on a specific falling edge of the clock, that input must be stable during
the sample window. If an input makes a transition during the window time period, the level
recognized by the MC68341 is not predictable; however, the MC68341 always resolves
the latched level to either a logic high or low before using it. In addition to meeting input
setup and hold times for deterministic operation, all input signals must obey the protocols
described in this section.

tsy—> ~<—

<—tp

CLKOUT \

I_'_l

SAMPLE WINDOW

Figure 3-1. Input Sample Window

NOTE

The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

3.2.1 Bus Control Signals

The MC68341 initiates a bus cycle by driving the A31-A0, SIZx, FCx, and R/W outputs. At
the beginning of a bus cycle, SIZ1 and SI1Z0 are driven with FC3—-FCO0. SIZ1 and SIZ0
indicate the number of bytes remaining to be transferred during an operand cycle
(consisting of one or more bus cycles). Table 3-1 lists the encoding of the SIZx signal.
These signals are valid while AS or AS68K is asserted. The R/W signal determines the

MOTOROLA MC68341 USER’S MANUAL 33

direction of the transfer during a bus cycle. Driven at the beginning of a bus cycle, R/W is
valid while AS or AS68K is asserted. R/W only transitions when a write cycle is preceded
by a read cycle or vice versa. The signal may remain low for consecutive write cycles. The
RMC signal is asserted at the beginning of the first bus cycle of a read-modify-write
operation and remains asserted until completion of the final bus cycle of the operation.

Table 3-1. SIZx Signal Encoding

Siz1 SI1Z0 Transfer Size
0 1 Byte
1 0 Word
1 1 Three Bytes
0 0 Long Word

3.2.2 Function Code Signals

FC3-FCO are outputs that indicate one of 16 address spaces to which the address
applies. Fifteen of these spaces are designated as either user or supervisor, program or
data, and normal or direct memory access (DMA) spaces. One other address space is
designated as CPU space to allow the CPU32 to acquire specific control information not
normally associated with read or write bus cycles. FC3—-FCO are valid while AS or AS68K
is asserted.

Function codes (see Table 3-2) can be considered as extensions of the 32-bit address
that can provide up to 16 different 4-Gbyte address spaces. Function codes are
automatically generated by the CPU32 to select address spaces for data and program at
both user and supervisor privilege levels, a CPU address space for processor functions,
and an alternate master address space. User programs access only their own program
and data areas to increase protection of system integrity and can be restricted from
accessing other information. The S-bit in the CPU32 status register is set for supervisor
accesses and cleared for user accesses to provide differentiation. Refer to 3.5 CPU
Space Cycles for more information.

Function code FC3 is multiplexed with DTC, and the ability to use FC3 is lost if DTC is
selected. If DMA transfers are programmed with FC3 set, this signal can be used
externally to distinguish DMA bus activity from CPU accesses.

34 MC68341 USER’S MANUAL MOTOROLA

Table 3-2. Address Space Encoding

Function Code Bits
3 2 1 0 Address Spaces
0 0 0 0 Reserved (Motorola)
0 0 0 1 User Data Space
0 0 1 0 User Program Space
0 0 1 1 Reserved (User)
0 1 0 0 Reserved (Motorola)
0 1 0 1 Supervisor Data Space
0 1 1 0 Supervisor Program Space
0 1 1 1 CPU Space
1 X X X DMA Space

3.2.3 Address Bus (A31-A0)

These signals are outputs that define the address of the byte (or the most significant byte)
to be transferred during a bus cycle. The MC68341 places the address on the bus at the
beginning of a bus cycle. The address is valid while AS or AS68K is asserted.

3.2.4 Address Strobe (AS)

This output timing signal indicates the validity of many control signals and the address on
the address bus. AS is asserted for M68300 bus cycles approximately one-half clock cycle
after the beginning of a bus cycle. AS remains negated for a 68000 bus cycle.

3.2.5 68000 Address Strobe (AS68K)

AS68K is asserted for 68000 bus cycles approximately one clock cycle after the beginning
of a bus cycle. AS68K remains negated for normal M68300 bus cycles.

3.2.6 Data Bus (D15-DO0)

This bidirectional, nonmultiplexed, parallel bus contains the data being transferred to or
from the MC68341. A read or write operation may transfer 8 or 16 bits of data (one or two
bytes) in one bus cycle. During a read cycle, the data is latched by the MC68341 on the
last falling edge of the clock for that bus cycle. For a write cycle, all 16 bits of the data bus
are driven, regardless of the port width or operand size. The MC68341 places the data on
the data bus approximately one-half clock cycle after AS is asserted in a write cycle, or at
the same time as AS68K is asserted.

3.2.7 Data Strobe (DS)

DS is an M68300 output timing signal that applies to the data bus. For an M68300 read
cycle, the MC68341 asserts DS and AS simultaneously to signal the external device to
place data on the bus. For an M68300 write cycle, DS signals to the external device that
the data to be written is valid. The MC68341 asserts DS approximately one clock cycle

MOTOROLA MC68341 USER’S MANUAL 35

after the assertion of AS during a write cycle. DS remains negated during 68000 bus
cycles.

3.2.8 Upper and Lower Data Strobes (UDS and LDS)

UDS and LDS are asserted for the active bytes of a 68000 bus cycle, one-half clock later
than DS on the corresponding M68300 bus cycle. UDS is asserted to select the upper 8
bits of the data bus (D15-D0) and LDS is asserted for the lower 8 bits (D8-D0). UDS and
LDS remain negated for normal M68300 bus cycles.

3.2.9 Upper and Lower Write Enables (UWE and LWE)

On a write cycle to a 16-bit port, these active-low output signals indicate when the upper
or lower eight bits of the data bus contain valid data. The upper write enable (UWE)
indicates that the upper eight bits of the data bus contain valid data during a write cycle.
The lower write enable (LWE) indicates that the lower eight bits of the data bus contain
valid data during a write cycle. The equations of the byte write enables are as follows:

68300 bus cycle: UWE = R/W + DS + A0
LWE = R/W + DS + (A0 » SIZ0)

68000 bus cycle: UWE = R/W + UDS
LWE = R/W + LDS

3.2.10 Data Transfer Complete (DTC)

This active-low output signal indicates the last clock of a normally terminated bus cycle.
DTC does not assert for bus cycles terminated with normal bus error or normal retry
terminations, but does assert for late bus error and late retry.

3.2.11 Bus Cycle Termination Signals

The following signals can terminate a bus cycle.

3.2.11.1 DATA TRANSFER AND SIZE ACKNOWLEDGE SIGNALS (DSACK1 AND
DSACKQO0). During bus cycles, external devices assert DSACK1 and/or DSACKO as part of
the bus protocol. During a read cycle, this signals the MC68341 to terminate the bus cycle
and to latch the data. During a write cycle, this indicates that the external device has
successfully stored the data and that the cycle may terminate. These signals also indicate
to the MC68341 the size of the port for the bus cycle just completed (see Table 3-3). Refer
to 3.4.1 Read Cycle for timing relationships of DSACK1 and DSACKO.

Additionally, the system integration module (SIM41) chip select address mask register can
be programmed to internally generate DSACK1 and DSACKO for external accesses,
eliminating logic required to generate these signals. However, if external DSACKXx signals
are returned earlier than indicated by the EDS and DD bits in the chip select address
mask register, the cycle will terminate sooner than programmed. Refer to Section 4
System Integration Module for additional information. The SIM41 can alternatively be

36 MC68341 USER’S MANUAL MOTOROLA

programmed to generate a fast termination cycle, providing a two-cycle external access.
Refer to 3.3.6 Fast Termination Cycles for additional information on these cycles.

3.1.11.2 BUS ERROR (BERR). This signal is also a bus cycle termination indicator and
can be used in the absence of DSACKXx to indicate a bus error condition. BERR can also
be asserted in conjunction with DSACKXx to indicate a bus error condition, provided it
meets the appropriate timing described in this section and in Section 12 Electrical
Characteristics. Additionally, BERR and HALT can be asserted together to indicate a
retry termination. Refer to 3.6 Bus Exception Control Cycles for additional information
on the use of these signals.

The internal bus monitor can be used to generate an internal bus error signal for internal
and internal-to-external transfers. If the bus cycles of an external bus master are to be
monitored, external BERR generation must be provided since the internal bus error
monitor has no information about transfers initiated by an external bus master.

3.2.11.3 AUTOVECTOR (AVEC).This signal can be used to terminate interrupt
acknowledge cycles, indicating that the MC68341 should internally generate a vector
(autovector) number to locate an interrupt handler routine. AVEC can be generated either
externally or internally by the SIM41 (see Section 4 System Integration Module for
additional information). AVEC is ignored during all other bus cycles.

3.3 DATA TRANSFER MECHANISM

The MC68341 supports byte, word, and long-word operands, allowing access to 8- and
16-bit data ports through the use of asynchronous cycles controlled by DSACK1 and
DSACKO. The MC68341 also supports byte, word, and long-word operands, allowing
access to 8- and 16-bit data ports through the use of synchronous cycles controlled by the
fast termination capability of the SIM41.

3.3.1 Dynamic Bus Sizing

The MC68341 dynamically interprets the port size of the addressed device during each
bus cycle, allowing operand transfers to or from 8- and 16-bit ports. During an operand
transfer cycle, the slave device signals its port size (byte or word) and indicates
completion of the bus cycle to the MC68341 through the use of the DSACKXx inputs. Refer
to Table 3-3 for DSACKx encoding.

MOTOROLA MC68341 USER’S MANUAL 37

Table 3-3. DSACKx Encoding

DSACK1 DSACKO Result
1 1
(Negated) | (Negated) | Insert Wait States in Current Bus Cycle
1 0
(Negated) | (Asserted) | Complete Cycle—Data Bus Port Size Is 8 Bits
0 1
(Asserted) | (Negated) | Complete Cycle—Data Bus Port Size Is 16 Bits
0 0 Reserved—Defaults to 16-Bit Port Size Can Be
(Asserted) | (Asserted) | Used for 32-Bit DMA cycles

For example, if the MC68341 is executing an instruction that reads a long-word operand
from a 16-bit port, the MC68341 latches the 16 bits of valid data and runs another bus
cycle to obtain the other 16 bits. The operation from an 8-bit port is similar, but requires
four read cycles. The addressed device uses DSACKXx to indicate the port width. For
instance, a 16-bit device always returns DSACKXx for a 16-bit port (regardless of whether
the bus cycle is a byte or word operation).

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from
a particular port size be fixed. A 16-bit port must reside on data bus bits 15-0, and an 8-bit
port must reside on data bus bits 15-8. This requirement minimizes the number of bus
cycles needed to transfer data to 8- and 16-bit ports and ensures that the MC68341
correctly transfers valid data.

The MC68341 always attempts to transfer the maximum amount of data on all bus cycles;
for a word operation, it always assumes that the port is 16 bits wide when beginning the
bus cycle. The bytes of operands are designated as shown in Figure 3-2. The most
significant byte of a long-word operand is OPO, and OP3 is the least significant byte. The
two bytes of a word-length operand are OPO (most significant) and OP1. The single byte
of a byte-length operand is OPO. These designations are used in the figures and
descriptions that follow.

Figure 3-2 shows the required organization of data ports on the MC68341 bus for both
8- and 16-bit devices. The four bytes shown in Figure 3-2 are connected through the
internal data bus and data multiplexer to the external data bus. The data multiplexer
establishes the necessary connections for different combinations of address and data
sizes. The multiplexer takes the two bytes of the 16-bit bus and routes them to their
required positions. The positioning of bytes is determined by the SI1Z1/S1Z0 and A0
outputs. The SIZ1/S1Z0 outputs indicate the number of bytes to be transferred during the
current bus cycle (see Table 3-1). The number of bytes transferred during a read or write
bus cycle is equal to or less than the size indicated by the SI1Z1/S1Z0 outputs, depending
on port width. For example, during the first bus cycle of a long-word transfer to a word
port, the size outputs indicate that four bytes are to be transferred although only two bytes
are moved on that bus cycle.

The address line AO also affects the operation of the data multiplexer. During an operand
transfer, A31-Al indicate the word base address of that portion of the operand to be

38 MC68341 USER’S MANUAL MOTOROLA

accessed, and AO indicates the byte offset from the base (i.e., either odd or even byte).
Figure 3-2 lists the bytes required on the data bus for read cycles. The entries shown as
OPn are portions of the requested operand that are read or written during that bus cycle
and are defined by S1Z1/SIZ0 and A0 for the bus cycle.

OPERAND | OPO OP1 oP2 OP3
31 OPO OP1 OP2
23 OPO OP1
15 OPO

ST

I I I

I I I

: I :

Case Transfer Case : Data Bus !

SIZ1 SIZ0 A0 DSACK1 DSACKO D15 D8 D7 DO
(@) BytetoByte 0 1 X 1 0 OPO (OP0)
(b) Byte to Word (Even) 0 1 0 0 X 0P0 (OP0)
(c) BytetoWord (Odd) 0 1 1 0 X (OP0) 0P
(d) Word to Byte (Aligned) 1 0 0 1 0 OP0 (OP1)
() Word to Word (Aligned) 1 0 0 0 X OP0 0OP1
() Long Word to Byte (Aligned) 0 0 0 1 0 OPO (OP1)
(@ Long Word to Word (Aligned) 0 0 0 0 X 0P 0P1

NOTES:
1. Operands in parentheses are ignored by the MC68340 during read cycles.
2. A 3-byte to byte transfer does occur as the second byte transfer of a long-word to byte port transfer.

Figure 3-2. MC68341 Interface to Various Port Sizes

3.3.2 Misaligned Operands

In this architecture, the basic operand size is 16 bits. Operand misalignment refers to
whether an operand is aligned on a word boundary or overlaps the word boundary,
determined by address line AO. When AQ is low, the address is even and is a word and
byte boundary. When AO is high, the address is odd and is a byte boundary only. A byte
operand is properly aligned at any address; a word or long-word operand is misaligned at
an odd address.

At most, each bus cycle can transfer a word of data aligned on a word boundary. If the
MC68341 transfers a long-word operand over a 16-bit port, the most significant operand
word is transferred on the first bus cycle, and the least significant operand word is
transferred on a following bus cycle.

The CPU32 restricts all operands (both data and instructions) to be aligned. That is, word
and long-word operands must be located on a word or long-word boundary, respectively.
The only type of transfer that can be performed to an odd address is a single-byte
transfer, referred to as an odd-byte transfer. If a misaligned access is attempted, the
CPU32 generates an address error exception, and enters exception processing. Refer to
Section 5 CPU32 for more information on exception processing.

MOTOROLA MC68341 USER’S MANUAL 39

3.3.3 Operand Transfer Cases
The following cases are examples of the allowable alignments of operands to ports.
3.3.3.1 BYTE OPERAND TO 8-BIT PORT, ODD OR EVEN (A0 = X). The MC68341

drives the address bus with the desired address and the SIZx pins to indicate a single-
byte operand.

BYTEOPERAND [©OPO |

7 0

DATA BUS DI5 D8 D7 DO sizL SIzo A0 DSACK1 DSACKO
cvctel | opo | (opPo) | 0 1 X 1 0

For a read operation, the slave responds by placing data on bits 15-8 of the data bus,
asserting DSACKO and negating DSACK1 to indicate an 8-bit port. The MC68341 then
reads the operand byte from bits 15-8 and ignores bits 7-0.

For a write operation, the MC68341 drives the single-byte operand on both bytes of the
data bus because it does not know the port size until the DSACKx signals are read. The
slave device reads the byte operand from bits 15-8 and places the operand in the
specified location. The slave then asserts DSACKO to terminate the bus cycle.

3.3.3.2 BYTE OPERAND TO 16-BIT PORT, EVEN (AO = 0). The MC68341 drives the
address bus with the desired address and the SIZx pins to indicate a single-byte operand.

BYTEOPERAND [©OPO |

7 0

DATA BUS DI5 D8 D7 DO SizL SIz0 A0 DSACKL1 DSACKO
cvctel | opo [(opo) | 0 1 0 0 X

For a read operation, the slave responds by placing data on bits 15-8 of the data bus and
asserting DSACK1 to indicate a 16-bit port. The MC68341 then reads the operand byte
from bits 15-8 and ignores bits 7-0.

For a write operation, the MC68341 drives the single-byte operand on both bytes of the
data bus because it does not know the port size until the DSACKx signals are read. The
slave device reads the operand from bits 15-8 of the data bus and uses the address to
place the operand in the specified location. The slave then asserts DSACK1 to terminate
the bus cycle.

310 MC68341 USER’S MANUAL MOTOROLA

3.3.3.3 BYTE OPERAND TO 16-BIT PORT, ODD (A0 = 1). The MC68341 drives the
address bus with the desired address and the SIZx pins to indicate a single-byte operand.

BYTE OPERAND B
7 0
DATA BUS D15 D8 D7 DO Siz1 SIzo A0 DSACKL DSACKO
CYCLEL | (opo) | oro | 0 1 1 0 X

For a read operation, the slave responds by placing data on bits 7-0 of the data bus and
asserting DSACK1 to indicate a 16-bit port. The MC68341 then reads the operand byte
from bits 7-0 and ignores bits 15-8.

For a write operation, the MC68341 drives the single-byte operand on both bytes of the
data bus because it does not know the port size until the DSACKx signals are read. The
slave device reads the operand from bits 7-0 of the data bus and uses the address to
place the operand in the specified location. The slave then asserts DSACK1 to terminate
the bus cycle.

3.3.3.4 WORD OPERAND TO 8-BIT PORT, ALIGNED. The MC68341 drives the address
bus with the desired address and the SIZx pins to indicate a word operand.

WORDOPERAND [op0 | opP1 |
15 * 87 0
DATA BUS DI5 D8 D7 DO Sizt SIzo A0 DSACK1 DSACKO
CYCLE1 | OPO (OP1) 1 0 0 1 0
CYCLE2 | OPL (OP1) 0 1 1 1 0

For a read operation, the slave responds by placing the most significant byte of the
operand on bits 15-8 of the data bus and asserting DSACKO to indicate an 8-bit port. The
MC68341 reads the most significant byte of the operand from bits 15-8 and ignores bits
7-0. The MC68341 then decrements the transfer size counter, increments the address,
and reads the least significant byte of the operand from bits 15-8 of the data bus.

For a write operation, the MC68341 drives the word operand on bits 15-0 of the data bus.
The slave device then reads the most significant byte of the operand from bits 15-8 of the
data bus and asserts DSACKO to indicate that it received the data but is an 8-bit port. The
MC68341 then decrements the transfer size counter, increments the address, and writes
the least significant byte of the operand to bits 15-8 of the data bus.

MOTOROLA MC68341 USER’S MANUAL 311

3.3.3.5 WORD OPERAND TO 16-BIT PORT, ALIGNED. The MC68341 drives the
address bus with the desired address and the size pins to indicate a word operand.

WORDOPERAND [op0 [oP1 |
15 i ¢ 0
DATA BUS DI5 D8D7 DO siz1 Siz0 A0 DSACK1 DSACKO
Ccycte1 [opo [or1 | 1 0 0 0 X

For a read operation, the slave responds by placing the data on bits 15-0 of the data bus
and asserting DSACK1 to indicate a 16-bit port. When DSACK1 is asserted, the MC68341
reads the data on the data bus and terminates the cycle.

For a write operation, the MC68341 drives the word operand on bits 15-0 of the data bus.
The slave device then reads the entire operand from bits 15-0 of the data bus and asserts
DSACK1 to terminate the bus cycle.

3.3.3.6 LONG-WORD OPERAND TO 8-BIT PORT, ALIGNED. The MC68341 drives the
address bus with the desired address and the SIZx pins to indicate a long-word operand.

LONG-WORDOPERAND | oOP0 [op1 | op2 | op3 |

31 ¢ 23 15 7 0
DATA BUS D15 D8 D7 DO Siz1 SIZ0 A0 DSACKL DSACKO
CYCLE 1 OP0 (OP1) 0 0 0 1 0
CYCLE 2 oP1 (OP1) 1 1 1 1 0
CYCLE 3 oP2 (OP3) 1 0 0 1 0
CYCLE 4 oP3 (OP3) 0 1 1 1 0

For a read operation, shown in Figure 3-3, the slave responds by placing the most
significant byte of the operand on bits 15-8 of the data bus and asserting DSACKO to
indicate an 8-bit port. The MC68341 reads the most significant byte of the operand (byte
0) from bits 15-8 and ignores bits 7-0. The MC68341 then decrements the transfer size
counter, increments the address, initiates a new cycle, and reads byte 1 of the operand
from bits 15-8 of the data bus. The MC68341 repeats the process of decrementing the
transfer size counter, incrementing the address, initiating a new cycle, and reading a byte
to transfer the remaining two bytes.

For a write operation, shown in Figure 3-4, the MC68341 drives the two most significant
bytes of the operand on bits 15-0 of the data bus. The slave device then reads only the
most significant byte of the operand (byte 0) from bits 15-8 of the data bus and asserts
DSACKO to indicate reception and an 8-bit port. The MC68341 then decrements the
transfer size counter, increments the address, and writes byte 1 of the operand to bits
15-8 of the data bus. The MC68341 continues to decrement the transfer size counter,
increment the address, and write a byte to transfer the remaining two bytes to the slave
device.

312 MC68341 USER’S MANUAL MOTOROLA

CLKOUT J
A31-A0

FC3-FCO

SIZ0

SIZ1

DSACKO

DSACK1

S0

S2 S4

S0

S2

S4

SO

S2

S4

SO

S2

S4

™~

™~

/))\XXE

S

™~

™~

4 BYTES

3BYTES

)

™~

™~

2 BYTES

\

/" \

\

S

™~

1BYTE

SN

1)

D15-D8

g

OP1

D7-DO

-
-

<—BYTE

-

READ

Y

<<

MOTOROLA

BYTE
READ

LONG-WORD OPERAND READ FROM 8-BIT BUS

v

-

BYTE
READ

v

BYTE
READ

Figure 3-3. Long-Word Operand Read Timing from 8-Bit Port

MC68341 USER’S MANUAL

3-13

S0 S2 sS4 S0 82 S4 S0 82 S4 S0 82 S4
o [L L L L L L L L L
A31-A0 :X
FC3-FCO :X
RIW _\
ST /N TN/ /T
bs __/ __/ __/ __/
SIz0] .
_ 4BYTES 3BYTES 2 BYTES 1BYTE 1
Sizt
w0 SN SN N SN
DSACKL | /

D15-D8 (0PO)—-(OP1)—-(OP2)—-(OP3)——
D7-DO { ory -((OP1))—-((OP3) >—-< (OP3))——
N \ \

WRITE > WRITE WRITE > WRITE >
< LONG-WORD OPERAND WRITE TO 8-BIT BUS

Figure 3-4. Long-Word Operand Write Timing to 8-Bit Port

3.3.3.7 LONG-WORD OPERAND TO 16-BIT PORT, ALIGNED. Figure 3-5 shows both
long-word and word read and write timing to a 16-bit port.

LONG-WORDOPERAND| oP0 | op1 | op2 | op3 |

31 ¢ 23 ¢ 15 7 0
DATA BUS D15 D8 D7 DO Siz1 SIZ0 A0 DSACKL DSACKO
CYCLE 1 0P 0P1 0 0 0 0 X
CYCLE 2 0P2 0P3 1 0 0 0 X

314 MC68341 USER’S MANUAL MOTOROLA

S2 S4 | SO S2 | S4 | SO | S2 | S4 | SO S2| S4 SO | S2 | S4 | SO | S2 | S4
CLKOUT J

e
~
N

A31-A0

FC3-FCO

S
C
~
N
~
.

SIz0) /

4BYTES 2BYTES 2BYTES 4BYTES 2BYTES 2BYTES

sizt - _

DSACKO |

DSACK1

D15-D8 0Po OP2 0P { or0 —H o2 —H or0 >
D7-D0 op1 oP3 oP1 (ot [—{ ors [—K om
| | |
WORD
< LONG WORD READ ———3~<~WORD READ-><—— LONG WORD WRITE TO —— 31— WRITE TO—>
FROM 16-BIT BUS FROM 16-BIT BUS 16-BIT BUS 16-BIT BUS

Figure 3-5. Long-Word and Word Read and Write Timing—16-Bit Port

The MC68341 drives the address bus with the desired address and drives the SIZx pins to
indicate a long-word operand. For a read operation, the slave responds by placing the two
most significant bytes of the operand on bits 15-0 of the data bus and asserting DSACK1
to indicate a 16-bit port. The MC68341 reads the two most significant bytes of the operand
(bytes 0 and 1) from bits 15-0. The MC68341 then decrements the transfer size counter
by 2, increments the address by 2, initiates a new cycle, and reads bytes 2 and 3 of the
operand from bits 15-0 of the data bus.

For a write operation, the MC68341 drives the two most significant bytes of the operand
on bits 15—0 of the data bus. The slave device then reads the two most significant bytes of
the operand (bytes 0 and 1) from bits 15-0 of the data bus and asserts DSACK1 to
indicate reception and a 16-bit port. The MC68341 then decrements the transfer size
counter by 2, increments the address by 2, and writes bytes 2 and 3 of the operand to bits
15-0 of the data bus.

MOTOROLA MC68341 USER’S MANUAL 315

3.3.4 Bus Operation

The MC68341 bus is asynchronous, allowing external devices connected to the bus to
operate at clock frequencies different from the clock for the MC68341. Bus operation uses
the handshake lines (AS, DS, DSACK1/DSACKO, BERR, and HALT) to control data
transfers. AS signals a valid address on the address bus, and DS is used as a condition
for valid data on a write cycle. Decoding the SIZx outputs and lower address line AO
provides strobes that select the active portion of the data bus. The slave device (memory
or peripheral) responds by placing the requested data on the correct portion of the data
bus for a read cycle or by latching the data on a write cycle; the slave asserts the
DSACK1/DSACKO combination that corresponds to the port size to terminate the cycle.
Alternatively, the can be programmed to assert the DSACK1/DSACKO combination
internally and respond for the slave. If no slave responds or the access is invalid, external
control logic may assert BERR to abort the bus cycle or BERR with HALT to retry the bus
cycle.

DSACKXx can be asserted before the data from a slave device is valid on a read cycle. The
length of time that DSACKx may precede data must not exceed a specified value in any
asynchronous system to ensure that valid data is latched into the MC68341. (See
Section 12 Electrical Characteristics for timing parameters.) Note that no maximum
time is specified from the assertion of AS to the assertion of DSACKx. Although the
MC68341 can transfer data in a minimum of three clock cycles when the cycle is
terminated with DSACKX, the MC68341 inserts wait cycles in clock-period increments until
DSACKXx is recognized. BERR and/or HALT can be asserted after DSACKXx is asserted.
BERR and or HALT must be asserted within the time specified after DSACKx is asserted
in any asynchronous system. If this maximum delay time is violated, the MC68341 may
exhibit erratic behavior.

3.3.5 Synchronous Operation with DSACKXx

Although cycles terminated with DSACKx are classified as asynchronous, cycles
terminated with DSACKXx can also operate synchronously in that signals are interpreted
relative to clock edges. The devices that use these cycles must synchronize the response
to the MC68341 clock (CLKOUT) to be synchronous. Since the devices terminate bus
cycles with DSACKXx, the dynamic bus sizing capabilities of the MC68341 are available.
The minimum cycle time for these cycles is also three clocks. To support systems that use
the system clock to generate DSACKx and other asynchronous inputs, the asynchronous
input setup time and the asynchronous input hold time are given. If the setup and hold
times are met for the assertion or negation of a signal such as DSACKXx, the MC68341 is
guaranteed to recognize that signal level on that specific falling edge of the system clock.
If the assertion of DSACKX is recognized on a particular falling edge of the clock, valid
data is latched into the MC68341 (for a read cycle) on the next falling clock edge if the
data meets the data setup time. In this case, the parameter for asynchronous operation
can be ignored. The timing parameters are described in Section 12 Electrical
Characteristics.

If a system asserts DSACKXx for the required window around the falling edge of S2 and
obeys the proper bus protocol by maintaining DSACKx (and/or BERR/HALT) until and

316 MC68341 USER’S MANUAL MOTOROLA

throughout the clock edge that negates AS (with the appropriate asynchronous input hold
time), no wait states are inserted. The bus cycle runs at its maximum speed for bus cycles
terminated with DSACKXx (three clocks per cycle). When BERR (or BERR and HALT) is
asserted after DSACKx, BERR (and HALT) must meet the appropriate setup time prior to
the falling clock edge one clock cycle after DSACKXx is recognized. This setup time is
critical, and the MC68341 may exhibit erratic behavior if it is violated. When operating
synchronously, the data-in setup and hold times for synchronous cycles may be used
instead of the timing requirements for data relative to DS.

3.3.6 Fast Termination Cycles

With an external device that has a fast access time, the fast termination capability of the
chip select circuit can provide a two-clock external bus transfer. Since the chip select
circuits are driven from the system clock, the bus cycle termination is inherently
synchronized with the system clock. Refer to Section 4 System Integration Module for
more information on chip selects. Fast termination can only be used for M68300 bus
cycles. To use the fast termination option, an external device should be fast enough to
have data ready, within the specified setup time, by the falling edge of S4. Figure 3-6
shows the DSACKXx timing for a read with two wait states, followed by a fast termination
read and write. When using the fast termination option, DS is asserted only in a read
cycle, not in a write cycle.

SO S1 S2 S3 SW SW*SW Sw*S4 S5 SO S1 S4 S5 SO S1 S4 S5 SO

CLKOUT J | | | | | | | | | | | | | |_|_
-\ /T o
s |\ /T N/

(C|(E

RIW
DSACKx \ /

D15-D0 { —
bre | A

[<&—— TWO WAIT STATES IN READ —>>r<—— FAST —>>=<——FAST —>=
TERMINATION TERMINATION
READ WRITE

2

* DSACKXx only internally asserted for fast termination cycles.

Figure 3-6. Fast Termination Timing

MOTOROLA MC68341 USER’S MANUAL 317

3.4 DATA TRANSFER CYCLES

The transfer of data between the MC68341 and other devices involves the following
signals:

+ Address Bus A31-A0
» Data Bus D15-D0
» Control Signals

The address bus and data bus are parallel, nonmultiplexed buses. The bus master moves
data on the bus by issuing control signals, and the bus uses a handshake protocol to
ensure correct movement of the data. In all bus cycles, the bus master is responsible for
de-skewing all signals it issues at both the start and end of the cycle. In addition, the bus
master is responsible for de-skewing the acknowledge and data signals from the slave
devices. The following paragraphs define read, write, and read-modify-write cycle
operations. Each bus cycle is defined as a succession of states that apply to the bus
operation. These states are different from the MC68341 states described for the CPU32.
The clock cycles used in the descriptions and timing diagrams of data transfer cycles are
independent of the clock frequency. Bus operations are described in terms of external bus
states.

3.4.1 M68300 Read Cycle

During a read cycle, the MC68341 receives data from a memory or peripheral device. If
the instruction specifies a long-word or word operation, the MC68341 attempts to read two
bytes at once. For a byte operation, the MC68341 reads one byte. The section of the data
bus from which each byte is read depends on the operand size, address signal A0, and
the port size. Refer to 3.3.1 Dynamic Bus Sizing and 3.3.2 Misaligned Operands for
more information. Figure 3-7 is a flowchart of a word read cycle. Figure 3-8 is an example
of a functional timing diagram of a read bus cycle specified in terms of clock periods.

318 MC68341 USER’S MANUAL MOTOROLA

BUS MASTER SLAVE

ADDRESS DEVICE

1. SET R/W TO READ

2. DRIVE ADDRESS ON A31-A0

3. DRIVE FUNCTION CODE ON FC3-FCO
4. DRIVE SIZE PINS FOR OPERAND SIZE
5. ASSERT AS AND DS > PRESENT DATA

1. DECODE ADDRESS
. PLACE DATA ON D15-D0
ACQUIRE DATA 3. DRIVE DSACKx SIGNALS

[aS)

1. LATCHDATA
2. NEGATE AS AND DS TERMINATE CYCLE

1. REMOVE DATA FROM D15-D0
2. NEGATE DSACKx

START NEXT CYCLE

Figure 3-7. Word Read Cycle Flowchart

State 0—The read cycle starts in state 0 (S0). During SO, the MC68341 places a valid
address on A31-A0 and valid function codes on FC3-FCO. The function codes select the
address space for the cycle. The MC68341 drives R/W high for a read cycle. S1Z1/SIZ0
become valid, indicating the number of bytes requested for transfer.

State 1—One-half clock later, in state 1 (S1), the MC68341 asserts AS indicating a valid
address on the address bus. The MC68341 also asserts DS during S1. The selected
device uses R/W, SIZ1 or SIZ0, A0, and DS to place its information on the data bus. One
or both of the bytes (D15-D8 and D7-D0) are selected by SIZ1/SIZ0 and AO.

State 2—As long as at least one of the DSACKXx signals is recognized on the falling edge
of S2 (meeting the asynchronous input setup time requirement), data is latched on the
falling edge of S4, and the cycle terminates.

State 3—If DSACKX is not recognized by the start of state 3 (S3), the MC68341 inserts
wait states instead of proceeding to states 4 and 5. To ensure that wait states are
inserted, both DSACK1 and DSACKO must remain negated throughout the asynchronous
input setup and hold times around the end of S2. If wait states are added, the MC68341
continues to sample DSACKx on the falling edges of the clock until one is recognized.

State 4—DTC asserts during S4 to indicate the end of the current bus cycle. At the falling
edge of state 4 (S4), the MC68341 latches the incoming data and samples DSACKXx to get
the port size.

State 5—The MC68341 negates AS and DS during state 5 (S5), and negates DTC after
the rising edge of S5. It holds the address valid during S5 to provide address hold time for
memory systems. R/W, SIZ1 and SIZ0, and FC3-FCO also remain valid throughout S5.
The external device keeps its data and DSACKXx signals asserted until it detects the
negation of AS or DS (whichever it detects first). The device must remove its data and

MOTOROLA MC68341 USER’S MANUAL 319

negate DSACKx within approximately one clock period after sensing the negation of AS or
DS. DSACKX signals that remain asserted beyond this limit may be prematurely detected
for the next bus cycle.

CLKOUT

| S

A3L-A2 X

M\ /
N\

A0

revreo X X X
s \
-\ WORD y BYTE
R/

UDS, LDS
UWE, LWE

DSACK

DTC \ / \ / \
D15-D8 { oP2) { opP3)

D7-DO { oP3) (oP3

~—— WORD READ———>|<<——— BYTEREAD — > |<<——— BYTEREAD———>

Figure 3-8. Read Cycle Timing

320 MC68341 USER’S MANUAL MOTOROLA

3.4.2 68000 Read Cycle

During a 68000 read cycle, the 68000 strobes AS68K, UDS, and LDS are asserted instead
of AS and DS, with timing compatible with MC68000 bus cycles. Although the dynamic
bus sizing capability of the MC68341 allows assertion of either DSACK1 or DSACKO to
terminate the bus cycle as a 16-bit or 8-bit access, UDS and LDS will always assert for a
16-bit bus. UDS and LDS must be combined into a single data strobe externally when
used with an 8-bit 68000 bus. Figure 3-9 is a flowchart of a 68000 word read cycle. Figure
3-10 is an example of a functional timing diagram of a 68000 read bus cycle specified in
terms of clock periods.

BUS MASTER SLAVE

ADDRESS DEVICE

1. SET R/W TO READ

2. DRIVE ADDRESS ON A31-A0

3. DRIVE FUNCTION CODE ON FC3-FCO
4. DRIVE SIZE PINS FOR OPERAND SIZE
5. ASSERT AS68K AND UDS, LDS PRESENT DATA

1. DECODE ADDRESS
. PLACE DATA ON D15-D0
ACQUIRE DATA 3. DRIVE DSACKXx SIGNALS

N

1. LATCH DATA .
2. NEGATE AS68K AND UDS, LDS TERMINATE CYCLE

1. REMOVE DATA FROM D15-D0
2. NEGATE DSACKx

START NEXT CYCLE

Figure 3-9. 68000 Word Read Cycle Flowchart

State 0—The read cycle starts in state 0 (S0). During SO, the MC68341 places a valid
address on A31-A0 and valid function codes on FC3-FCO0. The function codes select the
address space for the cycle. The MC68341 drives R/W high for a read cycle. SI1Z1/S1Z0
become valid, indicating the number of bytes requested for transfer.

State 1—The MC68341 issues no new control signals during S1.

State 2—In state 2 (S2), the MC68341 asserts AS68K indicating a valid address on the
address bus. The MC68341 also asserts UDS/LDS during S2. The selected device uses
R/W, UDS, and LDS to place its information on the data bus. The upper byte (D15-D8)
and lower byte (D7-DO0) are selected by assertion of UDS and LDS, respectively. If
DSACKXx is recognized on the falling edge of S2 (meeting the asynchronous input setup
time requirement), data is latched on the falling edge of S4, and the cycle terminates as a
three clock bus cycle.

State 3—If DSACKX is not recognized by the start of state 3 (S3), the MC68341 inserts
wait states instead of proceeding to states 4 and 5. To ensure that wait states are
inserted, both DSACK1 and DSACKO must remain negated throughout the asynchronous

MOTOROLA MC68341 USER’S MANUAL 321

input setup and hold times around the end of S2. If wait states are added, the MC68341
continues to sample DSACKx on the falling edges of the clock until one is recognized.

State 4—DTC asserts during S4 to indicate the end of the current bus cycle. At the falling
edge of state 4 (S4), the MC68341 latches the incoming data and samples DSACKXx to get
the port size.

State 5—The MC68341 negates AS68K and UDS/LDS during state 5 (S5), and negates
DTC after the rising edge of S5. It holds the address valid during S5 to provide address
hold time for memory systems. R/W, SIZ1 and SIZ0, and FC3—-FCO also remain valid
throughout S5. The external device keeps its data and DSACKXx signals asserted until it
detects the negation of AS68K or UDS/LDS (whichever it detects first). The device must
remove its data and negate DSACKx within approximately one clock period after sensing
the negation of AS68K or UDS/LDS . DSACKXx signals that remain asserted beyond this
limit may be prematurely detected for the next bus cycle.

322 MC68341 USER’S MANUAL MOTOROLA

acour [L L [L B 4 L1 [

A31-A2

>
=

A0

FC3-FCO

X
—
=
X

s 7 \
-
—7

WORD BYTE

SIZ0

DSACK1

DSACKO

D31-D24 { 0OP2)
D23-D16 { oP3)
D15-D8 S oP3)
D7-DO { OP3

‘(— WORD READ ———>|<€«———— BYTEREAD — > |<<——— BYTEREAD ———>

Figure 3-10. 68000 Read Cycle Timing

3.4.3 M68300 Write Cycle

During a write cycle, the MC68341 transfers data to memory or a peripheral device. Figure
3-11 is a flowchart of a word write cycle. Figure 3-12 is an example of a functional timing
diagram of a write bus cycle specified in terms of clock periods.

MOTOROLA MC68341 USER’S MANUAL 323

BUS MASTER SLAVE

ADDRESS DEVICE

. SET R/W TO WRITE

. DRIVE ADDRESS ON A31-A0

. DRIVE FUNCTION CODE ON FC3-FC0
. DRIVE SIZE PINS FOR OPERAND SIZE
. ASSERT AS

. PLACE DATA ON D15-D0

. ASSERT DS AND UWE/LWE

Y

ACCEPT DATA

~NoO oA wWwNE

1. DECODE ADDRESS
2. LATCH DATA FROM D15-D0
3. ASSERT DSACKXx SIGNALS

A

TERMINATE OUTRPUT TRANSFER

. NEGATE AS, DS, AND UWE/LWE
2. REMOVE DATA FROM D15-D0

[

Y

TERMINATE CYCLE

\ 1. NEGATE DSACKx

START NEXT CYCLE

Figure 3-11 Word Write Cycle Flowchart

State 0—The write cycle starts in SO. During SO, the MC68341 places a valid address on
A31-A0 and valid function codes on FC3—-FCO. The function codes select the address
space for the cycle. The MC68341 drives R/W low for a write cycle. SI1Z1/SI1Z0 become
valid, indicating the number of bytes to be transferred.

State 1—One-half clock later during S1, the MC68341 asserts AS, indicating a valid
address on the address bus.

State 2—During S2, the MC68341 places the data to be written onto D15-D0, and
samples DSACKXx at the end of S2.

State 3—The MC68341 asserts DS during S3, indicating that data is stable on the data
bus. Write enable strobes UWE and LWE for the active bytes of the data bus are also
asserted during S3. As long as at least one of the DSACKx signals is recognized by the
end of S2 (meeting the asynchronous input setup time requirement), the cycle terminates
one clock later. If DSACKXx is not recognized by the start of S3, the MC68341 inserts wait
states instead of proceeding to S4 and S5. To ensure that wait states are inserted, both
DSACK1 and DSACKO must remain negated throughout the asynchronous input setup
and hold times around the end of S2. If wait states are added, the MC68341 continues to
sample DSACKx on the falling edges of the clock until one is recognized. The selected
device uses R/W, SIZ1/SIZ0, and A0 to latch data from the appropriate byte(s) of D15-D8
and D7-D0. SIZ1/SIZ0 and A0 select the bytes of the data bus. If it has not already done
so, the device asserts DSACKXx to signal that it has successfully stored the data.

State 4—DTC asserts during S4 to indicate the end of the current bus cycle.

State 5—The MC68341 negates AS and DS during S5, and negates DTC after the rising
edge of S5. It holds the address and data valid during S5 to provide address hold time for
memory systems. R/W, SI1Z1/S1Z0, and FC3—-FCO0 also remain valid throughout S5. The

324 MC68341 USER’S MANUAL MOTOROLA

external device must keep DSACKXx asserted until it detects the negation of AS or DS
(whichever it detects first). The device must negate DSACKx within approximately one
clock period after sensing the negation of AS or DS. DSACKXx signals that remain asserted
beyond this limit may be prematurely detected for the next bus cycle.

CLKOUT

A31-A2

ls
X
w1\ /
_\

A0

s X X X
s 7 \
S1Z0 _\ o / —
RIW _\

AS68K

UDS, LDS
UWE \ / \ /

LWE

DSACK —\—/—\—/—\—
DTC \ / \ / \

D15-D8 { OP2 \ OP3
D7-D0 \ OP3 S OP3

~<— WORD WRITE *)'44— BYTE WRITE ————><€——— BYTEWRITE ——>

Figure 3-12. M68300 Write Cycle Timing

MOTOROLA MC68341 USER’S MANUAL 325

3.4.4 68000 Write Cycle

During a 68000 write cycle, the 68000 strobes AS68K, UDS, and LDS are asserted
instead of AS and DS, with timing compatible with MC68000 bus cycles. Although the
dynamic bus sizing capability of the MC68341 allows assertion of either DSACK1 or
DSACKO to terminate the bus cycle as a 16-bit or 8-bit access, UDS and LDS will always
assert for a 16-bit bus. UDS and LDS must be combined into a single data strobe
externally when used with an 8-bit 68000 bus. Figure 3-13 is a flowchart of a 68000 word
write cycle. Figure 3-14 is an example of a functional timing diagram of a 68000 write bus
cycle specified in terms of clock periods.

BUS MASTER SLAVE

ADDRESS DEVICE

. SET RAW TO WRITE

. DRIVE ADDRESS ON A31-A0

. DRIVE FUNCTION CODE ON FC3-FCO
. DRIVE SIZE PINS FOR OPERAND SIZE
. ASSERT AS68K

. PLACEDATAONDI5-D0

. ASSERT UDS/LDS AND UWE/LWE

Y

ACCEPT DATA

~NOoO oA wN e

1. DECODE ADDRESS
2. LATCH DATA FROM D15-D0
3. ASSERT DSACKXx SIGNALS

A

TERMINATE OUTPUT TRANSFER

1. NEGATE AS68K, UDS/LDS AND UWE/LWE
2. REMOVE DATA FROM D15-D0

Y

TERMINATE CYCLE

1. NEGATE DSACKx

\
START NEXT CYCLE

Figure 3-13. 68000 Word Write Cycle Flowchart

State 0—The write cycle starts in SO. During SO, the MC68341 places a valid address on
A31-A0 and valid function codes on FC3—-FCO0. The function codes select the address
space for the cycle. The MC68341 drives R/W low for a write cycle. SI1Z1/SIZ0 become
valid, indicating the number of bytes to be transferred.

State 1—The MC68341 issues no new control signals during S1.

State 2—In S2, the MC68341 asserts AS68K indicating a valid address on the address
bus. During S2, the MC68341 places the data to be written onto D15-D0, and samples
DSACKXx at the end of S2.

State 3—The MC68341 asserts UDS/LDS after the rising edge of S3, indicating that data
Is stable on the data bus. Write enable strobes UWE and LWE for the active bytes of the
data bus are also asserted after the rising edge of S3. As long as DSACKX is recognized
by the end of S2 (meeting the asynchronous input setup time requirement), the cycle
terminates one clock later. If DSACKXx is not recognized by the start of S3, the MC68341
inserts wait states instead of proceeding to S4 and S5. To ensure that wait states are

3-26 MC68341 USER’S MANUAL MOTOROLA

inserted, both DSACK1 and DSACKO must remain negated throughout the asynchronous
input setup and hold times around the end of S2. If wait states are added, the MC68341
continues to sample DSACKx on the falling edges of the clock until one is recognized. The
selected device uses R/W, UDS, and LDS (or UWE and LWE) to latch data from the
appropriate byte(s) of D15-D8 and D7-DO. If it has not already done so, the device
asserts DSACKXx to signal that it has successfully stored the data.

State 4—DTC asserts during S4 to indicate the end of the current bus cycle.

State 5—The MC68341 negates AS68K and UDS/LDS during S5, and negates DTC after
the rising edge of S5. It holds the address and data valid during S5 to provide address
hold time for memory systems. R/W, SI1Z1/SIZ0, and FC3-FCO also remain valid
throughout S5. The external device must keep DSACKx asserted until it detects the
negation of AS68K or UDS/LDS (whichever it detects first). The device must negate
DSACKx within approximately one clock period after sensing the negation of AS68K or
UDS/LDS. DSACKX signals that remain asserted beyond this limit may be prematurely
detected for the next bus cycle.

MOTOROLA MC68341 USER’S MANUAL 3-27

CLKOUT

A31-A2

ls

X
w1\ /
_\

A0

FC3-FCO

SIZ1

WORD BYTE

SIZ0

RIW

AS68K

CSx

LDS

N

UWE

LWE

X
7
—
—
—\
—\
—\
—
—\

N

DSACK \ / \—/—\—
orc __/ /L

D15-D8 { or2) { oP3)
D7-DO { 0P3) __OP3
~———— WORD WRITE :} < BYTEWRITE———————>|<€——— BYTE WRITE——>

Figure 3-14. 68000 Write Cycle Timing

3-28 MC68341 USER’S MANUAL MOTOROLA

3.4.5 Read-Modify-Write Cycle

The read-modify-write cycle performs a read, conditionally modifies the data in the
arithmetic logic unit, and may write the data out to memory. In the MC68341, this
operation is indivisible, providing semaphore capabilities for multiprocessor systems.
During the entire read-modify-write sequence, the MC68341 asserts RMC to indicate that
an indivisible operation is occurring. The MC68341 does not issue a BG signal in
response to a BR signal during this operation. Figure 3-15 is an example of a functional
timing diagram of an M68300 read-modify-write instruction specified in terms of clock
periods.

SO S2 S4 SO S2 S4

pipigigtipipigiinl

CLKOUT J

A31-A30

FC3-FCO

SIZ1-S120

\X%XE

RIW

RMC

Ny)
C
T1 070

DSACKX \ / \
D15-D0 (
READ WRITE
< INDIVISIBLE

CYCLE

Figure 3-15. Read-Modify-Write Cycle Timing

State 0—The MC68341 asserts RMC in SO to identify a read-modify-write cycle. The
MC68341 places a valid address on A31-A0 and valid function codes on FC3—-FCO. The
function codes select the address space for the operation. SIZ1/SIZ0 become valid in SO
to indicate the operand size. The MC68341 drives R/W high for the read cycle.

State 1—One-half clock later during S1, the MC68341 asserts AS indicating a valid
address on the address bus. The MC68341 also asserts DS during S1.

MOTOROLA MC68341 USER’S MANUAL 329

State 2—The selected device uses R/W, SI1Z1/SIZ0, A0, and DS to place information on
the data bus. Either or both of the bytes (D15-D8 and D7-D0) are selected by SIZ1/SI1Z0
and AO. Concurrently, the selected device may assert DSACKXx.

State 3—As long as at least one of the DSACKXx signals is recognized by the end of S2
(meeting the asynchronous input setup time requirement), data is latched on the next
falling edge of the clock, and the cycle terminates. If DSACKXx is not recognized by the
start of S3, the MC68341 inserts wait states instead of proceeding to S4 and S5. To
ensure that wait states are inserted, both DSACK1 and DSACKO must remain negated
throughout the asynchronous input setup and hold times around the end of S2. If wait
states are added, the MC68341 continues to sample the DSACKXx signals on the falling
edges of the clock until one is recognized.

State 4—At the end of S4, the MC68341 latches the incoming data.

State 5—The MC68341 negates AS and DS during S5. If more than one read cycle is
required to read in the operand(s), SO-S5 are repeated for each read cycle. When
finished reading, the MC68341 holds the address, R/W, and FC3—FCO valid in preparation
for the write portion of the cycle. The external device keeps its data and DSACKXx signals
asserted until it detects the negation of AS or DS (whichever it detects first). The device
must remove the data and negate DSACKx within approximately one clock period after
sensing the negation of AS or DS. DSACKXx signals that remain asserted beyond this limit
may be prematurely detected for the next portion of the operation.

Idle States—The MC68341 does not assert any new control signals during the idle states,
but it may internally begin the modify portion of the cycle at this time. SO—-S5 are omitted if
no write cycle is required. If a write cycle is required, R/W remains in the read mode until
SO0 to prevent bus conflicts with the preceding read portion of the cycle; the data bus is not
driven until S2.

State 0—The MC68341 drives R/W low for a write cycle. Depending on the write operation
to be performed, the address lines may change during SO.

State 1—In S1, the MC68341 asserts AS, indicating a valid address on the address bus.
State 2—During S2, the MC68341 places the data to be written onto D15-DO.

State 3—The MC68341 asserts DS during S3, indicating stable data on the data bus. As
long as at least one of the DSACKXx signals is recognized by the end of S2 (meeting the
asynchronous input setup time requirement), the cycle terminates one clock later. If
DSACKX is not recognized by the start of S3, the MC68341 inserts wait states instead of
proceeding to S4 and S5. To ensure that wait states are inserted, both DSACK1 and
DSACKO must remain negated throughout the asynchronous input setup and hold times
around the end of S2. If wait states are added, the MC68341 continues to sample
DSACKXx on the falling edges of the clock until one is recognized. The selected device
uses R/W, DS, SIZ1/SIZ0, and A0 to latch data from the appropriate section(s) of D15-D8
and D7-D0. SIZ1/SIZ0 and AO select the data bus sections. If it has not already done so,
the device asserts DSACKx when it has successfully stored the data.

3-30 MC68341 USER’S MANUAL MOTOROLA

State 4—The MC68341 issues no new control signals during S4.

State 5—The MC68341 negates AS and DS during S5. It holds the address and data valid
during S5 to provide address hold time for memory systems. R/W and FC3-FCO also
remain valid throughout S5. If more than one write cycle is required, states SO-S5 are
repeated for each write cycle. The external device keeps DSACKx asserted until it detects
the negation of AS or DS (whichever it detects first). The device must remove its data and
negate DSACKx within approximately one clock period after sensing the negation of AS or
DS.

3.5 CPU SPACE CYCLES

FC3-FCO select user and supervisor program and data areas. The area selected by FC3—
FCO = $7 is classified as the CPU space. The breakpoint acknowledge, LPSTOP
broadcast, module base address register access, and interrupt acknowledge cycles
described in the following paragraphs use CPU space. The CPU space type, which is
encoded on A19-A16 during a CPU space operation, indicates the function that the
MC68341 is performing. On the MC68341, four of the encodings are implemented as
shown in Figure 3-16. All unused values are reserved by Motorola for additional CPU
space types.

CPU SPACE CYCLES

FUNCTION ADDRESS BUS
CODE

3 0 3 ho 1
l0111] [000000000000/0000/00000000000[BKPTE[T 0]

BREAKPOINT
ACKNOWLEDGE

owpowgr 0 A 19 16 0
sToPBROADCAST 0111] [000000000000f0011[1111111111111110]

MODULE BASE -3 o 8l 19 16 0
ADDRESS |0111] [oooo0oo00000000[00211[1111111100000000]|

REGISTER ACCESS

3 0 3t 19 16
lor1a] [t111111111212f2111[111211221111 1]EvEL[1]

I_'_l

CPU SPACE
TYPE FIELD

INTERRUPT
ACKNOWLEDGE

Figure 3-16. CPU Space Address Encoding

3.5.1 Breakpoint Acknowledge Cycle

The breakpoint acknowledge cycle allows external hardware to insert an instruction
directly into the instruction pipeline as the program executes. The breakpoint acknowledge
cycle is generated by the execution of a breakpoint instruction (BKPT) or the assertion of
the BKPT pin. The T-bit state (shown in Figure 3-16) differentiates a software breakpoint
cycle (T = 0) from a hardware breakpoint cycle (T = 1).

MOTOROLA MC68341 USER’S MANUAL 331

When a BKPT instruction is executed (software breakpoint), the MC68341 performs a
word read from CPU space, type 0, at an address corresponding to the breakpoint number
(bits [2—-0] of the BKPT opcode) on A4—A2, and the T-bit (Al) is cleared. If this bus cycle is
terminated with BERR (i.e., no instruction word is available), the MC68341 then performs
illegal instruction exception processing. If the bus cycle is terminated by DSACKXx, the
MC68341 uses the data on D15-D0 (for 16-bit ports) or two reads from D15-D8 (for 8-bit
ports) to replace the BKPT instruction in the internal instruction pipeline and then begins
execution of that instruction.

When the CPU32 acknowledges a BKPT pin assertion (hardware breakpoint) with
background mode disabled, the CPU32 performs a word read from CPU space, type 0, at
an address corresponding to all ones on A4-A2 (BKPT#7), and the T-bit (A1) is set. If this
bus cycle is terminated by BERR, the MC68341 performs hardware breakpoint exception
processing. If this bus cycle is terminated by DSACKXx, the MC68341 ignores data on the
data bus and continues execution of the next instruction.

NOTE

The BKPT pin is sampled on the same clock phase as data
and is latched with data as it enters the CPU32 pipeline. If
BKPT is asserted for only one bus cycle and a pipeline flush
occurs before BKPT is detected by the CPU32, BKPT is
ignored. To ensure detection of BKPT by the CPU32, BKPT
can be asserted until a breakpoint acknowledge cycle is
recognized.

The breakpoint operation flowchart is shown in Figure 3-17. Figures 3-18 and 3-19 show
the timing diagrams for the breakpoint acknowledge cycle with instruction opcodes
supplied on the cycle and with an exception signaled, respectively.

3.5.2 LPSTOP Broadcast Cycle

The low power stop (LPSTOP) broadcast cycle is generated by the CPU32 executing the
LPSTOP instruction. Since the external bus interface must get a copy of the interrupt
mask level from the CPU32, the CPU32 performs a CPU space type 3 write with the mask
level encoded on the data bus, as shown in the following figure. The CPU space type 3
cycle waits for the bus to be available, and is shown externally to indicate to external
devices that the MC68341 is going into LPSTOP mode. If an external device requires
additional time to prepare for entry into LPSTOP mode, entry can be delayed by asserting
HALT. The SIM41 provides internal DSACKx response to this cycle. For more information
on how the SIM41 responds to LPSTOP mode, see Section 4 System Integration
Module.

[2—10—Interrupt Mask Level

The interrupt mask level is encoded on bits 2—0 of the data bus during an LPSTOP
broadcast.

332 MC68341 USER’S MANUAL MOTOROLA

BREAKPOINT OPERATION FLOW

PROCESSOR

ACKNOWLEDGE BREAKPOINT

IF BREAKPOINT INSTRUCTION EXECUTED:
1. SET R/W TO READ
. SET FUNCTION CODE TO CPU SPACE
. PLACE CPU SPACE TYPE 0 ON A19-A16
. PLACE BREAKPOINT NUMBER ON A2-A4
. CLEAR T-BIT (A1)
. SET SIZE TO WORD
7. ASSERT AS AND DS
IF BKPT PIN ASSERTED:
1. SET R/W TO READ
. SET FUNCTION CODE TO CPU SPACE
. PLACE CPU SPACE TYPE 0 ON A19-A16
. PLACE ALL ONE'S ON A4-A2
. SET T-BIT (A-1) TO ONE
. SET SIZE TO WORD
. ASSERT AS AND DS

o OB W

~No o wWwN

EXTERNAL DEVICE

IF BREAKPOINT INSTRUCTION EXECUTED AND

DSACKX IS ASSERTED:
1 LATCHDATA
2. NEGATE AS AND DS
3.GOTO(A)

IF BKPT PIN ASSERTED AND DSACKX IS ASSERTED:
1. NEGATE AS AND DS
2.GOTO(A)

IF BERR ASSERTED:
1. NEGATE AS AND DS
2. GOTO (B)

A) (B)

A

IF BREAKPOINT INSTRUCTION EXECUTED:
1. PLACE REPLACEMENT OPCODE ON DATA BUS
2. ASSERT DSACKx
___OR-
1. ASSERT BERR TO INITIATE EXCEPTION PROCESSING
IF BKPT PIN ASSERTED:
1. ASSERT DSACKx
. OR
1. ASSERT BERR TO INITIATE EXCEPTION PROCESSING

IF BREAKPOINT INSTRUCTION EXECUTED:
1. PLACE LATCHED DATA IN INSTRUCTION PIPELINE
2. CONTINUE PROCESSING

IF BKPT PIN ASSERTED:

1. CONTINUE PROCESSING

IF BREAKPOINT INSTRUCTION EXECUTED:
1. INITIATE ILLEGAL INSTRUCTION PROCESSING
IF BKPT PIN ASSERTED:
1. INITIATE HARDWARE BREAKPOINT PROCESSING

Y

1. NEGATE DSACKx or BERR

A

MOTOROLA

Figure 3-17. Breakpoint Operation Flowchart

MC68341 USER’S MANUAL

3-33

SO S1 S2 S3 S4 S5 SO S1 S2 S3 S4 S5 SO S1 S2 S3 S4 S5 SO

N
N >(k‘ \ k‘ /
I\ N

x BREAKPOINT ENCODING (09‘5)0) \ N /

N
BREAKPOINT NUMBER/T-B{T

A31-A20

A19-A16

A4-Al

s

A15-A5,A0

FC3-FCO

CPU SPACE x

-4 ‘7 ‘7 ‘7
7

L JHHH UL

SIZ0 N \ N ,
N N
N N
N N
Slz1 N , \
AS / \ / \ / \
DS /'N_\—/'N_\ / \
— N N N
RIW
N N N
DSACKX \ / \ / \ /
07-00 N N P———
/—"*L / \ \
D15-D8 \ N —___ /N
t\‘ k‘ k‘
BERR /
N\ N\ N\
- N N V
HALT j
— _h N N
BKPT /
FETCHED

L
N
—
INSTRUCTION
BREAKPOINT READ BREAKPOINT EXECUTION
OCCURS ACKNOWLEDGE
INSTRUCTION WORD FETCH

Figure 3-18. Breakpoint Acknowledge Cycle Timing (Opcode Returned)

-

334 MC68341 USER’S MANUAL MOTOROLA

SO S1 S2 S3 S4 S5 SO S1 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5 S0
CLKOUT

A31-A20

N N

A19-A16

BREAKPOINT ENCODING ((1‘000)
N

N
BREAKPOINT NUMBER/T-BLT x
\N—

.
.‘ N

A4-Al

_A
_\
T
s\
X
X
X

FC3-FCO

SIZ0

SIZz1

RIW J N
DSACKx \ N / \ /
—\
N/
—\
N/

D7-DO

D15-D8

BERR j
HALT j
- N N
BKPT \ \ N]/

N EXCEPTION
BREAKPOINT STACKING
<€«— BREAKPOINT — > |<<——READ ————— > <<—— ACKNOWLEDGE — > <——>>

OCCURS BUS ERROR ASSERTED

Figure 3-19. Breakpoint Acknowledge Cycle Timing (Exception Signaled)

MOTOROLA MC68341 USER’S MANUAL 335

3.5.3 Module Base Address Register Access

All internal module registers, including the SIM41, occupy a single 4-Kbyte block that is
relocatable along 4-Kbyte boundaries. The location is fixed by writing the desired base
address of the SIM41 block to the module base address register using the MOVES
instruction. The module base address register is only accessible in CPU space at address
$0003FF00. The SFC or DFC register must indicate CPU space (FC3-FCO0 = $7), using
the MOVEC instruction, before accessing the module base address register. Refer to
Section 4 System Integration Module for additional information on the module base
address register.

3.5.4 Interrupt Acknowledge Bus Cycles

The CPU32 makes an interrupt pending in three cases. The first case occurs when a
peripheral device signals the CPU32 (with IRQ7-IRQ1) that the device requires service
and the internally synchronized value on these signals indicates a higher priority than the
interrupt mask in the status register. The second case occurs when a transition has
occurred in the case of a level 7 interrupt. A recognized level 7 interrupt must be removed
for one clock cycle before a second level 7 can be recognized. The third case occurs if,
upon returning from servicing a level 7 interrupt, the request level stays at 7 and the
processor mask level changes from 7 to a lower level, a second level 7 is recognized. The
CPU32 takes an interrupt exception for a pending interrupt within one instruction boundary
(after processing any other pending exception with a higher priority). The following
paragraphs describe the types of interrupt acknowledge bus cycles that can be executed
as part of interrupt exception processing.

3.5.4.1 INTERRUPT ACKNOWLEDGE CYCLE—TERMINATED NORMALLY. When the
CPUS32 processes an interrupt exception, it performs an interrupt acknowledge cycle to
obtain the number of the vector that contains the starting location of the interrupt service
routine. Some interrupting devices have programmable vector registers that contain the
interrupt vectors for the routines they use. The following paragraphs describe the interrupt
acknowledge cycle for these devices. Other interrupting conditions or devices that cannot
supply a vector number will use the autovector cycle described in 3.5.4.2 Autovector
Interrupt Acknowledge Cycle.

3-36 MC68341 USER’S MANUAL MOTOROLA

The interrupt acknowledge cycle is a read cycle. It differs from the read cycle described in
3.4.1 Read Cycle in that it accesses the CPU address space. Specifically, the differences

are as follows:

1. FC3-FCO are set to $7 (FC3/FC2/FC1/FC0 = 0111) for CPU address space.

2. A3, A2, and Al are set to the interrupt request level, and the IACKXx strobe

corresponding to the current interrupt level is asserted. (Either the function codes
and address signals or the IACKx strobes can be monitored to determine that an

interrupt acknowledge cycle is in progress and the current interrupt level.)

3. The CPU32 space type field (A19-A16) is set to $F (interrupt acknowledge).

4. Other address signals (A31-A20, A15-A4, and AOQ) are set to one.

5. The SIZ0/SI1Z1 and R/W signals are driven to indicate a single-byte read cycle.
The responding device places the vector number on the least significant byte
of its data port (for an 8-bit port, the vector number must be on D15-D8; for a

16-bit port, the vector must be on D7-D0) during the interrupt acknowledge cycle.
The cycle is then terminated normally with DSACKXx.

Figure 3-20 is a flowchart of the interrupt acknowledge cycle; Figure 3-21 shows the
timing for an interrupt acknowledge cycle terminated with DSACKXx.

INTERRUPTING DEVICE

REQUEST INTERRUPT

MC68340

PROVIDE VECTOR NUMBER

Y

GRANT INTERRUPT

1. PLACE VECTOR NUMBER ON LEAST
SIGNIFICANT BYTE OF DATA BUS

2. ASSERT DSACKx (OR AVEC IF NO VECTOR
NUMBER)

. SYNCHRONIZE IRQ7-IRQ1
. COMPARE IRQ1-IRQ7 TO MASK LEVEL AND

WAIT FOR INSTRUCTION TO COMPLETE

. PLACE INTERRUPT LEVEL ON A3-A1,

TYPE FIELD (A19-A16) = $F

. SET RIW TO READ
. SET FC3-FC0 TO 0111
. DRIVE SIZE PINS TO INDICATE A ONE-BYTE

TRANSFER

. ASSERT AS AND DS
. ASSERT THE CORRESPONDING IACKx STROBE.

RELEASE

ACQUIRE VECTOR NUMBER

1. NEGATE DSACKx

. LATCH VECTOR NUMBER
. NEGATE DS AND AS

Y

START NEXT CYCLE

Figure 3-20. Interrupt Acknowledge Cycle Flowchart

MOTOROLA MC68341 USER’S MANUAL

3-37

[92]
o

S2 S4 SO | 0-2CLOCKS* |S1 s2 S4 SO S2

awor [L 1] L L L
A31-Ad >< N
- N
A3-AL >< INTERRUPT LEVEL N
= N
— N
oo X TN
- N
FC3-FCO X CPU SPACE
- N
\
SIZ0 >< 1BYTE
Siz1 ><
— N
N
_ '\,
RIW / \

VECTOR FROM 16-BIT PORT

\ / ___/

VECTOR FROM 8-BIT PORT

D7-DO { N

D15-D8 : QV
RoRaL |\ AN

_ \
IACKT-IACKI |« READ — > \ /
< INTERNAL > < WRITE

CYCLE
ARBITRATION STACK

DSACKx

5|
P
N

|
)
AT

€ IACKCYCLE —— >

*Internal Arbitration may take between 0-2 clock cycles.

Figure 3-21. Interrupt Acknowledge Cycle Timing

3.5.4.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector
(autovector). Instead of placing a vector number on the data bus and asserting DSACKX,
the device asserts AVEC to terminate the cycle. If the DSACKx signals are asserted
during an interrupt acknowledge cycle terminated by AVEC, the DSACKXx signals and data

3-38 MC68341 USER’S MANUAL MOTOROLA

will be ignored if AVEC is asserted before or at the same time as the DSACKXx signals.
The vector number supplied in an autovector operation is derived from the interrupt level
of the current interrupt. When AVEC is asserted instead of DSACKx during an interrupt
acknowledge cycle, the MC68341 ignores the state of the data bus and internally
generates the vector number (the sum of the interrupt level plus 24 ($18)).

AVEC is multiplexed with CS0. The FIRQ bit in the SIM41 module configuration register
controls whether the AVEC/CS0 pin is used as an autovector input or as CS0 (refer to
Section 4 System Integration Module for additional information). AVEC is only sampled
during an interrupt acknowledge cycle. During all other cycles, AVEC is ignored.
Additionally, AVEC can be internally generated for external devices by programming the
autovector register. Seven distinct autovectors can be used, corresponding to the seven
levels of interrupt available with signals IRQ7—IRQ1. Figure 3-22 shows the timing for an
autovector operation.

3.5.4.3 SPURIOUS INTERRUPT CYCLE. Requested interrupts, whether internal or
external, are arbitrated internally. When no internal module (including the SIM41, which
responds for external requests) responds during an interrupt acknowledge cycle by
arbitrating for the interrupt acknowledge cycle internally, the spurious interrupt monitor
generates an internal bus error signal to terminate the vector acquisition. The MC68341
automatically generates the spurious interrupt vector number (24) instead of the interrupt
vector number in this case. When an external device does not respond to an interrupt
acknowledge cycle with AVEC or DSACKXx, a bus monitor must assert BERR, which
results in the CPU32 taking the spurious interrupt vector. If HALT is also asserted, the
MC68341 retries the interrupt acknowledge cycle instead of using the spurious interrupt
vector.

MOTOROLA MC68341 USER’S MANUAL 339

CLKOUT

A31-A4

A3-Al

A0

FC3-FCO

SIZ0

SIz1

RIW

DSACKx

D15-DO

AVEC

IRQ7-IRQL

IACK7-IACK1

w0
o

S2

S4

L L

0-2 CLOCKS*

S1 82 S4

SO S2

NpliziNEipigh

N
N
INTERRUPT LEVEL N
N
CPU SPACE
1BYTE —

Z £

|

\)J\IXIXXXXXH

yd

<

Al

g Z L g

READ

<«——CYCLE——>

r<—INTERNAL—>

ARBITRATION

n/

IACK

WRITE
STACK

* Internal Arbitration may take between 0-2 clocks.

3-40

CYCLE

Figure 3-22 Autovector Operation Timing

MC68341 USER’S MANUAL

MOTOROLA

3.6 BUS EXCEPTION CONTROL CYCLES

The bus architecture requires assertion of DSACKx from an external device to signal that
a bus cycle is complete. Neither DSACKx nor AVEC is asserted in the following cases:

» DSACKx/AVEC is programmed to respond internally.
» The external device does not respond.
» Various other application-dependent errors occur.

The MC68341 provides BERR when no device responds by asserting DSACKx/AVEC
within an appropriate period of time after the MC68341 asserts AS. This mechanism
allows the cycle to terminate and the MC68341 to enter exception processing for the error
condition. HALT is also used for bus exception control. This signal can be asserted by an
external device for debugging purposes to cause single bus cycle operation, or, in
combination with BERR, a retry of a bus cycle in error. To properly control termination of a
bus cycle for a retry or a bus error condition, DSACKx, BERR , and HALT can be asserted
and negated with the rising edge of the MC68341 clock. This assures that when two
signals are asserted simultaneously, the required setup and hold time for both is met for
the same falling edge of the MC68341 clock. This or an equivalent precaution should be
designed into the external circuitry to provide these signals. Alternatively, the internal bus
monitor could be used. The acceptable bus cycle terminations for asynchronous cycles
are summarized in relation to DSACKx assertion as follows (case numbers refer to Table
3-4):

* Normal Termination: DSACKXx is asserted; BERR and HALT remain negated (case 1).

+ Halt Termination: HALT is asserted at the same time as or before DSACKXx, and
BERR remains negated (case 2).

* Bus Error Termination: BERR is asserted in lieu of, at the same time as, or before
DSACKXx (case 3) or after DSACKXx (case 4), and HALT remains negated; BERR is
negated at the same time as or after DSACKXx.

» Retry Termination: HALT and BERR are asserted in lieu of, at the same time as, or
before DSACKXx (case 5) or after DSACKx (case 6); BERR is negated at the same
time as or after DSACKx, and HALT may be negated at the same time as or after
BERR.

Table 3-4 lists various combinations of control signal sequences and the resulting bus
cycle terminations. To ensure predictable operation, BERR and HALT should be negated
according to the specifications given in Section 12 Electrical Characteristics. DSACKx
BERR, and HALT may be negated after AS. If DSACKx or BERR remain asserted into S2
of the next bus cycle, that cycle may be terminated prematurely.

EXAMPLE A: A system uses a bus monitor timer to terminate accesses to an unpopulated
address space. The timer asserts BERR after timeout (case 3).

MOTOROLA MC68341 USER’S MANUAL 341

EXAMPLE B: A system uses error detection and correction on RAM contents. The
designer may:

1.

3-42

Delay DSACKXx until data is verified and assert BERR and HALT simultaneously to
indicate to the MC68341 to automatically retry the error cycle (case 5), or if data is
valid, assert DSACKXx (case 1).

Delay DSACKXx until data is verified and assert BERR with or without DSACKXx if data
is in error (case 3). This initiates exception processing for software handling of the
condition.

Return DSACKXx prior to data verification; if data is invalid, BERR is asserted on the
next clock cycle (case 4). This initiates exception processing for software handling of
the condition.

Return DSACKXx prior to data verification; if data is invalid, assert BERR and HALT
on the next clock cycle (case 6). The memory controller can then correct the RAM
prior to or during the automatic retry.

Table 3-4. DSACKx, BERR, and HALT Assertion Results

Asserted on Rising
Edge of State
Case Control
Num Signal N N+2 Result

1 DSACKXx A S Normal cycle terminate and continue.
BERR NA NA
HALT NA

2 DSACKx A S Normal cycle terminate and halt; continue
BERR NA NA when HALT negated.
HALT AIS S

3 DSACKXx NA/A X Terminate and take bus error exception,
BERR A S possibly deferred.
HALT NA X

4 DSACKx A X Terminate and take bus error exception,
BERR NA A possibly deferred.
HALT NA NA

5 DSACKXx NA/A X Terminate and retry when HALT negated.
BERR A S
HALT AIS S

6 DSACKXx A X Terminate and retry when HALT negated.
BERR NA A
HALT NA A

NOTES:

N — Number of the current even bus state (e.g., S2, S4, etc.)
A — Signal is asserted in this bus state
NA — Signal is not asserted in this state
X — Don't care
S — Signal was asserted in previous state and remains asserted in this state

MC68341 USER’S MANUAL MOTOROLA

3.6.1 Bus Errors

BERR can be used to abort the bus cycle and the instruction being executed. BERR takes
precedence over DSACKx provided it meets the timing constraints described in Section
12 Electrical Characteristics. If BERR does not meet these constraints, it may cause
unpredictable operation of the MC68341. If BERR remains asserted into the next bus
cycle, it may cause incorrect operation of that cycle. When BERR is issued to terminate a
bus cycle, the MC68341 can enter exception processing immediately following the bus
cycle, or it can defer processing the exception.

The instruction prefetch mechanism requests instruction words from the bus controller
before it is ready to execute them. If a bus error occurs on an instruction fetch, the
MC68341 does not take the exception until it attempts to use that instruction word. Should
an intervening instruction cause a branch or should a task switch occur, the bus error
exception does not occur. The bus error condition is recognized during a bus cycle in any
of the following cases:

 DSACKx and HALT are negated, and BERR is asserted.

 HALT and BERR are negated, and DSACKXx is asserted. BERR is then asserted
within one clock cycle (HALT remains negated).

 BERR and HALT are asserted simultaneously, indicating a retry.

When the MC68341 recognizes a bus error condition, it terminates the current bus cycle in
the normal way. Figure 3-23 shows the timing of a bus error for the case in which DSACKx
is not asserted. Figure 3-24 shows the timing for a bus error that is asserted after
DSACKXx . Exceptions are taken in both cases. Refer to Section 5 CPU32 for details of bus
error exception processing.

In the second case, in which BERR is asserted after DSACKXx is asserted, BERR must be
asserted within the time specified for purely asynchronous operation, or it must be
asserted and remain stable during the sample window around the next falling edge of the
clock after DSACKX is recognized. If BERR is not stable at this time, the MC68341 may
exhibit erratic behavior. BERR has priority over DSACKX. In this case, data may be
present on the bus, but it may not be valid. This sequence can be used by systems that
have memory error detection and correction logic and by external cache memories.

MOTOROLA MC68341 USER’S MANUAL 343

e ainininipipininintiniy
A31-A0 :>L
FC3-FCO :>L

RIW | / \

s T\ N AV

s T\ /N _/
DSACK: | / N \ /
BERR _ N

e A L

r<——READ CYCLE WITH BUS ————><<—INTERNAL —»1<<——— STACK ———>
ERROR PROCESSING WRITE

Figure 3-23. Bus Error without DSACKXx

344 MC68341 USER’S MANUAL MOTOROLA

SO S2 S4 SO S2 S4
CLKOUT

FC3-FCO

RIW

gl
e

X

N

iy

bsAcks \ \ /

= A
o A

S

V4 -
D15-D0 (’
WRITE INTERNAL STACK
CYCLE >~ "PROCESSING > |~ WRITE >

Figure 3-24. Late Bus Error with DSACKx

3.6.2 Retry Operation

When both BERR and HALT are asserted by an external device during a bus cycle, the
MC68341 enters the retry sequence shown in Figure 3-25. A delayed retry, which is
similar to the delayed BERR signal described previously, can also occur (see Figure 3-
26). The MC68341 terminates the bus cycle, places the control signals in their inactive
state, and does not begin another bus cycle until the BERR and HALT signals are negated
by external logic. After a synchronization delay, the MC68341 retries the previous cycle
using the same access information (address, function code, size, etc.). BERR should be
negated before S2 of the retried cycle to ensure correct operation of the retried cycle.

MOTOROLA MC68341 USER’S MANUAL 3-45

CLKOUT

A31-A0

FC3-FCO

DSACKx

BERR

HALT

DTC

D15-DO

S2

|

SW

SW

S4

—_—

—

SO

S2 S4

C
-
e

—

>

S

\)J\xxeg

_

RETRY

/[/1/ /7 Toata T_\\ A /
N\ \ \ GNoReD |/ // \ \
l«———— READ CYCLE WITH HALT READ RERUN —>

Figure 3-25. Retry Sequence

N

The MC68341 retries any read or write cycle of a read-modify-write operation separately;
RMC remains asserted during the entire retry sequence. Asserting BR along with BERR
and HALT provides a relinquish and retry operation. The MC68341 does not relinquish the
bus during a read-modify-write operation. Any device that requires the MC68341 to give
up the bus and retry a bus cycle during a read-modify-write cycle must assert only BERR
and BR (HALT must not be included). The bus error handler software should examine the
read-modify-write bit in the special status word (see Section 5 CPU32) and take the
appropriate action to resolve this type of fault when it occurs.

3-46

MC68341 USER’S MANUAL

MOTOROLA

S0 s2 s4 S0 s2 s4
CLKOUT J

A31-A0

FC3-FCO

RIW

)/'><'><E|

EEE NN

DSACKx \

BERR

HALT

U
VAR
“ /1
y J
AR/
N

p1C /-“ N
D15-D10 N

WRITE WRITE
CYCLE HALT RERUN

Figure 3-26. Late Retry Sequence

3.6.3 Halt Operation

When HALT is asserted and BERR is not asserted, the MC68341 halts external bus
activity at the next bus cycle boundary (see Figure 3-27). HALT by itself does not
terminate a bus cycle. Negating and reasserting HALT in accordance with the correct
timing requirements provides a single-step (bus cycle to bus cycle) operation. Since HALT
affects external bus cycles only, a program that does not require use of the external bus
may continue executing. The single-cycle mode allows the user to proceed through (and
debug) external MC68341 operations, one bus cycle at a time. Since the occurrence of a
bus error while HALT is asserted causes a retry operation, the user must anticipate retry
cycles while debugging in the single-cycle mode. The single-step operation and the
software trace capability allow the system debugger to trace single bus cycles, single
instructions, or changes in program flow.

When the MC68341 completes a bus cycle with HALT asserted, D15-D0 is placed in the
high-impedance state, and bus control signals are negated (not high-impedance state);
the A31-A0, FCx, SIZx, and R/W signals remain in the same state. The halt operation has
no effect on bus arbitration (see 3.7 Bus Arbitration). When bus arbitration occurs while
the MC68341 is halted, the address and control signals are also placed in the high-
impedance state. Once bus mastership is returned to the MC68341, if HALT is still

MOTOROLA MC68341 USER’S MANUAL 3-47

asserted, the A31-A0, FCx, SIZx, and R/W signals are again driven to their previous
states. The MC68341 does not service interrupt requests while it is halted.

SO S2 S4 SO

e eininigipigisininlin

A31-A0

FC3-FCO

%

))I\XXE

S

DSACKx \ N \

D15-D10

TN,/

|
AN
P
N

BGACK \N—/

~«—— READ——— > <€——— HALT——>|<<——— READ ——>|
(ARBITRATION PERMITTED
WHILE THE PROCESSOR IS
HALTED)

Figure 3-27. HALT Timing

3.6.4 Double Bus Fault

A double bus fault results when a bus error or an address error occurs during the
exception processing sequence for any of the following:

* A previous bus error
* A previous address error
* Areset

For example, the MC68341 attempts to stack several words containing information about
the state of the machine while processing a bus error exception. If a bus error exception

3-48 MC68341 USER’S MANUAL MOTOROLA

occurs during the stacking operation, the second error is considered a double bus fault.
When a double bus fault occurs, the MC68341 halts and asserts HALT. Only a reset
operation can restart a halted MC68341. However, bus arbitration can still occur (see 3.7
Bus Arbitration). A second bus error or address error that occurs after exception
processing has completed (during the execution of the exception handler routine or later)
does not cause a double bus fault. A bus cycle that is retried does not constitute a bus
error or contribute to a double bus fault. The MC68341 continues to retry the same bus
cycle as long as the external hardware requests it.

Reset can also be generated internally by the halt monitor (see Section 5 CPU32).

3.7 BUS ARBITRATION

The bus design of the MC68341 provides for a single bus master at any one time, either
the MC68341 or an external device. One or more of the external devices on the bus can
have the capability of becoming bus master for the external bus, but not the MC68341
internal bus. Bus arbitration is the protocol by which an external device becomes bus
master; the bus controller in the MC68341 manages the bus arbitration signals so that the
MC68341 has the lowest priority. External devices that need to obtain the bus must assert
the bus arbitration signals in the sequences described in the following paragraphs.
Systems having several devices that can become bus master require external circuitry to
assign priorities to the devices so that, when two or more external devices attempt to
become bus master at the same time, the one having the highest priority becomes bus
master first. The sequence of the protocol is as follows:

1. An external device asserts BR.
2. The MC68341 asserts BG to indicate that the bus is available.
3. The external device asserts BGACK to indicate that it has assumed bus mastership.

NOTE

The MC68341 does not place CS3-CS0 in a high-impedance
state after reset or when the bus is granted to an external
master.

BR may be issued any time during a bus cycle or between cycles. BG is asserted in
response to BR. To guarantee operand coherency, BG is only asserted at the end of an
operand transfer. Additionally, BG is not asserted until the end of a read-modify-write
operation (when RMC is negated) in response to a BR signal. When the requesting device
receives BG and more than one external device can be bus master, the requesting device
should begin whatever arbitration is required. When the external device assumes bus
mastership, it asserts BGACK and maintains BGACK during the entire bus cycle (or
cycles) for which it is bus master. The following conditions must be met for an external
device to assume mastership of the bus through the normal bus arbitration procedure: 1) it
must have received BG through the arbitration process, and 2) BGACK must be inactive,
indicating that no other bus master has claimed ownership of the bus.

MOTOROLA MC68341 USER’S MANUAL 3-49

Figure 3-28 is a flowchart showing bus arbitration for a single device. This technique
allows processing of bus requests during data transfer cycles. Refer to Figures 3-29 and
3-30 for bus arbitration timing diagrams.

BR is negated at the time that BGACK is asserted. This type of operation applies to a
system consisting of the MC68341 and one device capable of bus mastership. In a system
having a number of devices capable of bus mastership, BR from each device can be wire-
ORed to the MC68341. In such a system, more than one bus request could be asserted
simultaneously. BG is negated a few clock cycles after the transition of BGACK. However,
if bus requests are still pending after the negation of BG, the MC68341 asserts another
BG within a few clock cycles after it was negated. This additional assertion of BG allows
external arbitration circuitry to select the next bus master before the current bus master
has finished using the bus. The following paragraphs provide additional information about
the three steps in the arbitration process. Bus arbitration requests are recognized during
normal processing, HALT assertion, and a CPU32 halt caused by a double bus fault.

PROCESSOR REQUESTING DEVICE
REQUEST THE BUS
GRANT BUS ARBITRATION < 1. ASSERT BR
1. ASSERT BG >
ACKNOWLEDGE BUS MASTERSHIP

1. EXTERNAL ARBITRATION DETERMINES
NEXT BUS MASTER

2. NEXT BUS MASTER WAITS FOR BGACK
TO BE NEGATED

3. NEXT BUS MASTER ASSERTS BGACK
TO BECOME NEW MASTER

4. BUS MASTER NEGATES BR

A

TERMINATE ARBITRATION

1. NEGATE BG (AND WAIT FOR
BGACK TO BE NEGATED)

Y

OPERATE AS BUS MASTER

1. PERFORM DATA TRANSFERS (READ AND
WRITE CYCLES) ACCORDING TO THE
SAME RULES THE PROCESSOR USES

Y
RELEASE BUS MASTERSHIP

RE-ARBITRATE OR RESUME
PROCESSOR OPERATION

A

. NEGATE BGACK

Figure 3-28. Bus Arbitration Flowchart for Single Request

3-50 MC68341 USER’S MANUAL MOTOROLA

CLkouT __/—_/—_/—_/—_/—_/—_

A31-A0 / < ><

D15-DO >

As \ / \
®\ /

BGACK \ /

Figure 3-29. Bus Arbitration Timing Diagram—Idle Bus Case

SO SsI Ss2 S3 s4 S5
cLour / _/ _/__/ _/ _/__/_

A31-A0

|w)

&

o)

o
TX
~~

s\ /0
—

. \ /-
BGACK \

Figure 3-30. Bus Arbitration Timing Diagram—Active Bus Case

MOTOROLA MC68341 USER’S MANUAL 351

3.7.1 Bus Request

External devices capable of becoming bus masters request the bus by asserting BR. This

signal can be wire-ORed to indicate to the MC68341 that some external device requires
control of the bus. The MC68341 is effectively at a lower bus priority level than the
external device and relinquishes the bus after it has completed the current bus cycle (if
one has started). If no BGACK is received while the BR is active, the MC68341 remains
bus master once BR is negated. This prevents unnecessary interference with ordinary
processing if the arbitration circuitry inadvertently responds to noise or if an external
device determines that it no longer requires use of the bus before it has been granted
mastership.

3.7.2 Bus Grant

The MC68341 supports operand coherency; thus, if an operand transfer requires multiple
bus cycles, the MC68341 does not release the bus until the entire transfer is complete.
Therefore, assertion of BG is subject to the following constraints:

« The minimum time for BG assertion after BR is asserted depends on internal
synchronization (see Section 12 Electrical Characteristics).

« During an external operand transfer, the MC68341 does not assert BG until after
the last cycle of the transfer (determined by SIZx and DSACKX).

« During an external operand transfer, the MC68341 does not assert BG as long as
RMC is asserted.

« If the show cycle bits SHEN1-SHENO = 01, the MC68341 does not assert BG to
an external master.

Externally, the BG signal can be routed through a daisy-chained network or a priority-
encoded network. The MC68341 is not affected by the method of arbitration as long as the
protocol is obeyed.

3.7.3 Bus Grant Acknowledge

An external device cannot request and be granted the external bus while another device is
the active bus master. A device that asserts BGACK remains the bus master until it
negates BGACK. BGACK should not be negated until all required bus cycles are
completed. Bus mastership is terminated at the negation of BGACK.

Once an external device receives the bus and asserts BGACK, it should negate BR. If BR
remains asserted after BGACK is asserted, the MC68341 assumes that another device is
requesting the bus and prepares to issue another BG.

352 MC68341 USER’S MANUAL MOTOROLA

3.7.4 Bus Arbitration Control

The bus arbitration control unit in the MC68341 is implemented with a finite state machine.
As discussed previously, all asynchronous inputs to the MC68341 are internally
synchronized in a maximum of two cycles of the clock. As shown in Figure 3-31 input
signals labeled R and A are internally synchronized versions of BR and BGACK
respectively. The BG output is labeled G, and the internal high-impedance control signal is
labeled T. If T is true, the address, data, and control buses are placed in the high-
impedance state after the next rising edge following the negation of AS and RMC. All
signals are shown in positive logic (active high) regardless of their true active voltage
level. The state machine shown in Figure 3-31 does not have a state 1 or state 4.

State changes occur on the next rising edge of the clock after the internal signal is valid.
The BG signal transitions on the falling edge of the clock after a state is reached during
which G changes. The bus control signals (controlled by T) are driven by the MC68341
immediately following a state change, when bus mastership is returned to the MC68341.
State 0O, in which G and T are both negated, is the state of the bus arbiter while the
MC68341 is bus master. R and A keep the arbiter in state 0 as long as they are both
negated.

The MC68341 does not allow arbitration of the external bus during the RMC sequence.
For the duration of this sequence, the MC68341 ignores the BR input. If mastership of the
bus is required during an RMC operation, BERR must be used to abort the RMC
sequence.

3.7.5 Show Cycles

The MC68341 can perform data transfers with its internal modules without using the
external bus, but, when debugging, it is desirable to have address and data information
appear on the external bus. These external bus cycles, called show cycles, are
distinguished by the fact that AS is not asserted externally. DS is used to signal address
strobe timing in show cycles.

After reset, show cycles are disabled and must be enabled by writing to the SHEN bits in
the module configuration register (see 4.3.2.1 Module Configuration Register (MCR)).
When show cycles are disabled, the A31-A0, FCx, SIZx, and R/W signals continue to
reflect internal bus activity. However, AS and DS are not asserted externally, and the
external data bus remains in a high-impedance state. When show cycles are enabled, DS
indicates address strobe timing and the external data bus contains data. The following
paragraphs are a state-by-state description of show cycles, and Figure 3-32 illustrates a
show cycle timing diagram. Refer to Section 12 Electrical Characteristics for specific
timing information.

MOTOROLA MC68341 USER’S MANUAL 353

R - BUS REQUEST G - BUS GRANT
A - BUS GRANT ACKNOWLEDGE T - THREE-STATE SIGNAL TO BUS CONTROL
B - BUS CYCLE IN PROGRESS V - BUS AVAILABLE TO BUS CONTROL

Figure 3-31. Bus Arbitration State Diagram

354 MC68341 USER’S MANUAL MOTOROLA

State 0—During state 0, the A31-A0 and FCx become valid, R/W is driven to indicate a
show read or write cycle, and the SIZx pins indicate the number of bytes to transfer.
During a read, the addressed peripheral is driving the data bus, and the user must take
care to avoid bus conflicts.

State 41—One-half clock cycle later, DS (rather than AS) is asserted to indicate that
address information is valid.

State 42—No action occurs in state 42. The bus controller remains in state 42 (wait states
will be inserted) until the internal read cycle is complete.

State 43—When DS is negated, show data is valid on the next falling edge of the system
clock. The external data bus drivers are enabled so that data becomes valid on the
external bus as soon as it is available on the internal bus.

State 0—The A31-A0, FCx, R/W, and SIZx pins change to begin the next cycle. Data
from the preceding cycle is valid through state 0.

SO S41 S42 S43 SO S1 S2

A31-A0,
FC2-FCO, >< ><

SIZ1-S120

RIW >< X

) C O
D15-D0

BKPT \ /
}<—SHOW CYCLE —>‘<— START OF EXTERNAL CYCLE —>‘

Figure 3-32. Show Cycle Timing Diagram

3.8 RESET OPERATION

The MC68341 has reset control logic to determine the cause of reset, synchronize it if
necessary, and assert the appropriate reset lines. The reset control logic can
independently drive three different lines:

1. EXTRST (external reset) drives the external RESET pin.
2. CLKRST (clock reset) resets the clock module.
3. INTRST (internal reset) goes to all other internal circuits.

MOTOROLA MC68341 USER’S MANUAL 355

Synchronous reset sources are not asserted until the end of the current bus cycle,
whether or not RMC is asserted. The internal bus monitor is automatically enabled for
synchronous resets; therefore, if the current bus cycle does not terminate normally, the
bus monitor terminates it. Only single-byte or word transfers are guaranteed valid for
synchronous resets. An external or clock reset is a synchronous reset source.

Asynchronous reset sources indicate a catastrophic failure, and the reset controller logic
immediately resets the system. Resetting the MC68341 causes any bus cycle in progress
to terminate as if DSACKx or BERR had been asserted. In addition, the MC68341
appropriately initializes registers for a reset exception. Asynchronous reset sources
include power-up, software watchdog, double bus fault resets, and execution of the
RESET instruction.

If an external device drives RESET low, RESET should be asserted for at least 590 clock
periods to ensure that the MC68341 resets. The reset control logic holds reset asserted
internally until the external RESET is released. When the reset control logic detects that
external RESET is no longer being driven, it drives both internal and external reset low for
an additional 512 cycles to guarantee this length of reset to the entire system. Figure 3-33
shows the RESET timing.

l(1CLOCK

RESET
[«——— 590 CLOCK————>»| |<«—— 512 CLOCK———>

<€—— PULLED EXTERNAL—> [<«——DRIVEN BY MC68340 ——>
Figure 3-33. Timing for External Devices Driving RESET

If reset is asserted from any other source, the reset control logic asserts RESET for 328
input clock periods plus 512 output clock periods, and until the source of reset is negated.

After any internal reset occurs, a 14-cycle rise time is allowed before testing for the
presence of an external reset. If no external reset is detected, the CPU32 begins its vector
fetch.

Figure 3-34 is a timing diagram of the power-up reset operation, showing the relationships
between RESET, V cc, and bus signals. During the reset period, the entire bus three-
states except for non-three-statable signals, which are driven to their inactive state. Once
RESET negates, all control signals are driven to their inactive state, the data bus is in read
mode, and the address bus is driven. After this, the first bus cycle for RESET exception
processing begins.

3-56 MC68341 USER’S MANUAL MOTOROLA

VCO
LOCK
V 4
cc 328 x 512 x <14 CLOCKS—
TCLKIN TCLKOUT
RESET /
BUS ‘
CYCLES BUS STATE ADDRESS AND
< UNKNOWN CONTROL SIGNALS
THREE-STATED
NOTES:

1. Internal start-up time.

2. SSP read here.
3. PCread here.

4. First instruction fetched here.

Figure 3-34. Power-Up Reset Timing Diagram

2

I

When a RESET instruction is executed, the MC68341 drives the RESET signal for 512
clock cycles. The SIM41 registers and the module control registers in each internal
peripheral module (DMA, timers, and serial modules) are not affected. All other peripheral
module registers are reset the same as for a hardware reset. The external devices
connected to the RESET signal are reset at the completion of the RESET instruction.

MOTOROLA

MC68341 USER’S MANUAL

3-57

SECTION 4
SYSTEM INTEGRATION MODULE

The MC68341 system integration module (SIM41) consists of several functions that
control the system start-up, initialization, configuration, and the external bus with a
minimum of external devices. It also provides the IEEE 1149.1 boundary scan capabilities.
The SIM41 includes the following functions:

« System Configuration and Protection
e Clock Synthesizer

* Real-Time Clock

* Chip Selects and Wait States

» 68300/68000 External Bus Interface
» Bus Arbitration

* Dynamic Bus Sizing

e |[EEE 1149.1 Test Access Port

4.1 MODULE OVERVIEW

The SIM41 has similar features to the SIM in the MC68330 and MC68340. The periodic
interrupt timer, double bus fault monitor, software watchdog, and spurious interrupt
monitor are identical. However, many of the other features in the SIM differ in their use
and details.

The system configuration and protection function controls system configuration and
provides various monitors and timers, including the internal bus monitor, double bus fault
monitor, spurious interrupt monitor, software watchdog timer, and the periodic interrupt
timer.

The clock synthesizer generates the clock signals used by the SIM41 and the other on-
chip modules, as well as CLKOUT used by external devices.

The real-time clock function has internal interrupt generation capability, and a
programmable output pin that can provide an interrupt on an alarm or time-matching
function.

The programmable chip select function provides eight chip select signals that can enable
external memory and peripheral circuits, providing all handshaking and timing signals.
Each chip select signal has an associated base address register and an address mask
register that contain the programmable characteristics of that chip select. Up to six wait

MOTOROLA MC68341 USER’S MANUAL 4-1

states can be programmed by setting bits in the address mask register and base address
register.

The 68300/68000 external bus interface (EBI) handles the transfer of information between
the internal CPU32 and memory, peripherals, or other processing elements in the external
address space. See Section 3 Bus Operation for further information.

The MC68341 dynamically interprets the port size of an addressed device during each
bus cycle in 68300 bus mode, allowing operand transfers to or from 8-, 16-, and 32-bit
ports. The device signals its port size and indicates completion of the bus cycle through
the use of the DSACKXx inputs. Dynamic bus sizing allows a programmer to write code that
is not bus-width specific. For a discussion on dynamic bus sizing, see Section 3 Bus
Operation.

The MC68341 includes dedicated user-accessible test logic that is fully compliant with the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems
associated with testing high-density circuit boards have led to the development of this
standard under the sponsorship of the IEEE Test Technology Committee and Joint Test
Action Group (JTAG). The MC68341 implementation supports circuit-board test strategies
based on this standard. Refer to Section 10 IEEE 1149.1 Test Access Port for additional
information.

4.2 MODULE OPERATION

The following paragraphs describe the operation of the module base address register,
system configuration and protection, clock synthesizer, chip select functions, and the
external bus interface.

NOTE

The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

4.2.1 Module Base Address Register Operation

The module base address register (MBAR) controls the location of all internal module
registers (see 4.3.1 Module Base Address Register (MBAR)). The address stored in this
register is the base address (starting location) for all internal registers. All internal module
registers are contained in a single 4-Kbyte block (see Figure 4-1) that is relocatable along
4-Kbyte boundaries.

The location of the internal registers is fixed by writing the desired base address of the
4-Kbyte block to the MBAR using the MOVES instruction to address $0003FF00 in CPU
space. The source function code (SFC) and destination function code (DFC) registers
contain the address space values (FC3—-FCO0) for the read or write operand of the MOVES

4-2 MC68341 USER’S MANUAL MOTOROLA

instruction (see Section 5 CPU32 or M68000PM/AD, Programmer’s Reference Manual).
Therefore, the SFC or DFC register must indicate CPU space (FC3—-FCO0 = $7), using the
MOVEC instruction, before accessing MBAR. The offset from the base address is shown
above each register diagram.

$FFFFFFFF
SOOXXFFF SFFE
MC68341 $94F
RELOCATABLE QSPM
MODULE $800
BLOCK OO0 $7BF
DMA
$780
$721
SERIAL
$700
$63F
TIMER
$600
MBAR
($0003FF00 — > $SOCF
FC=0111) SIM 41
RAM $000
(TYPICAL)
$00000000

NOTE: $XXXXX is the value contained in the MBAR bits BA31-BA12.

Figure 4-1. SIM41 Module Register Block

4.2.2 System Configuration and Protection Operation

The SIM41 allows the user to control certain features of system configuration by writing
bits in the module configuration register (MCR). This register also contains read-only
status bits that show the state of the SIM41.

All M68000 family members are designed to provide maximum system safeguards. As an
extension of the family, the MC68341 promotes the same basic concepts of safeguarded
design present in all M68000 members. In addition, many functions that normally must be
provided by external circuits are incorporated in this device. The following features are
provided in the system configuration and protection function:

SIM41 Module Configuration

The SIM41 allows the user to configure the system to the particular requirements. The
functions include control of FREEZE and show cycle operation, the function of the CSx
signals, the access privilege of the supervisor/user registers, the level of interrupt
arbitration, and automatic vectoring for external interrupts.

MOTOROLA MC68341 USER’S MANUAL 4-3

Reset Status

The reset status register provides the user with information on the cause of the most
recent reset. The possible causes of reset include: external, power-up, software
watchdog, double bus fault, loss of clock, and RESET instruction.

Internal Bus Monitor

The SIM41 provides an internal bus monitor to monitor the DSACKx response time for
all internal bus accesses. An option allows the monitoring of external bus accesses. For
external bus accesses, four selectable response times are provided to allow for
variations in response speed of memory and peripherals used in the system. A bus
error signal is asserted internally if the DSACKx response limit is exceeded. BERR is
not asserted externally. This monitor can be disabled for external bus cycles only.

Double Bus Fault Monitor

The double bus fault monitor causes a reset to occur if the internal HALT is asserted by
the CPU32, indicating a double bus fault. A double bus fault results when a bus or
address error occurs during the exception processing sequence for a previous bus or
address error, a reset, or while the CPU32 is loading information from a bus error stack
frame during an RTE instruction. This function can be disabled. See Section 3 Bus
Operation for more information.

Spurious Interrupt Monitor

If no interrupt arbitration occurs during an interrupt acknowledge (IACK) cycle, the bus
error signal is asserted internally. This function cannot be disabled.

Software Watchdog

The software watchdog asserts reset or a level 7 interrupt (as selected by the system
protection and control register) if the software fails to service the software watchdog for
a designated period of time (i.e., because it is trapped in a loop or lost). There are eight
selectable timeout periods. This function can be disabled.

Periodic Interrupt Timer

The SIM41 provides a timer to generate periodic interrupts. The periodic interrupt time
period can vary from 122 ps to 15.94 s (with a 32.768-kHz crystal used to generate the
system clock). This function can be disabled.

Figure 4-2 shows a block diagram of the system configuration and protection function.

4-4 MC68341 USER’S MANUAL MOTOROLA

MODULE
CONFIGURATION

RESET
STATUS

DOUBLE BUS %
FAULT MONITOR >

REQUEST

BUS

MONITOR > BERR

SPURIOUS
INTERRUPT MONITOR

SOFTWARE
> SOFTWARE
CLOCK WATCHDOG > RESET
. REQUEST or
2 IRQ7
PRESCALER

PERIODIC

e e
INTERRUPT TIMER IRQT-IRQL

Figure 4-2. System Configuration and Protection Function

4.2.2.1 SYSTEM CONFIGURATION. Aspects of the system configuration are controlled
by the MCR and the autovector register (AVR).

The configuration of port B is controlled by the combination of the AVEC bit in the MCR
and the port B pin assignment register (PPARB). Port B pins can function as dedicated 1/0
lines or interrupts.

For debug purposes, internal bus accesses can be shown on the external bus. This
function is called show cycles. The SHEN1, SHENO bits in the MCR control show cycles.
Bus arbitration can be either enabled or disabled during show cycles.

Arbitration for servicing interrupts is controlled by the value programmed into the interrupt
arbitration (IARB) field of the MCR. Each module that generates interrupts, including the
SIM41, has an IARB field. The value of the IARB field allows arbitration during an IACK
cycle among modules that simultaneously generate the same interrupt level. No two
modules should share the same IARB value. The IARB must contain a value other than $0
for all modules that can generate interrupts; interrupts with IARB = 0 are discarded as
extraneous. The SIM41 arbitrates for both its own interrupts and externally generated
interrupts.

MOTOROLA MC68341 USER’S MANUAL 4-5

There are eight arbitration levels for access to the intermodule bus (IMB). The SIM41 is
fixed at the highest level (above the programmable level 7), and the CPU32 is fixed at the
lowest level (below level 0). The direct memory access (DMA) module is the only other
module that can become bus master and arbitrate for the bus. It must be initialized with a
level other than O or 7.

The AVR contains bits that correspond to external interrupt levels that require an
autovector response. The SIM41 supports up to seven discrete external interrupt
requests. If the bit corresponding to an interrupt level is set in the AVR, the SIM41 returns
an autovector in response to the IACK cycle servicing that external interrupt request.
Otherwise, external circuitry must either return an interrupt vector or assert the external
AVEC signal.

4.2.2.2 INTERNAL BUS MONITOR. The internal bus monitor continually checks for the
bus cycle termination response time by checking the DSACKx, BERR, and HALT status or
the AVEC status during an IACK cycle. The monitor initiates a bus error if the response
time is excessive. The bus monitor feature cannot be disabled for internal accesses to an
internal module. The internal bus monitor cannot check the DSACKx response on the
external bus unless the MC68341 is the bus master. The BME bit in the system protection
control register (SYPCR) enables the internal bus monitor for internal-to-external bus
cycles. If the system contains external bus masters whose bus cycles must be monitored,
an external bus monitor must be implemented. In this case, the internal-to-external bus
monitor option must be disabled.

The bus cycle termination response time is measured in clock cycles, and the maximum-
allowable response time is programmable. The bus monitor response time period ranges
from 64 to 512 system clocks (see Table 4-9). These options are provided to allow for
different response times of peripherals that might be used in the system.

4.2.2.3 DOUBLE BUS FAULT MONITOR. A double bus fault is caused by a bus error or
address error during the exception processing sequence. The double bus fault monitor
responds to an assertion of HALT on the internal bus. Refer to Section 3 Bus Operation
for more information. The DBF bit in the reset status register (RSR) indicates that the last
reset was caused by the double bus fault monitor. The double bus fault monitor reset can
be enabled by the DBFE bit in the SYPCR.

4.2.2.4 SPURIOUS INTERRUPT MONITOR. The spurious interrupt monitor issues BERR
if no interrupt arbitration occurs during an IACK cycle. Normally, during an IACK cycle,
one or more internal modules recognize that the CPU32 is responding to interrupt
request(s) and arbitrate for the privilege of returning a vector or asserting AVEC. (The
SIMA41 reports and arbitrates for externally generated interrupts.) This feature cannot be
disabled.

4.2.2.5 SOFTWARE WATCHDOG. The SIM41 provides a software watchdog option to
prevent system lock-up in case the software becomes trapped in loops with no controlled
exit. Once enabled by the SWE bit in the SYPCR, the software watchdog requires a
special service sequence to be executed on a periodic basis. If this periodic servicing
action does not occur, the software watchdog times out and issues a reset or a level 7

4-6 MC68341 USER’S MANUAL MOTOROLA

interrupt (as programmed by the SWRI bit in the SYPCR). The address of the interrupt
service routine for the software watchdog interrupt is stored in the software interrupt vector
register (SWIV). Figure 4-3 shows a block diagram of the software watchdog as well as
the clock control circuits for the periodic interrupt timer.

The watchdog clock rate is determined by the SWP bit in the periodic interrupt timer
register (PITR) and the SWT bits in the SYPCR. See Table 4-8 for a list of watchdog
timeout periods.

The software watchdog service sequence consists of the following steps: 1) write $55 to
the software service register (SWSR) and 2) write $AA to the SWSR. Both writes must
occur in the order listed prior to the watchdog timeout, but any number of instructions or
accesses to the SWSR can be executed between the two writes.

PITR
SWP

PTP
FREEZE -

Y — PITCLK PIT
> CLOCK MODULUS COUNTER INTERRUPT
EXTAL—> CLOCK 9 o1 MUX
= PRESCALER (29) >
EXTCLK —> DISABLE PRECLK
| RESET
MODCK

SWCLK
15 STAGE DIVIDER CHAIN (219)

AR

29 Sl 913 oI5

LPSTOP

Y

Figure 4-3. Software Watchdog Block Diagram

4.2.2.6 PERIODIC INTERRUPT TIMER. The periodic interrupt timer consists of an 8-bit
modulus counter that is loaded with the value contained in the PITR (see Figure
4-3). The modulus counter is clocked by a signal derived from the EXTAL input pin unless
an external frequency source from the EXTCLK pin is used. When an external frequency
source is used (MODCK low during reset), the default state of the prescaler control bits
(SWP and PTP) in the PITR should be changed to enable both prescalers.

Either clock source (EXTAL or EXTCLK or either divided by 512) is divided by 4 before
driving the modulus counter (PITCLK). When the modulus counter value reaches zero, an
interrupt is generated. The level of the generated interrupt is programmed into the PIRQL
bits in the periodic interrupt control register (PICR). During the IACK cycle, the SIM41
places the periodic interrupt vector, programmed into the PIV bits in the PICR, onto the
internal bus. The value of bits 7-0 in the PITR is then loaded again into the modulus
counter, and the counting process starts over. If a new value is written to the PITR, this
value is loaded into the modulus counter when the current count is completed.

MOTOROLA MC68341 USER’S MANUAL 4-7

4.2.2.6.1 Periodic Timer Period Calculation. The period of the periodic timer can be
calculated using the following equation:

PITR count value

periodic interrupt timer period = _EXTAL (or EXTCLK) frequency/prescaler value
22

Solving the equation using a crystal frequency of 32.768-kHz with the prescaler disabled
gives:

PITR count value
32768/1
22

periodic interrupt timer period

PITR count value
8192

periodic interrupt timer period

This gives a range from 122 ps, with a PITR value of $01 (00000001 binary), to 31.128
ms, with a PITR value of $FF (11111111 binary).

Solving the equation with the prescaler enabled (PTP=1 in the PITR) gives the following
values:

PITR count value

32768/512
22

periodic interrupt timer period

PITR count value
16

periodic interrupt timer period

This gives a range from 62.5 ms, with a PITR value of $01, to 15.94 s, with a PITR value
of $FF.

For fast calculation of periodic timer period using a 32.768-kHz crystal, the following
equations can be used:

With prescaler disabled:

programmable interrupt timer period PITR (122 pus)

With prescaler enabled:

programmable interrupt timer period PITR (62.5 ms)

4-8 MC68341 USER’S MANUAL MOTOROLA

4.2.2.6.2 Using the Periodic Timer as a Real-Time Clock. The periodic interrupt timer
can be used as a real-time clock interrupt by setting it up to generate an interrupt with a
one-second period. Rearranging the periodic timer period equation to solve for the desired
count value:

PITR count value (PIT period) (EXTAL (or EXTCLK) frequency)

(Prescaler value) (22)

(1) (32768)
(512) (22)

PITR count value

PITR count value 16 (decimal)
Therefore, when using a 32.768-kHz crystal, the PITR should be loaded with a value of
$10 with the prescaler enabled to generate interrupts at a one-second rate.

4.2.2.7 SIMULTANEOUS INTERRUPTS BY SOURCES IN THE SIM41. If multiple
interrupt sources at the same interrupt level are simultaneously asserted in the SIM41, it
will prioritize and service the interrupts in the following order: 1) software watchdog, 2)
periodic interrupt timer, 3) RTC alarm, and 4) external interrupts.

4.2.3 Clock Synthesizer Operation

The clock synthesizer can operate with either an external crystal or an external oscillator
for reference, using the internal phase-locked loop (PLL) and voltage-controlled oscillator
(VCO), or an external clock can directly drive the external clock input (EXTCLK) at the
operating frequency. For RTC operation, 32.768 kHz crystal operation must be used. The
four modes of clock operation are listed in Table 4-1.

Table 4-1. Clock Operating Modes

MODCK | VcesyN
Mode Description Reset | Operating
Value Value

External crystal used with the on-chip PLL and VCO to generate
Crystal Mode a system clock and CLKOUT of programmable rates. 1 Vce

External Clock The desired operating frequency is driven into EXTCLK
Mode without PLL | resulting in a system clock and CLKOUT of the same frequency, 0 oV
not tightly coupled.

The desired operating frequency is driven into EXTCLK,
External Clock resulting in a system clock and CLKOUT of the same frequency,
Mode with PLL with a tight skew between input and output signals. 0 Vce

Upon input signal loss for either clock mode using the PLL,
operation continues at approximately one-half operating speed
Limp Mode (affected by the value of the X-bit in the SYNCR). X Vce

4.2.3.1 CRYSTAL MODE. In crystal mode (see Figure 4-4), the clock synthesizer can
operate from the on-chip PLL and VCO, using a parallel resonant crystal connected
between the EXTAL and XTAL pins. An external oscillator can also be connected to
EXTCLK as a reference frequency source, as shown in Figure 4-5. A 32.768-kHz watch
crystal provides an inexpensive reference, but the reference crystal or external oscillator

MOTOROLA MC68341 USER’S MANUAL 4-9

frequency can be any frequency in the range specified in Section 12 Electrical
Characteristics. When using crystal mode, the system clock frequency is programmable
(using the W, X, Y, and Z bits in the SYNCR) over the range specified in Section 12
Electrical Characteristics (see Table 4-2.).

32.768 kHz

20 pF F o 10pF XFcl T 0.1 pF
I, EEaasas
0.1 pF
= 10M —
EXTAL Mobek v . | =
XFC CCSYN 0.01 uF
—— -|___| |:|— —— + ——————— [}—————= I o
| CRYSTAL) SE |
| OSCILLATOR MUX MUX |
|| PHASE | |LOW-PASS| | vcol |+« 1 . 1 =
| 0 COMPARE FILTER [1.3
| MUX 5
. = e |7
o | MUX SEL SEL | |
= MUX |
1
N P N MODULUS . |
| SEL DIVIDER 0 [X z |
| SEL | I |
| e |
I I
| v y W FEEDBACK DIVIDER |

— — — — — — ——— — — —— — — ——— — —————————— ————

1: Must be low-leakage capacitor.

Figure 4-4. Clock Block Diagram for Crystal and EXTCLK Operation

60 kQ

EXTAL XTAL

60 kQ

Figure 4-5. MC68341 Crystal Oscillator

A separate power pin (Vccsyn) is used to provide increased noise immunity for the clock
circuits. The oscillator Crystal Oscillators always powered if any power is present. If
Veesyn is at Veg it is used. If Veesyn is at 0V, Ve is used. If BSW is asserted, VgaT is
used. The source for Vccsyn should be a quiet power supply with adequate external
bypass capacitors placed as close as possible to the Vccsyn pin to ensure a stable
operating frequency. Figure 4-4 shows typical values for the bypass and PLL external

4-10 MC68341 USER’S MANUAL MOTOROLA

capacitors. The crystal manufacturer's documentation should be consulted for specific
recommendations for external components.

4.2.3.2 EXTERNAL CLOCK MODE. To use an external clock source (see Figure 4-6), the
operating clock frequency can be driven directly into the EXTCLK pin. The V-bit in the
SYNCR allows running the VCO at either the same speed or half the speed of the external
clock. This approach results in a system clock and CLKOUT that are the same as the
input signal frequency, but not tightly coupled to it. The external clock frequency can
optionally be divided by two using the V-bit in SYNCR. To enable this mode, MODCK
must be held low during reset, and Vccsyn held at 0 V while the chip is in operation.

VCesyN
EXTERNAL xrcl 0.1pF
CLOCK —| —| |—
[__:L
v 11 =
EXTAL XTAL XFC PIN ccsyN OLyF
Rl I
I
| Y
I CRYSTAL > oHASE LowPASS
OSCILLATOR - —
: yux COMPARATOR FILTER veo
— 01 A
L1

MUX
‘ 0 MODCK

!

\

EXTCLK

FEEDBACK
DIVIDER

CLOCK CONTROL 4| |—>
—> SYSTEM CLKOUT

CLOCK |

NOTES:
1. Must be low-leakage capacitor.

Figure 4-6. Block Diagram for External Clock Operation

Alternatively, an external clock signal can be directly driven into EXTCLK using the on-
chip PLL. To enable this mode, MODCK must be held low during reset, and Vccsyn
should be connected to a quiet VCC source. (See Table 4-1).

In external clock mode, the V, W, X, Y, and Z bits in the SYNCR can program the system
frequency over the range specified in Section 12 Electrical Characteristics.

4.2.3.3 LIMP MODE. If an input signal loss for either of the clock modes using the PLL
occurs, chip operation can continue in limp mode with the VCO running at approximately
one-half the operating speed (affected by the value of the X-bit in the SYNCR), using an
internal voltage reference. The SLIMP bit in the SYNCR indicates that a loss of input

MOTOROLA MC68341 USER’S MANUAL 4-11

signal reference has been detected. The RSTEN bit in the SYNCR controls whether an
input signal loss causes a system reset or causes the device to operate in limp mode. The
SLOCK bit in the SYNCR indicates when the VCO has locked onto the desired frequency
or if an external clock is being used.

4.2.3.1 PHASE COMPARATOR AND FILTER. The phase comparator takes the output of
the frequency divider and compares it to an external input signal reference. The result of
this compare is low-pass filtered and used to control the VCO. The comparator also
detects when the external crystal or oscillator stops running to initiate the limp mode for
the system clock.

The PLL requires an external low-leakage filter capacitor, typically in the range from 0.01
to 0.1 pF, connected between the XFC and Vccsyn pins. The XFC capacitor should
provide 50-MQ insulation but should not be electrolytic. Smaller values of the external filter
capacitor provide a faster response time for the PLL, and larger values provide greater
frequency stability. For external clock mode without PLL, the XFC pin can be left open.

4.2.3.2 FREQUENCY DIVIDER. The frequency divider circuits divide the VCO frequency
down to the reference frequency for the phase comparator. The frequency divider consists
of 1) a 2-bit prescaler controlled by the W-bit in the SYNCR and 2) a 6-bit modulo
downcounter controlled by the Y-bits in the SYNCR.

The frequency of CLKOUT can additionally be divided by 2 with the X-bit in SYNCR and
divided by 8 with the Z-bit in SYNCR.

Several factors are important to the design of the system clock. The resulting system clock
frequency must be within the limits specified for the device. The frequency of the system
clock is given by the following two equations:

FsysTem = FcrysTaL [2CEWHH32-1] X (Y+1)

The maximum VCO frequency limit must also be observed. The VCO frequency is given
by the following equation:

Fvco = Ferystall(2)@2W)] X (Y+1) = Fgystem[2%-39)]

The VCO upper frequency limit must be considered when programming the SYNCR. Both
the system clock and VCO frequency limits are given in Section 12 Electrical
Characteristics. Table 4-2 lists some frequencies available from various combinations of
SYNCR bits with a reference frequency of 32.768-KHz.

4-12 MC68341 USER’S MANUAL MOTOROLA

Table 4-2. System Frequencies from 32.768-kHz Reference

VCO VCO

CLKOUT(kHz)1 (kHz)1 CLKOUT (kHz)1 (kHz)1
W =02 W =02 W=12 W=12

Z=0 z=1 Z=x Z=0 z=1 Z=x

Y2 X=0 | X=1 | X=0 | X=1 | X=x X=0 X=1 | X=0 | X=1 | X=x

0 16 33 131 262 524 66 1049 524 1049 | 2097

1 33 66 262 524 1049 131 2097 1049 | 2097 | 4194

2 49 98 393 786 1573 197 3146 | 1573 | 3146 | 6291

3 66 131 524 1049 | 2097 262 4194 | 2097 | 4194 | 8389
4 82 164 655 1311 | 2621 328 5243 | 2621 | 5243 | 10486
5 98 197 786 1573 | 3146 393 6291 | 3146 | 6291 | 12583
6 115 229 918 1835 | 3670 459 7340 | 3670 | 7340 | 14680
7 131 262 1049 | 2097 | 4194 524 8389 | 4194 | 8389 | 16777
8 147 295 1180 | 2359 | 4719 590 9437 | 4719 | 9437 | 18874
9 164 328 1311 | 2621 | 5243 655 10486 | 5243 | 10486 | 20972
10 180 360 1442 | 2884 | 5767 721 11534 | 5767 | 11534 | 23069
11 197 393 1573 | 3146 | 6291 786 12583 | 6291 | 12583 | 25166
12 213 426 1704 | 3408 | 6816 852 13631 | 6816 | 13631 | 27263
13 229 459 1835 | 3670 | 7340 918 14680 | 7340 | 14680 | 29360
14 246 492 1966 | 3932 | 7864 983 15729 | 7864 | 15729 | 31457
15 262 524 2097 | 4194 | 8389 1049 16777 | 8389 | 16777 | 33554
16 279 557 2228 | 4456 | 8913 1114 17826 | 8913 | 17826 | 35652
17 295 590 2359 | 4719 | 9437 1180 18874 | 9437 | 18874 | 37749
18 311 623 2490 | 4981 | 9961 1245 19923 | 9961 | 19923 | 39846
19 328 655 2621 | 5243 | 10486 | 1311 20972 | 10486 | 20972 | 41943
20 344 688 2753 | 5505 | 11010 | 1376 22020 | 11010 | 22020 | 44040
21 360 721 2884 | 5767 | 11534 | 1442 23069 | 11534 | 23069 | 46137
22 377 754 3015 | 6029 | 12059 | 1507 24117 | 12059 | 24117 | 48234
23 393 786 3146 | 6291 | 12583 | 1573 25166 | 12583 | 25166 | 50332
24 410 819 3277 | 6554 | 13107 | 1638 26214 | 13107 | 26214 | 52429
25 426 852 3408 | 6816 | 13631 | 1704 27263 | 13631 | 27263 | 54526
26 442 885 3539 | 7078 | 14156 | 1769 28312 | 14156 | 28312 | 56623
27 459 918 3670 | 7340 | 14680 | 1835 29360 | 14680 | 29360 | 58720
28 475 950 3801 | 7602 | 15204 | 1901 30409 | 15204 | 30409 | 60817
29 492 983 3932 | 7864 | 15729 | 1966 31457 | 15729 | 31457 | 62915
30 508 1016 | 4063 | 8126 | 16253 | 2032 32506 | 16253 | 32506 | 65012
31 524 1049 | 4194 | 8389 | 16777 | 2097 33554 | 16777 | 33554 | 67109

MOTOROLA MC68341 USER’S MANUAL 413

Table 4-2. System Frequencies from 32.768-kHz Reference (Continued)

VCO VCO (kHz)
CLKOUT (kHz) (kHz) CLKOUT (kHz)

W=0 w=0 w=1 w=1

z=0 z=1 Z=x z=0 z=1 Z=x

Y Xx=0 | x=1 | x=0 | x=1 | Xx=x | Xx=0 | x=1 | x=0 | Xx=1 | X=x
32 541 1081 | 4325 | 8651 | 17302 | 2163 | 34603 | 17302 | 34603 | 69206
33 557 1114 | 4456 | 8913 | 17826 | 2228 | 35652 | 17826 | 35652 | 71303
34 573 1147 | 4588 | 9175 | 18350 | 2294 | 36700 | 18350 | 36700 | 73400
35 590 1180 | 4719 | 9437 | 18874 | 2350 | 37749 | 18874 | 37749 | 75497
36 606 1212 | 4850 | 9699 | 19399 | 2425 | 38797 | 19399 | 38797 | 77595
37 623 1245 | 4981 | 9961 | 19923 | 2490 | 39846 | 19923 | 39846 | 79692
38 639 1278 | 5112 | 10224 | 20447 | 2556 | 40894 | 20447 | 40894 | 81789
39 655 1311 | 5243 | 10486 | 20972 | 2621 | 41943 | 20972 | 41943 | 83886
40 672 1343 | 5374 | 10748 | 21496 | 2687 | 42992 | 21496 | 42992 | 85983
41 688 1376 | 5505 | 11010 | 22020 | 2753 | 44040 | 22020 | 44040 | 88080
42 705 1409 | 5636 | 11272 | 22544 | 2818 | 45089 | 22544 | 45089 | 90178
43 721 1442 | 5767 | 11534 | 23069 | 2884 | 46137 | 23069 | 46137 | 92275
44 737 1475 | 5898 | 11796 | 23593 | 2949 | 47186 | 23593 | 47186 | 94372
45 754 | 1507 | 6029 | 12059 | 24117 | 3015 | 48234 | 24117 | 48234 | 96469
46 770 1540 | 6160 | 12321 | 24642 | 3080 | 49283 | 24642 | 49283 | 98566
47 786 1573 | 6291 | 12583 | 25166 | 3146 | 50332 | 25166 | 50332 | 100663
48 803 1606 | 6423 | 12845 | 25690 | 3211 | 51380 [25690 | 51380 | 102760
49 819 1638 | 6554 | 13107 | 26214 | 3277 | 52429 | 26214 | 52429 | 104858
50 836 1671 | 6685 | 13369 | 26739 | 3342 | 53477 | 26739 | 53477 | 106955
51 852 1704 | 6816 | 13631 | 27263 | 3408 | 54526 | 27263 | 54526 | 109052
52 868 1737 | 6947 | 13894 | 27787 | 3473 | 55575 | 27787 | 55575 | 111149
53 885 1769 | 7078 | 14156 | 28312 | 3539 | 56623 | 28312 | 56623 | 113246
54 901 1802 | 7209 | 14418 | 28836 | 3604 | 57672 | 28836 | 57672 | 115343
55 018 1835 | 7340 | 14680 | 29360 | 3670 | 58720 | 29360 | 58720 | 117441
56 934 | 1868 | 7471 | 14942 | 29884 | 3736 | 59769 | 29884 | 59769 | 119538
57 950 1901 | 7602 | 15204 | 30409 | 3801 | 60817 | 30409 | 60817 | 121635
58 967 1933 | 7733 | 15466 | 30933 | 3867 | 61866 | 30933 | 61866 | 123732
59 983 1966 | 7864 | 15729 | 31457 | 3932 | 62915 | 31457 | 62915 | 125829
60 999 1999 | 7995 | 15991 | 31982 | 3998 | 63963 | 31982 | 63963 | 127926
61 1016 | 2032 | 8126 | 16253 | 32506 | 4063 | 65012 | 32506 | 65012 | 130023
62 1032 | 2064 | 8258 | 16515 | 33030 | 4129 | 66060 | 33030 | 66060 | 132121
63 1049 | 2007 | 8389 | 16777 | 33554 | 4194 | 67109 | 33554 | 67109 | 134218

NOTES:

1. Some W/X/Y/Z bit combinations shown may select a CLKOUT or VCO frequency higher than spec. Refer to

Section 11 Electrical Characteristics for CLKOUT and VCO frequency limits.

2. Any change to W or Y results in a change in the VCO frequency - the VCO should be allowed to relock if
necessary

4-14

MC68341 USER’S MANUAL

MOTOROLA

4.2.3.3 CLOCK CONTROL. The clock control circuits determine the source used for both
internal and external clocks during special circumstances, such as low-power stop
(LPSTOP) execution.

Table 4-3 summarizes the clock activity during LPSTOP in crystal mode operation. Any

clock in the off state is held low. The STEXT and STSIM bits in the SYNCR control clock
activity during LPSTOP. Refer to 4.2.6 Low-Power Stop for additional information.

Table 4-3. Clock Control Signals

Control Bits Clock Outputs
STSIM STEXT SIMCLK CLKOUT
0 0 EXTAL Off
0 1 EXTAL EXTAL

1 0 VCO Off
1 1 VCO VCO

NOTE: SIMCLK runs the periodic interrupt RESET and
IRQx pin synchronizers in LPSTOP mode.

4.2.4 Chip Select Operation

Typical microprocessor systems require external hardware to provide select signals to
external memory and peripherals. The MC68341 integrates these functions on chip to
provide the cost, speed, and reliability benefits of a higher level of integration. The chip
select function contains register pairs for each external chip select signal. The pair
consists of a base address register and an address mask register that define the
characteristics of a single chip select. The register pair provides flexibility for a wide
variety of chip select functions.

There are also two registers associated with each chip select to support 68000 bus
operation. The bus select register defines the type of bus cycle for each chip select. The
map select register defines the 68000 bus byte peripherals.

4.2.4.1 PROGRAMMABLE FEATURES. The chip select function supports the following
programmable features:

Eight Programmable Chip Select Circuits

All eight chip select circuits are independently programmable from the same list of
selectable features. Each chip select circuit has an individual base address register and
address mask register that contain the programmed characteristics of that chip select.
The base address register selects the starting address for the address block in 256-byte
increments. The address mask register specifies the size of the address block range.
The base address register V-bit indicates that the register information for that chip
select is valid. A global chip select (CS0) allows address decode for a boot ROM before
system initialization occurs.

MOTOROLA MC68341 USER’S MANUAL 4-15

Variable Block Sizes

The block size, starting from the specified base address, can vary in size from 256
bytes up to 4 Ghbytes in 2" increments. The specified base address must be on a
multiple of the block size. The block size is specified in the address mask register.

Both 8- and 16-Bit Ports Supported in M68300 Bus Cycle Mode

The 8-bit ports are accessible on both odd and even addresses when connected to data
bus bits 15-8; the 16-bit ports can be accessed as odd bytes, even bytes, or even
words in M68300 bus mode. The port size is specified by the PS bits in the address
mask register.

Write Protect Capability

The WP bit in each base address register can restrict write access to its range of
addresses.

Fast Termination Option (M68300 Bus Mode Only)

Programming the FTE, EDS, and DD bits in the base address register for the fast
termination option causes the chip select to terminate the cycle by asserting the internal
DSACKXx early, providing a two-cycle external access in M68300 mode.

Internal DSACKx Generation for External Accesses with Programmable Wait States

DSACKXx can be generated internally with up to six wait states for a particular device
using the EDS and DD bits in the address mask register.

Full 32-Bit Address Decode with Address Space Checking

The FC bits in the base address register and FCM bits in the address mask register are
used to select address spaces for which the chip selects will be asserted.

4.2.4.2 GLOBAL CHIP SELECT OPERATION. Global chip select operation allows
address decode for a boot ROM before system initialization occurs. CSO0 is the global chip
select output, and its operation differs from the other external chip select outputs following
reset. When the CPU32 begins fetching after reset, CS0 is asserted for every address
until the V-bit is set in the CS0 base address register.

NOTE

If an access matches multiple chip selects, the lowest
numbered chip select will have priority. For example, if CS0O
and CS2 "overlap" for a certain range, CSO will assert when
accessing the "overlapped" address range, and CS2 will not.

Global chip select provides a 16-bit port with six wait states, which allows a boot ROM to
be located in any address space and still provide the stack pointer and program counter
values at $00000000 and $00000004, respectively. Global chip select does not provide
write protection and responds to all function codes. While CSO0 is a global chip select, no
other chip select (CS7-CS1) can be used. CS0 operates in this manner until the V-bit is
set in the CSO base address register, which will then allow the use of CS7-CS1. Provided

4-16 MC68341 USER’S MANUAL MOTOROLA

the desired address range is first loaded into the CSO base address register, CS0 can be
programmed to continue decode for a range of addresses after the V-bit is set. After the
V-bit is set for CS0, global chip select can only be restarted with a system reset.

After the V-bit is set, the CSO pin can alternately be used as the AVEC input. The AVEC
bit in the MCR controls the function of this pin, as shown in Table 4-4.

Table 4-4. Port B Pin Assignment Register

Pin Function
Signal AVEC Bit=0 AVEC Bit=1

CSo CSo AVEC

A system can use an 8-bit boot ROM if an external 8-bit DSACKx that responds in five or
less wait states is generated. The 8-bit DSACKx must respond in five or less wait states
so that the global chip select, which responds with six wait states, will not be used. See
Section 11 Applications for a detailed discussion.

4.2.5 External Bus Interface Operation

This section describes port A and port B functions. Refer to Section 3 Bus Operation for
more information about the EBI.

4.2.5.1 PORT A. Port A pins can be independently programmed to function as either
addresses A31-A24, discrete I/O pins, or IACKx pins. The port A pin assignment registers
(PPARA1 and PPARA2) control the function of the port A pins as listed in Table 4-5. Upon
reset, port A is configured as input pins. If the system uses these signals as addresses,
pulldowns should be put on these signals to avoid indeterminate values until the port A
registers can be programmed.

Table 4-5 Port A Pin Assignment Register

Pin Function
Signal PPARA1=0 PPARA1 =1 PPARA1=0
PPARA2=0 PPARA2 =X PPARA2 =1
A31 A31 PORT A7 1ACK7
A30 A30 PORT A6 1ACK6
A29 A29 PORT A5 IACK5
A28 A28 PORT A4 1ACK4
A27 A27 PORT A3 IACK3
A26 A26 PORT A2 TACK2
A25 A25 PORT A1 TACKT
A24 A24 PORT A0 —

4.2.5.2 PORT B. Port B pins can be independently programmed to function as IRQx or
discrete 1/0O pins. Selection of a pin function is accomplished by the port B pin assignment
register (PPARB). See Table 4-6 for port B selections. By changing the value of the

MOTOROLA MC68341 USER’S MANUAL 4-17

corresponding bits in the PPARB for a particular signal, the port B pins can be configured
for different pin functions. Upon reset, port B is configured as IRQ7-IRQ1, MODCK.

Table 4-6. Port B Pin Assignment Register

Pin Function

Signal PPARB =0 PPARB =1
RQ7 PORTB? RQ7
RO6 PORTB6 IRQ6
RQ5 PORTB5 1RQ5
RQZ PORTB4 IRQ4
RQ3 PORTB3 IRQ3
RQ2 PORTB2 IRQ2
ROl PORTB1 IRQT
TRQO PORTBO MODCK

NOTE: MODCK has no function after reset.

4.2.6 Low-Power Stop

Executing the LPSTOP instruction provides reduced power consumption when the
MC68341 is idle; only the SIM41 remains active. Operation of the SIM41 clock and
CLKOUT during LPSTOP is controlled by the STSIM and STEXT bits in the SYNCR (see
Table 4-3). LPSTOP disables the clock to the software watchdog in the low state. The
software watchdog remains stopped until the LPSTOP mode ends; it begins to run again
on the next rising clock edge.

NOTE

When the CPU32 executes the STOP instruction (as opposed
to LPSTOP), the software watchdog continues to run. If the
software watchdog is enabled, it issues a reset or interrupt
when timeout occurs.

The periodic interrupt timer and real time clock do not respond to an LPSTOP instruction;
thus, they can be used to exit LPSTOP as long as their interrupt request level is higher
than the CPU32 interrupt mask level. To stop the periodic interrupt timer while in LPSTOP,
the PITR must be loaded with a zero value before LPSTOP is executed. The bus monitor,
double bus fault monitor, and spurious interrupt monitor are all inactive during LPSTOP.

The STP bit in the MCR of each on-chip module (DMA, timer, and serial modules) should
be set prior to executing the LPSTOP instruction. Setting the STP bit stops all clocks
within each of the modules, except for the clock from the IMB. The clock from the IMB
remains active to allow the CPU32 access to the MCR of each module. The system clock
stops on the low phase of the clock and remains stopped until the STP bit is cleared by
the CPU32 or until reset. For more information, see the description of the MCR STP bit for
each module.

4-18 MC68341 USER’S MANUAL MOTOROLA

If an external device requires additional time to prepare for entry into LPSTOP mode,
entry can be delayed by asserting HALT (see 3.4.2 LPSTOP Broadcast Cycle).

4.2.7 Freeze

FREEZE is asserted by the CPU32 if a breakpoint is encountered with background mode
enabled. Refer to Section 5 CPU32 for more information on the background mode. When
FREEZE is asserted, the double bus fault monitor and spurious interrupt monitor continue
to operate normally. However, the software watchdog, the periodic interrupt timer and the
internal bus monitor will be affected. When FREEZE is asserted, setting the FRZ1 bit in
the MCR disables the software watchdog and periodic interrupt timer, and setting the
FRZO0 bit in the MCR disables the bus monitor.

4.3 PROGRAMMING MODEL

Figure 4-8 is a programming model (register map) of all registers in the SIM41. For more
information about a particular register, refer to the description of the module or function
indicated in the right column. The ADDR (address) column indicates the offset of the
register from the address stored in the module base address register. The FC (function
code) column indicates whether a register is restricted to supervisor access (S) or
programmable to exist in either supervisor or user space (S/U).

For the registers discussed in the following pages, the number in the upper right-hand
corner indicates the offset of the register from the address stored in the module base
address register. The numbers on the top line of the register represent the bit position in
the register. The second line contains the mnemonic for the bit. The numbers below the
register represent the bit values after a hardware reset. The access privilege is indicated
in the lower right-hand corner.

NOTE:

A CPU32 RESET instruction will not affect any of the SIM41
registers.

MOTOROLA MC68341 USER’S MANUAL 4-19

4-20

ADDR
000

004
006
008
010
012
014
016
018
01A
01C
01E
020
022
024
026
028

03C
03E
040
042
044
046
048
04A
04C
04E
050
052
054
056
058
05A
05C
05E
060
062
064
066

SIU
SIU

SIU
SIU
SIU

mw nu nu unu nu n

mw n nuo unuo no no no n nonnononnno nononnononon

15

8 7

0

MODULE CONFIGURATION REGISTER (MCR)

CLOCK SYNTHESIZER CONTROL REGISTER (SYNCR)

AUTOVECTOR REGISTER (AVR)

RESET STATUS REGISTER (RSR)

PROGRAMMABLE INTERRUPT (PIR)

RESERVED PORT A DATA (PORTA)
RESERVED PORT A DATA DIRECTION (DDRA)
RESERVED PORT A PIN ASSIGNMENT 1 (PPRAL)
RESERVED PORT A PIN ASSIGNMENT 2 (PPRA2)
RESERVED PORT B DATA (PORTB)
RESERVED PORT B DATA (PORTB1)
RESERVED PORT B DATA DIRECTION (DDRB)
RESERVED PORT B PIN ASSIGNMENT (PPARB)

SW INTERRUPT VECTOR (SWIV)

SYSTEM PROTECTION CONTROL (SYPCR)

PERIODIC INTERRUPT CONTROL (PICR)

PERIODIC INTERRUPT VECTOR (PICR)

SCALE SELECT (SSR)

PERIODIC INTERRUPT TIMING PITR)

RESERVED

SOFTWARE SERVICE (SWSR)

RESERVED

PORT C PIN ASSIGNMENT (PPARC)

BUS SELECT (BSR)

MAP SELECT (MSR)

ADDRESS MASK 1 CS0O

ADDRESS MASK 2 CS0

BASE ADDRESS 1 CS0

BASE ADDRESS 2 CS0

ADDRESS MASK 1 CS1

ADDRESS MASK 2 CS1

BASE ADDRESS 1 CS1

BASE ADDRESS 2 CS1

ADDRESS MASK 1 CS2

ADDRESS MASK 2 CS2

BASE ADDRESS 1 CS2

BASE ADDRESS 2 CS2

ADDRESS MASK 1 CS3

ADDRESS MASK 2 CS3

BASE ADDRESS 1 CS3

BASE ADDRESS 2 CS3

ADDRESS MASK 1 CS4

ADDRESS MASK 2 CS4

BASE ADDRESS 1 CS4

BASE ADDRESS 2 CS4

Figure 4-8. SIM41 Programming Model

MC68341 USER’S MANUAL

| svsProTECT

CLOCK
SYS PROTECT
EBI
EBI
EBI
EBI
EBI
EBI
EBI
EBI
EBI
SYS PROTECT
SYS PROTECT
SYS PROTECT
SYS PROTECT
EBI

CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT

MOTOROLA

068
06A
06C
06E
070
072
074
076
078
07A
07C
07E

0Co
0C2
0C4
0C6
0C8
0CA
0CE

FF

MOTOROLA

s ADDRESS MASK 1 CS5
s ADDRESS MASK 2 CS5
s BASE ADDRESS 1 CS5
s BASE ADDRESS 2 CS5
s ADDRESS MASK 1 CS6
s ADDRESS MASK 2 CS6
s BASE ADDRESS 1 CS6
s BASE ADDRESS 2 CS6
s ADDRESS MASK 1 CS7
s ADDRESS MASK 2 CS7
s BASE ADDRESS 1 CS7
s BASE ADDRESS 2 CS7
s MINUTES (MIN) SECONDS (SEC)
sl DATE HOUR
sl MONTH YEAR
sl RTC CONTROL (RCR) DAY
sl MINUTES ALARM (MINA) SECONDS ALARM (SECA)
sl DATE ALARM (DATEA) HOURS ALARM (HOURA)
sl RESERVED CALIBRATION (RCCR)
s | RESERVED

Figure 4-8. SIM41 Programming Model (Continued)

MC68341 USER’S MANUAL

CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT

RTC
RTC
RTC
RTC
RTC
RTC
RTC

4-21

4.3.1 Module Base Address Register (MBAR)
MBAR 1 $0003FF00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| BA31 | BA30 | BA29 | BA28 | BA27 | BA26 | BA25 | BA24 | BA23 | BA22 | BA21 | BA20 | BA19 | IBA18 | BA17 | BA16 |

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CPU Space Only
MBAR 2 $0003FF02
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| BA15 | BA14 | BA13 | BA12 | 0 | 0 | AS8 | AS7 | AS6 | AS5 | AS4 | AS3 | AS2 | AS1 | ASO | \% |
RESET
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CPU Space Only

BA31-BA12—Base Address Bits 31-12

The base address field is the upper 20 bits of the MBAR that provides for block starting
locations in increments of 4-Kbytes.

Bits 11, 10—Reserved

AS8-ASO—Address Space Bits 8-0

The address space field allows particular address spaces to be masked, placing the 4K
module block into a particular address space(s). If an address space is masked, an
access to the register block location in that address space becomes an external access.
The module block is not accessed. The address space bits are as follows:

AS8—mask DMA Space address space (FC3-FCO0 = 1xxx)
AS7—mask CPU Space address space (FC3—-FCO = 0111)
AS6—mask Supervisor Program address space (FC3—-FC0 = 0110)
AS5—mask Supervisor Data address space (FC3—-FCO0 = 0101)
AS4—mask Reserved [Motorola] address space (FC3—FCO0 = 0100)
AS3—mask Reserved [User] address space (FC3—FC0 = 0011)
AS2—mask User Program address space (FC3—-FCO0 = 0010)
AS1—mask User Data address space (FC3—FCO0 = 0001)
ASO—mask Reserved [Motorola] address space (FC3—-FCO0 = 0000)

For each address space bit:

1 = Mask this address space from the internal module selection. The bus cycle goes
external.
0 = Decode for the internal module block.

V—Valid Bit
This bit indicates when the contents of the MBAR are valid. The base address value is
not used; therefore, all internal module registers are not accessible until the V-bit is set.

1 = Contents are valid.
0 = Contents are not valid.

4-22 MC68341 USER’S MANUAL MOTOROLA

NOTE

An access to this register does not affect external space since
the cycle is not run externally.

Example code for accessing the MBAR is as follows:

Register DO will contain the value of MBAR. MBAR can be read using the following code:

MOVE.L #7,D0 load DO with the CPU space function code
MOVEC.L DO,SFC load SFC to indicate CPU space

LEA.L $0003FF00,A0 load AO with the address of MBAR
MOVES.L (A0),DO Iread MBAR

Address $0003FF00 in CPU space (MBAR) will be loaded with the value $FFFFF101.
This value will set the base address of the internal registers to $FFFFF000. MBAR can be
written to using the following code:

MOVE.L #7,D0 load DO with the CPU space function code
MOVEC.L DO,DFC load DFC to indicate CPU space

LEA.L $0003FF00,A0 load AO with the address of MBAR

MOVE.L #$FFFFF101,D0 base=FFFFF000, AS7=no CPU space, validate
MOVES.L DO,(A0) write MBAR

4.3.2 System Configuration and Protection Registers

The following paragraphs provide descriptions of the system configuration and protection
registers.

4.3.2.1 MODULE CONFIGURATION REGISTER (MCR). The MCR, which controls the
SIM41 configuration, can be read or written at any time.

MCR $000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 0 | FRZ1 | FRZO | AVEC | 0 | 0 |SHEN1 | SHENOl SUPV | 0 | 0 | 0 | IARB3 | IARB2 | IARB1 | IARBO |
RESET:
0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1

Supervisor Only

Bits 15, 11, 10, 6-4—Reserved

FRZ1—Freeze Software Enable

1 = When FREEZE is asserted, the software watchdog and periodic interrupt timer
counters are disabled, preventing interrupts from occurring during software
debug.

0 = When FREEZE is asserted, the software watchdog and periodic interrupt timer
counters continue to run. See 4.2.7 Freeze for more information.

MOTOROLA MC68341 USER’S MANUAL 4-23

FRZ0O—Freeze Bus Monitor Enable

1 = When FREEZE is asserted, the bus monitor is disabled.
0 = When FREEZE is asserted, the bus monitor continues to operate as
programmed.

AVEC—Automatic Vector Response

1 = Automatic vector response enabled.
0 = Automatic vector response disabled.

SHEN1, SHENO—Show Cycle Enable

These two control bits determine what the EBI does with the external bus during internal
transfer operations (see Table 4-7). A show cycle allows internal transfers to be
externally monitored. The address, data, and control signals (except for AS) are driven
externally. DS is used to signal address strobe timing for show cycles. Data is valid on
the next falling clock edge after DS is negated. However, data is not driven externally,
and AS and DS are not asserted externally for internal accesses unless show cycles are
enabled.

If external bus arbitration is disabled, the EBI will not recognize an external bus request
until arbitration is enabled again. To prevent bus conflicts, external peripherals must not
attempt to initiate cycles during show cycles with arbitration disabled.

Table 4-7. SHENx Control Bits

SHEN1 | SHENO ACTION
0 0 Show cycle s disabled, external arbitration enabled
0 1 Show cycles enabled, external arbitration disabled
1 X Show cycles enabled, external arbitration enabled

SUPV—Supervisor/User Data Space

The SUPV bit defines the SIM41 registers as either supervisor data space or user
(unrestricted) data space.

1 = The SIMA41 registers defined as supervisor/user are restricted to supervisor data
access (FC3—-FCO = $5). An attempted user-space write is ignored and returns
BERR.

0 = The SIM41 registers defined as supervisor/user data are unrestricted (FC2 is a
don't care).

IARB3-IARBO—Interrupt Arbitration Bits 3-0

These bits are used to arbitrate for the bus in the case that two or more modules
simultaneously generate an interrupt at the same priority level. No two modules can
share the same IARB value. The reset value of IARB is $F, allowing the SIM41 to
arbitrate during an IACK cycle immediately after reset. The system software should
initialize the IARB field to a value from $F (highest priority) to $1 (lowest priority). A
value of $0 prevents arbitration and causes all SIM41 interrupts, including external
interrupts, to be discarded as extraneous.

4-24 MC68341 USER’S MANUAL MOTOROLA

4.3.2.2 AUTOVECTOR REGISTER (AVR). The AVR contains bits that correspond to
external interrupt levels that require an autovector response. Setting a bit allows the
SIM41 to assert an internal AVEC during the IACK cycle in response to the specified
interrupt request level. This register can be read and written at any time.

AVR $006
7 6 5 4 3 2 1 0
[av7 | ave [avs [ava [ava | ave [avn [o |
RESET:
0 0 0 0 0 0 0 0

Supervisor Only

NOTE:

The IARB field in the MCR must contain a value other than $0
for the SIM41 to autovector for external interrupts.

4.3.2.3 RESET STATUS REGISTER (RSR). The RSR contains a bit for each reset source
to the SIM41. A set bit indicates the last type of reset that occurred, and only one bit can
be set in the register. The RSR is updated by the reset control logic when the SIM41
comes out of reset. This register can be read at any time; a write has no effect. For more
information, see Section 3 Bus Operation.

RSR $007
7 6 5 4 3 2 1 0
| EXT | POW | sw | DBF | 0 | Loc | svs | 0 |

Supervisor Only

EXT—External Reset
1 = The last reset was caused by an external signal driving RESET.

POW—Power-Up Reset
1 = The last reset was caused by the power-up reset circuit.

SW—Software Watchdog Reset
1 = The last reset was caused by the software watchdog circuit.

DBF—Double Bus Fault Monitor Reset
1 = The last reset was caused by the double bus fault monitor.

Bits 3, 0—Reserved

LOC—Loss of Clock Reset

1 = The last reset was caused by a loss of frequency reference to the clock
synthesizer. This reset can only occur if the RSTEN bit in the SYNCR is set and
the VCO is enabled.

MOTOROLA MC68341 USER’S MANUAL 4-25

SYS—System Reset

1 = The last reset was caused by the CPU32 executing a RESET instruction. The
system reset does not load a reset vector or affect any internal CPU32 registers,
SIM41 configuration registers, or the MCR in each internal peripheral module
(DMA, timers, and serial modules). It will, however, reset external devices and all
other registers in the peripheral modules.

4.3.2.4 SOFTWARE INTERRUPT VECTOR REGISTER (SWIV). The SWIV contains the
8-bit vector that is returned by the SIM41 during an IACK cycle in response to an interrupt
generated by the software watchdog. This register can be read or written at any time. This
register is set to the uninitialized vector, $0F, at reset.

SWIV $020

7 6 5 4 3 2 1 0
| SWiIv7 | SWIV6 | SWIVS | Swiv4 |SWIV3 |SWIV2 |SWIV1 |SWIVO |

RESET:
0 0 0 0 1 1 1 1

Supervisor Only

4.3.2.5 SYSTEM PROTECTION CONTROL REGISTER (SYPCR). The SYPCR controls
the system monitors, the prescaler for the software watchdog, and the bus monitor timing.
This register can be read at any time, but can be written only once after reset.

SYPCR $021

7 6 5 4 3 2 1 0
| SWE | SWRI | SWT1 | SWTO | DBFE | BME | BMT1 | BMTO |

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

SWE—Software Watchdog Enable

1 = Software watchdog is enabled.
0 = Software watchdog is disabled.
See 4.2.2.5 Software Watchdog for more information.

SWRI—Software Watchdog Reset/Interrupt Select

1 = Software watchdog causes a system reset.
0 = Software watchdog causes a level 7 interrupt to the CPU32.

SWT1, SWT0—Software Watchdog Timing

These bits, along with the SWP bit in the PITR, control the divide ratio used to establish
the timeout period for the software watchdog. The software watchdog timeout period is
given by the following formula:

divide count
EXTAL frequency

4-26 MC68341 USER’S MANUAL MOTOROLA

The software watchdog timeout period, listed in Table 4-8, gives the formula to derive the
software watchdog timeout for any clock frequency. The timeout periods are listed for a
32.768-kHz crystal used with the VCO and for a 16.777-MHz external oscillator with divide
by one selected by the V-bit of the SYNCR.

Table 4-8. Deriving Software Watchdog Timeout

32.768-kHz 16.777-MHz External
SWP | SWT1 | SWTO Software Timeout Period Crystal Period Clock Period

0 0 0 29/EXTAL Input Frequency 15.6 ms 30 ps

0 0 1 211 /EXTAL Input Frequency 62.5 ms 122 s

0 1 0 213/EXTAL Input Frequency 250 ms 488 ps

0 1 1 215/EXTAL Input Frequency 1s 1.95 ms

1 0 0 218/EXTAL Input Frequency 8s 15.6 ms

1 0 1 220 /EXTAL Input Frequency 32s 62.5 ms

1 1 0 222 [EXTAL Input Frequency 128 s 250 ms

1 1 1 224 |[EXTAL Input Frequency 512's 1s

NOTE: When the SWP and SWT bits are modified to select a software timeout other than the default, the
software service sequence ($55 followed by $AA written to the software service register) must be
performed before the new timeout period takes effect. Refer to 4.2.2.5 Software Watchdog for
more information.

DBFE—Double Bus Fault Monitor Enable

1 = Enable double bus fault monitor function.
0 = Disable double bus fault monitor function.
For more information, see 4.2.2.3 Double Bus Fault Monitor and Section 5 CPU32.

BME—Bus Monitor External Enable

1 = Enable bus monitor function for an internal-to-external bus cycle.
0 = Disable bus monitor function for an internal-to-external bus cycle.
For more information see 4.2.2.2 Internal Bus Monitor.

BMT1, BMTO—Bus Monitor Timing

These bits select the timeout period for the bus monitor (see Table 4-9). Upon reset, the
bus monitor is set to 512 system clocks.

Table 4-9. BMTx Encoding

BMT1 BMTO Bus Monitor Timeout Period
0 0 512 system clocks (CLKOUT)
0 1 256 system clocks
1 0 128 system clocks
1 1 64 system clocks

MOTOROLA MC68341 USER’S MANUAL 4-27

4.3.2.6 PERIODIC INTERRUPT CONTROL REGISTER (PICR). The PICR contains the
interrupt level and the vector number for the periodic interrupt request. This register can
be read or written at any time. Bits 15—-11 are unimplemented and always return zero; a
write to these bits has no effect.

PICR $022
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 0 | 0 | 0 | 0 | 0 |PIRQL2 |PIRQL1 |PIRQLO | PIV7 | PIV6 | PIV5 | PIV4 | PIV3 | PIV2 | PIV1 | PIVO |
RESET:
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Supervisor Only
Bits 15-11—Reserved

PIRQL2-PIRQLO—Periodic Interrupt Request Level

These bits contain the periodic interrupt request level. Table 4-10 lists which interrupt
request level is asserted during an IACK cycle when a periodic interrupt is generated.
The periodic timer continues to run when the interrupt is disabled.

Table 4-10. PIRQL Encoding

PIRQL2 | PIRQL1 | PIRQLO Interrupt Request Level
0 0 0 Periodic Interrupt Disabled
0 0 1 Interrupt Request Level 1
0 1 0 Interrupt Request Level 2
0 1 1 Interrupt Request Level 3
1 0 0 Interrupt Request Level 4
1 0 1 Interrupt Request Level 5
1 1 0 Interrupt Request Level 6
1 1 1 Interrupt Request Level 7

NOTE:

Use caution with a level 7 interrupt encoding due to the
SIM41's interrupt servicing order. See 4.2.2.7 Simultaneous
Interrupts by Sources in the SIM41 for the servicing order.

PIV7—PIVO—Periodic Interrupt Vector Bits 7-0
These bits contain the value of the vector generated during an IACK cycle in response
to an interrupt from the periodic timer. When the SIM41 responds to the IACK cycle, the
periodic interrupt vector from the PICR is placed on the bus. This vector number is

multiplied by four to form the vector offset, which is added to the vector base register to
obtain the address of the vector.

4.3.2.7 PERIODIC INTERRUPT TIMER REGISTER (PITR). The PITR contains control for
prescaling the software watchdog and periodic timer as well as the count value for the

4-28 MC68341 USER’S MANUAL MOTOROLA

periodic timer. This register can be read or written at any time. Bits 15-10 are not
implemented and always return zero when read. A write does not affect these bits.

PITR $024
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| 0 | 0 | 0 | 0 | 0 | 0 | Swp | PTP |PITR7 |PITR6 |PITR5 |PITR4 |PITR3 |PITR2 |PITR1 |PITRO |
RESET:
0 0 0 0 0 0 MODCK MODCK 0 0 0 0 0 0 0

Supervisor Only

Bits 15—-10—Reserved

SWP—Software Watchdog Prescale

This bit controls the software watchdog clock source as shown in 4.3.2.5 System
Protection Control Register (SYPCR).

1 = Software watchdog clock prescaled by a value of 512.
0 = Software watchdog clock not prescaled.
The SWP reset value is the inverse of the MODCK bit state on the rising edge of reset.

PTP—Periodic Timer Prescaler Control
This bit contains the prescaler control for the periodic timer.

1 = Periodic timer clock prescaled by a value of 512.
0 = Periodic timer clock not prescaled.
The PTP reset value is the inverse of the MODCK bit state on the rising edge of reset.

PITR7-PITRO—Periodic Interrupt Timer Register Bits 7-0

The remaining bits of the PITR contain the count value for the periodic timer. A zero
value turns off the periodic timer.

4.3.2.8 SOFTWARE SERVICE REGISTER (SWSR). The SWSR is the location to which
the software watchdog servicing sequence is written. The software watchdog can be
enabled or disabled by the SWE bit in the SYPCR. SWSR can be written at any time, but
returns all zeros when read.

SWSR $027
7 6 5 4 3 2 1 0
|SWSR7 |SWSR6 |SWSR5 |SWSR4 |SWSR3 |SWSR2 |SWSR1 |SWSRO |

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

4.3.3 Clock Synthesizer Control Register (SYNCR)

The SYNCR can be read or written only in supervisor mode. The reset state of SYNCR
produces an operating frequency of 8.39 MHz when the PLL is referenced to a 32.768-

MOTOROLA MC68341 USER’S MANUAL 4-29

kHz reference signal. The system frequency is controlled by the frequency control bits in
the upper byte of the SYNCR as follows:

Fsystem = FerysTaL [2GWHXH32-1] x (Y+1)

SYNCR $004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| w | X | Y5 | Y4 | Y3 | Y2 | Y1l | YO | z | \% | 0 | SLIMP |SLOCK |RSTEN | STSIM |STEXT |
RESET:
0 0 1 1 1 1 1 1 1 0 0 U U 0 0 0
U = Unaffected by reset Supervisor Only

W—Frequency Control Bit

This bit controls the prescaler tap in the synthesizer feedback loop. Setting the bit
increases the VCO frequency by a factor of 4, requiring a time delay for the VCO to
relock (see equation for determining system frequency).

X—~Frequency Control Bit

This bit controls a divide-by-two prescaler, which is not in the synthesizer feedback
loop. Setting the bit doubles the system clock speed without changing the VCO speed,
as specified in the equation for determining system frequency; therefore, no delay is
incurred to relock the VCO.

Y5-Y0—Frequency Control Bits

The Y-bits, with a value from 0-63, control the modulus downcounter in the synthesizer
feedback loop, causing it to divide by the value of Y+1 (see the equation for determining
system frequency). Changing these bits requires a time delay for the VCO to relock.

Z—Frequency Control Bit

This bit controls a divide-by-eight. Setting the bit increases the system clock frequency
by a factor of eight, without changing the VCO speed.

V—Frequency Control Bit

This bit controls a divide-by-two on the external clock input (EXTCLK). Clearing the bit
allows the VCO to run at half the speed of the external clock. Changing the bit value
requires a time delay for the VCO to relock.

Bits 5—Reserved
Bit 5 is reserved.

SLIMP—Limp Mode

1 = Aloss of input signal reference has been detected, and the VCO is running at
approximately one-half the maximum speed (affected by the X-bit), determined
from an internal voltage reference.

0 = External input signal frequency is at VCO reference.

4-30 MC68341 USER’S MANUAL MOTOROLA

SLOCK—Synthesizer Lock
1 = VCO has locked onto the desired frequency (or system clock is driven

externally).
0 = VCO is enabled, but has not yet locked.

RSTEN—Reset Enable

1 = Loss of input signal causes a system reset.

0 = Loss of input signal causes the VCO to operate at a nominal speed without
external reference (limp mode), and the device continues to operate at that
speed.

STSIM—Stop Mode System Integration Clock

1= When LPSTOP is executed, the SIM41 clock is driven from the VCO.
0 = When LPSTOP is executed, the SIM41 clock is driven from an external crystal or
oscillator, and the VCO is turned off to conserve power.

STEXT—Stop Mode External Clock
1 = When the LPSTOP instruction is executed, the external clock pin (CLKOUT) is
driven from the SIM41 clock as determined by the STSIM bit.
0 = When the LPSTOP instruction is executed, the external clock (CLKOUT) is held
low to conserve power. No external clock will be driven in LPSTOP mode.

4.3.4 Chip Select Registers

The following paragraphs provide descriptions of the registers in the chip select function,
and an example of how to program the registers. The chip select registers cannot be used
until the V-bit in the MBAR is set.

4.3.4.1 BASE ADDRESS REGISTERS. There are eight 32-bit base address registers in
the chip select function, one for each chip select signal.

Base Address 1 $044, $04C, $054, $05C, $064, $06C, $074, $07C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| BA31 | BA30 | BA29 | BA28 | BA27 | BA26 | BA25 | BA24 | BA23 | BA22 | BA21 | BA20 | BA19 | BA18 | BA17 | BA16 |

RESET:

U U U U U U] U] 0]]]]]] U
Supervisor Only
Base Address 2 $046, $04E, $056, $05E, $066, $06E, $076, $07E
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| BA15 | BA14 | BA13 | BA12 | BAl1l | BA10 | BA9 | BA8 | BFC3 | BFC2 | BFC1 | BFCO | wpP | EDS | NCS | \% |
RESET:
] U] U] U U U U U U U U U 0 0
U = Unaffected by reset Supervisor Only

BA31-BA8—Base Address Bits 31-8

The base address field, the upper 24 bits of each base address register, selects the
starting address for the chip select. The specified base address must be on a multiple of

MOTOROLA MC68341 USER’S MANUAL 4-31

the selected block size. The corresponding bits, AM31-AMS, in the address mask
register define the size of the block for the chip select. The base address field (and the
base function code field) is compared to the address on the address bus to determine if
a chip select should be generated.

BFC3-BFC0—Base Function Code Bits 3-0

The value programmed into this field causes a chip select to be asserted for a certain
address space type. There are nine function code address spaces (see Section 3 Bus
Operation) specified as either user or supervisor, program or data, CPU, and DMA.
These bits should be used to allow access to one type of address space. If access to
more than one type of address space is desired, the FCMx bits should be used in
addition to the BFCx bits. To prevent access to CPU space, set the NCS bit.

WP—Write Protect

This bit can restrict write accesses to the address range in a base address register. An
attempt to write to the range of addresses specified in a base address register that has
this bit set returns BERR.

1 = Only read accesses are allowed.
0 = Either read or write accesses are allowed.

EDS—Extended Delay Select

This bit is used in combination with the DD bits in the Address Mask registers to select
the number of wait states added before an internal DSACKXx is supplied. See Table 4-
11.

1 = Extended delay enabled .
0 = Extended delay disabled.

NCS—No CPU Space

This bit specifies whether or not a chip select will assert on a CPU space access cycle
(FC3-FCO = $7 or $F). If both supervisor data and program accesses are desired, while
ignoring CPU space accesses, then this bit should be set. The NCS bit is cleared at
reset.

1 = Suppress the chip select on a CPU space access.
0 = Assert the chip select on a CPU space access.

V—Valid Bit
This bit indicates that the contents of its base address register and address mask
register pair are valid. The programmed chip selects do not assert until the V-bit is set.
A reset clears the V-bit in each base address register, but does not change any other
bits in the base address and address mask registers (CSO0 is a special case, see 4.2.4.2
Global Chip Select Operation).

1 = Contents are valid.
0 = Contents are not valid.

4-32 MC68341 USER’S MANUAL MOTOROLA

4.3.4.2 ADDRESS MASK REGISTERS. There are eight 32-bit address mask registers in
the chip select function, one for each chip select signal.

Address Mask 1 $040, $048, $050, $058, $060, $068, $070, $078
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| AM31 | AM30 | AM29 | AM28 | AM27 | AM26 | AM25 | AM24 | AM23 | AM22 | AM21 | AM20 | AM19 | AM18 | AM17 | AM16 |

RESET:

U U U U U U U U U U U U U U U U
Supervisor Only
Address Mask 2 $042, $04A, $052, $05A, $062, $06A, $072, $07A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| AM15 | AM14 | AM13 | AM12 | AM11 | AM10 | AM9 | AM8 | FCM3 | FCM2 | FCM1 | FCMO | DD1 | DDO | PS1 | PSO |

RESET:
U U U U U U U U U U U U U U U U

U = Unaffected by reset Supervisor Only

AM31-AM8—Address Mask Bits 31-8

The address mask field, the upper 24 bits of each address mask register, defines the
chip select block size. The block size is equal to 2", where n = (number of bits set in
the address mask field) + 8.

Any set bit masks the corresponding base address register bit (the base address
register bit becomes a don’t care). By masking the address bits independently, external
devices of different size address ranges can be used. Address mask bits can be set or
cleared in any order in the field, allowing a resource to reside in more than one area of
the address map. This field can be read or written at any time.

FCM3-FCMO0O—Function Code Mask Bits 3—-0
This field can be used to mask certain function code bits, allowing more than one
address space type to be assigned to a chip select. Any set bit masks the
corresponding function code bit.

DD1, DDO—DSACK Delay Bits 1 and 0
This field, in combination with the EDS bit determines the number of wait states added
before an internal DSACKXx is returned for that entry. Table 4-11 lists the encoding for
the DD and EDS bits.

NOTE:

The port size field must be programmed for an internal
DSACKXx response for the DDx bits to have significance. If
external DSACKXx signals are returned earlier than indicated by
the DDx and EDS bits, the cycle will terminate sooner than
programmed.

MOTOROLA MC68341 USER’S MANUAL 4-33

Table 4-11. DDx Encoding

EDS DD1 DDO Response Cycle Duration
0 0 0 Zero Wait State Three Clocks
0 0 1 One Wait State Four Clocks
0 1 0 Two Wait States Five Clocks
0 1 1 Three Wait States Six Clocks
1 0 0 Four Wait State Seven Clocks
1 0 1 Five Wait State Eight Clocks
1 1 0 Six Wait States Nine Clocks
1 1 1 Fast Termination Two Clocks

PS1, PSO—Port Size Bits 1 and 0

This field determines whether a given chip select responds with DSACKx and, if so,
what port size is returned. Table 4-12 lists the encoding for the PSx bits.

Table 4-12. PSx Encoding

PS1 PSO Mode
0 0 Reserved*
0 1 16-Bit Port
1 0 8-Bit Port
1 1 External DSACKx Response

*Use only for 32-bit DMA transfers.

To use the external DSACKx response, PS1-PS0 = 11 should be selected to suppress
internal DSACKXx generation. The DDx and EDS bits then have no significance.

4.3.4.3 BUS SELECT REGISTER. Each chip select can be programmed to select either
M68000 bus or M68300 bus address space using the bus select register. An access that
does not address internal resources or match one of the external chip select address
spaces defaults to an MC68300 bus access. The chip selects are gated out with AS or
68KAS timing for accesses to M68300 or 68000 bus address spaces respectively.

Bus Select Register $03C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| RESERVED | BSR7 | BSR6 | BSR5 | BSR4 | BSR3 | BSR2 | BSR1 | BSRO |
RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supervisor Only

Setting a bit in the BSR defines the corresponding chip select to be an M68000 bus
access and use 68KAS timing for accesses within the defined address range. This register
can be read or written at any time.

4-34 MC68341 USER’S MANUAL MOTOROLA

4.3.4.4 MAP SELECT REGISTER. The map select register can map byte wide
peripherals on the M68000 bus to either the upper or lower half of the data bus (even or
odd address space).

Map Select Register $03E
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| RESERVED | MSR7 | MSR6 | MSR5 | MSR4 | MSR3 | MSR2 | MSR1 | MSRO |
RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supervisor Only

Setting a bit in the MSR defines the corresponding CSx bit to be a byte-wide peripheral.
Even/odd select capability is provided by pairing of chip selects, so the base address for
an even/odd pair is specified in the even chip select register (CS2 provides base address
and range for CS2 and CS3 if MSR3 is set). The base address and range information is
combined with the size and AO information drive the corresponding chip select pins for an
even/odd pair of chip selects. If an access addresses both even and odd bytes, then the
corresponding even and odd chip select pins are asserted.

The chip select implementation requires that odd byte chip selects used for M68000 byte
peripherals be paired with even byte chip selects of similar address, but does not restrict
even byte peripheral chip selects. For example, if CS2 is used for an M68000 byte
peripheral, but there is no byte peripheral in that address range on the lower half of the
data bus, then CS3 can be used as a general purpose chip select for any address range,
bus type, or port size.

4.3.4.5 CHIP SELECT REGISTERS PROGRAMMING EXAMPLE. The following listing is
an example of programming a chip select at starting address $00040000, for a block size
of 256 Kbytes, accessing supervisor and user data spaces with a 16-bit port requiring two
wait states. There will be no write protection, no fast termination, and no CPU space
accesses.

base address 1 = $0004
base address 2 = $0013
address mask 1 = $0003
address mask 2 = $FF49

NOTE

If an access matches multiple chip selects, the lowest
numbered chip select will have priority. For example, if CS0
and CS2 "overlap" for a certain range, CSO will assert when
accessing the "overlapped" address range, and CS2 will not.

4.3.5 External Bus Interface Control

The following paragraphs describe the registers that control the 1/0 pins used with the
EBI. Refer to the Section 3 Bus Operation for more information about the EBI. For a list
of pin numbers used with port A and port B, see the pinout diagram in Section 13

MOTOROLA MC68341 USER’S MANUAL 4-35

Ordering Information and Mechanical Data. Section 2 Signal Descriptions shows a
block diagram of the port control circuits.

4.3.5.1 PORT A PIN ASSIGNMENT REGISTER 1 (PPARA1). PPARAL selects between
an address and discrete 1/0O function for the port A pins. Any set bit defines the
corresponding pin to be an 1/O pin, controlled by the port A data and data direction
registers. Any cleared bit defines the corresponding pin to be an address bit as defined in
the following register diagram. Bits set in this register override the configuration setting of
PPARA2. The $FF reset value of PPARAL configures port A as an input port. This register
can be read or written at any time.

PPARA1 $015
7 6 5 4 3 2 1 0

PRTA7 | PRTA6 | PRTAS | PRTA4 | PRTA3 | PRTA2 | PRTAL | PRTAO
(A31) | (A30) | (A29) | (A28) | (a27) | (A26) | (A25) | (A24)

RESET:
1 1 1 1 1 1 1 1

Supervisor Only

4.3.5.2 PORT A PIN ASSIGNMENT REGISTER 2 (PPARA2). PPARAZ2 selects between
an address and IACKx function for the port A pins. Any set bit defines the corresponding
pin to be an IACKx output pin. Any cleared bit defines the corresponding pin to be an
address bit as defined in the register diagram. Any set bits in PPARAL override the
configuration set in PPARAZ2. Bit 0 has no function in this register because there is no
level O interrupt. This register can be read or written at any time.

PPARA2 $017
7 6 5 4 3 2 1 0

IACK? | 1acke | 1acks | 1acka | 1ack3 | 1ack2 | 1aCK1 0
(a31) | (A30) | (a29) | (a28) | (a27) | (a26) | (a25)

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

The IACKXx signals are asserted if a bit in PPARAZ2 is set and the CPU32 services an
external interrupt at the corresponding level. IACKx signals have the same timing as
address strobes.

4.3.5.3 PORT A DATA DIRECTION REGISTER (DDRA). DDRA controls the direction of
the pin drivers when the pins are configured as 1/0. Any set bit configures the
corresponding pin as an output. Any cleared bit configures the corresponding pin as an
input. This register affects only pins configured as discrete 1/O. This register can be read
or written at any time.

4-36 MC68341 USER’S MANUAL MOTOROLA

DDRA $013

7 6 5 4 3 2 1 0
| DD7 | DD6 | DD5 | DD4 | DD3 | DD2 | DD1 | DDO |

RESET:
0 0 0 0 0 0 0 0

Supervisor/User

4.3.5.4 PORT A DATA REGISTER (PORTA). PORTA affects only pins configured as
discrete 1/0. A write to PORTA is stored in the internal data latch, and if any port A pin is
configured as an output, the value stored for that bit is driven on the pin. A read of PORTA
returns the value at the pin only if the pin is configured as discrete input. Otherwise, the
value read is the value stored in the internal data latch. This register can be read or written
at any time.

PORTA $011
7 6 5 4 3 2 1 0
| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |
RESET:
U U U U U U]]
Supervisor/User

4.3.5.5 PORT B PIN ASSIGNMENT REGISTER (PPARB). PPARB controls the function
of each port B pin. Any set bit defines the corresponding pin to be an IRQx input as
defined in Table 4-6. Any cleared bit defines the corresponding pin to be a discrete 1/O pin
controlled by the port B data and data direction registers. The MODCK signal has no
function after reset. PPARB is configured to all ones at reset to provide for MODCK,
IRQ7-1RQ1 . This register can be read or written at any time.

PPARB $01F
7 6 5 4 3 2 1 0
PPARB7 | PPARB6 | PPARB5 | PPARB4 | PPARB3 | PPARB2 | PPARB1 | PPARBO
(RQ7) | (RQ6) | (RQ5) | (RQ4) | (RQ3) | (RQ2) | (RQ1) |MODCK)

RESET:
1 1 1 1 1 1 1 1

Supervisor Only

4.3.5.6 PORT B DATA DIRECTION REGISTER (DDRB). DDRB controls the direction of
the pin drivers when the pins are configured as 1/0. Any set bit configures the
corresponding pin as an output; any cleared bit configures the corresponding pin as an
input. This register affects only pins configured as discrete 1/O. This register can be read
or written at any time.

DDRB $01D

7 6 5 4 3 2 1 0
| DD7 | DD6 | DD5 | DD4 | DD3 | DD2 | DD1 | DDO |

RESET:
0 0 0 0 0 0 0 0

Supervisor/User

MOTOROLA MC68341 USER’S MANUAL 4-37

4.3.5.7 PORT B DATA REGISTER (PORTB, PORTB1). This is a single register that can
be accessed at two different addresses. This register affects only those pins configured as
discrete 1/0. A write is stored in the internal data latch, and if any port B pin is configured
as an output, the value stored for that bit is driven on the pin. A read of this register
returns the value stored in the register only if the pin is configured as a discrete output.
Otherwise, the value read is the value of the pin. This register can be read or written at
any time.

PORTB, PORTB1 $019, 01B
7 6 5 4 3 2 1 0
|P7|P6|P5|P4|P3|P2|P1|PO|

RESET:
U U] U U U]]
Supervisor/User

4.3.5.8 PORT C PIN ASSIGNMENT REGISTER (PPARC). The MC68341 has multiplexed
functions on several pins that had a dedicated function on the MC68340. Five new signals
have been added to the DMA module, and the RTCOUT signal is multiplexed with RMC .
These new alternate functions are selected by setting the appropriate bit in PPARC.

PPARC $029
7 6 5 4 3 2 1 0

TIN TGATE | DACK2 | DACK1 FC3 RMC 0 0
RDY2 RDY1 [DDACK2 [DDACK1| DTC [RTCOUT

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

4.4 REAL TIME CLOCK

The SIM41 includes a real time clock and calendar function (RTC), that counts seconds,
minutes, hours, days, day of the week, date of the month, month, and year with leap year
compensation. The RTC can generate both an internal interrupt and an external output
(RTCOUT) based on an alarm or time matching function.

The 32.768kHz oscillator and the RTC can continue to operate from the VBATT power pin
when VCC is turned off. In typical applications VBATT is connected to a 3V lithium battery
to provide backup of the RTC time function. If the RMC/RTCOUT signal is configured as
RTCOUT before VCC is powered down, the output drivers for RTCOUT are also powered
from VBATT to allow the alarm output to be seen by other system devices. During initial
system debug, or for systems which do not require the time function to be non-volatile,
VBATT and BSW can be connected to VCC to eliminate the need for a separate power
supply source.

4.4.1 Reset

Hardware RESET does not affect the clock or calendar functions of the RTC. When
RESET is asserted, the following occurs:

4-38 MC68341 USER’S MANUAL MOTOROLA

1. The Alarm Indicator Enable/Clear (AIE/C) bit is cleared.
2. The Alarm Indicator (ALARM) bit is cleared.
3. Interrupt control register (RICR) is cleared.

4.4.2 RTC Interrupt Control Register (RICR)

The RICR contains the interrupt level and the vector number for the RTC alarm interrupt
request.

RTC Interrupt Control Register $0CO
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 0 | 0 | 0 | 0 | 0 | RIRQ2 | RIRQ1 | RIRQO | RIV7 | RIV6 | RIV5 | RIV4 | RIV3 | RIV2 | RIV1 | RIVO |
RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supervisor Only

RIRQ2-RIRQO0—RTC Interrupt Request Level

These bits contain the real time clock alarm interrupt request level. Table 4-13 lists the
interrupt request level asserted during an IACK cycle when an RTC alarm interrupt
occurs. The RTC shares the interrupt arbitration bits with the other sub-modules of the
SIM41. The relative priority of the SIM41 interrupt sources is:

1. Watchdog timer

2. Periodic timer
3. RTC alarm interrupt
4. External interrupts

Table 4-13. RIRQL Encoding

RIRQ2 | RIRQ1 | RIRQO Interrupt Request Level
0 0 0 RTC Interrupt Disabled
0 0 1 Interrupt Request Level 1
0 1 0 Interrupt Request Level 2
0 1 1 Interrupt Request Level 3
1 0 0 Interrupt Request Level 4
1 0 1 Interrupt Request Level 5
1 1 0 Interrupt Request Level 6
1 1 1 Interrupt Request Level 7

RIV7-RIVO—RTC Interrupt Vector Bits 7-0

These bits contain the value of the vector generated during an IACK cycle in response
to an interrupt from the RTC alarm. When the SIM41 responds to an IACK cycle, the
RTC interrupt vector is placed on the bus.

MOTOROLA MC68341 USER’S MANUAL 4-39

4.4.3 RTC Control/Status Register (RCR)
The RCR contains the control bits for the RTC.

RCR $0C8

7 6 5 4 3 2 1 0
|WR_ERR |ALARM |ERRMUX| ROS1 | ROSO | AE/C |RCK_HT| SET |

RESET:
u 0 0 0 0 0 0 0

Supervisor Only

WR_ERR—RTC Write Error Indicator

1 = An error has occurred in the contents of the time registers.

0 = No error in the contents of the time registers.
Any illegal combination in the time registers sets this bit, e.g., seconds greater than 59,
hours greater than 23, non-BCD data, or day exceeding the maximum for the month
selected.

ALARM—RTC Alarm Indicator

1 = Alarm has occurred. In alarm indicator latched mode, this bit remains set until
AIE/C is cleared. In alarm indicator pulsed mode, this bit clears on reading the
RCR.

0 = No alarm condition.

ERRMK—RTC Write Error Mask

1 = Enables the interrupt output from the WR_ERR indicator.Masks the interrupt
output from the WR_ERR indicator.
0 = Masks the interrupt output from the WR_ERR indicator.

ROS1, ROSO—RTC Output Select

00 = Alarm indicator latched. RTCOUT is asserted high when the alarm register
matches the time, and negated low by clearing the AIE/C bit.

01 = Alarm indicator pulsed. RTCOUT is asserted high when the alarm register
matches the time, and negated low one RTC clock (30.5 uS) later. RTCOUT
can also be negated by clearing the AIE/C bit.

10 = Square wave. RTCOUT drives a 1.024 KHz square wave (RTC clock + 32)

11 = Alarm indicator latched inverted. RTCOUT is asserted low when the alarm
register matches the time, and negated high by clearing the AIE/C bit.

AIE/C—Alarm Indicator Enable/Clear

1 = Alarm indicator bit can assert
0 = Alarm indicator bit cannot assert. Clearing this bit clears the alarm condition and
negates RTCOUT if programmed as an alarm indicator.

RCK_HT—RTC Clock Halt

1= RTC clock is stopped
0 = RTC clock runs.

4-40 MC68341 USER’S MANUAL MOTOROLA

SET—RTC Initialization

1 = Update cycles are inhibited so that time and calendar bytes can be written
without an update occurring.
0 = Update cycle functions normally.

4.4.3 RTC Calibration Control Register (RCCR)

The RCCR contains the calibration data and sign bit for the RTC, used to compensate for
crystal frequency error. The calibration circuits add or subtract counts at the divide-by-128
stage in the oscillator divide circuit. Positive value adds counts and speeds up the clock;
negative values subtract counts and slow the clock down.

RCCR $OCF

7 6 5 4 3 2 1 0
| 0 |RDCLR | RCSN | RCD4 | RCD3 | RCD2 | RCD1 | RCDO |

RESET:
u u u u u u u u

Supervisor Only

RDCLR—RTC Divider Clear

1 = Clears 15-bit RTC clock divider used to generate the 1Hz seconds clock.
0 = Normal divider operation

RCSN—RTC Calibration Sign Bit

1 = Positive calibration (adds to clock count)
0 = Negative calibration (subtracts from clock count)

RCD4-RCDO0—RTC Calibration Data

This bit field contains the value (times 128 clock cycles) to be added to the clock count
each hour.

RCD4-RCD0O—RTC Calibration Data

This bit field contains the value (times 128 clock cycles) to be added to the clock count
each hour. Valid range is 0 to 31 ($1F hex). Operation with values from $20-3F is
undefined.

At the start of each hour, the value in the calibration data field RCDx is loaded into a
counter. If the count is non-zero, the first minute is either shortened or lengthened by 128
clocks (as indicated by the RCSN sign bit), and the count is decremented. This correction
process is repeated each successive minute, until the count is exhausted. Each calibration
step has the effect of adding or subtracting 128 oscillator cycles every 117,964,800
(32768Hz x 60 sec/min x 60 min/hr) oscillator cycles, or 1.085 PPM of adjustment per
calibration step. The 31 steps positive and negative support a total crystal frequency
adjustment range of +33.6 PPM.

MOTOROLA MC68341 USER’S MANUAL 4-41

The following procedure may be used to calibrate the RTC:

1. Program the 1.024 kHz signal to be output on RTCOUT.
a. Set Port C pIn assignment register PPARC bit 2 to a one to select RTCOUT.
b. Set RCR bits 4:3 to 1.0 to select square wave output.

2. A 1.024 kHz signal can be observed on the RTCOUT pin. Any deviation from 1.024
kHz indicates the degree and direction of the oscillator error. Measure the RTCOUT
frequency and use the following formula, substituting the measured frequency in Hz
for M. COM is the resulting compensation value.

OM Oy
(10240
1085x107°

3. Round COM to the nearest integer. The RCSN sign bit should be zero if COM is
positive, one if COM is negative. The RCDx data field should be set to the absolute
value of COM, converted to hex.

COM =

For example, if 1023.9834 Hz is measured on RTCOUT, COM would equal —14.9, or -15
after rounding. Since COM is negative, the RCSN bit should be one. Fifteen equals F hex,
so the required RCCR value is 2F. The correctable RTCOUT frequency range is 1024.034
to 1023.966 Hz. The RTCOUT frequency is not affected by the current correction value
programmed in the RCCR.

4.4.4 RTC Time of Day Registers
These registers contain the time of day in BCD format.

MIN $0C2
7 6 5 4 3 2 1 0
| 0 | MING | MINS | MINg | MING | MIN2 | MINL | MINO |
RESET:
u u u u u u u u

User—Read Only
Supervisor—Read and Write

SEC $0C3
7 6 5 4 3 2 1 0
| 0 | SEC6 | SECS | SEC4 | SEC3 | SEC2 | SEC1 | SECO |
RESET:
u u u u u u u u

User—Read Only
Supervisor—Read and Write

4-42 MC68341 USER’S MANUAL MOTOROLA

DATE $0C4

7 6 5 4 3 2 1 0
| 0 | 0 | DATES | DATE4 | DATE3 | DATE2 | DATE1 | DATEQ |
RESET:

U U U U U U U U

User—Read Only
Supervisor—Read and Write

The date counter is a 6-bit BCD counter with a range of 1 to 31 decimal. The date

counter and month counter compensate for leap years.

HOUR $0C5
7 6 5 4 3 2 1 0
| 0 | 0 | HOURS | HOUR4 | HOUR3 | HOUR2 | HOUR1 | HOURO |
RESET:
u u u u u u u u

User—Read Only
Supervisor—Read and Write

The hours counter is a 24-hour clock only.

MONTH $0C6
7 6 5 4 3 2 1 0
| 0 | 0 | 0 | MNT4 | MNT3 | MNT2 | MNT1 | MNTO |
RESET:
u u u u u u u u

User—Read Only
Supervisor—Read and Write

YEAR $0C7

7 6 5 4 3 2 1 0
|YR7 | YR6 | YR5 | YR4 | YR3 | YR2 | YR1 | YRO |

RESET:
u u u u u u u u

User—Read Only
Supervisor—Read and Write

DAY $0C9
7 6 5 4 3 2 1 0
[o | o [o | o | o | oow | oow: | oow |
RESET:
u u u u u u u u

User—Read Only
Supervisor—Read and Write

The day of the week counter is a 3-bit count-up counter with a range from 0 to 6. The

user defines the set value and day-of-week definition for the counter.

MOTOROLA MC68341 USER’S MANUAL

4-43

4.4.5 RTC ALARM Registers

These registers contain the time of day alarm registers. Bit 7 of each register is the mask
bit for the register, described in Table 4-14. Setting the mask bit in a register makes its
match a don’t care. The alarm registers are written and read in the same format as the
time of day registers.

MINA $0CA
7 6 5 4 3 2 1 0
| MX | MING | MINS | MIN | MINS | MIN2 | MINL | MINO |

RESET:
U U U U U U U U
User—Read Only
Supervisor—Read and Write
SECA $0CB
7 6 5 4 3 2 1 0

| SX | SEC6 | SEC5 | SEC4 | SEC3 | SEC2 | SEC1 | SECO |

RESET:
] U] U] U U U
User—Read Only
Supervisor—Read and Write
DATEA $0CC
7 6 5 4 3 2 1 0
| DX | 0 | DATES | DATE4 | DATE3 | DATE2 | DATE1 | DATEQ |
RESET:
U U U U U U] U
User—Read Only
Supervisor—Read and Write
HOURA $0CD
7 6 5 4 3 2 1 0
| HX | 0 | HOURS | HOUR4 | HOUR3 | HOUR2 | HOUR1 | HOURO |
RESET:
U U U U U U U U

User—Read Only
Supervisor—Read and Write

4-44 MC68341 USER’S MANUAL MOTOROLA

Table 4-14 Alarm Bit Setting

SECA MINA HOURA | DATEA Alarm Activated
1 1 1 1 Alarm once per second
0 1 1 1 Alarm when seconds match
0 0 1 1 Alarm when minutes and seconds match
0 0 0 1 Alarm when hours, minutes and seconds match
0 0 0 0 Alarm when date, hours, minutes and seconds match

4.4.6 RTC Power Up Operation

Figure 4-9 is a timing diagram of the power up operation, showing the relationships
between RESET, V cc, CLKOUT, and BSW. BSW is sampled as an asynchronous input
by CLKOUT. After Vcc has reached the minimum spec operating voltage, BSW and
RESET must remain asserted for at least four system clock cycles before BSW is
negated. Negation of BSW switches the RTC and oscillator power connection from
VBATT to either VccsyN (in crystal mode) or to Vcc (in external clock mode). BSW
should not remain asserted for extended periods of time when V¢ voltage is at or above

VBATT.

Vee Vee miN 7

BSW

RESET

Figure 4-9. Power-Up Reset Timing

4.4.7 RTC Power Down Operation

Figure 4-10 is a timing diagram of the power down operation, showing the relationships
between Vcc, CLKOUT, and BSW. BSW must be asserted at least three system clock
cycles before Vcc has reached the minimum spec operating voltage.

CLKOUT ||||||H

Vee Vee MIN

BSW \

Figure 4-10. Power-Down Timing

MOTOROLA MC68341 USER’S MANUAL 4-45

4.5 MC68340 INITIALIZATION SEQUENCE

The following paragraphs discuss a suggested method for initializing the MC68341 after
power-up.

4.5.1 Startup

RESET is asserted by the MC68341 during the time in which V¢ is ramping up, the VCO
is locking onto the frequency, and the MC68341 is going through the reset operation. After
RESET is negated, four bus cycles are run, with global CS0 being asserted to fetch the
32-bit supervisor stack pointer (SSP) and the 32-bit program counter (PC) from the boot
ROM. Until programmed, CSO0 is a global, 16-bit port, six-wait-state chip select. CSO can
be programmed to continue decode for a range of addresses after the V-bit is set,
provided the desired address range is first loaded into the CSO base address register.
After the V-bit is set for CS0, global chip select can only be restarted with a system reset.

After the SSP and the PC are fetched, the module base address register (MBAR) should
be initialized, and the MBAR V-bit should be set (CPU space address $0003FF00) with
the desired base address for the internal modules.

4.5.2 SIM41 Module Configuration

The order of the following SIM41 register initializations is not important; however, time can
be saved by initializing the SYNCR first to quickly increase to the desired processor
operating frequency. The module base address register must be initialized prior to any of
following steps.
Clock Synthesizer Control Register (SYNCR):

» Set frequency control bits (W, X, Y, Z) to specify frequency.

» Select action taken during loss of crystal (RSTEN bit): activate a system reset or
operate in limp mode.

» Select system clock and CLKOUT during LPSTOP (STSIM and STEXT bits).

Module Configuration Register (MCR)

« If using the software watchdog, periodic interrupt timer, and/or the bus monitor, select
action taken when FREEZE is asserted (FRZx bits).

» Select AVEC/CSO configuration (AVEC bit).
» Select the access privilege for the supervisor/user registers (SUPV bit).
» Select the interrupt arbitration level for the SIM41 (IARBX bits).

Autovector Register (AVR)
« Select the desired external interrupt levels for internal autovectoring.

4-46 MC68341 USER’S MANUAL MOTOROLA

System Protection Control Register (SYPCR) (Note that this register can only be written
once after reset.)

» Enable the software watchdog, if desired (SWE bit).

« If the watchdog is enabled, select whether a system reset or a level 7 interrupt is
desired at timeout (SWRI bit).

« |If the watchdog is enabled, select the timeout period (SWTx bits).
* Enable the double bus fault monitor, if desired (DBFE bit).

» Enable the external bus monitor, if desired (BME bit).

» Select timeout period for bus monitor (BMTx bits).

Software Watchdog Interrupt Vector Register (SWIV)

« If using the software watchdog, program the vector number for a software watchdog
interrupt.

Periodic Interrupt Timer Register (PITR)
« If using the software watchdog, select whether or not to prescale (SWP bit).
« If using the periodic interrupt timer, select whether or not to prescale (PTP bit).

* Program the count value for the periodic timer, or program a zero value to turn off the
periodic timer (PITRx bits).

Periodic Interrupt Control Register (PICR)

« If using the periodic timer, program the desired interrupt level for the periodic interrupt
timer (PIRQLX bits).

* If using the periodic timer, program the vector number for a periodic timer interrupt.

Chip Select Base Address and Address Mask Registers

« Initialize and set the V-bits in the necessary chip select base address and address
mask registers. Following this step, other system resources requiring the CSx signals
can be accessed. Care must be exercised when changing the address for CS0. The
address of the instruction following the MOVE instruction to the CS0 base address
register must match the value of the PC at that time. CSO must be taken out of global
chip select mode by setting the V-bit in the base address register before CS7-CS1
can be used.

Port A and B Registers
* Program the desired function of the port A signals (PPARAL and PPARA2 registers).
» Program the desired function of the port B signals (PPARB register).

MOTOROLA MC68341 USER’S MANUAL 4-47

4.5.3 SIM41 Example Configuration Code

The following code is an example configuration sequence for the SIM41 module.

IR E R R R R RS EEEEEEEEEEEEREEEEREEREREEEREEREREEEREEEREEEREEEEEEEEEEEEEREEREEEEREEEEEEEE]

* MC68341 basic SI M1 register initialization exanple code:

* This code is used to initialize the M68341's internal SI M1 registers,
* providing basic functions for operation.

* |1t includes chip select programm ng for external devices.

* This code woul d be progranmed begi nning at offset $0 into ROM which is
* relocated to address $60000 by the initialization code.

* The SSP_VEC and RST_VEC vectors used to initialize the system stack

* pointer and initial PC, respectively, are located at offset $0 after

*
reset.
Rk b Sk b S S O R S S R O R R IR R O O S o

* equat es

EE I I I I I I I I I I I I I I R I R I R I I I I I I R I I R R b I b I I I R I I I I R I I I b I I
SSP_ INT EQU $10000 Stack pointer initial value - top of RAM
VBAR EQU $0003FF00 Address of Mddul e Base Address Reg.
MODBASE EQU $FFFFFO00 Def aul t Modul e Base address val ue

EIE R I R S I R I R R R R R R R O

* SIMA1 register offsets from MBAR base address

MCR EQU $00
SYNCR EQU $04
SYPCR EQU $21
CSAMD EQU $40

EE R I R I R R I I R I R I R I R I I R S R O R R R R I R R R R R S R R S R R

* Reset vectors
* These two vectors should be located at offset $0 in the boot ROM

EE R I R I R I I R I R I R I R I R R R R R R R S I R I R R S R R S R S R R S R O

ORG $60000
SSP_VEC DC. L SSP_INIT Supervi sor stack pointer - initial value
RST _VEC DC. L I NI T340 Reset vector pointing to init code

R b Sk b S S I SRR S S O b I S R I S R I S O

* |nitialization code

IR E R R R R RS EEEEEEEEEEEEREEEEREEREREEEREEREREEEREEEREEEREEEEEEEEEEEEEREEREEEEREEEEEEEE]

I NI T340 MOVE. W #$2700, SR Init SR - interrupts nasked

IR E R R R R RS EEEEEEEEEEEEREEEEREEREREEEREEREREEEREEEREEEREEEEEEEEEEEEEREEREEEEREEEEEEEE]

* Set up default nodul e base address val ue

MOVEQ L #7, DO MBAR is in CPU space

MOVEC. L DO, DFC Load DFC to indicate CPU space

MOVE. L #MODBASE+$1BB, DO Al | ow DMA, supervi sor/user data accesses
MOVES. L DO, MBAR Wite to MBAR

R b Sk b S S S I SR S S O b O I O R I o R SRRk O

4-48 MC68341 USER’S MANUAL MOTOROLA

* Set up system protection register:
* Soft ware wat chdog di sabl ed, double bus fault nonitor disabled, bus
* nmonitor BERR after 128 cl ocks.

MOVE. B #6, SYPCR+MODBASE

R b Sk o R S S O O R O R R Rk O R

* Cl ock synthesizer control register:
* Switch from8.3 to 16.7 MiZ
MOVE. W #$7F80, SYNCR+MODBASE X-bit doubl es the default speed

EE R R R R R R R R R R R R R R I R I I R R I R R R I

* Mbdul e configuration register:
* When FREEZE is asserted, software watchdog and periodic interrupt timer
* are disabled, bus nonitor is enabled. Show Cycl es enabl ed, external
* arbitration enabl ed. Supervisor/user SIMregisters unrestricted,
* Interrupt Arbitration at priority $F
MOVE. W #$420F, MCR+MODBASE

EE R R R R R R R R R R R R R R I R I R I R R I R R I R I R R

* Set up address masks and base addresses for the first 4 chip selects:

LEA CSAMD+MODBASE, AO Point to CSO addr. mask | ocation.
MOVEQ #8-1, DO Set up loop counter for 2 regs * 4 CSx
LEA CSAMDS, Al Point to init table location.

LOOP MOVE. L (ALl) +, (A0) + Init. addr mask and base addr reg
DBRA Do, LOOP

EE R R R R R R R R R R R R R R I R I R I R R I R R I R I R R

* Data table for chip select initialization

R I S I Sk Sk kb S I kS I I kR R S S S I kS S I
* CSO - EPROM - 00060000-0007ffff, 3-wait states, 16-bit, wite protect, NCS
CSAM$ DC. L $0001FFFD

CSBARO$ DC. L $0006000B

* CS1 - RAM - 00000000-000Offff, fast term nation, NCS
CSAMLS$ DC. L $0000FFFC

CSBAR1$ DC. L $00000007

* CS2 - external device - OOFFE8xx, external termnination, NCS
CSAMR S DC. L $000000F3

CSBAR2$ DC. L $00FFE8B03

* CS3 - secondary nmenory - 00000000-0003ffff, 1-wait state, 8-bit, NCS
CSAMB$ DC. L $0003FFF6

CSBAR3$ DC. L $00000003

* CS4-8 unused. Reset invalidates these registers, so initialization

* is not specifically required

Cs4$ DC. L $0, $0

CS5% DC. L $0, $0

CS6$ DC. L $0, $0

CS7$ DC. L $0, $0

EE R R R R R R R R R R R R R R R I R R R I R R I R I R R
END

MOTOROLA MC68341 USER’S MANUAL 4-49

SECTION 5
CPU32

The CPU32, the first-generation instruction processing module of the M68300 family, is
based on the industry-standard MC68000 core processor. It has many features of the
MC68010 and MC68020 as well as unique features suited for high-performance processor
applications. The CPU32 provides a significant performance increase over the MC68000
CPU, yet maintains source-code and binary-code compatibility with the M68000 family.

5.1 OVERVIEW

The CPU32 is designed to interface to the intermodule bus (IMB), allowing interaction with
other IMB submodules. In this manner, integrated processors can be developed that
contain useful peripherals on chip. This integration provides high-speed accesses among
the IMB submodules, increasing system performance.

Another advantage of the CPU32 is low power consumption. The CPU32 is implemented
in high-speed complementary metal-oxide semiconductor (HCMOS) technology, providing
low power use during normal operation. During periods of inactivity, the low-power stop
(LPSTOP) instruction can be executed, shutting down the CPU32 and other IMB modules,
greatly reducing power consumption.

Ease of programming is an important consideration when using an integrated processor.
The CPUS32 instruction format reflects a predominant register-memory interaction
philosophy. All data resources are available to operations that require them. The
programming model includes eight multifunction data registers and seven general-purpose
addressing registers. The data registers support 8-bit (byte), 16-bit (word), and 32-bit
(long-word) operand lengths for all operations. Address manipulation is supported by word
and long-word operations. Although the program counter (PC) and stack pointers (SP) are
special-purpose registers, they are also available for most data addressing activities. Ease
of program checking and diagnosis is enhanced by trace and trap capabilities at the
instruction level.

As processor applications become more complex and programs become larger, high-level
languages (HLLs) will become the system designer's choice in programming languages.
HLLs aid in the rapid development of complex algorithms with less error and are readily
portable. The CPU32 instruction set efficiently supports HLLS.

MOTOROLA MC68341 USER’S MANUAL 51

5.1.1 Features

Features of the CPU32 are as follows:
» Fully Upward Object-Code Compatible with M68000 Family
 Virtual Memory Implementation
» Loop Mode of Instruction Execution
e Fast Multiply, Divide, and Shift Instructions
» Fast Bus Interface with Dynamic Bus Port Sizing
» Improved Exception Handling for Embedded Control Applications
» Additional Addressing Modes
— Scaled Index
— Address Register Indirect with Base Displacement and Index
— Expanded PC Relative Modes
— 32-Bit Branch Displacements
* Instruction Set Additions
— High-Precision Multiply and Divide
— Trap on Condition Codes
— Upper and Lower Bounds Checking
* Enhanced Breakpoint Instruction
e Trace on Change of Flow
» Table Lookup and Interpolate (TBL) Instruction
* LPSTORP Instruction
» Hardware BKPT Signal, Background Mode
* Fully Static Implementation

A block diagram of the CPU32 is shown in Figure 5-1. The major blocks depicted operate
in a highly independent fashion that maximizes concurrences of operation while managing
the essential synchronization of instruction execution and bus operation. The bus
controller loads instructions from the data bus into the decode unit. The sequencer and
control unit provide overall chip control by managing the internal buses, registers, and
functions of the execution unit.

5.1.2 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed physical
memory that can be accessed directly by the processor and maintains an image of a
much larger virtual memory on a secondary storage device. When the processor attempts
to access a location in the virtual memory map that is not resident in physical memory, a
page fault occurs. The access to that location is temporarily suspended while the
necessary data is fetched from secondary storage and placed in physical memory. The

52 MC68341 USER’S MANUAL MOTOROLA

CPUS32 uses instruction restart, which requires that only a small portion of the internal
machine state be saved. After correcting the page fault, the machine state is restored, and
the instruction is refetched and restarted. This process is completely transparent to the
application program.

SEQUENCER

CONTROL

UNIT INSTRUCTION

PREFETCH
AND
DECODE

DATA BUS <7 16)) U
EXECUTION CONTROL BUS CONTROL
ADDRESS UNIT

BUS |32

Figure 5-1. CPU32 Block Diagram

5.1.3 Loop Mode Instruction Execution

The CPU32 has several features that provide efficient execution of program loops. One of
these features is the DBcc looping primitive instruction. To increase the performance of
the CPU32, a loop mode has been added to the processor. The loop mode is used by any
single-word instruction that does not change the program flow. Loop mode is implemented
in conjunction with the DBcc instruction. Figure 5-2 shows the required form of an
instruction loop for the processor to enter loop mode.

A

ONE-WORD INSTRUCTION

DBcc

DBcc DISPLACEMENT
$FFFC =4

Figure 5-2. Loop Mode Instruction Sequence

The loop mode is entered when the DBcc instruction is executed and the loop
displacement is —4. Once in loop mode, the processor performs only the data cycles
associated with the instruction and suppresses all instruction fetches. The termination

MOTOROLA MC68341 USER’S MANUAL 53

condition and count are checked after each execution of the data operations of the looped
instruction. The CPU32 automatically exits the loop mode during interrupts or other
exceptions.

5.1.4 Vector Base Register

The vector base register (VBR) contains the base address of the 1024-byte exception
vector table, which consists of 256 exception vectors. Exception vectors contain the
memory addresses of routines that begin execution at the completion of exception
processing. These routines perform a series of operations appropriate for the
corresponding exceptions. Because the exception vectors contain memory addresses,
each consists of one long word, except the reset vector. The reset vector consists of two
long words: the address used to initialize the supervisor stack pointer (SSP) and the
address used to initialize the PC.

The address of an interrupt exception vector is derived from an 8-bit vector number and
the VBR. The vector numbers for some exceptions are obtained from an external device;
other numbers are supplied automatically by the processor. The processor multiplies the
vector number by 4 to calculate the vector offset, which is added to the VBR. The sum is
the memory address of the vector. All exception vectors are located in supervisor data
space, except the reset vector, which is located in supervisor program space. Only the
initial reset vector is fixed in the processor's memory map; once initialization is complete,
there are no fixed assignments. Since the VBR provides the base address of the vector
table, the vector table can be located anywhere in memory; it can even be dynamically
relocated for each task that is executed by an operating system. Refer to 5.5 Exception
Processing for additional details.

31 0
| VECTOR BASE REGISTER (VBR) |

5.1.5 Exception Handling

The processing of an exception occurs in four steps, with variations for different exception
causes. During the first step, a temporary internal copy of the status register (SR) is made,
and the SR is set for exception processing. During the second step, the exception vector
is determined. During the third step, the current processor context is saved. During the
fourth step, a new context is obtained, and the processor then proceeds with instruction
processing.

Exception processing saves the most volatile portion of the current context by pushing it
on the supervisor stack. This context is organized in a format called the exception stack
frame. This information always includes the SR and PC context of the processor when the
exception occurred. To support generic handlers, the processor places the vector offset in
the exception stack frame. The processor also marks the frame with a frame format. The
format field allows the return-from-exception (RTE) instruction to identify what information
is on the stack so that it may be properly restored.

54 MC68341 USER’S MANUAL MOTOROLA

5.1.6 Addressing Modes

Addressing in the CPU32 is register oriented. Most instructions allow the results of the
specified operation to be placed either in a register or directly in memory; this flexibility
eliminates the need for extra instructions to store register contents in memory.

The seven basic addressing modes are as follows:
* Register Direct
* Register Indirect
* Register Indirect with Index
* Program Counter Indirect with Displacement
* Program Counter Indirect with Index
* Absolute
* Immediate

Included in the register indirect addressing modes are the capabilities to postincrement,
predecrement, and offset. The PC relative mode also has index and offset capabilities. In
addition to these addressing modes, many instructions implicitly specify the use of the SR,
SP and/or PC. Addressing is explained fully in the M68000PM/AD, M68000 Family
Programmer’s Reference Manual.

5.2 ARCHITECTURE SUMMARY

The CPU32 is upward source- and object-code compatible with the MC68000 and
MC68010. It is downward source- and object-code compatible with the MC68020. Within
the M68000 family, architectural differences are limited to the supervisory operating state.
User state programs can be executed unchanged on upward-compatible devices.

The major CPU32 features are as follows:
» 32-Bit Internal Data Path and Arithmetic Hardware
» 32-Bit Address Bus Supported by 32-Bit Calculations
* Rich Instruction Set
« Eight 32-Bit General-Purpose Data Registers
» Seven 32-Bit General-Purpose Address Registers
» Separate User and Supervisor Stack Pointers (USP and SSP)
» Separate User and Supervisor Address Spaces
» Separate Program and Data Address Spaces
* Many Data Types
* Flexible Addressing Modes
* Full Interrupt Processing
» Expansion Capability

MOTOROLA MC68341 USER’S MANUAL 55

5.2.1 Programming Model

The CPU32 programming model consists of two groups of registers that correspond to the
user and supervisor privilege levels. User programs can only use the registers of the user
model. The supervisor programming model, which supplements the user programming
model, is used by CPU32 system programmers who wish to protect sensitive operating
system functions. The supervisor model is identical to that of MC68010 and later

processors.

The CPU32 has eight 32-bit data registers, seven 32-bit address registers, a 32-bit PC,
separate 32-bit SSP and USP, a 16-bit SR, two alternate function code registers, and a
32-bit VBR (see Figures 5-3 and 5-4).

31

16 15 87

31

16 15

31

16 15

31

56

DO
D1
D2
D3
D4
D5
D6
D7

DATA REGISTERS

A0
Al

A2
A3 ADDRESS REGISTERS

A4
A5
A6

A7 (USP) USER STACK POINTER

PC PROGRAM COUNTER

CCR CONDITION CODE
REGISTER

Figure 5-3. User Programming Model

MC68341 USER’S MANUAL

MOTOROLA

31 16 15 0
| | AT’ (SSP)

SUPERVISOR STACK
POINTER

87 0
| BEEIE: STATUS REGISTER

VECTOR BASE

| | VeR REGISTER

P m————m— e m— e ———— - —— ALTERNATE
|m e m SFC FUNCTION CODE

Lo _________ DFC REGISTERS

Figure 5-4. Supervisor Programming Model Supplement

5.2.2 Registers

Registers D7-DO0 are used as data registers for bit, byte (8-bit), word (16-bit), long-word
(32-bit), and quad-word (64-bit) operations. Registers A6 to A0 and the USP and SSP are
address registers that may be used as software SPs or base address registers. Register
A7 (shown as A7 and A7' in Figures 5-3 and 5-4) is a register designation that applies to
the USP in the user privilege level and to the SSP in the supervisor privilege level. In
addition, address registers may be used for word and long-word operations. All 16
general-purpose registers (D7-D0, A7—A0) may be used as index registers.

The PC contains the address of the next instruction to be executed by the CPU32. During
instruction execution and exception processing, the processor automatically increments
the contents of the PC or places a new value in the PC, as appropriate.

The SR (see Figure 5-5) contains condition codes, an interrupt priority mask (three bits),
and three control bits. Condition codes reflect the results of a previous operation. The
codes are contained in the low byte (CCR) of the SR. The interrupt priority mask
determines the level of priority an interrupt must have to be acknowledged. The control
bits determine trace mode and privilege level. At user privilege level, only the CCR is
available. At supervisor privilege level, software can access the full SR.

The VBR contains the base address of the exception vector table in memory. The
displacement of an exception vector is added to the value in this register to access the
vector table.

Alternate source and destination function code registers (SFC and DFC) contain 3-bit
function codes. The CPU32 generates a function code each time it accesses an address.
Specific codes are assigned to each type of access. The codes can be used to select
eight dedicated 4-Gbyte address spaces. The MOVEC instruction can use registers SFC
and DFC to specify the function code of a memory address.

MOTOROLA MC68341 USER’S MANUAL 57

USER BYTE
SYSTEIIVI BYTE (CONDITION CODE REGISTER)
|

! 15 14 13 12 11 10 9 8 I 7 6 5 4 3 2 1 0

|| s] ol ol el uf[w|[oo of x| ~|] z]v] c]
- | | |

TRACE INTERIRUPT EXTEND

ENABLE PRIORITY MASK

NEGATIVE
SUPERVISOR/USER ZERO
STATE
OVERFLOW

CARRY

Figure 5-5. Status Register

5.3 INSTRUCTION SET

The following paragaphs describe the CPU32 instruction set. A description of the
instruction format, the operands used by the instructions, and a summary of the
instructions by category are included. Complete programming information is provided in
the M68000PM/AD, M68000 Family Programmer’s Reference Manual.
The CPU32 instructions include machine functions for all the following operations:

» Data Movement

» Arithmetic Operations

» Logical Operations

» Shifts and Rotates

« Bit Manipulation

» Conditionals and Branches

» System Control

The large instruction set encompasses a complete range of capabilities and, combined
with the enhanced addressing modes, provides a flexible base for program development.

The instruction set of the CPU32 is very similar to that of the MC68020 (see Table 5-1).
The following M68020 instructions are not implemented on the CPU32:

BFxxx — Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU,
BFFFO, BFINS, BFSET, BFTST)

CALLM, RTM — Call Module, Return Module

CAS, CAS2 — Compare and Set (Read-Modify-Write Instructions)

CPXXX — Coprocessor Instructions (cpBcc, cpDBcc, cpGEN, cpRESTORE,
CpSAVE, cpScc, cpTRAPcc)

PACK, UNPK — Pack, Unpack BCD Instructions

58 MC68341 USER’S MANUAL MOTOROLA

The CPU32 traps on unimplemented instructions or illegal effective addressing modes,
allowing user-supplied code to emulate unimplemented capabilities or to define special-
purpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 core enhancements.

Table 5-1. Instruction Set
Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend MOVEA Move Address
ADD Add MOVE CCR Move Condition Code Register
ADDA Add Address MOVE SR Move to/from Status Register
ADDI Add Immediate MOVE USP Move User Stack Pointer
ADDQ Add Quick MOVEC Move Control Register
AND Logical AND MOVEM Move Multiple Registers
ANDI Logical AND Immediate MOVEP Move Peripheral Data
ASL Arithmetic Shift Left MOVEQ Move Quick
ASR Arithmetic Shift Right MOVES Move Alternate Address Space
Bcc Branch Conditionally (16 Tests) MULS Signed Multiply
BCHG Bit Test and Change MULU Unsigned Multiply
BCLR Bit Test and Clear NBCD Negate Decimal with Extend
BGND Enter Background Mode NEG Negate
BKPT Breakpoint NEGX Negate with Extend
BRA Branch Always NOP No Operation
BSET Bit Test and Set NOT Ones Complement
BSR Branch to Subroutine OR Logical Inclusive OR
BTST Bit Test ORI Logical Inclusive OR Immediate
CHK Check Register against Bounds PEA Push Effective Address
CHK2 Check Register against Upper and RESET Reset External Devices
Lower Bounds ROL, ROR Rotate Left and Right
CLR Clear Operand ROXL, ROXR | Rotate with Extend Left and Right
CMP Compare RTD Return and Deallocate
CMPA Compare Address RTE Return from Exception
CMPI Compare Immediate RTR Return and Restore
CMPM Compare Memory RTS Return from Subroutine
CMP2 Compare Register against Upper SBCD Subtract Decimal with Extend
and Lower Bounds Scc Set Conditionally
DBcc Test Condition, Decrement and STOP Stop
Branch (16 Tests) SuB Subtract
DIVS, DIVSL Signed Divide SUBA Subtract Address
DIVU, DIVUL Unsigned Divide SUBI Subtract Immediate
EOR Logical Exclusive OR SUBQ Subtract Quick
EORI Logical Exclusive OR Immediate SUBX Subtract with Extend
EXG Exchange Registers SWAP Swap Data Register Halves
EXT, EXTB Sign Extend TAS Test and Set Operand
ILLEGAL Take lllegal Instruction Trap TBLS, TBLSN | Table Lookup and Interpolate,
JMP Jump Signed
JSR Jump to Subroutine TBLU, TBLUN | Table Lookup and Interpolate,
LEA Load Effective Address Unsigned
LINK Link and Allocate TRAPcc Trap Conditionally (16 Tests)
LPSTOP Low-Power Stop TRAPV Trap on Overflow
LSL, LSR Logical Shift Left and Right TST Test
MOVE Move UNLK Unlink
MOTOROLA MC68341 USER’S MANUAL

59

5.3.1 M68000 Family Compatibility

It is the philosophy of the M68000 Family that all user-mode programs should execute
unchanged on a more advanced processor and that supervisor-mode programs and
exception handlers should require only minimal alteration.

The CPU32 can be thought of as an intermediate member of the M68000 family. Object
code from an MC68000 or MC68010 may be executed on the CPU32, and many of the
instruction and addressing mode extensions of the MC68020 are also supported.

5.3.1.1 NEW INSTRUCTIONS. Two instructions have been added to the M68000
instruction set for use in embedded control applications: LPSTOP and table lookup and
interpolation (TBL).

5.3.1.1.1 Low-Power Stop (LPSTOP). In applications where power consumption is a
consideration, the CPU32 can force the device into a low-power standby mode when
immediate processing is not required. The low-power mode is entered by executing the
LPSTOP instruction. The processor remains in this mode until a user-specified or higher
level interrupt or a reset occurs.

5.3.1.1.2 Table Lookup and Interpolate (TBL). To maximize throughput for real-time
applications, reference data is often precalculated and stored in memory for quick access.
The storage of sufficient data points can require an inordinate amount of memory. The
TBL instruction uses linear interpolation to recover intermediate values from a sample of
data points, thus conserving memory.

When the TBL instruction is executed, the CPU32 looks up two table entries bounding the
desired result and performs a linear interpolation between them. Byte, word, and long-
word operand sizes are supported. The result can be rounded according to a round-to-
nearest algorithm or returned unrounded along with the fractional portion of the calculated
result (byte and word results only). This extra precision can be used to reduce cumulative
error in complex calculations. See 5.3.4 Using the TBL Instructions for examples.

5.3.1.2 UNIMPLEMENTED INSTRUCTIONS. The ability to trap on unimplemented
instructions allows user-supplied code to emulate unimplemented capabilities or to define
special-purpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 enhancements. See 5.5.2.8
lllegal or Unimplemented Instructions for more details.

5.3.2 Instruction Format and Notation

All instructions consist of at least one word. Some instructions can have as many as
seven words, as shown in Figure 5-6. The first word of the instruction, called the operation
word, specifies instruction length and the operation to be performed. The remaining
words, called extension words, further specify the instruction and operands. These words
may be immediate operands, extensions to the effective address mode specified in the
operation word, branch displacements, bit number, special register specifications, trap
operands, or argument counts.

5-10 MC68341 USER’S MANUAL MOTOROLA

OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)
SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE ADDRESS
EXTENSION

(IF ANY, ONE TO THREE WORDS)
DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)

Figure 5-6. Instruction Word General Format

Besides the operation code, which specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of three ways:

* Register Specification A regqister field of the instruction contains the number of
the register.

+ Effective Address An effective address field of the instruction contains
address mode information.

» Implicit Reference The definition of an instruction implies the use of
specific registers.

The register field within an instruction specifies the register to be used. Other fields within
the instruction specify whether the register is an address or data register and how it is to
be used. The M68000PM/AD, M68000 Family Programmer’s Reference Manual, contains
detailed register information.

Except where noted, the following notation is used in this section:

Data Immediate data from an instruction

Destination Destination contents

Source Source contents

Vector Location of exception vector

An Any address register (A7—A0)

AX, Ay Address registers used in computation

Dn Any data register (D7-DO0)

Rc Control register (VBR, SFC, DFC)

Rn Any address or data register

Dh, DI Data registers, high- and low-order 32 bits of product
Dr, Dqg Data registers, division remainder, division quotient
Dx, Dy Data registers, used in computation

Dym, Dyn Data registers, table interpolation values

Xn Index register

[An] Address extension

MOTOROLA MC68341 USER’S MANUAL 511

CcC
dg#

[éal]
#datal]
label
list

[..]
(..)

CCR

PC
SP
SR
SSP
USP
FC
DFC
SFC

+

X |

O< >IA ANV W I

l

512

Condition code
Displacement

Example: d16 is a 16-bit displacement

Effective address
Immediate data; a literal integer
Assembly program label
List of registers
Example: D3-DO
Bits of an operand

Examples: [7] is bit 7; [31:24] are bits 31-24

Contents of a referenced location

Example: (Rn) refers to the contents of Rn

Condition code register (lower byte of SR)
X—extend bit
N—negative bit
Z—zero bit
V—overflow bit
C—carry bit
Program counter
Active stack pointer
Status register
Supervisor stack pointer
User stack pointer
Function code
Destination function code register
Source function code register
Arithmetic addition or postincrement
Arithmetic subtraction or predecrement
Arithmetic division or conjunction symbol
Arithmetic multiplication
Equal to
Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to
Logical AND
Logical OR
Logical exclusive OR
Invert; operand is logically complemented

MC68341 USER’S MANUAL

MOTOROLA

BCD Binary-coded decimal, indicated by subscript
Example: Source1(is a BCD source operand.

LSW Least significant word
MSW Most significant word
{R/W} Read/write indicator

In a description of an operation, a destination operand is placed to the right of source
operands and is indicated by an arrow (0L

5.3.3 Instruction Summary

The instructions form a set of tools to perform the following operations:

Data Movement Bit Manipulation

Integer Arithmetic Binary-Coded Decimal Arithmetic
Logic Program Control

Shift and Rotate System Control

The complete range of instruction capabilities combined with the addressing modes
described previously provide flexibility for program development. All CPU32 instructions
are summarized in Table 5-2.

MOTOROLA MC68341 USER’S MANUAL 513

Table 5-2. Instruction Set Summary

Opcode Operation Syntax
ABCD Source 10 + Destination1g + X O Destination ABCD Dy,Dx
ABCD —(Ay),—(AXx)
ADD Source + Destination 0 Destination ADD [&aljDn
ADD Dn,[eal]
ADDA Source + Destination 0 Destination ADDA [éalJAn
ADDI Immediate Data + Destination [0 Destination ADDI #[datalTeal]
ADDQ Immediate Data + Destination O Destination ADDQ # [data [Ieal]
ADDX Source + Destination + X 0 Destination ADDX Dy,Dx
ADDX —(Ay),—(Ax)
AND Source A Destination [0 Destination AND [eal,lDn
AND Dn,[eal]
ANDI Immediate Data A Destination [0 Destination ANDI #[tatal,l'eal]
ANDI to CCR Source ACCR O CCR ANDI #[tata[JCCR
ANDI to SR If supervisor state ANDI #[tata[JSR
the Source ASR O SR
else TRAP
ASL,ASR Destination Shifted by [€ountd] Destination ASd Dx,Dy
ASd #[data[Dy
ASd [eal]
Bcc If (condition true) then PC +d O PC Bce [Tabell
BCHG ~(Chumber Uof Destination) O Z; BCHG Dn,eal]
~(thumber Dof Destination) [T bit numberCof BCHG # [data [Téal]
Destination
BCLR ~(thumber Dof Destination) O Z; BCLR Dn, [éal]
0 [bit numberOof Destination BCLR # [data [Iéal]
BGND If (background mode enabled) then BGND
enter background mode
else Format/Vector offset 1 —(SSP)
PC O —(SSP)
SR O —(SSP)
(Vector) O PC
BKPT Run breakpoint acknowledge cycle; BKPT #[datall
TRAP as illegal instruction
BRA PC+d0O PC BRA [abel
BSET ~(Cthumber Cof Destination) 0 Z; BSET Dn,®al]
1 M bit numberOof Destination BSET #[datal,Leal]
BSR SP-40 SP;PCO (SP);PC+d 0O PC BSR Oabel
BTST — (thumber Oof Destination) O Z; BTST Dn, [éad
BTST # [data [Iéal]
CHK If Dn < 0 or Dn > Source then TRAP CHK [®alJDn
CHK2 If Rn < lower bound or CHK2 [@aJRn
If Rn > upper bound
then TRAP
CLR 0 O Destination CLR [eall
CMP Destination — Source 00 cc CMP [&a(jDn
CMPA Destination — Source CMPA [&a[JAn
CMPI Destination — Immediate Data CMPI # [datal®all
CMPM Destination — Source O cc CMPM (Ay)+,(Ax)+

514

MC68341 USER’S MANUAL

MOTOROLA

Table 5-2. Instruction Set Summary (Continued)

Opcode Operation Syntax
CMP2 Compare Rn < lower-bound or CMP2 [éalJRn
Rn > upper-bound
and Set Condition Codes
DBcc If condition false then (Dn—1 O Dn; DBcc Dn,OabelO
IfDn#-1thenPC+d O PC)
DIVS Destination/Source O Destination DIVS.W [&aJDn 32/16 O 16r:16q
DIVSL DIVS.L CealjDq 32/32 0 32q
DIVS.L [ea(JDr:Dq 64/32 0 32r:32q
DIVSL.L (ea(JDr:Dg 32/32 0 32r:32q
DIVU Destination/Source [0 Destination DIVU.W [@a[JDn 32/16 O 16r:16q
DIVUL DIVU.L [@a[JDq 32/32 0 32q
DIVU.L [éa[JDr:Dq 64/32 0 32r:32q
DIVUL.L [eaJDr:Dg 32/32 0 32r:32q
EOR Source O Destination 0 Destination EOR Dn,[&al]
EORI Immediate Data [Destination [0 Destination EORI #[data [Téal]
EORI Source 0 CCR O CCR EORI #[data [JCCR
to CCR
EORI If supervisor state EORI #[data [JSR
to SR the Source 0 SR O SR
else TRAP
EXG Rx < Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx
EXT Destination Sign-Extended O Destination EXT.W Dn extend byte to word
EXTB EXT.LDn extend word to long word
EXTB.L Dn extend byte to long word
LLEGAL SSP —2 [0 SSP; Vector Offset O (SSP); ILLEGAL
SSP -4 0 SSP; PC O (SSP);
SSp-2 0 SSP; SR O (SSP);
lllegal Instruction Vector Address 0 PC
JMP Destination Address 0 PC JMP [eal]
JSR SP-4 0 SP;PC O (SP) JSR [eéal]
Destination Address 0 PC
LEA [eéaldd An LEA [@éalJAn
LINK SP—-4 0 SP; An0O (SP) LINK An,#[displacementd
SP 0 An,SP+d 0 SP
LPSTOP If supervisor state LPSTOP #[datall
Immediate Data [0 SR
Interrupt Mask O External Bus Interface (EBI)
STOP
else TRAP
LSL,LSR Destination Shifted by [tountd O Destination LSd! Dx,Dy
LSd?! # [@ata [Dy
LSd! [ead
MOVE Source [0 Destination MOVE [ealléal]
MOVEA Source 0 Destination MOVEA [ealJAn
MOVE from CCR [0 Destination MOVE CCR, [éa[]
CCR

MOTOROLA

MC68341 USER’S MANUAL

515

Table 5-2. Instruction Set Summary (Continued)

Opcode Operation Syntax
MOVE to CCR | Source 0 CCR MOVE [ea[JCCR
MOVE from SR | If supervisor state MOVE SR,[#al]
then SR O Destination
else TRAP
MOVE to SR If supervisor state MOVE [&a[JSR
then Source 0 SR
else TRAP
MOVE USP If supervisor state MOVE USP,An
then USP O Anor An O USP MOVE An,USP
else TRAP
MOVEC If supervisor state MOVEC Rc,Rn
thenRc O RnorRnO Rc MOVEC Rn,Rc
else TRAP
MOVEM Registers 0 Destination MOVEM register list,[&al]
Source [0 Registers MOVEM [earegister list
MOVEP Source O Destination MOVEP Dx,(d,Ay)
MOVEP (d,Ay),Dx
MOVEQ Immediate Data [0 Destination MOVEQ #[data(JDn
MOVES If supervisor state MOVES Rn,[&al]
then Rn 0 Destination [DFC] or Source MOVES [&aJRn
[SFC]O Rn
else TRAP
MULS Source x Destination [0 Destination MULS.W [&aJDn 16 x16 0 32
MULS.L [ealDI 32x320 32
MULS.L [(eaJDh:DI 32 x320 64
MULU Source x Destination 00 Destination MULU.W [&aJDn 16 x16 0 32
MULU.L Ceal)DI 32 x320 32
MULU.L LealJ)Dh:DI 32 x320 64
NBCD 0 — (Destination1g) — X O Destination NBCD [eal]
NEG 0 — (Destination) O Destination NEG [eal]
NEGX 0 — (Destination) — X 0 Destination NEGX [eall
NOP None NOP
NOT ~Destination O Destination NOT [eal]
OR Source V Destination 0 Destination OR [@al]Dn
OR Dn, [¢al]
ORI Immediate Data V Destination 0 Destination ORI # [data [[eal]
ORI to CCR Source V CCR O CCR ORI #[data [JCCR
ORI to SR If supervisor state ORI #[data[JSR
then Source V SR O SR
else TRAP
PEA Sp—4 0O SP; [@éaldd (SP) PEA [éal]
RESET If supervisor state RESET
then Assert RESET
else TRAP
ROL,ROR Destination Rotated by [dount [Destination ROd 1 Rx,Dy
ROd ! #data [Dy
ROd 1 @aD
516 MC68341 USER’'S MANUAL MOTOROLA

Table 5-2. Instruction Set Summary

(Concluded)

Opcode Operation Syntax
ROXL,ROXR Destination Rotated with X by [@ountdJO Destination rROXd1 Rx,Dy
ROXd L # [data [Dy
ROXd® @aD
RTD (SP)O PC;SP+4+d0O SP RTD # [displacement]
RTE If supervisor state RTE
the (SP) O SR; SP+2 O SP; (SP) 0 PC;
SP+4 [0 SP;
restore state and deallocate stack according to (SP)
else TRAP
RTR (SP)O CCR;SP+2 [SP; RTR
(SP)O PC;SP+4 O SP
RTS (SP)O PC;SP+4 O SP RTS
SBCD Destination1g — Source 19 — X O Destination SBCD Dx,Dy
SBCD —(Ax),—(Ay)
Scc If Condition True Scc [@éal]
then 1s 0 Destination
else Os 0 Destination
STOP If supervisor state STOP #[datal]
then Immediate Data 0 SR; STOP
else TRAP
SuUB Destination — Source O Destination SUB [&aljDn
SUB Dn,[eal]
SUBA Destination — Source 0 Destination SUBA [&a[JAn
SUBI Destination — Immediate Data 0 Destination SUBI # [data [[éal]
SUBQ Destination — Immediate Data [0 Destination SUBQ #[datal)[eal]
SUBX Destination — Source — X [0 Destination SUBX Dx,Dy
SUBX —(Ax),—(Ay)
SWAP Register [31:16] = Register [15:0] SWAP Dn
TAS Destination Tested 0 Condition Codes; TAS [eall
1 0 bit 7 of Destination
TBLS ENTRY(n) + {(ENTRY(n + 1) — ENTRY(n)) x TBLS.[SizeOeal) Dx
Dx[7:0]}/ 256 O Dx TBLS.(sizeODym:Dyn, Dx
TBLSN ENTRY(n) x 256 + {(ENTRY(n + 1) — ENTRY(n)) x TBLSN. 8izeO[&éalJDx
Dx [7:0]} O Dx TBLSN. SizeODym:Dyn, Dx
TBLU ENTRY(n) + {(ENTRY(n + 1) — ENTRY/(n)) x TBLU. SizeO&aJDx
Dx[7:0]}/ 256 O Dx TBLU. 8izeODym:Dyn, Dx
TBLUN ENTRY(n) x 256 + {(ENTRY(n + 1) — ENTRY(n)) x TBLUN. $ize(&aJDx
Dx[7:0]} 0 Dx TBLUN. [$izeDDym:Dyn,Dx
TRAP SSP -2 [0 SSP; Format/Offset 0 (SSP); TRAP # Q¥ector 0
SSP -4 [0 SSP; PC O (SSP); SSP-2 0 SSP;
SR O (SSP); Vector Address 0 PC
TRAPcc If cc then TRAP TRAPcc
TRAPcc.W #[data O
TRAPcc.L #[tatall
TRAPV If V then TRAP TRAPV
TST Destination Tested 0 Condition Codes TST [eall
UNLK An O SP;(SP)0 An;SP+40 SP UNLK An

NOTE 1: d is direction, L or R.

MOTOROLA

MC68341 USER’S MANUAL

517

5.3.3.1 CONDITION CODE REGISTER. The CCR portion of the SR contains five bits that
indicate the result of a processor operation. Table 5-3 lists the effect of each instruction on
these bits. The carry bit and the multiprecision extend bit are separate in the M68000
Family to simplify programming techniques that use them. Refer to Table 5-7 as an
example.

Table 5-3. Condition Code Computations

Operations X N z \Y, C Special Definition

ABCD * u ? u ? | C=Decimal Carry
Z=Z ANRmA..ARO

ADD, ADDI, ADDQ * * * ? ? [V=SmADmARMVSmADMARmM
C=Sm ADm VRBmADm VSm A Rm

ADDX * * ? ? ? [V=SmADmMARMVSmADMARmM
C=Sm ADm VRmADmM V Sm ARm
Z=Z ANRmA .. ARO

AND, ANDI, EOR, EORI, — * * 0 0

MOVEQ, MOVE, OR,

ORI, CLR, EXT, NOT,

TAS, TST

CHK — * u u

CHK2, CMP2 — U ? U ? |Z=(R=LB)V (R=UB)
C= (LB<UB) A(IR<LB)V (R>UB)V

(UB<LB)A(R>UB) A(R<LB)

SUB, SUBI, SUBQ * * * ? ? |V=SmADmMARMVY Sm ADmARm
C=Sm ADmV RmA DmV Sm A Rm

SUBX * * ? ? ? [V=Sv ADMARv VSmADv ARm
C=SmADv VRmADv VSmARM
Z=ZANRvA..N RO

CMP, CMPI, CMPM — * * ? ? |V=Sv ADMARv VSmADv ARm
C=SmADv VRmADv VSm ARmM

DIVS, DIVU — * * ? 0 V = Division Overflow

MULS, MULU — * * ? 0 | V = Multiplication Overflow

SBCD, NBCD * u ? u ? | C = Decimal Borrow
Z=Z ANRmA..ARO

NEG * * * ? ? |V=Dm ARmM
C=Dm V Rm

NEGX * * ? ? ? |V=Dm ARmM
C=DmVRm
Z=Z ANBmA ... \ARO

ASL * * * ? ? |[V=DmA(DmM-1V..VDm-r)V DmA

(Dm-1V ..+Dm-r)

C=Dm-r+1

ASL (r=0) — * * 0 0

LSL, ROXL * * * 0 ? |C=Dm-r+1

LSR (r=0) — * * 0 0

ROXL (r = 0) — * * 0 ? |C=X

ROL — * * 0 ? |C=Dm-r+1

ROL (r=0) — * * 0 0

ASR, LSR, ROXR * * * 0 ? |C=Dr-1

ASR, LSR (r=0) — * * 0 0

ROXR (r = 0) — * * 0 ? |C=X

5-18 MC68341 USER’S MANUAL MOTOROLA

Table 5-3. Condition Code Computations (Continued)

Operations X N z \% C Special Definition
ROR — 0 0 0 ? |C=Dr-1
ROR (r=0) — 0 0 0 0
NOTE: The following notations apply to this table only.
— = Not affected Sm = Source operand MSB

U = Undefined

? = See special definition
O = General case

X = C

N = Rm

Z = BmA..ARO

A = Boolean AND

V = Boolean OR

Dm = Destination operand MSB
Rm = Result operand MSB

R = Register tested

n = Bit Number

r = Shift count

LB = Lower bound

UB = Upperbound

Rm = NOTRm

5.3.3.2 DATA MOVEMENT INSTRUCTIONS. The MOVE instruction is the basic means of
transferring and storing address and data. MOVE instructions transfer byte, word, and
long-word operands from memory to memory, memory to register, register to memory,
and register to register. Address movement instructions (MOVE or MOVEA) transfer word
and long-word operands and ensure that only valid address manipulations are executed.

In addition to the general MOVE instructions, there are several special data movement
instructions—move multiple registers (MOVEM), move peripheral data (MOVEP), move
quick (MOVEQ), exchange registers (EXG), load effective address (LEA), push effective
address (PEA), link stack (LINK), and unlink stack (UNLK). Table 5-4 is a summary of the
data movement operations.

Table 5-4. Data Movement Operations

Operand
Instruction Syntax Operand Size Operation
EXG Rn, Rn 32 Rn O Rn
LEA [eal] An 32 [eadd An
LINK An, #d0 16, 32 SP-40 SP,An0 (SP); SP O An,SP+d O SP
MOVE [@a] [éal] 8, 16, 32 Source [0 Destination
MOVEA [éal) An 16,32 O 32 Source O Destination
MOVEM list, [@all 16, 32 Listed registers [0 Destination
[éal] list 16,32 O 32 Source [Listed registers
MOVEP Dn, (d16, An) 16, 32 Dn [31:24] O (An +d); Dn[23:16] O (An+d + 2);
Dn[15:8] O (An+d+4);Dn[7:0]0 (An+d + 6)
(d16, An), Dn (An+d) O Dn [31:24]; (An +d + 2) O Dn [23:16];
(An+d+4) 0 Dn[15:8]; (An+d +6) O Dn [7:0]
MOVEQ #datal]l Dn 80 32 Immediate Data 0 Destination
PEA [@éal] 32 SP -4 [0 SP; [(#aJO SP
UNLK An 32 An O SP; (SP) 0 An,SP +4 O SP

MOTOROLA

MC68341 USER’S MANUAL

519

5.3.3.3 INTEGER ARITHMETIC OPERATIONS. The arithmetic operations include the
four basic operations of add (ADD), subtract (SUB), multiply (MUL), and divide (DIV) as
well as arithmetic compare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The
instruction set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands consist of
16 or 32 bits. The clear and negate instructions apply to all sizes of data operands.

Signed and unsigned MUL and DIV instructions include:
* Word multiply to produce a long-word product

» Long-word multiply to produce a long-word or quad-word product

* Division of a long-word dividend by a word divisor (word quotient and word
remainder)

 Division of a long-word or quad-word dividend by a long-word divisor (long-word
quotient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arithmetic. These
instructions are add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and
negate binary with extend (NEGX). Refer to Table 5-5 for a summary of the integer
arithmetic operations.

5-20 MC68341 USER’S MANUAL MOTOROLA

Table 5-5. Integer Arithmetic Operations

Operand
Instruction Syntax Operand Size Operation
ADD Dn, [éal] 8, 16, 32 Source + Destination [0 Destination
(éal) Dn 8, 16, 32
ADDA (eal] An 16, 32 Source + Destination 0 Destination
ADDI #ldatallCeald 8, 16, 32 Immediate Data + Destination 0 Destination
ADDQ #datallCeall 8, 16, 32 Immediate Data + Destination 0 Destination
ADDX Dn, Dn 8, 16, 32 Source + Destination + X [0 Destination
— (An), — (An) 8, 16, 32
CLR [éal] 8, 16, 32 0 O Destination
CMP (eal] Dn 8, 16, 32 (Destination — Source), CCR shows results
CMPA [éal) An 16, 32 (Destination — Source), CCR shows results
CMPI #ldatall[eall 8, 16, 32 (Destination — Immediate Data), CCR shows results
CMPM (An) +, (An) + 8, 16, 32 (Destination — Source), CCR shows results
CMP2 (eal] Rn 8, 16, 32 Lower bound < Rn < Upper Bound, CCR shows
results
DIVS/DIVU (ea] Dn 32/16 O 16:16 | Destination/Source O Destination (signed or
(ealj Dr:Dq 64/32 0 32:32 | unsigned)
(eal] Dq 32/320 32
DIVSL/DIVUL [éal] Dr:Dq 32/32 0 32:32
EXT Dn 80 16 Sign Extended Destination O Destination
Dn 16 O 32
EXTB Dn 80 32 Sign Extended Destination 0 Destination
MULS/MULU (ea] Dn 16 x16 0 32 | Source x Destination 0 Destination (signed or
(eal] DI 32 x320 32 | unsigned)
[éal] Dh:DI 32 x320 64
NEG [@éald 8,16, 32 0 — Destination O Destination
NEGX [@éal] 8, 16, 32 0 — Destination — X [0 Destination
SUB [@al) Dn 8, 16, 32 Destination — Source [0 Destination
Dn, [éal]
SUBA [@éal) An 16, 32 Destination — Source O Destination
SUBI #datallCeal 8, 16, 32 Destination — Immediate Data [0 Destination
SUBQ #ldatallCeal 8, 16, 32 Destination — Immediate Data [0 Destination
SUBX Dn, Dn 8, 16, 32 Destination — Source — X 0 Destination
— (An), — (An) 8, 16, 32
TBLS/TBLU [éal) Dn 8, 16, 32 Dyn—Dym 0O Temp
Dym:Dyn, Dn (Temp x Dn [7:0]) O Temp
(Dym x 256) + Temp O Dn
TBLSN/TBLUN (éal] Dn 8, 16, 32 Dyn - Dym O Temp
Dym:Dyn, Dn (Temp x Dn [7:0]) / 256 O Temp

Dym + Temp O Dn

MOTOROLA

MC68341 USER’S MANUAL

521

5.3.3.4 LOGIC INSTRUCTIONS. The logical operation instructions (AND, OR, EOR, and
NOT) perform logical operations with all sizes of integer data operands. A similar set of
immediate instructions (ANDI, ORI, and EORI) provide these logical operations with all
sizes of immediate data. The test (TST) instruction arithmetically compares the operand
with zero, placing the result in the CCR. Table 5-6 summarizes the logical operations.

Table 5-6. Logic Operations

Operand
Instruction Syntax Operand Size Operation
AND [@éa[) Dn 8, 16, 32 Source A Destination [0 Destination
Dn, [éad] 8, 16, 32
ANDI #ldatallCeald 8, 16, 32 Immediate Data A Destination [0 Destination
EOR Dn, [@éadd 8, 16, 32 Source O Destination 0 Destination
EORI #datallCeal] 8, 16, 32 Immediate Data [0 Destination 0 Destination
NOT [eéal] 8, 16, 32 Destination O Destination
OR [éa[j Dn 8, 16, 32 Source V Destination [Destination
Dn, [@éad 8, 16, 32
ORI #dlatallCeall 8, 16, 32 Immediate Data V Destination [0 Destination
TST [éal] 8, 16, 32 Source — 0, to set condition codes

5.3.3.5 SHIFT AND ROTATE INSTRUCTIONS. The arithmetic shift instructions, ASR and
ASL, and logical shift instructions, LSR and LSL, provide shift operations in both
directions. The ROR, ROL, ROXR, and ROXL instructions perform rotate (circular shift)
operations, with and without the extend bit. All shift and rotate operations can be
performed on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count may be
specified in the instruction operation word (to shift from 1 to 8 places) or in a register
(modulo 64 shift count).

Memory shift and rotate operations shift word-length operands one bit position only. The
SWAP instruction exchanges the 16-bit halves of a register. Performance of shift/rotate
instructions is enhanced so that use of the ROR and ROL instructions with a shift count of
eight allows fast byte swapping. Table 5-7 is a summary of the shift and rotate operations.

522 MC68341 USER’S MANUAL MOTOROLA

Table 5-7. Shift and Rotate Operations

Operand
Instruction Syntax Operand Size Operation
ASL Dn, Dn 8, 16, 32
#datal) Dn 8, 16, 32 | xc e «——— o
[éal] 16
ASR Dn, Dn 8, 16, 32
#{tlatal] Dn 8, 16, 32 d - > |—>| XIc |
(eal] 16
LSL Dn, Dn 8, 16, 32
#datal) Dn 8, 16, 32 | xc |« «<—— <o
(eal] 16
LSR Dn, Dn 8, 16, 32
#7datal) Dn 8, 16, 32 o> ——— > xc|
(éal] 16
ROL Dn, Dn 8, 16, 32
#dlatal) Dn 8,16, 32 | c |(- |<J
[éal] 16
ROR Dn, Dn 8, 16, 32
#tlatal] Dn 8,16, 32 L,{ 5 }J+| c |
[éal] 16
ROXL Dn, Dn 8, 16, 32
#datall Dn 8, 16, 32 I (J_{ <~ <—| X
[éal] 16 | | | |
ROXR Dn, Dn 8, 16, 32 L»{
#[datall Dn 8, 16, 32 X |—> — > [
(eal] 16 | | |
SWAP Dn 16
S

5.3.3.6 BIT MANIPULATION INSTRUCTIONS. Bit manipulation operations are
accomplished using the following instructions: bit test (BTST), bit test and set (BSET), bit
test and clear (BCLR), and bit test and change (BCHG). All bit manipulation operations
can be performed on either registers or memory. The bit number is specified as immediate
data or in a data register. Register operands are 32 bits, and memory operands are 8 bits.
Table 5-8 is a summary of bit manipulation instructions.

Table 5-8. Bit Manipulation Operations

Operand
Instruction Syntax Operand Size Operation

BCHG Dn, [eéad 8, 32 ~(tbit number Cof destination) 0 Z O bit of
#ldatallCeall 8, 32 destination

BCLR Dn, [éal] 8,32 ~(tbit number Cof destination) O Z; 0 O bit of
#ldatallCeal 8, 32 destination

BSET Dn, [ead 8, 32 ~(tbit number Oof destination) O Z; 1 O bit of
#ldatallCeall 8, 32 destination

BTST Dn, [ead 8, 32 ~(bit number Oof destination) O Z
#datallCeal 8, 32

MOTOROLA

MC68341 USER’S MANUAL

5-23

5.3.3.7 BINARY-CODED DECIMAL (BCD) INSTRUCTIONS. Five instructions support
operations on BCD numbers. The arithmetic operations on packed BCD numbers are add
decimal with extend (ABCD), subtract decimal with extend (SBCD), and negate decimal
with extend (NBCD). Table 5-9 is a summary of the BCD operations.

Table 5-9. Binary-Coded Decimal Operations

Operand
Instruction Syntax Operand Size Operation
ABCD Dn, Dn 8 Source 10 + Destination1g + X O Destination
— (An), — (An) 8
NBCD (eal] 8 0 — Destination1g — X O Destination
8
SBCD Dn, Dn 8 Destination1g — Source1g — X O Destination
— (An), — (An) 8

5.3.3.8 PROGRAM CONTROL INSTRUCTIONS. A set of subroutine call and return
instructions and conditional and unconditional branch instructions perform program control

operations. Table 5-10 summarizes these instructions.

Table 5-10. Program Control Operations

Operand
Instruction Syntax Operand Size Operation
Conditional
Bcc Iabeld 8, 16, 32 If condition true, then PC +d O PC
DBcc Dn, MabelO 16 If condition false, then Dn —1 0 PC;
if Dn # (- 1), thenPC+d O PC
Scc (eal] 8 If condition true, then destination bits are set to 1;
else destination bits are cleared to 0
Unconditional
BRA (abelO 8, 16, 32 PC+d0O PC
BSR (abeld 8, 16, 32 SP-40 SP;PCO (SP); PC+d0O PC
JMP [@éal] none Destination 0 PC
JSR [@éad none SP -4 [0 SP; PC O (SP); destination O PC
NOP none none PC+20 PC
Returns
RTD #dO 16 (SP)O PC;SP+4+d0 SP
RTR none none (SP)O CCR;SP+20 SP;(SP)0 PC;SP+4 0
SP
RTS none none (SP)O PC;SP+40 SP

524

MC68341 USER’S MANUAL

MOTOROLA

To specify conditions for change in program control, condition codes must be substituted
for the letters "cc" in conditional program control opcodes. Condition test mnemonics are
given below. Refer to 5.3.3.10 Condition Tests for detailed information on condition

codes.
CcC —
CS —
EQ —
F —
GE —
GT —
H @ —
LE —

Carry clear
Carry set

Equal

False*

Greater or equal
Greater than
High

Less or equal

LS —
LT —
M —
NE —
PL —
T —
VC —
VS —

* Not applicable to the Bcc instruction

Low or same
Less than
Minus

Not equal
Plus

True

Overflow clear
Overflow set

5.3.3.9 SYSTEM CONTROL INSTRUCTIONS. Privileged instructions, trapping
instructions, and instructions that use or modify the CCR provide system control
operations. All of these instructions cause the processor to flush the instruction pipeline.
Table 5-11 summarizes the instructions. The preceding list of condition tests also applies
to the TRAPcc instruction. Refer to 5.3.3.10 Condition Tests for detailed information on
condition codes.

MOTOROLA

MC68341 USER’S MANUAL

525

Table 5-11. System Control Operations

Operand
Instruction Syntax Operand Size Operation
Privileged
ANDI #ldata() SR 16 Immediate Data A SR O SR
EORI #data] SR 16 Immediate Data 0 SR 0 SR
MOVE [¢éa) SR 16 Source 0 SR
SR, [@éal] 16 SR 0O Destination
MOVEA USP, An 32 USP O An
An, USP 32 An O USP
MOVEC Rc, Rn 32 Rc O Rn
Rn, Rc 32 Rn O Rc
MOVES Rn, [éal] 8, 16, 32 Rn O Destination using DFC
[éa) Rn Source using SFC O Rn
ORI #ldata] SR 16 Immediate Data VSR O SR
RESET none none Assert RESET line
RTE none none (SP)O SR;SP+20 SP;(SP) O PC;SP+40
SP; restore stack according to format
STOP #ldatall 16 Immediate Data 0 SR; STOP
LPSTOP #ldatall none Immediate Data 0 SR; interrupt mask O EBI;
STOP
Trap Generating
BKPT #ldatadl none If breakpoint cycle acknowledged, then execute
returned operation word, else trap as illegal
instruction.
BGND none none If background mode enabled, then enter background
mode, else format/vector offset 0 — (SSP);
PC O —(SSP); SR O — (SSP); (vector) O PC
CHK (eal] Dn 16, 32 If Dn <0 or Dn < (ea), then CHK exception
CHK2 [@éa) Rn 8, 16, 32 If Rn < lower bound or Rn > upper bound, then
CHK exception
ILLEGAL none none SSP -2 [0 SSP; vector offset O (SSP);
SSP -4 0 SSP; PC O (SSP);
SSP -2 00 SSP; SR O (SSP);
llegal instruction vector address O PC
TRAP #ldatal none SSP -2 0 SSP; format/vector offset 0 (SSP);
SSP -4 0 SSP; PC O (SSP); SR O (SSP);
vector address 0 PC
TRAPcc none none If cc true, then TRAP exception
#ldatall 16, 32
TRAPV none none If V set, then overflow TRAP exception
Condition Code Register
ANDI #ldatal] CCR 8 Immediate Data A CCR O CCR
EORI #ldatall] CCR 8 Immediate Data 0 CCR O CCR
MOVE [éal] CCR 16 Source 0 CCR
CCR, [ealJ 16 CCR O Destination
ORI #ldatal] CCR 8 Immediate Data V CCR O CCR

5-26

MC68341 USER’S MANUAL

MOTOROLA

5.3.3.10 CONDITION TESTS. Conditional program control instructions and the TRAPcc
instruction execute on the basis of condition tests. A condition test is the evaluation of a
logical expression related to the state of the CCR bits. If the result is 1, the condition is
true. If the result is 0, the condition is false. For example, the T condition is always true,
and the EQ condition is true only if the Z-bit condition code is true. Table 5-12 lists each
condition test.

Table 5-12. Condition Tests

Mnemonic Condition Encoding Test
T True 0000 1
F* False 0001 0
HI High 0010 CeZ
LS Low or Same 0011 C+Z
CcC Carry Clear 0100 C
(O] Carry Set 0101 C
NE Not Equal 0110 Z
EQ Equal 0111 Z
VC Overflow Clear 1000 \%
VS Overflow Set 1001 \Y,
PL Plus 1010 N
M Minus 1011 N
GE Greater or Equal 1100 NeV+ NeV
LT Less Than 1101 NeV+NeV
GT Greater Than 1110 NeVe Z+NeVeZ
LE Less or Equal 1111 Z+NeV+NeV

* Not available for the Bcc instruction.
« = Boolean AND

Boolean OR

Boolean NOT

N
5.3.4 Using the TBL Instructions

There are four TBL instructions. TBLS returns a signed, rounded byte, word, or long-word
result. TBLSN returns a signed, unrounded byte, word, or long-word result. TBLU returns
an unsigned, rounded byte, word, or long-word result. TBLUN returns an unsigned,
unrounded byte, word, or long-word result. All four instructions support two types of
interpolation data: an n-element table stored in memory and a two-element range stored in
a pair of data registers. The latter form provides a means of performing surface (3D)
interpolation between two previously calculated linear interpolations.

The following examples show how to compress tables and use fewer interpolation levels
between table entries. Example 1 (see Figure 5-7) demonstrates TBL for a 257-entry
table, allowing up to 256 interpolation levels between entries. Example 2 (see Figure 5-8)
reduces table length for the same data to four entries. Example 3 (see Figure 5-9)
demonstrates use of an 8-bit independent variable with an instruction.

MOTOROLA MC68341 USER’S MANUAL 5-27

Two additional examples show how TBLSN can reduce cumulative error when multiple
table lookup and interpolation operations are used in a calculation. Example 4
demonstrates addition of the results of three table interpolations. Example 5 illustrates use

of TBLSN in surface interpolation.

5.3.4.1 TABLE EXAMPLE 1: STANDARD USAGE. The table consists of 257 word
entries. As shown in Figure 5-7, the function is linear within the range 32768 < X < 49152.
Table entries within this range are as given in Table 5-13 .

Table 5-13. Standard Usage Entries

Entry Number X-Value Y-Value
128* 32768 1311
162 41472 1659
163 41728 1669
164 41984 1679
165 42240 1690
192* 49152 1966

* These values are the end points of the range.
All entries between these points fall on the line.

DEPENDENT VARIABLE

16384

I
32768 |
X

INDEPENDENT VARIABLE

Figure 5-7. Table Example 1

5-28 MC68341 USER’S MANUAL

MOTOROLA

The table instruction is executed with the following bit pattern in Dx:

31

16 15 0

NOT USED |1010001110000000

Table Entry Offset [Dx [8:15] = $A3 = 163
Interpolation Fraction O Dx [0:7] = $80 = 128

Using this information, the table instruction calculates dependent variable Y:

Y = 1669 + (128 (1679 — 1669)) / 256 = 1674

5.3.4.2 TABLE EXAMPLE 2: COMPRESSED TABLE. In Example 2 (see Figure 5-8), the
data from Example 1 has been compressed by limiting the maximum value of the
independent variable. Instead of the range 0 < X = 65535, X is limited to 0 < X < 1023.
The table has been compressed to only five entries, but up to 256 levels of interpolation
are allowed between entries.

MOTOROLA

DEPENDENT VARIABLE

I I : T | >
256 512 | 786 1024
X

INDEPENDENT VARIABLE
Figure 5-8. Table Example 2

NOTE

Extreme table compression with many levels of interpolation is
possible only with highly linear functions. The table entries
within the range of interest are listed in Table 5-14.

MC68341 USER’S MANUAL 529

Table 5-14. Compressed Table Entries

Entry Number X-Value Y-Value
2 512 1311
3 786 1966

Since the table is reduced from 257 to 5 entries, independent variable X must be scaled
appropriately. In this case the scaling factor is 64, and the scaling is done by a single
instruction:

LSR.W #6,Dx

Thus, Dx now contains the following bit pattern:

31 6 15 0
| NOT USED |0000001010001110

Table Entry Offset [Dx [8:15] = $02 = 2
Interpolation Fraction O Dx [0:7] = $8E = 142
Using this information, the table instruction calculates dependent variable Y:

Y = 1331 + (142 (1966 — 1311)) / 256 = 1674

The function chosen for Examples 1 and 2 is linear between data points. If another
function had been used, interpolated values might not have been identical.

5.3.4.3 TABLE EXAMPLE 3: 8-BIT INDEPENDENT VARIABLE. This example shows
how to use a table instruction within an interpolation subroutine. Independent variable X is
calculated as an 8-bit value, allowing 16 levels of interpolation on a 17-entry table. X is
passed to the subroutine, which returns an 8-bit result. The subroutine uses the data listed
in Table 5-15, based on the function shown in Figure 5-9.

5-30 MC68341 USER’S MANUAL MOTOROLA

INDEPENDENT VARIABLE

1024

[
2048

|
|
|
|
|
|
|
|
|
|
Il
|
I 3072

X
INDEPENDENT VARIABLE

Figure 5-9. Table Example 3

Table 5-15. 8-Bit Independent

Variable Entries

4096

X X Y
(Subroutine) (Instruction)

0 0 0

1 256 16
2 512 32
3 768 48
4 1024 64
5 1280 80
6 1536 96
7 1792 112
8 2048 128
9 2304 112
10 2560 96
11 2816 80
12 3072 64
13 3328 48
14 3584 32
15 3840 16
16 4096 0

The first column is the value passed to the subroutine, the second column is the value
expected by the table instruction, and the third column is the result returned by the

subroutine.

MOTOROLA

MC68341 USER’S MANUAL

531

The following value has been calculated for independent variable X:

3L 6 15 0
| NOT USED lo 0o o 0o 0 00010111 10 1

Since X is an 8-bit value, the upper four bits are used as a table offset, and the lower four
bits are used as an interpolation fraction. The following results are obtained from the
subroutine:
Table Entry Offset 0 Dx [4:7] = $B =11
Interpolation Fraction O Dx [0:3] = $D =13

Thus, Y is calculated as follows:
Y =80+ (13 (64 —-80))/16 =67

If the 8-bit value for X were used directly by the table instruction, interpolation would be
incorrectly performed between entries 0 and 1. Data must be shifted to the left four places
before use:

LSL.W #4, Dx

The new range for X is 0 £ X £ 4096; however, since a left shift fills the least significant
digits of the word with zeros, the interpolation fraction can only have one of 16 values.

After the shift operation, Dx contains the following value:

31 16 15 0

| NOT USED |0000101111010000

Execution of the table instruction using the new value in Dx yields:
Table Entry Offset 0 Dx [8:15] = $0B = 11

Interpolation Fraction O Dx [0:7] = $D0 = 208

Thus, Y is calculated as follows:
Y =80 + (208 (64 — 80)) / 256 = 67

5.3.4.4 TABLE EXAMPLE 4: MAINTAINING PRECISION. In this example, three TBL
operations are performed and the results are summed. The calculation is done once with
the result of each TBL rounded before addition and once with only the final result rounded.

Assume that the result of the three interpolations are as follows (a "." indicates the binary
radix point).

TBL#1 0010 0000 . 0111 0000
TBL# 2 0011 1111.0111 0000
TBL#3 0000 0001 .0111 0000

532 MC68341 USER’S MANUAL MOTOROLA

First, the results of each TBL are rounded with the TBLS round-to-nearest-even algorithm.

The following values would be returned by TBLS:

TBL#1 0010 0000 .
TBL#2 0011 1111.
TBL#3 0000 0001 .

Summing, the following result is obtained:

0010 0000 .
0011 1111.
0000 0001 .
0110 0000 .

Now, using the same TBL results, the sum is first calculated and then rounded according

to the same algorithm:

0010 0000 .
0011 1111.
0000 0001 .

0111 0000
0111 0000
0111 0000

0110 0001 .

0101 0000

Rounding yields:

0110 0001.

The second result is preferred. The following code sequence illustrates how addition of a
series of table interpolations can be performed without loss of precision in the intermediate

results:

LO:
TBLSN.B [eal,] Dx
TBLSN.B (éal] Dx
TBLSN.B (eal,] DI
ADD.L Dx, Dm Long addition avoids problems with carry
ADD.L Dm, DI
ASR.L #8, DI Move radix point
BCC.B L1 Fraction MSB in carry
ADDQ.B #1, DI

L1:...

MOTOROLA MC68341 USER’S MANUAL

5-33

5.3.4.5 Table Example 5: Surface Interpolations. The various forms of table can be
used to perform surface (3D) TBLs. However, since the calculation must be split into a
series of 2D TBLs, it is possible to lose precision in the intermediate results. The following
code sequence, incorporating both TBLS and TBLSN, eliminates this possibility.

LO:

MOVE.W Dx, DI Copy entry number and fraction number
TBLSN.B [eal] Dx
TBLSN.B [@éal] DI
TBLS.W Dx:DIl, Dm Surface interpolation, with round
ASR.L #8, Dm Read just the result
BCC.B L1 No round necessary
ADDQ.B #1, DI Half round up
L1:..

Before execution of this code sequence, Dx must contain fraction and entry numbers for
the two TBL, and Dm must contain the fraction for surface interpolation. The [ealfields in
the TBLSN instructions point to consecutive columns in a 3D table. The TBLS size
parameter must be word if the TBLSN size parameter is byte, and must be long word if
TBLSN is word. Increased size is necessary because a larger number of significant digits
Is needed to accommodate the scaled fractional results of the 2D TBL.

5.3.5 Nested Subroutine Calls

The LINK instruction pushes an address onto the stack, saves the stack address at which
the address is stored, and reserves an area of the stack for use. Using this instruction in a
series of subroutine calls will generate a linked list of stack frames.

The UNLK instruction removes a stack frame from the end of the list by loading an
address into the SP and pulling the value at that address from the stack. When the
instruction operand is the address of the link address at the bottom of a stack frame, the
effect is to remove the stack frame from both the stack and the linked list.

5.3.6 Pipeline Synchronization with the NOP Instruction

Although the no operation (NOP) instruction performs no visible operation, it does force
synchronization of the instruction pipeline, since all previous instructions must complete
execution before the NOP begins.

5.4 PROCESSING STATES

This section describes the processing states of the CPU32. It includes a functional
description of the bits in the supervisor portion of the SR and an overview of actions taken
by the processor in response to exception conditions.

534 MC68341 USER’S MANUAL MOTOROLA

5.4.1 State Transitions

The processor is always in one of four processing states: normal, background, exception,
or halted.

When the processor fetches instructions and operands or executes instructions, it is in the
normal processing state. The stopped condition, which the processor enters when a
STOP or LPSTOP instruction is executed, is a variation of the normal state in which no
further bus cycles are generated.

Background state is an alternate operational mode used for system debugging. Refer to
5.6 Development Support for more information.

Exception processing refers specifically to the transition from normal processing of a
program to normal processing of system routines, interrupt routines, and other exception
handlers. Exception processing includes the stack operations, the exception vector fetch,
and the filling of the instruction pipeline caused by an exception. Exception processing
ends when execution of an exception handler routine begins. Refer to 5.5 Exception
Processing for comprehensive information.

A catastrophic system failure occurs if the processor detects a bus error or generates an
address error while in the exception processing state. This type of failure halts the
processor. For example, if a bus error occurs during exception processing caused by
another bus error, the CPU32 assumes that the system is not operational and halts.

The halted condition should not be confused with the stopped condition. After the
processor executes a STOP or LPSTOP instruction, execution of instructions can resume
when a trace, interrupt, or reset exception occurs.

5.4.2 Privilege Levels

To protect system resources, the processor can operate with either of two levels of
access—user or supervisor. Supervisor level is more privileged than user level. All
instructions are available at the supervisor level, but execution of some instructions is not
permitted at the user level. There are separate SPs for each level. The S-bit in the SR
indicates privilege level and determines which SP is used for stack operations. The
processor identifies each bus access (supervisor or user mode) via function codes to
enforce supervisor and user access levels.

In a typical system, most programs execute at the user level. User programs can access
only their own code and data areas and are restricted from accessing other information.
The operating system executes at the supervisor privilege level, has access to all
resources, performs the overhead tasks for the user level programs, and coordinates their
activities.

5.4.2.1 SUPERVISOR PRIVILEGE LEVEL. If the S-bit in the SR is set, supervisor
privilege level applies, and all instructions are executable. The bus cycles generated for
instructions executed in supervisor level are normally classified as supervisor references,
and the values of the function codes on FC2—FCO refer to supervisor address spaces.

MOTOROLA MC68341 USER’S MANUAL 5-35

All exception processing is performed at the supervisor level. All bus cycles generated
during exception processing are supervisor references, and all stack accesses use the
SSP.

Instructions that have important system effects can only be executed at supervisor level.
For instance, user programs are not permitted to execute STOP, LPSTOP, or RESET
instructions. To prevent a user program from gaining privileged access, except in a
controlled manner, instructions that can alter the S-bit in the SR are privileged. The TRAP
#n instruction provides controlled user access to operating system services.

5.4.2.2 USER PRIVILEGE LEVEL. If the S-bit in the SR is cleared, the processor
executes instructions at the user privilege level. The bus cycles for an instruction executed
at the user privilege level are classified as user references, and the values of the function
codes on FC2—-FCO specify user address spaces. While the processor is at the user level,
implicit references to the system SP and explicit references to address register seven (A7)
refer to the USP.

5.4.2.3 CHANGING PRIVILEGE LEVEL. To change from user privilege level to
supervisor privilege level, a condition that causes exception processing must occur. When
exception processing begins, the current values in the SR, including the S-bit, are saved
on the supervisor stack, and then the S-bit is set to enable supervisor access. Execution
continues at supervisor privilege level until exception processing is complete.

To return to user access level, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE. These
instructions execute only at supervisor privilege level and can modify the S-bit of the SR.
After these instructions execute, the instruction pipeline is flushed, then refilled from the
appropriate address space.

The RTE instruction causes a return to a program that was executing when an exception
occurred. When RTE is executed, the exception stack frame saved on the supervisor
stack can be restored in either of two ways.

If the frame was generated by an interrupt, breakpoint, trap, or instruction exception, the
SR and PC are restored to the values saved on the supervisor stack, and execution
resumes at the restored PC address, with access level determined by the S-bit of the
restored SR.

If the frame was generated by a bus error or an address error exception, the entire
processor state is restored from the stack.

5.5 EXCEPTION PROCESSING

An exception is a special condition that pre-empts normal processing. Exception
processing is the transition from normal mode program execution to execution of a routine
that deals with an exception. The following paragraphs discuss system resources related
to exception handling, exception processing sequence, and specific features of individual
exception processing routines.

5-36 MC68341 USER’S MANUAL MOTOROLA

5.5.1 Exception Vectors

An exception vector is the address of a routine that handles an exception. The VBR
contains the base address of a 1024-byte exception vector table, which consists of 256
exception vectors. Sixty-four vectors are defined by the processor, and 192 vectors are
reserved for user definition as interrupt vectors. Except for the reset vector, which is two
long words, each vector in the table is one long word. Refer to Table 5-16 for information

on vector assignment.

Table 5-16. Exception Vector Assighments

Vector Offset
Vector Number Dec Hex Space Assignment
0 0 000 SP Reset: Initial Stack Pointer
1 004 SP Reset: Initial Program Counter
2 008 SD Bus Error
3 12 oocC SD Address Error
4 16 010 SD lllegal Instruction
5 20 014 SD Zero Division
6 24 018 SD CHK, CHK2 Instructions
7 28 01C SD TRAPcc, TRAPV Instructions
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator
12 48 030 SD Hardware Breakpoint
13 52 034 SD (Reserved for Coprocessor Protocol Violation)
14 56 038 SD Format Error
15 60 03C SD Uninitialized Interrupt
16-23 64 040 SD (Unassigned, Reserved)
92 05C —
24 96 060 SD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 o7C SD Level 7 Interrupt Autovector
32-47 128 080 SD Trap Instruction Vectors (0-15)
188 0BC —
48-58 192 0CO SD (Reserved for Coprocessor)
232 OES8 —
59-63 236 OEC SD (Unassigned, Reserved)
252 OFC .
64-255 256 100 SD User-Defined Vectors (192)
1020 3FC

MOTOROLA

MC68341 USER’S MANUAL

5-37

CAUTION

Because there is no protection on the 64 processor-defined
vectors, external devices can access vectors reserved for
internal purposes. This practice is strongly discouraged.

All exception vectors, except the reset vector, are located in supervisor data space. The
reset vector is located in supervisor program space. Only the initial reset vector is fixed in
the processor memory map. When initialization is complete, there are no fixed
assignments. Since the VBR stores the vector table base address, the table can be
located anywhere in memory. It can also be dynamically relocated for each task executed
by an operating system.

Each vector is assigned an 8-bit number. Vector numbers for some exceptions are
obtained from an external device; others are supplied by the processor. The processor
multiplies the vector number by 4 to calculate vector offset, then adds the offset to the
contents of the VBR. The sum is the memory address of the vector.

5.5.1.1 TYPES OF EXCEPTIONS. An exception can be caused by internal or external
events.

An internal exception can be generated by an instruction or by an error. The TRAP,
TRAPcc, TRAPV, BKPT, CHK, CHK2, RTE, and DIV instructions can cause exceptions
during normal execution. lllegal instructions, instruction fetches from odd addresses, word
or long-word operand accesses from odd addresses, and privilege violations also cause
internal exceptions.

Sources of external exception include interrupts, breakpoints, bus errors, and reset
requests. Interrupts are peripheral device requests for processor action. Breakpoints are
used to support development equipment. Bus error and reset are used for access control
and processor restart.

5.5.1.2 EXCEPTION PROCESSING SEQUENCE. For all exceptions other than a reset
exception, exception processing occurs in the following sequence. Refer to 5.5.2.1 Reset
for details of reset processing.

As exception processing begins, the processor makes an internal copy of the SR. After
the copy is made, the processor state bits in the SR are changed—the S-bit is set,
establishing supervisor access level, and bits T1 and TO are cleared, disabling tracing. For
reset and interrupt exceptions, the interrupt priority mask is also updated.

Next, the exception number is obtained. For interrupts, the number is fetched from CPU
space $F (the bus cycle is an interrupt acknowledge). For all other exceptions, internal
logic provides a vector number.

Next, current processor status is saved. An exception stack frame is created and placed
on the supervisor stack. All stack frames contain copies of the SR and the PC for use by
RTE. The type of exception and the context in which the exception occurs determine what
other information is stored in the stack frame.

5-38 MC68341 USER’S MANUAL MOTOROLA

Finally, the processor prepares to resume normal execution of instructions. The exception
vector offset is determined by multiplying the vector number by 4, and the offset is added
to the contents of the VBR to determine displacement into the exception vector table. The
exception vector is loaded into the PC. If no other exception is pending, the processor will
resume normal execution at the new address in the PC.

5.5.1.3 EXCEPTION STACK FRAME. During exception processing, the most volatile
portion of the current context is saved on the top of the supervisor stack. This context is
organized in a format called the exception stack frame.

The exception stack frame always includes the contents of SR and PC at the time the
exception occurred. To support generic handlers, the processor also places the vector
offset in the exception stack frame and marks the frame with a format code. The format
field allows an RTE instruction to identify stack information so that it can be properly
restored.

The general form of the exception stack frame is illustrated in Figure 5-10. Although some
formats are peculiar to a particular M68000 Family processor, format 0000 is always legal
and always indicates that only the first four words of a frame are present. See 5.5.4
CPU32 Stack Frames for a complete discussion of exception stack frames.

15 0

SP—> STATUS REGISTER
" PROGRAM COUNTER HIGH
W &
[75]
4 PROGRAM COUNTER LOW %
[a'
[a)]
2 FORMAT VECTOR OFFSET ‘é’
o &)
£ OTHER PROCESSOR STATE INFORMATION, =z
e DEPENDING ON EXCEPTION v

\ (0,2, OR 8 WORDS)

Figure 5-10. Exception Stack Frame

5.5.1.4 MULTIPLE EXCEPTIONS. Each exception has been assigned a priority based on
its relative importance to system operation. Priority assignments are shown in Table 5-17.
Group 0 exceptions have the highest priorities; group 4 exceptions have the lowest
priorities. Exception processing for exceptions that occur simultaneously is done by
priority, from highest to lowest.

It is important to be aware of the difference between exception processing mode and
execution of an exception handler. Each exception has an assigned vector that points to
an associated handler routine. Exception processing includes steps described in 5.5.1.2
Exception Processing Sequence, but does not include execution of handler routines,
which is done in normal mode.

MOTOROLA MC68341 USER’S MANUAL 5-39

When the CPU32 completes exception processing, it is ready to begin either exception
processing for a pending exception or execution of a handler routine. Priority assignment
governs the order in which exception processing occurs, not the order in which exception
handlers are executed.

Table 5-17. Exception Priority Groups

Gr_ou_p/ Excgption_an_d Characteristics
Priority Relative Priority
0 Reset Aborts all processing (instruction or
exception); does not save old context.
11 Address Error Suspends processing (instruction or
1.2 Bus Error exception); saves internal context.
2 BKPT#n, CHK, CHK2, Exception processing is a part of
Division by Zero, RTE, instruction execution.
TRAP#n, TRAPcc, TRAPV
3 lllegal Instruction, Line A, Exception processing begins before
Unimplemented Line F, instruction execution.
Privilege Violation
41 Trace Exception processing begins when current
4.2 Hardware Breakpoint instruction or previous exception
43 Interrupt processing is complete.

As a general rule, when simultaneous exceptions occur, the handler routines for lower
priority exceptions are executed before the handler routines for higher priority exceptions.
For example, consider the arrival of an interrupt during execution of a TRAP instruction
while tracing is enabled. Trap exception processing (2) is done first, followed immediately
by exception processing for the trace (4.1), and then by exception processing for the
interrupt (4.3). Each exception places a new context on the stack. When the processor
resumes normal instruction execution, it is vectored to the interrupt handler, which returns
to the trace handler that returns to the trap handler.

There are special cases to which the general rule does not apply. The reset exception will
always be the first exception handled since reset clears all other exceptions. It is also
possible for high-priority exception processing to begin before low-priority exception
processing is complete. For example, if a bus error occurs during trace exception
processing, the bus error will be processed and handled before trace exception
processing has completed.

5-40 MC68341 USER’S MANUAL MOTOROLA

5.5.2 Processing of Specific Exceptions

The following paragraphs provide details concerning sources of specific exceptions, how
each arises, and how each is processed.

5.5.2.1 RESET. Assertion of RESET by external hardware or assertion of the internal
RESET signal by an internal module causes a reset exception. The reset exception has
the highest priority of any exception. Reset is used for system initialization and for
recovery from catastrophic failure. When the reset exception is recognized, it aborts any
processing in progress, and that processing cannot be recovered. Reset performs the
following operations:

1. Clears TO and T1 in the SR to disable tracing

Sets the S-bit in the SR to establish supervisor privilege

Sets the interrupt priority mask to the highest priority level (%111)
Initializes the VBR to zero ($00000000)

Generates a vector number to reference the reset exception vector
Loads the first long word of the vector into the interrupt SP

Loads the second long word of the vector into the PC

© N O Ok WD

Fetches and initiates decode of the first instruction to be executed

Figure 5-11 is a flowchart of the reset exception

After initial instruction prefetches, normal program execution begins at the address in the
PC. The reset exception does not save the value of either the PC or the SR.

If a bus error or address error occurs during reset exception processing, a double bus fault
occurs, the processor halts, and the HALT signal is asserted to indicate the halted
condition.

Execution of the RESET instruction does not cause a reset exception nor does it affect
any internal CPU register. The SIM40 registers and the module control register in each
internal peripheral module (DMA, timers, and serial modules) are not affected. All other
internal peripheral module registers are reset the same as for a hardware reset. The
external devices connected to the RESET signal are reset at the completion of the RESET
instruction.

MOTOROLA MC68341 USER’S MANUAL 541

ENTRY

1S

0 [OT0,TL
$7 [JI210
$0 [JVBR

FETCH VECTOR #0

OTHERWISE BUS ERROR
SP [J(VECTOR #0)

FETCH VECTOR # 1

OTHERWISE BUS ERROR
PC L(VECTOR #1)

PREFETCH 3 WORDS
BUS ERROR/
OTHERWISE BEGIN AEDIES(EFSQS
INSTRUCTION
EXECUTION (DOUBLE BUS FAULT)
ASSERT HALT
EXIT

(EXIT)

Figure 5-11. Reset Operation Flowchart

542 MC68341 USER’S MANUAL MOTOROLA

5.5.2.2 BUS ERROR. A bus error exception occurs when an assertion of the BERR signal
is acknowledged. The BERR signal can be asserted by one of three sources:

1. External logic by assertion of the BERR input pin
2. Direct assertion of the internal BERR signal by an internal module

3. Direct assertion of the internal BERR signal by the on-chip hardware watchdog
after detecting a no-response condition

Bus error exception processing begins when the processor attempts to use information
from an aborted bus cycle.

When the aborted bus cycle is an instruction prefetch, the processor will not initiate
exception processing unless the prefetched information is used. For example, if a branch
instruction flushes an aborted prefetch, that word is not accessed, and no exception
occurs.

When the aborted bus cycle is a data access, the processor initiates exception processing
immediately, except in the case of released operand writes. Released write bus errors are
delayed until the next instruction boundary or until another operand access is attempted.

Exception processing for bus error exceptions follows the regular sequence, but context
preservation is more involved than for other exceptions because a bus exception can be
initiated while an instruction is executing. Several bus error stack format organizations are
utilized to provide additional information regarding the nature of the fault.

First, any register altered by a faulted-instruction EA calculation is restored to its initial
value. Then a special status word (SSW) is placed on the stack. The SSW contains
specific information about the aborted access—size, type of access (read or write), bus
cycle type, and function code. Finally, fault address, bus error exception vector number,
PC value, and a copy of the SR are saved.

If a bus error occurs during exception processing for a bus error, an address error, a reset,
or while the processor is loading stack information during RTE execution, the processor
halts. This simplifies isolation of catastrophic system failure by preventing processor
interaction with stacks and memory. Only assertion of RESET can restart a halted
processor.

5.5.2.3 ADDRESS ERROR. Address error exceptions occur when the processor attempts
to access an instruction, word operand, or long-word operand at an odd address. The
effect is much the same as an internally generated bus error. The exception processing
sequence is the same as that for bus error, except that the vector number refers to the
address error exception vector.

Address error exception processing begins when the processor attempts to use
information from the aborted bus cycle. If the aborted cycle is a data space access,
exception processing begins when the processor attempts to use the data, except in the

MOTOROLA MC68341 USER’S MANUAL 5-43

case of a released operand write. Released write exceptions are delayed until the next
instruction boundary or attempted operand access.

An address exception on a branch to an odd address is delayed until the PC is changed.
No exception occurs if the branch is not taken. In this case, the fault address and return
PC value placed in the exception stack frame are the odd address, and the current
instruction PC points to the instruction that caused the exception.

If an address error occurs during exception processing for a bus error, another address
error, or a reset, the processor halts.

5.5.2.4 INSTRUCTION TRAPS. Traps are exceptions caused by instructions. They arise
from either processor recognition of abnormal conditions during instruction execution or
from use of specific trapping instructions. Traps are generally used to handle abnormal
conditions that arise in control routines.

The TRAP instruction, which always forces an exception, is useful for implementing
system calls for user programs. The TRAPcc, TRAPV, CHK, and CHK2 instructions force
exceptions when a program detects a run-time error. The DIVS and DIVU instructions
force an exception if a division operation is attempted with a divisor of zero.

Exception processing for traps follows the regular sequence. If tracing is enabled when an
instruction that causes a trap begins execution, a trace exception will be generated by the
instruction, but the trap handler routine will not be traced. (The trap exception will be
processed first, then the trace exception.)

The vector number for the TRAP instruction is internally generated—part of the number
comes from the instruction itself. The trap vector number, PC value, and a copy of the SR
are saved on the supervisor stack. The saved PC value is the address of the instruction
that follows the instruction that generated the trap. For all instruction traps other than
TRAP, a pointer to the instruction causing the trap is also saved in the fifth and sixth
words of the exception stack frame.

5.5.2.5 SOFTWARE BREAKPOINTS. To support hardware emulation, the CPU32 must
provide a means of inserting breakpoints into target code and of announcing when a
breakpoint is reached.

The MC68000 and MC68008 can detect an illegal instruction inserted at a breakpoint
when the processor fetches from the illegal instruction exception vector location. Since the
VBR on the CPU32 allows relocation of exception vectors, the exception vector address is
not a reliable indication of a breakpoint. CPU32 breakpoint support is provided by
extending the function of a set of illegal instructions ($4848-$484F).

When a breakpoint instruction is executed, the CPU32 performs a read from CPU space
$0, at a location corresponding to the breakpoint number. If this bus cycle is terminated by
BERR, the processor performs illegal instruction exception processing. If the bus cycle is
terminated by DSACKYX, the processor uses the data returned to replace the breakpoint in
the instruction pipeline and begins execution of that instruction. See Section 3 Bus
Operation for a description of CPU space operations.

544 MC68341 USER’S MANUAL MOTOROLA

5.5.2.6 HARDWARE BREAKPOINTS. The CPU32 recognizes hardware breakpoint
requests. Hardware breakpoint requests do not force immediate exception processing, but
are left pending. An instruction breakpoint is not made pending until the instruction
corresponding to the request is executed.

A pending breakpoint can be acknowledged between instructions or at the end of
exception processing. To acknowledge a breakpoint, the CPU performs a read from CPU
space 30 at location $1E (see Section 3 Bus Operation).

If the bus cycle terminates normally, instruction execution continues with the next
instruction as if no breakpoint request occurred. If the bus cycle is terminated by BERR,
the CPU begins exception processing. Data returned during this bus cycle is ignored.

Exception processing follows the regular sequence. Vector number 12 (offset $30) is
internally generated. The PC of the executing instruction, the PC of the next instruction to
be executed, and a copy of the SR are saved on the supervisor stack.

5.5.2.7 FORMAT ERROR. The processor checks certain data values for control
operations. The validity of the stack format code and, in the case of a bus cycle fault
format, the version number of the processor that generated the frame are checked during
execution of the RTE instruction. This check ensures that the program does not make
erroneous assumptions about information in the stack frame.

If the format of the control data is improper, the processor generates a format error
exception. This exception saves a four-word format exception frame and then vectors
through vector table entry number 14. The stacked PC is the address of the RTE
instruction that discovered the format error.

5.5.2.8 ILLEGAL OR UNIMPLEMENTED INSTRUCTIONS. An instruction is illegal if it
contains a word bit pattern that does not correspond to the bit pattern of the first word of a
legal CPU32 instruction, if it is a MOVEC instruction that contains an undefined register
specification field in the first extension word, or if it contains an indexed addressing mode
extension word with bits 5—-4 = 00 or bits 3—-0 # 0000.

If an illegal instruction is fetched during instruction execution, an illegal instruction
exception occurs. This facility allows the operating system to detect program errors or to
emulate instructions in software.

Word patterns with bits 15-12 = 1010 (referred to as A-line opcodes) are unimplemented
instructions. A separate exception vector (vector 10, offset $28) is given to unimplemented
instructions to permit efficient emulation.

Word patterns with bits 15-12 = 1111 (referred to as F-line opcodes) are used for M68000
family instruction set extensions. They can generate an unimplemented instruction
exception caused by the first extension word of the instruction or by the addressing mode
extension word. A separate F-line emulation vector (vector 11, offset $2C) is used for the
exception vector.

MOTOROLA MC68341 USER’S MANUAL 5-45

All unimplemented instructions are reserved for use by Motorola for enhancements and
extensions to the basic M68000 architecture. Opcode pattern $4AFC is defined to be
illegal on all M68000 family members. Those customers requiring the use of an
unimplemented opcode for synthesis of "custom instructions," operating system calls, etc.,
should use this opcode.

Exception processing for illegal and unimplemented instructions is similar to that for traps.
The instruction is fetched and decoding is attempted. When the processor determines that
execution of an illegal instruction is being attempted, exception processing begins. No
registers are altered.

Exception processing follows the regular sequence. The vector number is generated to
refer to the illegal instruction vector or in the case of an unimplemented instruction, to the
corresponding emulation vector. The illegal instruction vector number, current PC, and a
copy of the SR are saved on the supervisor stack, with the saved value of the PC being
the address of the illegal or unimplemented instruction.

5.5.2.9 PRIVILEGE VIOLATIONS. To provide system security, certain instructions can be
executed only at the supervisor access level. An attempt to execute one of these
instructions at the user level will cause an exception. The privileged exceptions are as
follows:

¢ AND Immediate to SR
 EOR Immediate to SR
e« LPSTOP

« MOVE from SR

« MOVE to SR

« MOVE USP

« MOVEC

« MOVES

* OR Immediate to SR
e RESET

« RTE

« STOP

Exception processing for privilege violations is nearly identical to that for illegal
instructions. The instruction is fetched and decoded. If the processor determines that a
privilege violation has occurred, exception processing begins before instruction execution.

Exception processing follows the regular sequence. The vector number (8) is generated to
reference the privilege violation vector. Privilege violation vector offset, current PC, and
SR are saved on the supervisor stack. The saved PC value is the address of the first word
of the instruction causing the privilege violation.

5-46 MC68341 USER’S MANUAL MOTOROLA

5.5.2.10 TRACING. To aid in program development, M68000 processors include a facility
to allow tracing of instruction execution. CPU32 tracing also has the ability to trap on
changes in program flow. In trace mode, a trace exception is generated after each
instruction executes, allowing a debugging program to monitor the execution of a program
under test. The T1 and TO bits in the supervisor portion of the SR are used to control
tracing.

When T1-TO = 00, tracing is disabled, and instruction execution proceeds normally (see
Table 5-18).

Table 5-18. Tracing Control

T1 TO Tracing Function

0 0 No tracing

0 1 Trace on change of flow

1 0 [Trace on instruction execution
1 1 Undefined; reserved

When T1-TO = 01 at the beginning of instruction execution, a trace exception will be
generated if the PC changes sequence during execution. All branches, jumps, subroutine
calls, returns, and SR manipulations can be traced in this way. No exception occurs if a
branch is not taken.

When T1-TO = 10 at the beginning of instruction execution, a trace exception will be
generated when execution is complete. If the instruction is not executed, either because
an interrupt is taken or because the instruction is illegal, unimplemented, or privileged, an
exception is not generated.

At the present time, T1-TO = 11 is an undefined condition. It is reserved by Motorola for
future use.

Exception processing for trace starts at the end of normal processing for the traced
instruction and before the start of the next instruction. Exception processing follows the
regular sequence; tracing is disabled so that the trace exception itself is not traced. A
vector number is generated to reference the trace exception vector. The address of the
instruction that caused the trace exception, the trace exception vector offset, the current
PC, and a copy of the SR are saved on the supervisor stack. The saved value of the PC is
the address of the next instruction to be executed.

A trace exception can be viewed as an extension to the function of any instruction. If a
trace exception is generated by an instruction, the execution of that instruction is not
complete until the trace exception processing associated with it is also complete.

If an instruction is aborted by a bus error or address error exception, trace exception
processing is deferred until the suspended instruction is restarted and completed
normally. An RTE from a bus error or address error will not be traced because of the
possibility of continuing the instruction from the fault.

MOTOROLA MC68341 USER’S MANUAL 5-47

If an instruction is executed and an interrupt is pending on completion, the trace exception
is processed before the interrupt exception.

If an instruction forces an exception, the forced exception is processed before the trace
exception.

If an instruction is executed and a breakpoint is pending upon completion of the
instruction, the trace exception is processed before the breakpoint.

If an attempt is made to execute an illegal, unimplemented, or privileged instruction while
tracing is enabled, no trace exception will occur because the instruction is not executed.
This is particularly important to an emulation routine that performs an instruction function,
adjusts the stacked PC to beyond the unimplemented instruction, and then returns. The
SR on the stack must be checked to determine if tracing is on before the return is
executed. If tracing is on, trace exception processing must be emulated so that the trace
exception handler can account for the emulated instruction.

Tracing also affects normal operation of the STOP and LPSTOP instructions. If either
instruction begins execution with T1 set, a trace exception will be taken after the
instruction loads the SR. Upon return from the trace handler routine, execution will
continue with the instruction following STOP (LPSTOP), and the processor will not enter
the stopped condition.

5.5.2.11 INTERRUPTS. There are seven levels of interrupt priority and 192 assignable
interrupt vectors within each exception vector table. Careful use of multiple vector tables
and hardware chaining will permit a virtually unlimited number of peripherals to interrupt
the processor.

Interrupt recognition and subsequent processing are based on internal interrupt request
signals (IRQ7—-1RQ1) and the current priority set in SR priority mask 12—10. Interrupt
request level 0 (IRQ7-IRQ1 negated) indicates that no service is requested. When an
interrupt of level 1 through 6 is requested via IRQ6-IRQ1, the processor compares the
request level with the interrupt mask to determine whether the interrupt should be
processed. Interrupt requests are inhibited for all priority levels less than or equal to the
current priority. Level 7 interrupts are nonmaskable.

IRQ7-1RQ1 are synchronized and debounced by input circuitry on consecutive rising
edges of the processor clock. To be valid, an interrupt request must be held constant for
at least two consecutive clock periods.

Interrupt requests do not force immediate exception processing, but are left pending. A
pending interrupt is detected between instructions or at the end of exception processing—
all interrupt requests must be held asserted until they are acknowledged by the CPU. If
the priority of the interrupt is greater than the current priority level, exception processing
begins.

Exception processing occurs as follows. First, the processor makes an internal copy of the
SR. After the copy is made, the processor state bits in the SR are changed—the S-bit is
set, establishing supervisor access level, and bits T1 and TO are cleared, disabling

5-48 MC68341 USER’S MANUAL MOTOROLA

tracing. Priority level is then set to the level of the interrupt, and the processor fetches a
vector number from the interrupting device (CPU space $F). The fetch bus cycle is
classified as an interrupt acknowledge, and the encoded level number of the interrupt is
placed on the address bus.

If an interrupting device requests automatic vectoring, the processor generates a vector
number (25 to 31) determined by the interrupt level number.

If the response to the interrupt acknowledge bus cycle is a bus error, the interrupt is taken
to be spurious, and the spurious interrupt vector number (24) is generated.

The exception vector number, PC, and SR are saved on the supervisor stack. The saved
value of the PC is the address of the instruction that would have executed if the interrupt
had not occurred.

Priority level 7 interrupt is a special case. Level 7 interrupts are nonmaskable interrupts
(NMI). Level 7 requests are transition sensitive to eliminate redundant servicing and
resultant stack overflow. Transition sensitive means that the level 7 input must change
state before the CPU will detect an interrupt.

An NMI is generated each time the interrupt request level changes to level 7 (regardless
of priority mask value), and each time the priority mask changes from 7 to a lower number
while the request level remains at 7.

Many M68000 peripherals provide for programmable interrupt vector numbers to be used
in the system interrupt request/acknowledge mechanism. If the vector number is not
initialized after reset and if the peripheral must acknowledge an interrupt request, the
peripheral should return the uninitialized interrupt vector number (15).

See Section 3 Bus Operation for detailed information on interrupt acknowledge cycles.

5.5.2.12 RETURN FROM EXCEPTION. When exception stacking operations for all
pending exceptions are complete, the processor begins execution of the handler for the
last exception processed. After the exception handler has executed, the processor must
restore the system context in existence prior to the exception. The RTE instruction is
designed to accomplish this task.

When RTE is executed, the processor examines the stack frame on top of the supervisor
stack to determine if it is valid and determines what type of context restoration must be
performed. See 5.5.4 CPU32 Stack Frames for a description of stack frames.

For a normal four-word frame, the processor updates the SR and PC with data pulled from
the stack, increments the SSP by 8, and resumes normal instruction execution. For a six-
word frame, the SR and PC are updated from the stack, the active SSP is incremented by
12, and normal instruction execution resumes.

For a bus fault frame, the format value on the stack is first checked for validity. In addition,
the version number on the stack must match the version number of the processor that is

MOTOROLA MC68341 USER’S MANUAL 5-49

attempting to read the stack frame. The version number is located in the most significant
byte (bits 15-8) of the internal register word at location SP + $14 in the stack frame. The
validity check ensures that stack frame data will be properly interpreted in multiprocessor
systems.

If a frame is invalid, a format error exception is taken. If it is inaccessible, a bus error
exception is taken. Otherwise, the processor reads the entire frame into the proper
internal registers, de-allocates the stack (12 words), and resumes normal processing. Bus
error frames for faults during exception processing require the RTE instruction to rewrite
the faulted stack frame. If an error occurs during any of the bus cycles required by rewrite,
the processor halts.

If a format error occurs during RTE execution, the processor creates a normal four-word
fault stack frame below the frame that it was attempting to use. If a bus error occurs, a
bus-error stack frame will be created. The faulty stack frame remains intact, so that it may
be examined and repaired by an exception handler or used by a different type of
processor (e.g., MC68010, MC68020, or future M68000 processor) in a multiprocessor
system.

5.5.3 Fault Recovery

There are four phases of recovery from a fault: recognizing the fault, saving the processor
state, repairing the fault (if possible), and restoring the processor state. Saving and
restoring the processor state are described in the following paragraphs.

The stack contents are identified by the special status word (SSW). In addition to
identifying the fault type represented by the stack frame, the SSW contains the internal
processor state corresponding to the fault.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

|TP|MV|O|TR|Bl|BO|RR|RM|IN|RW|LG| SIZz | FUNC

TP—BERR Frame Type

The TP field defines the class of the faulted bus operation. Two bus error exception
frame types are defined. One is for faults on prefetch and operand accesses, and the
other is for faults during exception frame stacking.

0 = Operand or prefetch bus fault
1 = Exception processing bus fault

MV—MOVEM in Progress

MV is set when the operand transfer portion of the MOVEM instruction is in progress at
the time of a bus fault. If a prefetch bus fault occurs while prefetching the MOVEM
opcode and extension word, both the MV and IN bits will be set.

0 = MOVEM was not in progress when fault occurred
1 = MOVEM was in progress when fault occurred

5-50 MC68341 USER’S MANUAL MOTOROLA

TR—Trace Pending

TR indicates that a trace exception was pending when a bus error exception was
processed. The instruction that generated the trace will not be restarted upon return
from the exception handler. This includes MOVEM and released write bus errors
indicated by the assertion of either MV or RR in the SSW.

0 = Trace not pending
1 = Trace pending

B1—Breakpoint Channel 1 Pending

B1 indicates that a breakpoint exception was pending on channel 1 (external breakpoint
source) when a bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.

0 = Breakpoint not pending
1 = Breakpoint pending

BO—Breakpoint Channel 0 Pending

BO indicates that a breakpoint exception was pending on channel O (internal breakpoint
source) when the bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.

0 = Breakpoint not pending
1 = Breakpoint pending

RR—Rerun Write Cycle after RTE

RR will be set if the faulted bus cycle was a released write. A released write is one that
is overlapped. If the write is completed (rerun) in the exception handler, the RR bit
should be cleared before executing RTE. The bus cycle will be rerun if the RR bit is set
upon return from the exception handler.

0 = Faulted cycle was read, RMW, or unreleased write
1 = Faulted cycle was a released write

RM—Faulted Cycle Was Read-Modify-Write
Faulted RMW bus cycles set the RM bit. RM is ignored during unstacking.
0 = Faulted cycle was non-RMW cycle
1 = Faulted cycle was either the read or write of an RMW cycle
IN—Instruction/Other

Instruction prefetch faults are distinguished from operand (both read and write) faults by
the IN bit. If IN is cleared, the error was on an operand cycle; if IN is set, the error was
on an instruction prefetch. IN is ignored during unstacking.

0 = Operand

1 = Prefetch

MOTOROLA MC68341 USER’S MANUAL 551

RW—Read/Write of Faulted Bus Cycle

Read and write bus cycles are distinguished by the RW bit. Read bus cycles will set this
bit, and write bus cycles will clear it. RW is reloaded into the bus controller if the RR bit
is set during unstacking.

0 = Faulted cycle was an operand write
1 = Faulted cycle was a prefetch or operand read

SIZ—Remaining Size of Faulted Bus Cycle

The SIZ field shows operand size remaining when a fault was detected. This field does
not indicate the initial size of the operand, nor does it necessarily indicate the proper
status of a dynamically sized bus cycle. Dynamic sizing occurs on the external bus and
is transparent to the CPU. Byte size is shown only when the original operand was a
byte. The field is reloaded into the bus controller if the RR bit is set during unstacking.
The SIZ field is encoded as follows:

00 = Long word

01 = Byte

10 = Word

11 = Unused, reserved

FUNC—Function Code of Faulted Bus Cycle

The function code for the faulted cycle is stacked in the FUNC field of the SSW, which is
a copy of FC2-FCO for the faulted bus cycle. This field is reloaded into the bus
controller if the RR bit is set during unstacking. All unused bits are stacked as zeros and
are ignored during unstacking. Further discussion of the SSW is included in 5.5.3.1
Types of Faults.

5.5.3.1 TYPES OF FAULTS. An efficient implementation of instruction restart dictates that
faults on some bus cycles be treated differently than faults on other bus cycles. The
CPU32 defines four fault types: released write faults, faults during exception processing,
faults during MOVEM operand transfer, and faults on any other bus cycle.

5.5.3.1.1 Type I—Released Write Faults. CPU32 instruction pipelining can cause a final
instruction write to overlap the execution of a following instruction. A write that is
overlapped is called a released write. A released write fault occurs when a bus error or
some other fault occurs on the released write.

Released write faults are taken at the next instruction boundary. The stacked PC is that of
the next unexecuted instruction. If a subsequent instruction attempts an operand access
while a released write fault is pending, the instruction is aborted and the write fault is
acknowledged. This action prevents the instruction from using stale data.

552 MC68341 USER’S MANUAL MOTOROLA

The SSW for a released write fault contains the following bit pattern:

5 #1383 12 1 10 9 8 7 6 5 4 3 2 0
[o] o[o[wm]| [|[1| o] of 0ofuw| sz | FUNC |

TR, B1, and BO are set if the corresponding exception is pending when the bus error
exception is taken. Status regarding the faulted bus cycle is reflected in the LG, SIZ, and
FUNC fields.

The remainder of the stack contains the PC of the next unexecuted instruction, the current
SR, the address of the faulted memory location, and the contents of the data buffer that
was to be written to memory. This data is written on the stack in the format depicted in
Figure 5-15. When a released write fault exception handler executes, the machine will
complete the faulted write and then continue executing instructions wherever the PC
indicates.

5.5.3.1.2 Type II—Prefetch, Operand, RMW, and MOVEP Faults. The majority of bus
error exceptions are included in this category—all instruction prefetches, all operand
reads, all RMW cycles, and all operand accesses resulting from execution of MOVEP
(except the last write of a MOVEP Rn,[&¢alor the last write of MOVEM, which are type |
faults). The TAS, MOVEP, and MOVEM instructions account for all operand writes not
considered released write faults.

All type Il faults cause an immediate exception that aborts the current instruction. Any
registers that were altered as the result of an EA calculation (i.e., postincrement or
predecrement) are restored prior to processing the bus cycle fault.

The SSW for faults in this category contains the following bit pattern:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 0

| o | o[o[o] [| o|m]| N |[rv]|uw| sz | FUNC

The trace pending bit is always cleared, since the instruction will be restarted upon return
from the handler. Saving a pending exception on the stack causes a trace exception to be
taken prior to restarting the instruction. If the exception handler does not alter the stacked
SR trace bits, the trace is requeued when the instruction is started.

The breakpoint pending bits are stacked in the SSW, even though the instruction is
restarted upon return from the handler. This avoids problems with bus state analyzer
equipment that has been programmed to breakpoint only the first access to a specific
location or to count accesses to that location. If this response is not desired, the exception
handler can clear the bits before return. The RM, IN, RW, LG, FUNC, and SIZ fields all
reflect the type of bus cycle that caused the fault. If the bus cycle was an RMW, the RM bit
will be set, and the RW bit will show whether the fault was on a read or write.

MOTOROLA MC68341 USER’S MANUAL 5-53

5.5.3.1.3 Type lll—Faults During MOVEM Operand Transfer. Bus faults that occur as a
result of MOVEM operand transfer are classified as type Il faults. MOVEM instruction
prefetch faults are type Il faults.

Type Il faults cause an immediate exception that aborts the current instruction. Registers
altered during execution of the faulted instruction are not restored prior to execution of the
fault handler. This includes any register predecremented as a result of the effective
address calculation or any register overwritten during instruction execution. Since
postincremented registers are not updated until the end of an instruction, the register
retains its pre-instruction value unless overwritten by operand movement.

The SSW for faults in this category contains the following bit pattern:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 0

| o | 1 [o | wm]| [e|[r| o] Nn]|[rw]|w| siz | FUNC

MV is set, indicating that MOVEM should be continued from the point where the fault
occurred upon return from the exception handler. TR, B1, and BO are set if a
corresponding exception is pending when the bus error exception is taken. IN is set if a
bus fault occurs while prefetching an opcode or an extension word during instruction
restart. RW, LG, SIZ, and FUNC all reflect the type of bus cycle that caused the fault. All
write faults have the RR bit set to indicate that the write should be rerun upon return from
the exception handler.

The remainder of the stack frame contains sufficient information to continue MOVEM with
operand transfer following a faulted transfer. The address of the next operand to be
transferred, incremented or decremented by operand size, is stored in the faulted address
location ($08). The stacked transfer counter is set to 16 minus the number of transfers
attempted (including the faulted cycle). Refer to Figure 5-12 for the stacking format.

5.5.3.1.4 Type IV—Faults During Exception Processing. The fourth type of fault occurs
during exception processing. If this exception is a second address or bus error, the
machine halts in the double bus fault condition. However, if the exception is one that
causes a four- or six-word stack frame to be written, a bus cycle fault frame is written
below the faulted exception stack frame.

The SSW for a fault within an exception contains the following bit pattern:

5 #1383 12 1 10 9 8 7 6 5 4 3 2 0
[1] o[o[wm]| [|[of o] of 1|w| sz | FUNC

TR, B1, and BO are set if a corresponding exception is pending when the bus error
exception is taken.

The contents of the faulted exception stack frame are included in the bus fault stack
frame. The pre-exception SR and the format/vector word of the faulted frame are stacked.
The type of exception can be determined from the format/vector word. If the faulted
exception stack frame contains six words, the PC of the instruction that caused the initial

5-54 MC68341 USER’S MANUAL MOTOROLA

exception is also stacked. This data is placed on the stack in the format shown in Figure
5-13. The return address from the initial exception is stacked for RTE .

5.5.3.2 CORRECTING A FAULT. There are two ways to complete a faulted released write
bus cycle. The first is to use a software handler. The second is to rerun the bus cycle via
RTE.

Type Il fault handlers must terminate with RTE, but specific requirements must also be
met before an instruction is restarted.

There are three varieties of type Il operand fault recovery. The first is completion of an
instruction in software. The second is conversion to type Il with restart via RTE. The third
Is continuation from the fault via RTE.

5.5.3.2.1 Type —Completing Released Writes via Software. To complete a bus cycle
in software, a handler must first read the SSW function code field to determine the
appropriate address space, access the fault address pointer on the stack, and then
transfer data from the stacked image of the output buffer to the fault address.

Because the CPU32 has a 16-bit internal data bus, long operands require two bus
accesses. A fault during the second access of a long operand causes the LG bit in the
SSW to be set. The SIZ field indicates remaining operand size. If operand coherency is
important, the complete operand must be rewritten. After a long operand is rewritten, the
RR bit must be cleared. Failure to clear the RR bit can cause the RTE instruction to rerun
the bus cycle. Following rewrite, it is not necessary to adjust the PC (or other stack
contents) before executing RTE.

5.5.3.2.2 Type I—Completing Released Writes via RTE. An exception handler can use
the RTE instruction to complete a faulted bus cycle. When RTE executes, the fault
address, data output buffer, PC, and SR are restored from the stack. Any pending
breakpoint or trace exceptions, as indicated by TR, B1, and BO in the stacked SSW, are
requeued during SSW restoration. The RR bit in the SSW is checked during the
unstacking operation; if it is set, the RW, FUNC, and SIZ fields are restored and the
released write cycle is rerun.

To maintain long-word operand coherence, stack contents must be adjusted prior to RTE
execution. The fault address must be decremented by 2 if LG is set and SIZ indicates a
remaining byte or word. SIZ must be set to long. All other fields should be left unchanged.
The bus controller uses the modified fault address and SIZ field to rerun the complete
released write cycle.

Manipulating the stacked SSW can cause unpredictable results because RTE checks only
the RR bit to determine if a bus cycle must be rerun. Inadvertent alteration of the control
bits could cause the bus cycle to be a read instead of a write or could cause access to a
different address space than the original bus cycle. If the rerun bus cycle is a read,
returned data will be ignored.

MOTOROLA MC68341 USER’S MANUAL 5-55

5.5.3.2.3 Type II—Correcting Faults via RTE. Instructions aborted because of a type Il
fault are restarted upon return from the exception handler. A fault handler must establish
safe restart conditions. If a fault is caused by a nonresident page in a demand-paged
virtual memory configuration, the fault address must be read from the stack, and the
appropriate page retrieved. An RTE instruction terminates the exception handler. After
unstacking the machine state, the instruction is refetched and restarted.

5.5.3.2.4 Type lll—Correcting Faults via Software. Sufficient information is contained in
the stack frame to complete MOVEM in software. After the cause of the fault is corrected,
the faulted bus cycle must be rerun. Perform the following procedures to complete an
instruction through software:

A. Set Up for Rerun
1. Read the MOVEM opcode and extension from locations pointed to by stack frame

PC and PC + 2. The EA need not be recalculated since the next operand address
is saved in the stack frame. However, the opcode EA field must be examined to
determine how to update the address register and PC when the instruction is
complete.

2. Adjust the mask to account for operands already transferred. Subtract the stacked
operand transfer count from 16 to obtain the number of operands transferred. Scan
the mask using this count value. Each time a set bit is found, clear it and decrement
the counter. When the count is zero, the mask is ready for use.

3. Adjust the operand address. If the predecrement addressing mode is in effect,
subtract the operand size from the stacked value; otherwise, add the operand size to
the stacked value.

B. Rerun Instruction

1. Scan the mask for set bits. Read/write the selected register from/to the operand
address as each bit is found.

2. As each operand is transferred, clear the mask bit and increment (decrement) the
operand address. When all bits in the mask are cleared, all operands have been
transferred.

3. If the addressing mode is predecrement or postincrement, update the register to
complete the execution of the instruction.

4. If TR is set in the stacked SSW, create a six-word stack frame and execute the trace
handler. If either B1 or BO is set in the SSW, create another six-word stack frame
and execute the hardware breakpoint handler.

5. De-allocate the stack and return control to the faulted program.
5.5.3.2.5 Type lll—Correcting Faults by Conversion and Restart. In some situations, it
may be necessary to rerun all the operand transfers for a faulted instruction rather than

continue from a faulted operand. Clearing the MV bit in the stacked SSW converts a type
1l fault into a type Il fault. Consequently, MOVEM, like all other type Il

5-56 MC68341 USER’S MANUAL MOTOROLA

exceptions, will be restarted upon return from the exception handler. When a fault occurs
after an operand has transferred, that transfer is not "undone”. However, these memory
locations are accessed a second time when the instruction is restarted. If a register used
in an EA calculation is overwritten before a fault occurs, an incorrect EA is calculated upon
instruction restart.

5.5.3.2.6 Type lll—Correcting Faults via RTE. The preferred method of MOVEM bus
fault recovery is to correct the cause of the fault and then execute an RTE instruction
without altering the stack contents.

The RTE recognizes that MOVEM was in progress when a fault occurred, restores the
appropriate machine state, refetches the instruction, repeats the faulted transfer, and
continues the instruction.

MOVEM is the only instruction continued upon return from an exception handler. Although
the instruction is refetched, the EA is not recalculated, and the mask is rescanned the
same number of times as before the fault. Modifying the code prior to RTE can cause
unexpected results.

5.5.3.2.7 Type IV—Correcting Faults via Software. Bus error exceptions can occur
during exception processing while the processor is fetching an exception vector or while it
is stacking. The same stack frame and SSW are used in both cases, but each has a
distinct fault address. The stacked faulted exception format/vector word identifies the type
of faulted exception and the contents of the remainder of the frame. A fault address
corresponding to the vector specified in the stacked format/vector word indicates that the
processor could not obtain the address of the exception handler.

A bus error exception handler should execute RTE after correcting a fault. RTE restores
the internal machine state, fetches the address of the original exception handler, recreates
the original exception stack frame, and resumes execution at the exception handler
address.

If the fault is intractable, the exception handler should rewrite the faulted exception stack
frame at SP + $14 + $06 and then jump directly to the original exception handler. The
stack frame can be generated from the information in the bus error frame: the pre-
exception SR (SP + $0C), the format/vector word (SP + $0E), and, if the frame being
written is a six-word frame, the PC of the instruction causing the exception (SP + $10).
The return PC value is available at SP + $02.

A stacked fault address equal to the current SP may indicate that, although the first
exception received a bus error while stacking, the bus error exception stacking
successfully completed. This occurrence is extremely improbable, but the CPU32
supports recovery from it. Once the exception handler determines that the fault has been
corrected, recovery can proceed as described previously. If the fault cannot be corrected,
move the supervisor stack to another area of memory, copy all valid stack frames to the
new stack, create a faulted exception frame on top of the stack, and resume execution at
the exception handler address.

MOTOROLA MC68341 USER’S MANUAL 5-57

5.5.4 CPU32 Stack Frames

The CPU32 generates three different stack frames: four-word frames, six-word frames,
and twelve-word bus error frames.

5.5.4.1 FOUR-WORD STACK FRAME. This stack frame is created by interrupt, format
error, TRAP #n, illegal instruction, A-line and F-line emulator trap, and privilege violation
exceptions. Depending on the exception type, the PC value is either the address of the
next instruction to be executed or the address of the instruction that caused the exception
(see Figure 5-12).

15 0
SP O STATUS REGISTER
+$02 PROGRAM COUNTER HIGH
PROGRAM COUNTER LOW
+$06 0 ‘ 0 ‘ 0 ‘ 0 ‘ VECTOR OFFSET

Figure 5-12. Format $0—Four-Word Stack Frame

5.5.4.2 SIX-WORD STACK FRAME. This stack frame (see Figure 5-13) is created by
instruction-related traps, which include CHK, CHK2, TRAPcc, TRAPYV, and divide-by-zero,
and by trace exceptions. The faulted instruction PC value is the address of the instruction
that caused the exception. The next PC value (the address to which RTE returns) is the
address of the next instruction to be executed.

15 0
SP O STATUS REGISTER
+$02 NEXT INSTRUCTION PROGRAM COUNTER HIGH
NEXT INSTRUCTION PROGRAM COUNTER LOW
+$06 0 ‘ 0 ‘ 1 ‘ 0 ‘ VECTOR OFFSET
+$08 FAULTED INSTRUCTION PROGRAM COUNTER HIGH
FAULTED INSTRUCTION PROGRAM COUNTER LOW

Figure 5-13. Format $2—Six-Word Stack Frame

Hardware breakpoints also utilize this format. The faulted instruction PC value is the
address of the instruction executing when the breakpoint was sensed. Usually this is the
address of the instruction that caused the breakpoint, but, because released writes can
overlap following instructions, the faulted instruction PC may point to an instruction
following the instruction that caused the breakpoint. The address to which RTE returns is
the address of the next instruction to be executed.

5.5.4.3 BUS ERROR STACK FRAME. This stack frame is created when a bus cycle fault
is detected. The CPU32 bus error stack frame differs significantly from the equivalent
stack frames of other M68000 Family members. The only internal machine state required
in the CPU32 stack frame is the bus controller state at the time of the error and a single
register.

5-58 MC68341 USER’S MANUAL MOTOROLA

Bus operation in progress at the time of a fault is conveyed by the SSW.

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

[™ |[wmv [o | ®m]|B [[rrR|[rm]| N][rw]|w| siz | FUNC

The bus error stack frame is 12 words in length. There are three variations of the frame,
each distinguished by different values in the SSW TP and MV fields.

An internal transfer count register appears at location SP + $14 in all bus error stack
frames. The register contains an 8-bit microcode revision number, and, for type Il faults,
an 8-bit transfer count. Register format is shown in Figure 5-14.

15 8 7 0
| MICROCODE REVISION NUMBER | TRANSFER COUNT |

Figure 5-14. Internal Transfer Count Register

The microcode revision number is checked before a bus error stack frame is restored via
RTE. In a multiprocessor system, this check ensures that a processor using stacked
information is at the same revision level as the processor that created it.

The transfer count is ignored unless the MV bit in the stacked SSW is set. If the MV bit is
set, the least significant byte of the internal register is reloaded into the MOVEM transfer
counter during RTE execution.

For faults occurring during normal instruction execution (both prefetches and non-MOVEM
operand accesses), SSW TP,MV = 00. Stack frame format is shown in Figure 5-15.

Faults that occur during the operand portion of the MOVEM instruction are identified by
SSW TP,MV = 01. Stack frame format is shown in Figure 5-16.

When a bus error occurs during exception processing, SSW TP,MV = 10. The frame
shown in Figure 5-17 is written below the faulting frame. Stacking begins at the address
pointed to by SP — 6 (SP value is the value before initial stacking on the faulted frame).

The frame can have either four or six words, depending on the type of error. Four-word
stack frames do not include the faulted instruction PC. (The internal transfer count register
is located at SP + $10 and the SSW is located at SP + $12.)

The fault address of a dynamically sized bus cycle is the address of the upper byte,
regardless of the byte that caused the error.

MOTOROLA MC68341 USER’S MANUAL 5-59

SP 0O STATUS REGISTER
+$02 RETURN PROGRAM COUNTER HIGH
RETURN PROGRAM COUNTER LOW
+$06 1 ‘ 1 ‘ 0 ‘ 0 ‘ VECTOR OFFSET
+$08 FAULTED ADDRESS HIGH
FAULTED ADDRESS LOW
+$0C DBUF HIGH
DBUF LOW
+$10 CURRENT INSTRUCTION PROGRAM COUNTER HIGH
CURRENT INSTRUCTION PROGRAM COUNTER LOW
+$14 INTERNAL TRANSFER COUNT REGISTER
+$16 0 ‘ 0 ‘ SPECIAL STATUS WORD

Figure 5-15. Format $C—BERR Stack for Prefetches and Operands

15 0
SP O STATUS REGISTER
+$02 RETURN PROGRAM COUNTER HIGH
RETURN PROGRAM COUNTER LOW
+$06 1 ‘ 1 ‘ 0 ‘ 0 ‘ VECTOR OFFSET
+$08 FAULTED ADDRESS HIGH
FAULTED ADDRESS LOW
+$0C DBUF HIGH
DBUF LOW
+$10 CURRENT INSTRUCTION PROGRAM COUNTER HIGH
CURRENT INSTRUCTION PROGRAM COUNTER LOW
+$14 INTERNAL TRANSFER COUNT REGISTER
+$16 0 ‘ 1 ‘ SPECIAL STATUS WORD

Figure 5-16. Format $C—BERR Stack on MOVEM Operand

5-60 MC68341 USER’S MANUAL MOTOROLA

SP 0O STATUS REGISTER
+$02 NEXT INSTRUCTION PROGRAM COUNTER HIGH
NEXT INSTRUCTION PROGRAM COUNTER LOW
+$06 1 ’ 1 ‘ 0 ’ 0 ‘ VECTOR OFFSET
+$08 FAULTED ADDRESS HIGH
FAULTED ADDRESS LOW
+$0C PRE-EXCEPTION STATUS REGISTER
FAULTED EXCEPTION FORMAT/VECTOR WORD
+$10 FAULTED INSTRUCTION PROGRAM COUNTER HIGH (SIX WORD FRAME ONLY)
FAULTED INSTRUCTION PROGRAM COUNTER LOW (SIX WORD FRAME ONLY)
+$14 INTERNAL TRANSFER COUNT REGISTER
+$16 1 ’ 0 ‘ SPECIAL STATUS WORD

Figure 5-17. Format $C—Four- and Six-Word BERR Stack

5.6 DEVELOPMENT SUPPORT

All M68000 family members have the following special features that facilitate applications
development.

Trace on Instruction Execution—All M68000 processors include an instruction-by-
instruction tracing facility to aid in program development. The MC68020, MC68030, and
CPU32 can also trace those instructions that change program flow. In trace mode, an
exception is generated after each instruction is executed, allowing a debugger program to
monitor execution of a program under test. See 5.5.2.10 Tracing for more information.

Breakpoint Instruction—An emulator can insert software breakpoints into target code to
indicate when a breakpoint occurs. On the MC68010, MC68020, MC68030, and CPU32,
this function is provided via illegal instructions ($4848-$484F) that serve as breakpoint
instructions. See 5.5.2.5 Software Breakpoints for more information.

Unimplemented Instruction Emulation—When an attempt is made to execute an illegal
instruction, an illegal instruction exception occurs. Unimplemented instructions (F-line, A-
line) utilize separate exception vectors to permit efficient emulation of unimplemented
instructions in software. See 5.5.2.8 lllegal or Unimplemented Instructions for more
information.

5.6.1 CPU32 Integrated Development Support

In addition to standard MC68000 family capabilities, the CPU32 has features to support
advanced integrated system development. These features include background debug
mode, deterministic opcode tracking, hardware breakpoints, and internal visibility in a
single-chip environment.

MOTOROLA MC68341 USER’S MANUAL 561

5.6.1.1 BACKGROUND DEBUG MODE (BDM) OVERVIEW. Microprocessor systems
generally provide a debugger, implemented in software, for system analysis at the lowest
level. The BDM on the CPU32 is unique because the debugger is implemented in CPU
microcode.

BDM incorporates a full set of debug options—registers can be viewed and/or altered,
memory can be read or written, and test features can be invoked.

A resident debugger simplifies implementation of an in-circuit emulator. In a common
setup (see Figure 5-18), emulator hardware replaces the target system processor. A
complex, expensive pod-and-cable interface provides a communication path between
target system and emulator.

IN-CIRCUIT
EMULATOR

TARGET

SYSTEM TARGET
MCU

Figure 5-18. In-Circuit Emulator Configuration

A
Y

By contrast, an integrated debugger supports use of a bus state analyzer (BSA) for in-
circuit emulation. The processor remains in the target system (see Figure 5-19), and the
interface is simplified. The BSA monitors target processor operation and the on-chip
debugger controls the operating environment. Emulation is much closer to target
hardware; thus, many interfacing problems (i.e., limitations on high-frequency operation,
AC and DC parametric mismatches, and restrictions on cable length) are minimized.

TARGET
SYSTEM

TARGET BUS STATE

MCU > ANALYZER

Figure 5-19. Bus State Analyzer Configuration

5.6.1.2 DETERMINISTIC OPCODE TRACKING OVERVIEW. CPU32 function code
outputs are augmented by three supplementary signals that monitor the instruction
pipeline. The IFETCH output signal identifies bus cycles in which data is loaded into the
pipeline and signals pipeline flushes. The IPIPE output signals indicate when each mid-
instruction pipeline advance occurs and when instruction execution begins. These signals
allow a BSA to synchronize with instruction stream activity. Refer to 5.6.3 Deterministic
Opcode Tracking for complete information.

562 MC68341 USER’S MANUAL MOTOROLA

5.6.1.3 ON-CHIP HARDWARE BREAKPOINT OVERVIEW. An external breakpoint input
and an on-chip hardware breakpoint capability permit breakpoint trap on any memory
access. Off-chip address comparators will not detect breakpoints on internal accesses
unless show cycles are enabled. Breakpoints on prefetched instructions, which are
flushed from the pipeline before execution, are not acknowledged, but operand
breakpoints are always acknowledged. Acknowledged breakpoints can initiate either
exception processing or BDM. See 5.5.2.6 Hardware Breakpoints for more information.

5.6.2 Background Debug Mode

BDM is an alternate CPU32 operating mode. During BDM, normal instruction execution is
suspended, and special microcode performs debugging functions under external control.
Figure 5-20 is a BDM block diagram.

BDM can be initiated in several ways—by externally generated breakpoints, by internal
peripheral breakpoints, by the background instruction (BGND), or by catastrophic
exception conditions. While in BDM, the CPU32 ceases to fetch instructions via the
parallel bus and communicates with the development system via a dedicated, high-speed,
SPI-type serial command interface.

SERIAL
INTERFACE

<

A

> |PIPE/DSO

MICROCODE |= SEQUENCER -
> |FETCH/DSI

IRC |<— IRB

A
%
A

Y

BKPT/DSCLK

A

— BERR |- BERR |= BERR

A

BUS
CONTROL

BKPT |- BKPT |= BKPT

A

1

DATA BUS

(«—— BERR

———> FREEZE

EXECUTION [«
UNIT ——> ADDRESS BUS

Y

Figure 5-20. BDM Block Diagram

5.6.2.1 ENABLING BDM. Accidentally entering BDM in a nondevelopment environment
could lock up the CPU32 since the serial command interface would probably not be
available. For this reason, BDM is enabled during reset via the BKPT signal.

MOTOROLA MC68341 USER’S MANUAL 5-63

BDM operation is enabled when BKPT is asserted (low) at the rising edge of RESET.
BDM remains enabled until the next system reset. A high BKPT on the trailing edge of
RESET disables BDM. BKPT is relatched on each rising transition of RESET. BKPT is
synchronized internally and must be held low for at least two clock cycles prior to negation
of RESET.

BDM enable logic must be designed with special care. If hold time on BKPT (after the
trailing edge of RESET) extends into the first bus cycle following reset, this bus cycle
could be tagged with a breakpoint. Refer to Section 3 Bus Operation for timing
information.

5.6.2.2 BDM SOURCES. When BDM is enabled, any of several sources can cause the
transition from normal mode to BDM. These sources include external BKPT hardware, the
BGND instruction, a double bus fault, and internal peripheral breakpoints. If BDM is not
enabled when an exception condition occurs, the exception is processed normally. Table
5-19 summarizes the processing of each source for both enabled and disabled cases.
Note that the BKPT instruction never causes a transition into BDM.

Table 5-19. BDM Source Summary

Source BDM Enabled BDM Disabled
BKPT Background Breakpoint Exception
Double Bus Fault Background Halted
BGND Instruction Background lllegal Instruction
BKPT Instruction Opcode Substitution/ Opcode Substitution/
lllegal Instruction lllegal Instruction

5.6.2.2.1 External BKPT Signal. Once enabled, BDM is initiated whenever assertion of
BKPT is acknowledged. If BDM is disabled, a breakpoint exception (vector $0C) is
acknowledged. The BKPT input has the same timing relationship to the data strobe trailing
edge as read cycle data. There is no breakpoint acknowledge bus cycle when BDM is
entered.

5.6.2.2.2 BGND Instruction. An illegal instruction, $4AFA, is reserved for use by
development tools. The CPU32 defines $4AFA (BGND) to be a BDM entry point when
BDM is enabled. If BDM is disabled, an illegal instruction trap is acknowledged. lllegal
instruction traps are discussed in 5.5.2.8 Illegal or Unimplemented Instructions.

5.6.2.2.3 Double Bus Fault. The CPU32 normally treats a double bus fault (two bus faults
in succession) as a catastrophic system error and halts. When this condition occurs during
initial system debug (a fault in the reset logic), further debugging is impossible until the
problem is corrected. In BDM, the fault can be temporarily bypassed so that its origin can
be isolated and eliminated.

5.6.2.3 ENTERING BDM. When the processor detects a BKPT or a double bus fault or
decodes a BGND instruction, it suspends instruction execution and asserts the FREEZE
output. FREEZE assertion is the first indication that the processor has entered BDM. Once

5-64 MC68341 USER’S MANUAL MOTOROLA

FREEZE has been asserted, the CPU enables the serial communication hardware and
awaits a command.

The CPU writes a unique value indicating the source of BDM transition into temporary
register A (ATEMP) as part of the process of entering BDM. A user can poll ATEMP and
determine the source (see Table 5-20) by issuing a read system register command
(RSREG). ATEMP is used in most debugger commands for temporary storage—it is
imperative that the RSREG command be the first command issued after transition into
BDM.

Table 5-20. Polling the BDM Entry Source

Source ATEMP 31-16 ATEMP 15-0
Double Bus Fault SSwW* $FFFF
BGND Instruction $0000 $0001

Hardware Breakpoint $0000 $0000

*SSW is described in detail in 5.5.3 Fault Recovery.

A double bus fault during initial SP/PC fetch sequence is distinguished by a value of
$FFFFFFFF in the current instruction PC. At no other time will the processor write an odd
value into this register.

5.6.2.4 COMMAND EXECUTION. Figure 5-21 summarizes BDM command execution.
Commands consist of one 16-bit operation word and can include one or more 16-bit
extension words. Each incoming word is read as it is assembled by the serial interface.
The microcode routine corresponding to a command is executed as soon as the command
is complete. Result operands are loaded into the output shift register to be shifted out as
the next command is read. This process is repeated for each command until the CPU
returns to normal operating mode.

5.6.2.5 BDM REGISTERS. BDM processing uses three special-purpose registers to track
program context during development. A description of each register follows.

5.6.2.5.1 Fault Address Register (FAR). The FAR contains the address of the faulting
bus cycle immediately following a bus or address error. This address remains available
until overwritten by a subsequent bus cycle. Following a double bus fault, the FAR
contains the address of the last bus cycle. The address of the first fault (if one occurred) is
not visible to the user.

5.6.2.5.2 Return Program Counter (RPC). The RPC points to the location where fetching
will commence after transition from BDM to normal mode. This register should be
accessed to change the flow of a program under development. Changing the RPC to an
odd value will cause an address error when normal mode prefetching begins.

5.6.2.5.3 Current Instruction Program Counter (PCC). The PCC holds a pointer to the
first word of the last instruction executed prior to transition into BDM. Due to instruction
pipelining, the instruction pointed to may not be the instruction that caused the transition.
An example is a breakpoint on a released write. The bus cycle may overlap as many as
two subsequent instructions before stalling the instruction sequencer. A BKPT asserted

MOTOROLA MC68341 USER’S MANUAL 5-65

during this cycle will not be acknowledged until the end of the instruction executing at
completion of the bus cycle. PCC will contain $00000001 if BDM is entered via a double
bus fault immediately out of reset.

CPU32 ACTIVITY DEVELOPMENT SYSTEM ACTIVITY
ENTER (BDM)
« ASSERT FREEZE SIGNAL
* WAIT FOR COMMAND SEND INITIAL COMMAND
« LOAD COMMAND REGISTER

Y

* ENABLE SHIFT CLOCK
* SHIFT OUT 17 BITS
* DISABLE SHIFT CLOCK

EXECUTE COMMAND

+ LOAD: NOT READY/ RESPONSE [<
* PERFORM COMMAND
* STORE RESULTS

READ RESULTS/NEW COMMAND

+ LOAD COMMAND REGISTER
* ENABLE SHIFT CLOCK

* SHIFT IN/OUT 17 BITS

* DISABLE SHIFT CLOCK

* READ RESULT REGISTER

)

Y

IF RESULTS = YES
"NOT READY"

NO
CONTINUE

Figure 5-21. BDM Command Execution Flowchart

5.6.2.6 RETURNING FROM BDM. BDM is terminated when a resume execution (GO) or
call user code (CALL) command is received. Both GO and CALL flush the instruction
pipeline and prefetch instructions from the location pointed to by the RPC.

The return PC and the memory space referred to by the SR SUPV bit reflect any changes
made during BDM. FREEZE is negated prior to initiating the first prefetch. Upon negation
of FREEZE, the serial subsystem is disabled, and the signals revert to IPIPE and IFETCH
functionality.

5.6.2.7 SERIAL INTERFACE. Communication with the CPU32 during BDM occurs via a
dedicated serial interface, which shares pins with other development features. The BKPT
signal becomes the DSCLK; DSI is received on IFETCH, and DSO is transmitted on
IPIPE.

5-66 MC68341 USER’S MANUAL MOTOROLA

The serial interface uses a full-duplex synchronous protocol similar to the serial peripheral
interface (SPI) protocol. The development system serves as the master of the serial link
since it is responsible for the generation of DSCLK. If DSCLK is derived from the CPU32
system clock, development system serial logic is unhindered by the operating frequency of
the target processor. Operable frequency range of the serial clock is from DC to one-half
the processor system clock frequency.

The serial interface operates in full-duplex mode—i.e., data is transmitted and received
simultaneously by both master and slave devices. In general, data transitions occur on the
falling edge of DSCLK and are stable by the following rising edge of DSCLK. Data is
transmitted MSB first and is latched on the rising edge of DSCLK.

The serial data word is 17 bits wide—16 data bits and a status/control (S/C) bit.

16 15 0
S/C DATA FIELD
Lse |

Bit 16 indicates the status of CPU-generated messages as listed in Table 5-21.

Table 5-21. CPU Generated Message Encoding

Encoding Data Message Type
0 XXXX Valid Data Transfer
0 FFFF Command Complete; Status OK
1 0000 Not Ready with Response; Come Again
1 0001 BERR Terminated Bus Cycle; Data Invalid
1 FFFF lllegal Command

Command and data transfers initiated by the development system should clear bit 16. The
current implementation ignores this bit; however, Motorola reserves the right to use this bit
for future enhancements.

5.6.2.7.1 CPU Serial Logic. CPU serial logic, shown in the left-hand portion of Figure 5-
22, consists of transmit and receive shift registers and of control logic that includes
synchronization, serial clock generation circuitry, and a received bit counter.

Both DSCLK and DSI are synchronized to on-chip clocks, thereby minimizing the chance
of propagating metastable states into the serial state machine. Data is sampled during the
high phase of CLKOUT. At the falling edge of CLKOUT, the sampled value is made
available to internal logic. If there is no synchronization between CPU32 and development
system hardware, the minimum hold time on DSI with respect to DSCLK is one full period
of CLKOUT.

MOTOROLA MC68341 USER’S MANUAL 5-67

CPU DEVELOPMENT SYSTEM

INSTRUCTION

REGISTER BUS DATA
A 16

6 i

0
RCV DATA LATCH COMMAND LATCH
A
Y
SERIAL IN < pst PARALLEL IN
PARALLEL OUT < > SERIAL OUT
DSO
\\ PARALLEL IN SERIAL IN J
SERIAL OUT < > PARALLEL OUT
A A
16 Y Y
STATUS =< RESULT LATCH
EXECUTION _ Y "
UNIT
SYNCHRONIZE _ STATUS DATA
MICROSEQUENCER T T
DSCLK

CONTROL < CONTROL < SERIAL
LOGIC LOGIC CLOCK

Figure 5-22. Debug Serial I1/0 Block Diagram

The serial state machine begins a sequence of events based on the rising edge of the
synchronized DSCLK (see Figure 5-23). Synchronized serial data is transferred to the
input shift register, and the received bit counter is decremented. One-half clock period
later, the output shift register is updated, bringing the next output bit to the DSO signal.
DSO changes relative to the rising edge of DSCLK and does not necessarily remain
stable until the falling edge of DSCLK.

One clock period after the synchronized DSCLK has been seen internally, the updated
counter value is checked. If the counter has reached zero, the receive data latch is
updated from the input shift register. At this same time, the output shift register is reloaded
with the “not ready/come again” response. Once the receive data latch has been loaded,
the CPU is released to act on the new data. Response data overwrites the “not ready”
response when the CPU has completed the current operation.

Data written into the output shift register appears immediately on the DSO signal. In
general, this action changes the state of the signal from a high (“not ready” response
status bit) to a low (valid data status bit) logic level. However, this level change only
occurs if the command completes successfully. Error conditions overwrite the “not ready”
response with the appropriate response that also has the status bit set.

5-68 MC68341 USER’S MANUAL MOTOROLA

CLKOUT J |_

FREEZE

DSCLK |_

DSI

woow 4 W Tk i Tk

INTERNAL
SYNCHRONIZED
DSCLK

INTERNAL
SYNCHRONIZED
DSI

DSO

CLKOUT J |_

Figure 5-23. Serial Interface Timing Diagram

A user can use the state change on DSO to signal hardware that the next serial transfer
may begin. A timeout of sufficient length to trap error conditions that do not change the
state of DSO should also be incorporated into the design. Hardware interlocks in the CPU
prevent result data from corrupting serial transfers in progress.

5.6.2.7.2 Development System Serial Logic. The development system, as the master of
the serial data link, must supply the serial clock. However, normal and BDM operations
could interact if the clock generator is not properly designed.

Breakpoint requests are made by asserting BKPT to the low state in either of two ways.
The primary method is to assert BKPT during a single bus cycle for which an exception is
desired. Another method is to assert BKPT, then continue to assert it until the CPU32
responds by asserting FREEZE. This method is useful for forcing a transition into BDM
when the bus is not being monitored. Each method requires a slightly different serial logic
design to avoid spurious serial clocks.

Figure 5-24 represents the timing required for asserting BKPT during a single bus cycle.

MOTOROLA MC68341 USER’S MANUAL 5-69

SHIFT_CLK LU UL

FORCE_BGND

BKPT_TAG —I_I
s L UyuUUUuUuUuUyUUuUuuuwLud

FREEZE J |

Figure 5-24. BKPT Timing for Single Bus Cycle

Figure 5-25 depicts the timing of the BKPT/FREEZE method. In both cases, the serial
clock is left high after the final shift of each transfer. This technique eliminates the
possibility of accidentally tagging the prefetch initiated at the conclusion of a BDM session.
As mentioned previously, all timing within the CPU is derived from the rising edge of the
clock; the falling edge is effectively ignored.

SHIFT_CLK HgipipipipipNpipNpipipippipplip i
FORCE_BGND I
BKPT_TAG
et L Ty
FREEZE J L

Figure 5-25. BKPT Timing for Forcing BDM

Figure 5-26 represents a sample circuit providing for both BKPT assertion methods. As
the name implies, FORCE_BGND is used to force a transition into BDM by the assertion
of BKPT. FORCE_BGND can be a short pulse or can remain asserted until FREEZE is
asserted. Once asserted, the set-reset latch holds BKPT low until the first SHIFT_CLK is

applied.

BKPT TAG 4Do—>

SHIFT_CLK >
z» S1 Q

RESET S2

BKPT/DSCLK

Y

FORCE_BGND ———>{R Q

Figure 5-26. BKPT/DSCLK Logic Diagram
BKPT_TAG should be timed to the bus cycles since it is not latched. If extended past the

assertion of FREEZE, the negation of BKPT_TAG appears to the CPU32 as the first
DSCLK.

570 MC68341 USER’S MANUAL MOTOROLA

DSCLK, the gated serial clock, is normally high, but it pulses low for each bit to be
transferred. At the end of the seventeenth clock period, it remains high until the start of the
next transmission. Clock frequency is implementation dependent and may range from DC
to the maximum specified frequency. Although performance considerations might dictate a
hardware implementation, software solutions can be used provided serial bus timing is
maintained.

5.6.2.8 COMMAND SET. The following paragraphs describe the command set available in
BDM.

5.6.2.8.1 Command Format. The following standard bit command format is utilized by all
BDM commands.

15 10 9 8 7 6 5 4 3 2 0

OPERATION | o |[rw | opsze | o | o [ap | REGISTER

EXTENSION WORD(S)

Bits 15—-10—Operation Field

The operation field specifies the commands. This 6-bit field provides for a maximum of
64 unique commands.

R/W Field

The R/W field specifies the direction of operand transfer. When the bit is set, the
transfer is from theCPU to the development system. When the bit is cleared, data is
written to the CPU or to memory from the development system.

Operand Size

For sized operations, this field specifies the operand data size. All addresses are
expressed as 32-bit absolute values. The size field is encoded as listed in Table 5-22.

Table 5-22. Size Field Encoding

Encoding Operand Size
00 Byte
01 Word
10 Long
11 Reserved

Address/Data (A/D) Field

The A/D field is used by commands that operate on address and data registers. It
determines whether the register field specifies a data or address register. One indicates
an address register; zero indicates a data register. For other commands, this field may
be interpreted differently.

Register Field:

In most commands, this field specifies the register number for operations performed on
an address or data register.

MOTOROLA MC68341 USER’S MANUAL 571

Extension Word(s) (as required):

At this time, no command requires an extension word to specify fully the operation to be
performed, but some commands require extension words for addresses or immediate
data. Addresses require two extension words because only absolute long addressing is
permitted. Immediate data can be either one or two words in length—byte and word
data each require a single extension word; long-word data requires two words. Both
operands and addresses are transferred most significant word first.

5.6.2.8.2 Command Sequence Diagram. A command sequence diagram (see Figure 5-
27) illustrates the serial bus traffic for each command. Each bubble in the diagram
represents a single 17-bit transfer across the bus. The top half in each diagram
corresponds to the data transmitted by the development system to the CPU; the bottom
half corresponds to the data returned by the CPU in response to the development system
commands. Command and result transactions are overlapped to minimize latency.

The cycle in which the command is issued contains the development system command
mnemonic (in this example, “read memory location”). During the same cycle, the CPU
responds with either the lowest order results of the previous command or with a command
complete status (if no results were required).

During the second cycle, the development system supplies the high-order 16 bits of the
memory address. The CPU returns a "not ready" response unless the received command
was decoded as unimplemented, in which case the response data is the illegal command
encoding. If an illegal command response occurs, the development system should
retransmit the command.

NOTE

The “not ready” response can be ignored unless a memory bus
cycle is in progress. Otherwise, the CPU can accept a new
serial transfer with eight system clock periods.

In the third cycle, the development system supplies the low-order 16 bits of a memory
address. The CPU always returns the “not ready” response in this cycle. At the completion
of the third cycle, the CPU initiates a memory read operation. Any serial transfers that
begin while the memory access is in progress return the “not ready” response.

Results are returned in the two serial transfer cycles following the completion of memory
access. The data transmitted to the CPU during the final transfer is the opcode for the
following command. Should a memory access generate either a bus or address error, an
error status is returned in place of the result data.

572 MC68341 USER’S MANUAL MOTOROLA

— COMMANDS TRANSMITTED TO THE CPU32

— COMMAND CODE TRANSMITTED DURING THIS CYCLE

— HIGH-ORDER 16 BITS OF MEMORY ADDRESS

— LOW-ORDER 16 BITS OF MEMORY ADDRESS

NONSERIAL-RELATED ACTIVITY

SEQUENCE TAKEN IF
OPERATION HAS NOT
COMPLETED

NEXT
Y y COMMAND

READ ()
READ (LONG MS ADDR LS ADDR MEMORY o XX N/ CODE
7‘:7 "NOT READY 'NOT READY, LOCATION UNOT READY/ 5 {
A\ [~ XXX NS/ NEXT CMD 5 ((NEXT CMD
\UILLeGal/ [\UNOT READY/ \LSRESULT/
NEXT CMD

BERR/AERR "NOT READY,

DATA UNUSED FROM
THIS TRANSFER
SEQUENCE TAKEN IF BUS ERROR
OR ADDRESS ERROR OCCURS ON
MEMORY ACCESS

— SEQUENCE TAKEN IF
ILLEGAL COMMAND
IS RECEIVED BY CPU32

— HIGH- AND LOW-ORDER
— RESULTS FROM PREVIOUS COMMAND 16 BITS OF RESULT

— RESPONSES FROM THE CPU

Figure 5-27. Command Sequence Diagram

5.6.2.8.3 Command Set Summary. The BDM command set is summarized in Table 5-23.
Subsequent paragraphs contain detailed descriptions of each command.

MOTOROLA MC68341 USER’S MANUAL 573

Table 5-23. BDM Command Summary

Command Mnemonic Description

Read A/D Register RAREG/RDREG | Read the selected address or data register and return the results
via the serial interface.

Write A/D Register WAREG/WDREG | The data operand is written to the specified address or data
register.

Read System Register RSREG The specified system control register is read. All registers that can
be read in supervisor mode can be read in BDM.

Write System Register WSREG The operand data is written into the specified system control
register.

Read Memory Location READ Read the sized data at the memory location specified by the long-
word address. The SFC register determines the address space
accessed.

Write Memory Location WRITE Write the operand data to the memory location specified by the

long-word address. The DFC register determines the address
space accessed.

Dump Memory Block DUMP Used in conjunction with the READ command to dump large blocks
of memory. An initial READ is executed to set up the starting
address of the block and to retrieve the first result. Subsequent
operands are retrieved with the DUMP command.

Fill Memory Block FILL Used in conjunction with the WRITE command to fill large blocks of
memory. An initial WRITE is executed to set up the starting
address of the block and to supply the first operand. Subsequent
operands are written with the FILL command.

Resume Execution GO The pipeline is flushed and refilled before resuming instruction
execution at the return PC.

Call User Code CALL Current PC is stacked at the location of the current SP. Instruction
execution begins at user patch code.

Reset Peripherals RST Asserts RESET for 512 clock cycles. The CPU is not reset by this

command. Synonymous with the CPU RESET instruction.

No Operation NOP NOP performs no operation and may be used as a null command.

5.6.2.8.4 Read A/D Register (RAREG/RDREG). Read the selected address or data
register and return the results via the serial interface.

Command Format:

5 14 138 12 1 1 9 8 7 6 5 a4 3 2 10
[o o[1 | o] o of o 2] 1] ofof ofan] REGISTER

Command Sequence:

(RDREG/RAREG </ XXX \ / NEXTCMD Y\
\ 77?), \MS RESULT / \ LS RESULT /

(XXX ((NEXTCMD
\ILLEGAL J ~ UNOT READY"/

Operand Data:
None

574 MC68341 USER’S MANUAL MOTOROLA

Result Data:
The contents of the selected register are returned as a long-word value. The data is
returned most significant word first.

5.6.2.8.5 Write A/D Register (WAREG/WDREG). The operand (long-word) data is written
to the specified address or data register. All 32 bits of the register are altered by the write.

Command Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 0
|O|O|l|0|0|0|0|0|l|O|O|O|A/D| REGISTER

Command Sequence:

(_ WDREG/WAREG) ;/ MS DATA ;/ LSDATA ;/ NEXTCMD
\ 7) UNOTREADY") 7 \UNOTREADY"/ ™ \"CMD COMPLETE" /

XXX\ /" NEXTCMD
_ILLEGAL" 7 \UNOT READY"

Operand Data:

Long-word data is written into the specified address or data register. The data is
supplied most significant word first.

Result Data:
Command complete status (30FFFF) is returned when register write is complete.

5.6.2.8.6 Read System Register (RSREG). The specified system control register is read.
All registers that can be read in supervisor mode can be read in BDM. Several internal
temporary registers are also accessible.

Command Format:

[o o[1 [o] o] 1 [o o] 2] ofof o REGISTER

Command Sequence:

(RSREG \ > XXX \ 5 (NEXT CMD
\ 7) \MSRESULT / LS RESULT

NEXT CMD
"ILLEGAL" "NOT READY"

Operand Data:
None

MOTOROLA MC68341 USER’S MANUAL 575

Result Data:

Always returns 32 bits of data, regardless of the size of the register being read. If the
register is less than 32 bits, the result is returned zero extended.

Register Field:
The system control register is specified by the register field (see Table 5-24).

Table 5-24. Register Field for RSREG and WSREG

System Register Select Code
Return Program Counter (RPC) 0000
Current Instruction Program Counter (PCC) 0001
Status Register (SR) 1011
User Stack Pointer (USP) 1100
Supervisor Stack Pointer (SSP) 1101
Source Function Code Register (SFC) 1110
Destination Function Code Register (DFC) 1111
Temporary Register A (ATEMP) 1000
Fault Address Register (FAR) 1001
Vector Base Register (VBR) 1010

5.6.2.8.7 Write System Register (WSREG). Operand data is written into the specified
system control register. All registers that can be written in supervisor mode can be written
in BDM. Several internal temporary registers are also accessible.

Command Format;:

o[ol s [o[o] s [o o] 2] o] of of REGISTER

Command Sequence:

/ WSREG \ (MSDATA '\ [/ LSDATA \ NEXTCMD
\ 'NOT READY" \'NOT READY"/ \CMD COMPLETE" /

XXX) NEXT CMD
”ILLEGAL" "NOT READY"

Operand Data:

The data to be written into the register is always supplied as a 32-bit long word. If the
register is less than 32 bits, the least significant word is used.

Result Data:
“Command complete” status is returned when register write is complete.

576 MC68341 USER’S MANUAL MOTOROLA

Register Field:

The system control register is specified by the register field (see Table 5-24). The FAR
is a read-only register—any write to it is ignored.

5.6.2.8.8 Read Memory Location (READ). Read the sized data at the memory location
specified by the long-word address. Only absolute addressing is supported. The SFC
register determines the address space accessed. Valid data sizes include byte, word, or
long word.

Command Format:

5 14 138 12 1 1 9 8 7 6 5 a4
[o o[o 2] 2 | of of 2| opsze [o] of of of o] o]

Command Sequence:

READ (BIW) _ (_MSADDR \ / LSADDR Y\ ME’%%Y XX)
\) \ “\NOTREADY" /) ~ \UNOTREADY"/ LOCATION \NOT READY"/
XXX NEXT CMD NEXT CMD
"ILLEGAL" "NOT READY" RESULT

XXX\ /_NEXTCMD
BERR/AERR ~ \noT ReaDY"/

READ (LONG) >(MSADDR Y\ /"TSADDR \ | FEAD xxx
™ /7~ \worrespy) TANOTREADY) | ocaTion ~ \NOT READY"]
xxx NEXT CMD > XXX\ (NEXTCMD)
\ILLEGAL"_/ (NOT READY" “\WSRESULT /7 \LsREsuLT J

XX N NEXT CMD
_BERR/AERR J > "NOT READY"

Operand Data:
The single operand is the long-word address of the requested memory location.

Result Data:

The requested data is returned as either a word or long word. Byte data is returned in
the least significant byte of a word result, with the upper byte cleared. Word results
return 16 bits of significant data; long-word results return 32 bits.

A successful read operation returns data bit 16 cleared. If a bus or address error is
encountered, the returned data is $10001.

MOTOROLA MC68341 USER’S MANUAL 577

5.6.2.8.9 Write Memory Location (WRITE). Write the operand data to the memory
location specified by the long-word address. The DFC register determines the address
space accessed. Only absolute addressing is supported. Valid data sizes include byte,
word, and long word.

Command Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

[o o[o 2] 2| of o of opsize | o[o of of o] o

Command Sequence:

(WRITE@MW) _ (MSADDR) , (" TSADDR Y\ /~ DATA N\ | ,ME
 J ~\oTREADY"/ ~ \WOTREADY"J ~ \NOT READY") ™[| ocaTioN NOT READY"
> XXX\ _ /"NEXT CMD > _NEXTCMD Y\
\UILLEGAL" J 7 UNOT READY" \'CMD COMPLETE" }

BERR/AERR >
__» ((NEXT CMD
“NOT READY"
(" WRITE (LONG)\ > MSADDR \ _/ LSADDR Y _ /" MSDATA
™ / \NOT READY" J NOT READY"]~ \NOT READYJ\
o XXX\ o/ NEXTCMD
_'ILLEGAL" J ~ \'NOT READY" /
LSDATA M‘é’ﬁg@ XXX
'NOT READY" LOCATION NOT READY
«f NEXTCMD
"CVD COMPLETE" }

BERR/AERR

NEXT CMD
"NOT READY"

Operand Data:

Two operands are required for this instruction. The first operand is a long-word absolute
address that specifies a location to which the operand data is to be written. The second
operand is the data. Byte data is transmitted as a 16-bit word, justified in the least
significant byte; 16- and 32-bit operands are transmitted as 16 and 32 bits, respectively.

Result Data:

Successful write operations return a status of $0FFFF. Bus or address errors on the
write cycle are indicated by the assertion of bit 16 in the status message and by a data
pattern of $0001.

578 MC68341 USER’S MANUAL MOTOROLA

5.6.2.8.10 Dump Memory Block (DUMP). DUMP is used in conjunction with the READ
command to dump large blocks of memory. An initial READ is executed to set up the
starting address of the block and to retrieve the first result. Subsequent operands are
retrieved with the DUMP command. The initial address is incremented by the operand size
(1, 2, or 4) and saved in a temporary register. Subsequent DUMP commands use this
address, increment it by the current operand size, and store the updated address back in
the temporary register.

NOTE

The DUMP command does not check for a valid address in the
temporary register—DUMP is a valid command only when
preceded by another DUMP or by a READ command.
Otherwise, the results are undefined. The NOP command can
be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a DUMP command is given, allowing the operand
size to be altered dynamically.

Command Format;:

5 14 138 12 1 1 9 8 7 6 5 4
[o o[o 2] 2| 1 [o 2] opsize [o] of of of o] o]

Command Sequence:

(DUMP (LONG)\ ME,%%Y (o f XXX \)
U ™) LOCATION \'NOT READY"/

NEXT CMD
RESULT

[OxxX_ O\ _/ NEXTCMD

“\BERRIAERR/ = \UNOT READYY/

o XXX\ /" NEXTCMD)
_'ILLEGAL J T \UNoT READY/

oo | P] w0
N, G)
222 LOCATION Lol

NEXTCMD \ ./~ NEXT CMR

_MSRESULT/ ~ _LSRESULT /J

XXX\ _/ NEXTCMD

“\BERR/IAERR / =~ \UNOT READY?/

[xxx_ O\ _/ NEXTCMD \
_'ILLEGAL" J ~ \UNOT READYY/

MOTOROLA MC68341 USER’S MANUAL 579

Operand Data:
None

Result Data:

Requested data is returned as either a word or long word. Byte data is returned in the
least significant byte of a word result. Word results return 16 bits of significant data;
long-word results return 32 bits. Status of the read operation is returned as in the READ
command: $0xxxx for success, $10001 for bus or address errors.

5.6.2.8.11 Fill Memory Block (FILL). FILL is used in conjunction with the WRITE
command to fill large blocks of memory. An initial WRITE is executed to set up the starting
address of the block and to supply the first operand. Subsequent operands are written
with the FILL command. The initial address is incremented by the operand size (1, 2, or 4)
and is saved in a temporary register. Subsequent FILL commands use this address,
increment it by the current operand size, and store the updated address back in the
temporary register.

NOTE

The FILL command does not check for a valid address in the
temporary register—FILL is a valid command only when
preceded by another FILL or by a WRITE command.
Otherwise, the results are undefined. The NOP command can
be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a FILL command is given, allowing the operand size
to be altered dynamically.

Command Format:

5 14 3 12?7 1n 10 9 8 7 6 5 4 3 2 1
|O|O|O|l|l|l|0|0|OPSIZE|O|O|O|O|O|O|

5-80 MC68341 USER’S MANUAL MOTOROLA

Command Sequence:

WRITE] (” D
FILL (B/W) o MSDATA Y\ _/” LSDATA Y\ _| \evoey o
2 J \noT ReApy:/ ~ \iNoTREADYY/ “| | ocaTion \UNOT READY"/

S xxx) (NEXTCMD)
_ILLEGAL" J ~ \UNOT READY"/ \CMD COMPLETE.,

([XXX \ (NEXTCMD \
_BERR/AERR / \NOT READY"/

FILL (LONG) S oara N\ | AR ([Xxx \>
K 2) \ NoTREADYY | LocaTion UNOT READY"/

[XxX___\ ./ NEXTCMD > NEXTCMD
_ILLEGAL" _J~ \UNOT READY"/ \'CMD COMPLETE/

>/ XXX \ (NEXT CMD \
\ BERR/AERR / \UNOT READY"/

Operand Data:

A single operand is data to be written to the memory location. Byte data is transmitted
as a 16-bit word, justified in the least significant byte; 16- and 32-bit operands are
transmitted as 16 and 32 bits, respectively.

Result Data:

Status is returned as in the WRITE command: $0FFFF for a successful operation and
$10001 for a bus or address error during write.

5.6.2.8.12 Resume Execution (GO). The pipeline is flushed and refilled before normal
instruction execution is resumed. Prefetching begins at the return PC and current privilege
level. If either the PC or SR is altered during BDM, the updated value of these registers is
used when prefetching commences.

NOTE

The processor exits BDM when a bus error or address error
occurs on the first instruction prefetch from the new PC—the
error is trapped as a normal mode exception. The stacked
value of the current PC may not be valid in this case,
depending on the state of the machine prior to entering BDM.
For address error, the PC does not reflect the true return PC.
Instead, the stacked fault address is the (odd) return PC.

Command Format:

MOTOROLA MC68341 USER’S MANUAL 581

Command Sequence:

NORMAL
MODE

XXX\ __/ NEXTCMD
_'ILLEGAL J ~ \UNoT READY"/

Operand Data:
None

Result Data:
None

5.6.2.8.13 Call User Code (CALL). This instruction provides a convenient way to patch
user code. The return PC is stacked at the location pointed to by the current SP. The
stacked PC serves as a return address to be restored by the RTS command that
terminates the patch routine. After stacking is complete, the 32-bit operand data is loaded
into the PC. The pipeline is flushed and refilled from the location pointed to by the new
PC, BDM is exited, and normal mode instruction execution begins.

NOTE

If a bus error or address error occurs during return address
stacking, the CPU returns an error status via the serial
interface and remains in BDM.

If a bus error or address error occurs on the first instruction
prefetch from the new PC, the processor exits BDM and the
error is trapped as a normal mode exception. The stacked
value of the current PC may not be valid in this case,
depending on the state of the machine prior to entering BDM.
For address error, the PC does not reflect the true return PC.
Instead, the stacked fault address is the (odd) return PC.

Command Format:

5-82 MC68341 USER’S MANUAL MOTOROLA

Command Sequence:

(_caL / MSADDR \ _/ LSADDR STACK
_ J/ \UNOTREADY"/ ~ \UNOT READY"/ RETURN PC

XXX\ / NEXTCMD \ ¢
_eecar /7 \UNoT READY!/ FREEZE

NEGATED

!

PREFETCH | NORMAL

STARTED \' MODE
XXX\ _/ NEXTCMD \

"\ BERR/AERR/ ~ \U'NOT READY"/

Operand Data:

The 32-bit operand data is the starting location of the patch routine, which is the initial
PC upon exiting BDM.

Result Data:
None

As an example, consider the following code segment. It outputs a character from the
MC68341 serial module channel A.

CHKSTAT: MOVE.B SRA,DO Move serial status to DO
BNE.B CHKSTAT Loop until condition true
MOVE.B TBA,OUTPUT Transmit character

MISSING: ANDI.B #3,D0 Check for TXEMP flag
RTS

BDM and the CALL command can be used to patch the code as follows:

1. Breakpoint user program at CHKSTAT
Enter BDM

Execute CALL command to MISSING
Exit BDM

Execute MISSING code

Return to user program

R

MOTOROLA MC68341 USER’S MANUAL 5-83

5.6.2.8.14 Reset Peripherals (RST). RST asserts RESET for 512 clock cycles. The CPU
IS not reset by this command. This command is synonymous with the CPU RESET
instruction.

Command Format:

Command Sequence:

(" RESET ASSERT WA

U RESET \UNOT READY"/
\ ([~ NEXTCMD
\.cMD COMPLETE/

/ XXX \ NEXT CMD
ILLEGAL "NOT READY"

Operand Data:
None

Result Data:

The “command complete” response ($0FFFF) is loaded into the serial shifter after
negation of RESET.

5.6.2.8.15 No Operation (NOP). NOP performs no operation and may be used as a null
command where required.

Command Format:

Command Sequence:

[/ _NOP > NEXTCMD
U) \'CMD COMPLETE"/

>/ XXX ,/NEXTCMD N\
\UILLEGAL"] UNOT READY" /

Operand Data:
None

5-84 MC68341 USER’S MANUAL MOTOROLA

Result Data:

The “command complete” response ($OFFFF) is returned during the next shift
operation.

5.6.2.8.16 Future Commands. Unassigned command opcodes are reserved by Motorola
for future expansion. All unused Comand:formats within any revision level will perform a
NOP and return the ILLEGAL command response.

5.6.3 Deterministic Opcode Tracking

The CPUS32 utilizes deterministic opcode tracking to trace program execution. Two
signals, IPIPE and IFETCH, provide all information required to analyze instruction pipeline
operation.

5.6.3.1 INSTRUCTION FETCH (IFETCH). IFETCH indicates which bus cycles are
accessing data to fill the instruction pipeline. IFETCH is pulse-width modulated to multiplex
two indications on a single pin. Asserted for a single clock cycle, IFETCH indicates that
the data from the current bus cycle is to be routed to the instruction pipeline. IFETCH held
low for two clock cycles indicates that the instruction pipeline has been flushed. The data
from the bus cycle is used to begin filling the empty pipeline. Both user and supervisor
mode fetches are signaled by IFETCH.

Proper tracking of bus cycles via IFETCH on a fast bus requires a simple state machine.
On a two-clock bus, IFETCH may signal a pipeline flush with associated prefetch followed
immediately by a second prefetch. That is, IFETCH remains asserted for three clocks, two
clocks indicating the flush/fetch and a third clock signaling the second fetch. These two
operations are easily discerned if the tracking logic samples IFETCH on the two rising
edges of CLKOUT, which follow the AS (DS during show cycles) falling edge. Three-clock
and slower bus cycles allow time for negation of the signal between consecutive
indications and do not experience this operation.

5.6.3.2 INSTRUCTION PIPE (IPIPE). The internal instruction pipeline can be modeled as
a three-stage FIFO (see Figure 5-28). Stage A is an input buffer—data can be used out of
stages B and C. IPIPE signal s advances of instructions in the pipeline.

Instruction register A (IRA) holds incoming words as they are prefetched. No decoding
takes place in the buffer. Instruction register B (IRB) provides initial decoding of the
opcode and decoding of extension words; it is a source of immediate data. Instruction
register C (IRC) supplies residual opcode decoding during instruction execution.

MOTOROLA MC68341 USER’S MANUAL 5-85

DATA
BUS

B c
EXTENSION OPCODES
WORDS RESIDUAL

Figure 5-28. Functional Model of Instruction Pipeline

Assertion of IPIPE for a single clock cycle indicates the use of data from IRB. Regardless
of the presence of valid data in IRA, the contents of IRB are invalidated when IPIPE is
asserted. If IRA contains valid data, the data is copied into IRB (IRA O IRB), and the IRB
stage is revalidated.

Assertion of IPIPE for two clock cycles indicates the start of a new instruction and
subsequent replacement of data in IRC. This action causes a full advance of the pipeline
(IRB O IRC and IRA OO IRB). IRA is refilled during the next instruction fetch bus cycle.

Data loaded into IRA propagates automatically through subsequent empty pipeline stages.
Signals that show the progress of instructions through IRB and IRC are necessary to
accurately monitor pipeline operation. These signals are provided by IRA and IRB validity
bits. When a pipeline advance occurs, the validity bit of the stage being loaded is set, and
the validity bit of the stage supplying the data is negated.

Because instruction execution is not timed to bus activity, IPIPE is synchronized with the
system clock, not the bus. Figure 5-29 illustrates the timing in relation to the system clock.

IR>IR IR>IR

<—R>R—>] |<—IRB>IRC—3|<— IR->R—> |<— IRB> IRC—>~
EeoA I I I B

EXTENSION INSTRUCTION EXTENSION INSTRUCTION
WORD USED START WORD USED START

Figure 5-29. Instruction Pipeline Timing Diagram

IPIPE should be sampled on the falling edge of the clock. The assertion of IPIPE for a
single cycle after one or more cycles of negation indicates use of the data in IRB (advance
of IRA into IRB). Assertion for two clock cycles indicates that a new instruction has started
(IRB O IRC and IRA [0 IRB transfers have occurred). Loading IRC always indicates that
an instruction is beginning execution—the opcode is loaded into IRC by the transfer.

In some cases, instructions using immediate addressing begin executing and initiate a
second pipeline advance simultaneously at the same time. IPIPE will not be negated

5-86 MC68341 USER’S MANUAL MOTOROLA

between the two indications, which implies the need for a state machine to track the state
of IPIPE. The state machine can be resynchronized during periods of inactivity on the
signal.

5.6.3.3 OPCODE TRACKING DURING LOOP MODE. IPIPE and IFETCH continue to
work normally during loop mode. IFETCH indicates all instruction fetches up through the
point that data begins recirculating within the instruction pipeline. IPIPE continues to signal
the start of instructions and the use of extension words even though data is being
recirculated internally. IFETCH returns to normal operation with the first fetch after exiting
loop mode.

5.7 INSTRUCTION EXECUTION TIMING

This section describes the instruction execution timing of the CPU32. External clock
cycles are used to provide accurate execution and operation timing guidelines, but not
exact timing for every possible circumstance. This approach is used because exact
execution time for an instruction or operation depends on concurrence of independently
scheduled resources, on memory speeds, and on other variables.

An assembly language programmer or compiler writer can use the information in this
section to predict the performance of the CPU32. Additionally, timing for exception
processing is included so that designers of multitasking or real-time systems can predict
task-switch overhead, maximum interrupt latency, and similar timing parameters.
Instruction timing is given in clock cycles to eliminate clock frequency dependency.

5.7.1 Resource Scheduling

The CPU32 contains several independently scheduled resources. The organization of
these resources within the CPU32 is shown in Figure 5-30. Some variation in instruction
execution timing results from concurrent resource utilization. Because resource
scheduling is not directly related to instruction boundaries, it is impossible to make an
accurate prediction of the time required to complete an instruction without knowing the
entire context within which the instruction is executing.

5.7.1.1 MICROSEQUENCER. The microsequencer either executes microinstructions or
awaits completion of accesses necessary to continue microcode execution. The
microsequencer supervises the bus controller, instruction execution, and internal
processor operations such as calculation of EA and setting of condition codes. It also
initiates instruction word prefetches after a change of flow and controls validation of
instruction words in the instruction pipeline.

5.7.1.2 INSTRUCTION PIPELINE. The CPU32 contains a two-word instruction pipeline
where instruction opcodes are decoded. Each stage of the pipeline is initially filled under
microsequencer control and subsequently refilled by the prefetch controller as it empties.

Stage A of the instruction pipeline is a buffer. Prefetches completed on the bus before
stage B empties are temporarily stored in this buffer. Instruction words (instruction

MOTOROLA MC68341 USER’S MANUAL 5-87

operation words and all extension words) are decoded at stage B. Residual decoding and
execution occur in stage C.

Each pipeline stage has an associated status bit that shows whether the word in that
stage was loaded with data from a bus cycle that terminated abnormally.

5.7.1.3 BUS CONTROLLER RESOURCES. The bus controller consists of the instruction
prefetch controller, the write pending buffer, and the microbus controller. These three
resources transact all reads, writes, and instruction prefetches required for instruction
execution.

The bus controller and microsequencer operate concurrently. The bus controller can
perform a read or write or schedule a prefetch while the microsequencer controls EA
calculation or sets condition codes.

The microsequencer can also request a bus cycle that the bus controller cannot perform
immediately. When this happens, the bus cycle is queued, and the bus controller runs the
cycle when the current cycle has completed.

MICROSEQUENCER AND CONTROL INSTRUCTION PIPELINE
' (I (.
CONTROL STORE STéGE STAEGE
CONTROL LOGIC
EXECUTION UNIT
> PROGRAM DATA
DATA
— COUNTER DAT
SECTION SECTION :: >
WRITE-PENDING PREFETCH
BUFFER CONTROLLER Y

ADDRESS]
BUS — ‘ J
— MICROBUS

CONTROLLER

BUS CONTROL
SIGNALS

Figure 5-30. Block Diagram of Independent Resources

5-88 MC68341 USER’S MANUAL MOTOROLA

5.7.1.3.1 Prefetch Controller. The instruction prefetch controller receives an initial
request from the microsequencer to initiate prefetching at a given address. Subsequent
prefetches are initiated by the prefetch controller whenever a pipeline stage is invalidated,
either through instruction completion or through use of extension words. Prefetch occurs
as soon as the bus is free of operand accesses previously requested by the
microsequencer. Additional state information permits the controller to inhibit prefetch
requests when a change in instruction flow (e.g., a jump or branch instruction) is
anticipated.

In a typical program, 10 to 25 percent of the instructions cause a change of flow. Each
time a change occurs, the instruction pipeline must be flushed and refilled from the new
instruction stream. If instruction prefetches, rather than operand accesses, were given
priority, many instruction words would be flushed unused, and necessary operand cycles
would be delayed. To maximize available bus bandwidth, the CPU32 will schedule a
prefetch only when the next instruction is not a change-of-flow instruction and when there
is room in the pipeline for the prefetch.

5.7.1.3.2 Write-Pending Buffer. The CPU32 incorporates a single-operand write-pending
buffer. The buffer permits the microsequencer to continue execution after a request for a
write cycle is queued in the bus controller. The time needed for a write at the end of an
instruction can overlap the head cycle time for the following instruction, thus reducing
overall execution time. Interlocks prevent the microsequencer from overwriting the buffer.

5.7.1.3.3 Microbus Controller. The microbus controller performs bus cycles issued by
the microsequencer. Operand accesses always have priority over instruction prefetches.
Word and byte operands are accessed in a single CPU-initiated bus cycle, although the
external bus interface may be required to initiate a second cycle when a word operand is
sent to a byte-sized external port. Long operands are accessed in two bus cycles, most
significant word first.

The instruction pipeline is capable of recognizing instructions that cause a change of flow.
It informs the bus controller when a change of flow is imminent, and the bus controller
refrains from starting prefetches that would be discarded due to the change of flow.

5.7.1.4 INSTRUCTION EXECUTION OVERLAP. Overlap is the time, measured in clock
cycles, that an instruction executes concurrently with the previous instruction. As shown in
Figure 5-31, portions of instructions A and B execute simultaneously, reducing total
execution time. Because portions of instructions B and C also overlap, overall execution
time for all three instructions is also reduced.

Each instruction contributes to the total overlap time. The portion of execution time at the
end of instruction A that can overlap the beginning of instruction B is called the tail of
instruction A. The portion of execution time at the beginning of instruction B that can
overlap the end of instruction A is called the head of instruction B. The total overlap time
between instructions A and B is the smaller tail of A and the head of B.

MOTOROLA MC68341 USER’S MANUAL 5-89

li INSTRUCTION A —|
li INSTRUCTION B 4'

|7 INSTRUCTION C 4'

e

OVERLAP OVERLAP

Figure 5-31. Simultaneous Instruction Execution

The execution time attributed to instructions A, B, and C after considering the overlap is
illustrated in Figure 5-32. The overlap time is attributed to the execution time of the
completing instruction. The following equation shows the method for calculating the
overlap time:

Overlap = min (Taily, Headn+1)

|7 INSTRUCTION A 4'
|7 INSTRUCTION B 4'

————— wsTrucTion c———
OVERLAP OVERLAP
PERIOD PERIOD
(ABSORBED BY (ABSORBED BY
INSTRUCTION A) INSTRUCTION B)

Figure 5-32. Attributed Instruction Times

5.7.1.5 EFFECTS OF WAIT STATES. The CPU32 access time for on-chip peripherals is
two clocks. While two-clock external accesses are possible when the bus is operated in a
synchronous mode, a typical external memory speed is three or more clocks.

All instruction times listed in this section are for word access only (unless an explicit
exception is given), and are based on the assumption that both instruction fetches and
operand cycles are to a two-clock memory. Any time a long access is made, time for the
additional bus cycle(s) must be added to the overall execution time. Wait states due to
slow external memory must be added to the access time for each bus cycle.

A typical application has a mixture of bus speeds—program execution from an off-chip
ROM, accesses to on-chip peripherals, storage of variables in slow off-chip RAM, and
accesses to external peripherals with speeds ranging from moderate to very slow. To
arrive at an accurate instruction time calculation, each bus access must be individually

5-90 MC68341 USER’S MANUAL MOTOROLA

considered. Many instructions have a head cycle count, which can overlap the cycles of
an operand fetch to slower memory started by a previous instruction. In these cases, an
increase in access time has no effect on the total execution time of the pair of instructions.

To trace instruction execution time by monitoring the external bus, note that the order of
operand accesses for a particular instruction sequence is always the same provided bus
speed is unchanged and the interleaving of instruction prefetches with operands within
each sequence is identical.

5.7.1.6 INSTRUCTION EXECUTION TIME CALCULATION. The overall execution time
for an instruction depends on the amount of overlap with previous and subsequent
instructions. To calculate an instruction time estimate, the entire code sequence must be
analyzed. To derive the actual instruction execution times for an instruction sequence, the
instruction times listed in the tables must be adjusted to account for overlap.

The formula for this calculation is as follows:
C,—min(Ty,H2)+Co2—min (T2, H3) +C3—min (T3, Ha) +
where:

Cn is the number of cycles listed for instruction N

Tn is the tail time for instruction N

Hy is the head time for instruction N

min (TN, Hm) is the minimum of parameters Ty and Hy

The number of cycles for the instruction (Cy) can include one or two EA calculations in
addition to the raw number in the cycles column. In these cases, calculate overall
instruction time as if it were for multiple instructions, using the following equation:

[CEAF min (Tga, Hop) + Cop
where:

[CEALIs the instruction’s EA time

Cop Iis the instruction’s operation time

Tga is the EA’s tail time

Hop is the instruction operation’s head time

min (TN, Hm) is the minimum of parameters Ty and Hy

The overall head for the instruction is the head for the EA, and the overall tail for the
instruction is the tail for the operation. Therefore, the actual equation for execution time
becomes:

Cop1 — min (Top1, Hea2) + [CEAL — min (Tea2, Hop2) + Cop2 — min (Top2, Hea3) + . ..

MOTOROLA MC68341 USER’S MANUAL 591

Every instruction must prefetch to replace itself in the instruction pipe. Usually, these
prefetches occur during or after an instruction. A prefetch is permitted to begin in the first
clock of any indexed EA mode operation.

Additionally, a prefetch for an instruction is permitted to begin two clocks before the end of
an instruction provided the bus is not being used. If the bus is being used, then the
prefetch occurs at the next available time when the bus would otherwise be idle.

5.7.1.7 EFFECTS OF NEGATIVE TAILS. When the CPU32 changes instruction flow, the
instruction decode pipeline must begin refilling before instruction execution can resume.
Refilling forces a two-clock idle period at the end of the change-of-flow instruction. This
idle period can be used to prefetch an additional word on the new instruction path.
Because of the stipulation that each instruction must prefetch to replace itself, the concept
of negative tails has been introduced to account for these free clocks on the bus.

On a two-clock bus, it is not necessary to adjust instruction timing to account for the
potential extra prefetch. The cycle times of the microsequencer and bus are matched, and
no additional benefit or penalty is obtained. In the instruction execution time equations, a
zero should be used instead of a negative number.

Negative tails are used to adjust for slower fetches on slower buses. Normally, increasing
the length of prefetch bus cycles directly affects the cycle count and tail values found in
the tables.

In the following equations, negative tail values are used to negate the effects of a slower
bus. The equations are generalized, however, so that they may be used on any speed bus
with any tail value.
NEW_TAIL =OLD_TAIL + (NEW_CLOCK —2)
IF (NEW_CLOCK — 4) > 0) THEN
NEW_CYCLE = OLD_CYCLE + (NEW_CLOCK -2) + (NEW_CLOCK — 4)
ELSE
NEW_CYCLE = OLD_CYCLE + (NEW _CLOCK - 2)

where:
NEW_TAIL/NEW_CYCLE is the adjusted tail/cycle at the slower speed

OLD_TAIL/OLD_CYCLE is the value listed in the instruction timing tables
NEW_CLOCK is the number of clocks per cycle at the slower speed

Note that many instructions listed as having negative tails are change-of-flow instructions
and that the bus speed used in the calculation is that of the new instruction stream.

5.7.2 Instruction Stream Timing Examples

The following programming examples provide a detailed examination of timing effects. In
all examples, the memory access is from external synchronous memory, the bus is idle,
and the instruction pipeline is full at the start.

592 MC68341 USER’S MANUAL MOTOROLA

5.7.2.1 TIMING EXAMPLE 1—EXECUTION OVERLAP. Figure 5-33 illustrates execution
overlap caused by the bus controller's completion of bus cycles while the sequencer is
calculating the next EA. One clock is saved between instructions since that is the
minimum time of the individual head and tail numbers.

Instructions

o[L] L LI L

BUS
CONTROLLER

INSTRUCTION
CONTROLLER

EXECUTION
TIME

1

2 3 4

Juyuu

A1, (AO) +

#1

» (A0)

$30 (A1)

WRITE 1PRE- READ WRITE 2 PRE- 3 PRE- 3 PRE- WRITE
FOR 1 FETCH FOR 2 FOR 2 FETCH FETCH FETCH FOR 3
EA FETCH ADDQ EACALC CLR
MOVE AL,(AQ)+ ADDQ TO <EA> CLR <EA>
MOVE.W AL,(AQ)+ ADDQ.W #1,(AO) CLR.W $30(A1)

uuuuyyL

Figure 5-33. Example 1—Instruction Stream

5.7.2.2 TIMING EXAMPLE 2—BRANCH INSTRUCTIONS. Example 2 shows what
happens when a branch instruction is executed for both the taken and not-taken cases.
(see Figures 5-34 and 5-35). The instruction stream is for a simple limit check with the
variable already in a data register.

Instructions

MOVEQ #7, D1
CMP.L D1, DO
BLE.B NEXT
MOVE.L D1, (AO)

JERERNNEEEEERRRERRpuRuln

CLOCK
BUS | 1PRE- 2 PRE- PRE- PRE- PRE- WRITE
CONTROLLER | FETCH FETCH FETCH FETCH FETCH FOR 3
INSTRUCTION OFFSET NEXT
CONTROLLER | MOVEQ cMP CALC TAKEN TAKEN | TAKEN INST.
EXECUTION | MOVEQ CMP
TIME | #7D1 D1,D0 BLEB NOT TAKEN

MOTOROLA

Figure 5-34. Example 2—Branch Taken

MC68341 USER’S MANUAL

5-93

BUS 1 PRE- 2 PRE- 3 PRE- 4 PRE- WRITE WRITE
CONTROLLER | FETCH FETCH FETCH FETCH FOR 4 FOR 4
INSTRUCTION OFFSET NOT MOVE TO
CONTROLLER | MOVEQ cMp CALC TAKEN (A0)

EXECUTION | MOVEQ CMP
VE | #7p1 5100 BLE.B NOT TAKEN MOVE.L D1,(AO)

Figure 5-35. Example 2—Branch Not Taken

5.7.2.3 TIMING EXAMPLE 3—NEGATIVE TAILS. This example (see Figure 5-36) shows
how to use negative tail figures for branches and other change-of-flow instructions. In this
example, bus speed is assumed to be four clocks per access. Instruction three is at the
branch destination.

Although the CPU32 has a two-word instruction pipeline, internal delay causes minimum
branch instruction time to be three bus cycles. The negative tail is a reminder that an extra
two clocks are available for prefetching a third word on a fast bus; on a slower bus, there
IS no extra time for the third word.

Instructions

MOVEQ #7,D1
BRA.W FARAWAY
MOVE.L D1, DO

< U U UU U U U UUU UL

BUS FETCH NEXT
CONTROLLER | ~ BRANCHOFFSET FETCH MOVE.L INSTRUCTION PREFETCH
INSTRUCTION OFFSET OV
CONTROLLER MOVEQ CALC TAKEN TAKEN Y%

EXECU%'&'E\I MOVEQ #7,D1 BRA.W FARAWAY MOVE.L D1,D0

Figure 5-36. Example 3—Branch Negative Talil

594 MC68341 USER’S MANUAL MOTOROLA

Example 3 illustrates three different aspects of instruction time calculation:

1. The branch instruction does not attempt to prefetch beyond the minimum number of
words needed for itself.

2. The negative tail allows execution to begin sooner than a three-word pipeline would
allow.

3. There is a one-clock delay due to late arrival of the displacement at the CPU.

Only changes of flow require negative tail calculation, but the concept can be generalized
to any instruction—only two words are required to be in the pipeline, but up to three words
may be present. When there is an opportunity for an extra prefetch, it is made. A prefetch
to replace an instruction can begin ahead of the instruction, resulting in a faster processor.

5.7.3 Instruction Timing Tables

The following assumptions apply to the times shown in the subsequent tables:
1. A 16-bit data bus is used for all memory accesses.
2. Memory access times are based on two clock bus cycles with no wait states.

3. The instruction pipeline is full at the beginning of the instruction and is refilled by the
end of the instruction.

Three values are listed for each instruction and addressing mode:

Head: The number of cycles available at the beginning of an instruction to complete a
previous instruction write or to perform a prefetch.

Tail: The number of cycles an instruction uses to complete a write.

Cycles: Four numbers per entry, three contained in parentheses. The outer number is the
minimum number of cycles required for the instruction to complete. Numbers
within the parentheses represent the number of bus accesses performed by the
instruction. The first number is the number of operand read accesses performed
by the instruction. The second number is the number of instruction fetches
performed by the instruction, including all prefetches that keep the instruction and
the instruction pipeline filled. The third number is the number of write accesses
performed by the instruction.

As an example, consider an ADD.L (12, A3, D7.W [14), D2 instruction.

Paragraph 5.7.3.5 Arithmetic/Logic Instructions shows that the instruction has a head =
0, a tail = 0, and cycles = 2 (0/1/0). However, in indexed address register indirect
addressing mode, additional time is required to fetch the EA. Paragraph 5.7.3.1 Fetch
Effective Address gives addressing mode data. For (dg, An, Xn.Sz [OScale), head = 4,
tail = 2, cycles = 8 (2/1/0). Because this example is for a long access and the fetch EA
table lists data for word accesses, add two clocks to the tail and to the number of cycles
(“X" in table notation) to obtain head = 4, tail = 4, cycles = 10 (2/1/0).

Assuming that no trailing write exists from the previous instruction, EA calculation requires
six clocks. Replacement fetch for the EA occurs during these six clocks, leaving a head of

MOTOROLA MC68341 USER’S MANUAL 5-95

four. If there is no time in the head to perform a prefetch due to a previous trailing write,
then additional time to perform the prefetches must be allotted in the middle of the
instruction or after the tail.

8 @2 /110

TOTAL NUMBER OF CLOCKS

NUMBER OF READ CYCLES

NUMBER OF INSTRUCTION ACCESS CYCLES
NUMBER OF WRITE CYCLES

The total number of clocks for bus activity is as follows:

(2 Reads x 2 Clocks/Read) + (1 Instruction Access x 2 Clocks/Access) +
(O Writes x 2 Clocks/Write) = 6 Clocks of Bus Activity

The number of internal clocks (not overlapped by bus activity) is as follows:
10 Clocks Total — 6 Clocks Bus Activity = 4 Internal Clocks

Memory read requires two bus cycles at two clocks each. This read time, implied in the tail
figure for the EA, cannot be overlapped with the instruction because the instruction has a
head of zero. An additional two clocks are required for the ADD instruction itself. The total
is6 +4 + 2 =12 clocks. If bus cycles take more time (i.e., the memory is off-chip), add an
appropriate number of clocks to each memory access.

The instruction sequence MOVE.L DO, (AO) followed by LSL.L #7, D2 provides an
example of overlapped execution. The MOVE instruction has a head of zero and a tail of
four because it is a long write. The LSL instruction has a head of four. The trailing write
from the MOVE overlaps the LSL head completely. Thus, the two-instruction sequence
has a head of zero and a tail of zero, and a total execution of 8 rather than 12 clocks.

General observations regarding calculation of execution time are as follows:

» Any time the number of bus cycles is listed as "X", substitute a value of one for byte
and word cycles and a value of two for long cycles. For long bus cycles, usually add a
value of two to the tail.

» The time calculated for an instruction on a three-clock (or longer) bus is usually longer
than the actual execution time. All times shown are for two-clock bus cycles.

« If the previous instruction has a negative tail, then a prefetch for the current
instruction can begin during the execution of that previous instruction.

 Certain instructions requiring an immediate extension word (immediate word EA,
absolute word EA, address register indirect with displacement EA, conditional
branches with word offsets, bit operations, LPSTOP, TBL, MOVEM, MOVEC,
MOVES, MOVEP, MUL.L, DIV.L, CHK2, CMP2, and DBcc) are not permitted to begin
until the extension word has been in the instruction pipeline for at least one cycle.
This does not apply to long offsets or displacements.

5-96 MC68341 USER’S MANUAL MOTOROLA

5.7.3.1 FETCH EFFECTIVE ADDRESS. The fetch EA table indicates the number of clock
periods needed for the processor to calculate and fetch the specified EA. The total
number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock

reads and writes.

Instruction Head Tail Cycles Notes
Dn - - 0(0/0/0) -
An - - 0(0/0/0) -
(An) 1 1 3(X/0/0) 1
(An)+ 1 1 3(X/0/0) 1
—(An) 2 2 4(X/0/0) 1
(d16,An) or (d16,PC) 1 3 5(X/1/0) 1,3
(xxx).W 1 3 5(X/1/0) 1
(xxx).L 1 5 7(X/2/0) 1
#{data1B 1 1 3(0/1/0) 1
#ldatal\W 1 1 3(0/1/0) 1
#ldatallL 1 3 5(0/2/0) 1
(dg,An,Xn.Sz x Sc) or (dg,PC,Xn.Sz x Sc) 4 2 8(X/1/0) | 1,2,3,4
(O) (All Suppressed) 2 2 6(X/1/0) 14
d16) 1 3 7(X/2/0) 1,4
da) 1 5 9(X/3/0) 14
(An) 1 1 5(X/1/0) 1,24
(Xm.Sz x Sc) 4 2 8(X/1/0) 12,4
(An,Xm.Sz x Sc) 4 2 8(X/1/0) | 1,2,3,4
d16,An) or (d1,PC) 1 3 7(X/2/0) 1,34
(d32,An) or (d32,PC) 1 5 9(X/3/0) 1,34
d 16,An,Xm) or (d1g,PC,Xm) 2 2 8(X/2/0) 1,3,4
d32,An,Xm) or (d32,PC,Xm) 1 3 9(X/3/0) 1,3,4
(d16,An,Xm.Sz x Sc) or (d15,PC,Xm.Sz x Sc) 2 2 8(X/2/0) | 1,2,3,4
(d32,An,Xm.Sz x Sc) or (d3»,PC,Xm.Sz x Sc) 1 3 9(X/3/0) | 1,2,3,4

X = There is one bus cycle for byte and word operands and two bus cycles for long-word operands.

For long-word bus cycles, add two clocks to the tail and to the number of cycles.

NOTES:

1. The read of the EA and replacement fetches overlap the head of the operation by the amount

specified in the tail.

2. Size and scale of the index register do not affect execution time.
3. The PC may be substituted for the base address register An.

4. When adjusting the prefetch time for slower buses, extra clocks may be subtracted from the
head until the head reaches zero, at which time additional clocks must be added to both the tail

and cycle counts.

MOTOROLA

MC68341 USER’S MANUAL

5-97

5.7.3.2 CALCULATE EFFECTIVE ADDRESS. The calculate EA table indicates the
number of clock periods needed for the processor to calculate a specified EA. The timing
is equivalent to fetch EA except there is no read cycle. The tail and cycle time are reduced
by the amount of time the read would occupy. The total number of clock cycles is outside
the parentheses. The numbers inside parentheses (r/p/w) are included in the total clock

cycle number. All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles Notes
Dn - - 0(0/0/0) -
An - - 0(0/0/0) -
(An) 1 0 2(0/0/0) -
(An)+ 1 0 2(0/0/0) -
—(An) 2 0 2(0/0/0) -
(d16.,An) or (d15,PC) 1 1 3(0/1/0) 1,3
(xxx).W 1 1 3(0/1/0) 1
(xxx).L 1 3 5(0/2/0) 1
(dg,An,Xn.Sz x Sc) or (dg,PC,Xn.Sz x Sc) 4 0 6(0/1/0) 2,34
(0) (All Suppressed) 2 0 4(0/1/0) 4
d16) 1 1 5(0/2/0) 14
dz) 1 3 7(0/3/0) 14
(An) 1 0 4(0/1/0) 4
(Xm.Sz x Sc) 4 0 6(0/1/0) 24
(An,Xm.Sz x Sc) 4 0 6(0/1/0) 24
(d16,An) or (d15,PC) 1 1 5(0/2/0) 13,4
d32,An) or (d3»,PC) 1 3 7(0/3/0) 1,34
d16,An,Xm) or (d1g,PC,Xm) 2 0 6(0/2/0) 34
d32,An,Xm) or (d32,PC,Xm) 1 1 7(0/3/0) 1,34
(d16,An,Xm.Sz x Sc) or (d15,PC,Xm.Sz x Sc) 2 0 6(0/2/0) 2,3,4
(d32,An,Xm.Sz x Sc) or (d3p,PC,Xm.Sz x Sc) 1 1 7(0/3/0) 1,2,3,4

X = There is one bus cycle for byte and word operands and two bus cycles for long operands.
For long bus cycles, add two clocks to the tail and to the number of cycles.

NOTES:

A w DN

Size and scale of the index register do not affect execution time.
The PC may be substituted for the base address register An.
When adjusting the prefetch time for slower buses, extra clocks may be subtracted from the

Replacement fetches overlap the head of the operation by the amount specified in the tail.

head until the head reaches zero, at which time additional clocks must be added to both the tail

and cycle counts.

5-98 MC68341 USER’S MANUAL

MOTOROLA

5.7.3.3 MOVE INSTRUCTION. The MOVE instruction table indicates the number of clock
periods needed for the processor to calculate the destination EA and to perform a MOVE
or MOVEA instruction. For entries with CEA or FEA, refer to the appropriate table to
calculate that portion of the instruction time.

Destination EAs are divided by their formats (see 5.3.4.4 Effective Address Encoding
Summary). The total number of clock cycles is outside the parentheses. The numbers
inside parentheses (r/p/w) are included in the total clock cycle number. All timing data
assumes two-clock reads and writes.

When using this table, begin at the top and move downward. Use the first entry that
matches both source and destination addressing modes.

Instruction Head Tail Cycles
MOVE Rn, Rn 0 0 2(0/1/0)
MOVE [FEAQRn 0 0 2(0/1/0)
MOVE Rn, (Am) 0 2 4(0/1/x)
MOVE Rn, (Am)+ 1 1 5(0/1/x)
MOVE Rn, —(Am) 2 2 6(0/1/x)
MOVE Rn, [CEAO 1 3 5(0/1/x)
MOVE [FEAQ (An) 2 2 6(0/1/x)
MOVE [FEAQ (An)+ 2 2 6(0/1/x)
MOVE [FEAQ —-(An) 2 2 6(0/1/x)
MOVE #, [CEAO 2 2 6(0/1/x)0
MOVE [CEALFEAQ 2 2 6(0/1/x)

X = There is one bus cycle for byte and word operands and two bus cycles for long-word
operands. For long-word bus cycles, add two clocks to the tail and to the number of cycles.

O0= An # fetch EA time must be added for this instruction: OFEA [+ [CEA¥ [OPERO

NOTE: For instructions not explicitly listed, use the MOVE [CEAT[] FEAOentry. The source
EA is calculated by the calculate EA table, and the destination EA is calculated by
the fetch EA table, even though the bus cycle is for the source EA.

MOTOROLA

MC68341 USER’S MANUAL

5-99

5.7.3.4 SPECIAL-PURPOSE MOVE INSTRUCTION. The special-purpose MOVE
instruction table indicates the number of clock periods needed for the processor to fetch,
calculate, and perform the special-purpose MOVE operation on control registers or a
specified EA. Footnotes indicate when to account for the appropriate EA times. The total
number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.

Instruction Head Tail Cycles

EXG Rn, Rm 2 0 4(0/1/0)
MOVEC Cr,Rn 10 0 14(0/2/0)
MOVEC Rn, Cr 12 0 14-16(0/1/0)
MOVE CCR, Dn 2 0 4(0/1/0)
MOVE CCR, [CEAO 0 2 4(0/1/1)
MOVE Dn, CCR 2 0 4(0/1/0)
MOVE [(FEA[CCR 0 0 4(0/1/0)
MOVE SR, Dn 2 0 4(0/1/0)
MOVE SR, [CEAD 0 2 4(0/1/1)
MOVE Dn, SR 4 -2 10(0/3/0)
MOVE (FEAQD SR 0 -2 10(0/3/0)
MOVEM.W [CEAD RL 1 0 8+n x 4(n+1,2,0)0
MOVEM.W RL, [CEAT 1 0 8+n x 4(0,2,nC
MOVEM.L [CEA] RL 1 0 12 +n x 4(2n+2,2,0)
MOVEM.L RL, [CEAD 1 2 10+n x 4 (0, 2, 2n)
MOVEP.W Dn, (d1g, An) 2 0 10(0/2/2)
MOVEP.W d16, An), Dn 1 2 11(2/2/0)
MOVEP.L Dn, (d1g, An) 2 0 14(0/2/4)
MOVEP.L d16, An), Dn 1 2 19(4/2/0)
MOVES (Save) [CEAQRn 1 1 3(0/1/0)
MOVES (Op) [CEA[Rn 7 1 11(X/1/0)
MOVES (Save) Rn, [CEAD 1 1 3(0/1/0)
MOVES (Op) Rn, [CEAO 9 2 12(0/1/X)
MOVE USP, An 0 0 2(0/1/0)
MOVE An, USP 0 0 2(0/1/0)
SWAP Dn 4 0 6(0/1/0)

X = There is one bus cycle for byte and word operands and two bus cycles for long

NOTE:

5-100

operands. For long bus cycles, add two clocks to the tail and to the number of
cycles.

Each bus cycle may take up to four clocks without increasing total execution time.

Control registers USP, VBR, SFC, and DFC
Number of registers to transfer

= Register List
= Maximum time (certain data or mode combinations may execute faster).

The MOVES instruction has an additional save step that other instructions do not
have. To calculate the total instruction time, calculate the save, the EA, and the
operation execution times, and combine in the order listed, using the equations
givenin 5.7.1.6 Instruction Execution Time Calculation.

MC68341 USER’S MANUAL

MOTOROLA

5.7.3.5 ARITHMETIC/LOGIC INSTRUCTIONS. The arithmetic/logic instruction table
indicates the number of clock periods needed to perform the specified arithmetic/logical
instruction using the specified addressing mode. Footnotes indicate when to account for
the appropriate EA times. The total number of clock cycles is outside the parentheses.
The numbers inside parentheses (r/p/w) are included in the total clock cycle number. All
timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles
ADD(A) Rn, Rm 0 0 2(0/1/0)
ADD(A) FEA] Rn 0 0 2(0/1/0)
ADD Dn, [FEAD 0 3 5(0/1/x)
AND Dn, Dm 0 0 2(0/1/0)
AND (FEAC] Dn 0 0 2(0/1/0)
AND Dn, (FEAD 0 3 5(0/1/x)
EOR Dn, Dm 0 0 2(0/1/0)
EOR Dn, (FEAD 0 3 5(0/1/x)
OR Dn, Dm 0 0 2(0/1/0)
OR [FEA[] Dn 0 0 2(0/1/0)
OR Dn, [FEAD 0 3 5(0/1/x)
SUB(A) Rn, Rm 0 0 2(0/1/0)
SUB(A) FEA] Rn 0 0 2(0/1/0)
SuB Dn, (FEAD 0 3 5(0/1/x)
CMP(A) Rn, Rm 0 0 2(0/1/0)
CMP(A) FEA] Rn 0 0 2(0/1/0)
CMP2 (Save) (FEAD Rn 1 1 3(0/1/0)
CMP2 (Op) FEA] Rn 2 0 16-18(X/1/0)
MUL(su).W (FEAC] Dn 0 0 26(0/1/0)
MUL(su).L (Save)” [FEADn 1 1 3(0/1/0)
MUL(su).L (Op) FEA] DI 2 0 46-52(0/1/0)
MUL(su).L (Op) [(FEA[] Dn:DI 2 0 46(0/1/0)
DIVU.W (FEAC] Dn 0 0 32(0/1/0)
DIVS.W [FEA[] Dn 0 0 42(0/1/0)
DIVU.L (Save)” [(FEA Dn 1 1 3(0/1/0)
DIVU.L (Op) [FEA[] Dn 2 0 <46(0/1/0)
DIVS.L (Save)” [(FEA Dn 1 1 3(0/1/0)
DIVS.L (Op) [FEA[] Dn 2 0 <62(0/1/0)
TBL(su) Dn:Dm, Dp 26 0 28-30(0/2/0)
TBL(su) (Save)” [TEA[Dn 1 1 3(0/1/0)
TBL(su) (Op) [CEA] Dn 6 0 33-35(2X/1/0)
TBLSN Dn:Dm, Dp 30 0 30-34(0/2/0)
TBLSN (Save)” [CEA Dn 1 3(0/1/0)
TBLSN (Op) [CEA] Dn 0 35-39(2X/1/0)

MOTOROLA

MC68341 USER’S MANUAL

Instruction Head Tail Cycles
TBLUN Dn:Dm, Dp 30 0 34-40(0/2/0)
TBLUN (Save)” [CEA] Dn 1 1 3(0/1/0)
TBLUN (Op) [CEA[Dn 6 0 39-45(2X/1/0)
X = There is one bus cycle for byte and word operands and two bus cycles for long
operands. For long bus cycles, add two clocks to the tail and to the number of
cycles.
< = Maximum time (certain data or mode combinations may execute faster).
su = The execution time is identical for signed or unsigned operands.

* These instructions have an additional save operation that other instructions do not have. To
calculate total instruction time, calculate save, [&al] and operation execution times, then

combine in the order listed, using equations in 5.7.1.6 Instruction Execution Time

Calculations. A save operation is not run for long-word divide and multiply instructions

when [FEA= Dn,

5.7.3.6 IMMEDIATE ARITHMETIC/LOGIC
arithmetic/logic instruction table indicates the number of clock periods needed for the
processor to fetch the source immediate data value and to perform the specified
arithmetic/logic instruction using the specified addressing mode. Footnotes indicate when
to account for the appropriate fetch effective or fetch immediate EA times. The total
number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock

reads and writes.

INSTRUCTIONS. The

immediate

Instruction Head Tail Cycles
MOVEQ #,Dn 0 0 2(0/1/0)
ADDQ #, Rn 0 0 2(0/1/0)
ADDQ #, (FEAO 0 3 5(0/1/x)
SUBQ #,Rn 0 0 2(0/1/0)
SUBQ #, (FEAO 0 3 5(0/1/x)
ADDI # Rn 0 0 2(0/1/0)0
ADDI #, (FEAO 0 3 5(0/1/x) 0
ANDI # Rn 0 0 2(0/1/0)0
ANDI #, (FEAO 0 3 5(0/1/x) 0O
EORI # Rn 0 0 2(0/1/0)0
EORI #, (FEAO 0 3 5(0/1/x) 0O
ORI #, Rn 0 0 2(0/1/0)0
ORI #, (FEAO 0 3 5(0/1/x) 0O
SUBI # Rn 0 0 2(0/1/0)0
SUBI #, (FEAO 0 3 5(0/1/x) 0O
CMPI # Rn 0 0 2(0/1/0)0
CMPI #, (FEAO 0 3 5(0/1/x) 0O
X = There is one bus cycle for byte and word operands and two bus cycles for long-

word operands. For long-word bus cycles, add two clocks to the tail and to the

number of cycles.

0 = An# fetch EA time must be added for this instruction: [FEA+FEA O+ [DPERO

5-102

MC68341 USER’S MANUAL

MOTOROLA

5.7.3.7 BINARY-CODED DECIMAL AND EXTENDED INSTRUCTIONS. The BCD and
extended instruction table indicates the number of clock periods needed for the processor
to perform the specified operation using the specified addressing mode. No additional
tables are needed to calculate total effective execution time for these instructions. The
total number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.

Instruction Head Tail Cycles
ABCD Dn, Dm 2 0 4(0/1/0)
ABCD —(An), —(Am) 2 2 12(2/1/1)
SBCD Dn, Dm 2 0 4(0/1/0)
SBCD —(An), —(Am) 2 2 12(2/1/1)
ADDX Dn, Dm 0 0 2(0/1/0)
ADDX —(An), —(Am) 2 2 10(2/1/1)
SUBX Dn, Dm 0 0 2(0/1/0)
SUBX —(An), —(Am) 2 2 10(2/1/1)
CMPM (An)+, (Am)+ 1 0 8(2/1/0)

5.7.3.8 SINGLE OPERAND INSTRUCTIONS. The single operand instruction table
indicates the number of clock periods needed for the processor to perform the specified
operation using the specified addressing mode. The total number of clock cycles is
outside the parentheses. The numbers inside parentheses (r/p/w) are included in the total
clock cycle number. All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles
CLR Dn 0 0 2(0/1/0)
CLR [CEAT 0 2 4(0/1/x)
NEG Dn 0 0 2(0/1/0)
NEG (FEAO 0 3 5(0/1/x)
NEGX Dn 0 0 2(0/1/0)
NEGX (FEAO 0 3 5(0/1/x)
NOT Dn 0 0 2(0/1/0)
NOT (FEAO 0 3 5(0/1/x)
EXT Dn 0 0 2(0/1/0)
NBCD Dn 2 0 4(0/1/0)
NBCD (FEAO 0 2 6(0/1/1)
Scc Dn 2 0 4(0/1/0)
Scc [CEAC 2 2 6(0/1/1)
TAS Dn 4 0 6(0/1/0)
TAS [CEAC 1 0 10(0/1/1)
TST (FEAO 0 0 2(0/1/0)
X = There is one bus cycle for byte and word operands and two bus cycles for long-word
g};/)g;&;nds. For long-word bus cycles, add two clocks to the tail and to the number of

MOTOROLA MC68341 USER’S MANUAL 5-103

5.7.3.9 SHIFT/ROTATE INSTRUCTIONS. The shift/rotate instruction table indicates the
number of clock periods needed for the processor to perform the specified operation on
the given addressing mode. Footnotes indicate when to account for the appropriate EA
times. The number of bits shifted does not affect the execution time, unless noted. The
total number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock

reads and writes.

Instruction Head Tail Cycles Note
LSd Dn, Dm -2 0 (0/1/0) 1
LSd #,Dm 0 6(0/1/0) —
LSd (FEAO 0 2 6(0/1/1) —
ASd Dn, Dm -2 0 (0/1/0) 1
ASd #,Dm 0 6(0/1/0) —
ASd (FEAO 2 6(0/1/1) —
ROd Dn, Dm -2 0 (0/1/0) 1
ROd #,Dm 0 6(0/1/0) —
ROd (FEAO 0 2 6(0/1/1) —
ROXd Dn, Dm -2 0 (0/1/0) 2
ROXd #,Dm -2 0 (0/1/0) 3
ROXd (FEAO 0 2 6(0/1/1) —
d = Direction (left or right)
NOTES:
1. Head and cycle times can be derived from the following table or calculated as follows:
Max (3 + (n/4) + mod(n,4) + mod (((n/4) + mod (n,4) + 1,2), 6)
2. Head and cycle times are calculated as follows: (count < 63): max (3 + n+ mod (n + 1,2), 6).
3. Head and cycle times are calculated as follows: (count < 8): max (2 + n + mod (n,2), 6).
Clocks Shift Counts
6 0 1 2 3 4 5 6 8 9 12
8 10 11 13 14 16 17 20
10 15 18 19 21 22 24 25 28
12 23 26 27 29 30 32 33 36
14 31 34 35 37 38 40 41 44
16 39 42 43 45 46 48 49 52
18 47 50 51 53 54 56 57 60
20 55 58 59 61 62
22 63
5104 MC68341 USER’'S MANUAL MOTOROLA

5.7.3.10 BIT MANIPULATION INSTRUCTIONS. The bit manipulation instruction table
indicates the number of clock periods needed for the processor to perform the specified
operation on the given addressing mode. The total number of clock cycles is outside the
parentheses. The numbers inside parentheses (r/p/w) are included in the total clock cycle

number. All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles
BCHG #,Dn 2 0 6(0/2/0)d
BCHG Dn, Dm 4 0 6(0/1/0)
BCHG #, (FEAUO 1 2 8(0/2/1)d
BCHG Dn, [FEAQ 2 2 8(0/1/1)
BCLR #,Dn 2 0 6(0/2/0)d
BCLR Dn,Dm 4 0 6(0/1/0)
BCLR #, (FEAO 1 2 8(0/2/1)d
BCLR Dn, [FEADO 2 2 8(0/1/1)
BSET #,Dn 2 0 6(0/2/0)d
BSET Dn,Dm 4 0 6(0/1/0)
BSET #, (FEAU 1 2 8(0/2/1)d
BSET Dn, [FEAD 2 2 8(0/1/1)
BTST #,Dn 2 0 4(0/2/0)O
BTST Dn,Dm 2 0 4(0/1/0)
BTST #, (FEAO 1 0 4(0/2/0)0
BTST Dn, (FEAQO 2 0 8(0/1/0)

[+ An # fetch EA time must be added for this instruction: [OFEA [+ [FEA [+ [DPER

5.7.3.11 CONDITIONAL BRANCH INSTRUCTIONS. The conditional branch instruction
table indicates the number of clock periods needed for the processor to perform the
specified branch on the given branch size, with complete execution times given. No
additional tables are needed to calculate total effective execution time for these
instructions. The total number of clock cycles is outside the parentheses. The numbers
inside parentheses (r/p/w) are included in the total clock cycle number. All timing data
assumes two-clock reads and writes.

Instruction Head Tail Cycles
Bcc (taken) 2 -2 8(0/2/0)
Bcc.B (not taken) 2 0 4(0/1/0)
Bcc.W (not taken) 0 0 4(0/2/0)
Bce.L (not taken) 0 0 6(0/3/1)
DBcc (T, not taken) 1 1 4(0/2/0)
DBcc (F, -1, not taken) 2 0 6(0/2/0)
DBcc (F, not -1, taken) 6 -2 10(0/2/0)
DBcc (T, not taken) 4 0 6(0/1/0)d
DBcc (F, -1, not taken) 6 8(0/1/0)0
DBcc (F, not -1, taken) 6 10(0/0/0)1

= In loop mode

MOTOROLA

MC68341 USER’S MANUAL

5-105

5.7.3.12 CONTROL INSTRUCTIONS. The control instruction table indicates the number
of clock periods needed for the processor to perform the specified operation on the given
addressing mode. Footnotes indicate when to account for the appropriate EA times. The
total number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.

Instruction Head Tail Cycles
ANDI #, SR 0 -2 12(0/2/0)
EORI #, SR 0 -2 12(0/2/0)
ORI #, SR 0 -2 12(0/2/0)
ANDI #, CCR 2 6(0/2/0)
EORI #, CCR 2 6(0/2/0)
ORI #, CCR 2 6(0/2/0)
BSR.B 3 -2 13(0/2/2)
BSR.W 3 -2 13(0/2/2)
BSR.L 1 -2 13(0/2/2)
CHK FEAL] Dn (no ex) 2 0 8(0/1/0)
CHK [FEAL] Dn (ex) 2 -2 42(2/216)
CHK2 (Save) [FEAQ Dn (no ex) 1 3(0/1/0)
CHK2 (Op) (FEAQ Dn (no ex) 2 18(X/0/0)
CHK2 (Save) [FEAQ Dn (ex) 1 3(0/1/0)
CHK2 (Op) [FEAL] Dn (ex) 2 -2 52(X + 2/1/6)
JMP [CEAO 0 -2 6(0/2/0)
JSR [CEAO 3 -2 13(0/2/2)
LEA [CEA An 0 0 2(0/1/0)
LINK.W An, # 2 0 10(0/2/2)
LINK.L An, # 0 0 10(0/3/2)
NOP 0 0 2(0/1/0)
PEA [CEAO 0 0 8(0/1/2)
RTD # 1 -2 12(2/2/0)
RTR 1 -2 14(3/2/0)
RTS 1 -2 12(2/2/0)
UNLK An 1 0 9(2/1/0)

X = There is one bus cycle for byte and word operands and two bus cycles for long-word
operands. For long-word bus cycles, add two clocks to the tail and to the number of
cycles.

NOTE: The CHK2 instruction involves a save step that other instructions do not have. To
calculate the total instruction time, calculate the save, the EA, and the operation
execution times, and combine in the order listed using the equations given in 5.7.1.6
Instruction Execution Time Calculation.

5-106 MC68341 USER’S MANUAL MOTOROLA

5.7.3.13 EXCEPTION-RELATED INSTRUCTIONS AND OPERATIONS. The exception-
related instructions and operations table indicates the number of clock periods needed for
the processor to perform the specified exception-related actions. No additional tables are
needed to calculate total effective execution time for these instructions. The total number
of clock cycles is outside the parentheses. The numbers inside parentheses (r/p/w) are
included in the total clock cycle number. All timing data assumes two-clock reads and
writes.

Instruction Head Tail Cycles
BKPT (Acknowledged) 0 0 14(1/0/0)
BKPT (Bus Error) 0 -2 35(3/2/4)
Breakpoint (Acknowledged) 0 0 10(1/0/0)
Breakpoint (Bus Error) 0 -2 42(3/2/6)
Interrupt 0 -2 30(3/2/4)0
RESET 0 518(0/1/0)
STOP 2 12(0/1/0)
LPSTOP 3 -2 25(0/3/1)
Divide-by-Zero 0 -2 36(2/2/6)
Trace 0 -2 36(2/2/6)
TRAP # 4 -2 29(2/2/4)
ILLEGAL 0 -2 25(2/2/4)
A-line 0 -2 25(2/214)
F-line (First word illegal) 0 -2 25(2/214)
F-line (Second word illegal) ea = Rn 1 -2 31(2/3/4)
F-line (Second word illegal) ea # Rn (Save) 1 1 3(0/1/0)
F-line (Second word illegal) ea # Rn (Op) 4 -2 29(2/214)
Privileged 0 -2 25(2/214)
TRAPCcc (trap) 2 -2 38(2/2/6)
TRAPcc (no trap) 2 0 4(0/1/0)
TRAPcc.W (trap) 2 -2 38(2/2/6)
TRAPcc.W (no trap) 0 0 4(0/2/0)
TRAPcc.L (trap) 0 -2 38(2/2/6)
TRAPcc.L (no trap) 0 0 6(0/3/0)
TRAPV (trap) 2 -2 38(2/2/6)
TRAPV (no trap) 2 0 4(0/1/0)

= Minimum interrupt acknowledge cycle time is assumed to be three clocks.

NOTE: The F-line (second word illegal) operation involves a save step which other
operations do not have. To calculate the total operation time, calculate the save, the
calculate EA, and the operation execution times, and combine in the order
listed, using the equations given in 5.7.1.6 Instruction Execution Time
Calculation.

MOTOROLA MC68341 USER’S MANUAL 5-107

5.7.3.14 SAVE AND RESTORE OPERATIONS. The save and restore operations table
indicates the number of clock periods needed for the processor to perform the specified
state save or return from exception. Complete execution times and stack length are given.
No additional tables are needed to calculate total effective execution time for these
instructions. The total number of clock cycles is outside the parentheses. The numbers
inside parentheses (r/p/w) are included in the total clock cycle number. All timing data
assumes two-clock reads and writes.

Instruction Head Tail Cycles
BERR on instruction 0 -2 <58(2/2/12)
BERR on exception 0 -2 48(2/2/12)
RTE (four-word frame) 1 -2 24(4/2/0)
RTE (six-word frame) 1 -2 26(4/2/0)
RTE (BERR on instruction) 1 -2 50(12/12/Y)
RTE (BERR on four-word frame) 1 -2 66(10/2/4)
RTE (BERR on six-word frame) 1 -2 70(12/2/6)

< = Maximum time is indicated (certain data or mode combinations execute faster).
Y = If a bus error occurred during a write cycle, the cycle is rerun by the RTE.

5-108

MC68341 USER’S MANUAL

MOTOROLA

SECTION 6
DMA CONTROLLER MODULE

The direct memory access (DMA) controller module provides for high-speed transfer
capability to/from an external peripheral or for memory-to-memory data transfer. The DMA
module, shown in Figure 6-1, provides two channels that allow byte, word, or long-word
operand transfers. These transfers can be either single or dual address and to either on- or
off-chip devices. The DMA contains the following features:

Two Independent, Fully Programmable DMA Channels

Single-Address Transfers and Dual-Address Transfers

32-Bit Address and 32-Bit Data Capability

Two 32-Bit Transfer Counters

Four 32-Bit Address Pointers That Can Increment or Remain Constant
Operand Packing and Unpacking for Dual-Address Transfers

Supports All Bus-Termination Modes

Provides Two-Clock-Cycle Internal Module Access

Provides Two-Clock-Cycle External Access Using MC68341 Chip Selects
Provides Full DMA Handshake for Burst Transfers and Cycle Steal

Programmable Interrupt Level Allows Central Processing Unit (CPU) to Preempt DMA
Activity

DMA
INTERRUPT >
HANDSHAKE
ARBITRATION DMA CHANNEL 11— SIGNALS

SLAVE BIU

MASTER BIU

T

BUS DMA
DMA CHANNEL 2 > HANDSHAKE
ARBITRATION SIGNALS

=~
K=

Figure 6-1. DMA Block Diagram

MOTOROLA MC68341 USER'S MANUAL 6-1

6.1 DMA MODULE OVERVIEW

The DMA module is the same as the DMA implemented in the MC68340, with three extra
signals added to provide additional handshaking flexibility. Paragraphs 6.1 through 6.9
describe the standard DMA module. The MC68341 additions are described in paragraph
6.10 MC68341 Enhancements.

The main purpose of the DMA controller module is to transfer data at very high rates,
usually much faster than the CPU32 under software control can handle. The term DMA is
used to refer to the ability of a peripheral device to access memory in a system in the same
manner as a microprocessor does. DMA operations can greatly increase overall system
performance.

The DMA module consists of two independent, programmable channels. The term DMA is
used throughout this section to reference either channel 1 or channel 2 since the two are
functionally equivalent. Each channel has independent request, acknowledge, and done
signals. However, both channels cannot own the bus at the same time. Therefore, it is
impossible to implicitly address both DMA channels at the same time. The MC68341 on-
chip peripherals do not support the single-address transfer mode.

DMA requests may be internally generated by the channel or externally generated by a
device. For an internal request, the amount of bus bandwidth allocated for the DMA can be
programmed. The DMA channels support two external request modes: burst mode and
cycle steal mode.

Each DMA channel has a configurable interrupt service mask (ISM) level which causes the
channel to temporarily suspend DMA activity when the CPU interrupt service level exceeds
the ISM value. This feature can be used to minimize the effects of DMA activity or time-
critical interrupt sources.

The DMA controller supports single- and dual-address transfers. In single-address mode, a
channel supports 32 bits of address and 32 bits of data. Only an external request can be
used to start a transfer in the single-address mode. The DMA provides address and control
signals during a single-address transfer. The requesting device either sends or receives
data to or from the specified address (see Figure 6-2). In dual-address mode, a channel
supports 32 bits of address and 32 bits of data. The dual-address transfers can be started
by either the internal request mode or by an external device using the request signal. In this
mode, two bus transfers occur, one from a source device and the other to a destination
device (see Figure 6-3). In dual-address mode, operands are packed or unpacked
according to port sizes and addresses.

Any operation involving the DMA will follow the same basic steps: channel initialization,
data transfer, and channel termination. In the channel initialization step, the DMA channel
registers are loaded with control information, address pointers, and a byte transfer count.
The channel is then started. During the data transfer step, the DMA accepts requests for
operand transfers and provides addressing and bus control for the transfers. The channel
termination step occurs after operation is complete. The channel indicates the status of the
operation in the channel status register.

6-2 MC68341 USER'S MANUAL MOTOROLA

MOTOROLA

DMA MEMORY —> DEVICE

¢

MEMORY — > PERIPHERAL

IMPLICIT DEVICE WRITE

MEMORY READ

DMA DEVICE —> MEMORY

:

PERIPHERAL — MEMORY

IMPLICIT DEVICE READ

MEMORY WRITE

Figure 6-2. Single-Address Transfers

DEVICE READ OR MEMORY READ ¢
PERIPHERAL \ / MEMORY
DMA
PERIPHERAL MEMORY
DEVICE WRITE OR MEMORY WRITE

Figure 6-3. Dual-Address Transfer

MC68341 USER'S MANUAL 6-3

6.2 DMA MODULE SIGNAL DEFINITIONS

This section contains a brief description of the DMA module signals used to provide
handshake control for either a source or destination external device.

NOTE

The terms assertion and negation are used throughout this
section to avoid confusion when dealing with a mixture of active-
low and active-high signals. The term assert or assertion
indicates that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

6.2.1 DMA Request (DREQ1, DREQ2)

This active-low input is asserted by a peripheral device to request an operand transfer
between that peripheral and memory. The assertion of DREQx starts the DMA process.
The assertion level in external burst mode is level sensitive; in external cycle steal mode, it
is falling-edge sensitive.

6.2.2 DMA Acknowledge (DACK1,DACK2)

This active-low output is asserted by the DMA to signal to a peripheral that an operand is
being transferred in response to a previous transfer request.

6.2.3 Ready (RDY1, RDY2)

This active-low input is asserted by a peripheral device when it is ready to complete the
DMA transfer. A slow device can delay assertion of RDYx to delay termination of a single -
address DMA transfer between the device and faster memory. RDY1 and RDY2 are
multiplexed with timer signals TGATE and TIN.

6.2.4 DMA Done (DONET, DONE2)

This active-low bidirectional signal is asserted by the DMA or a peripheral device during
any DMA bus cycle to indicate that the last data transfer is being performed. DONEXx is an
active input in any mode. As an output, DONEX is only active in external request mode. An
external pullup resistor is required even if operating only in the internal request mode.

6.2.5 Data Transfer Complete (DTC)

This active-low output is asserted for one clock at the end of all MC68341 bus cycles (CPU
or DMA) to indicate completion of the cycle. DTC is multiplexed with FC3.

6.3 TRANSFER REQUEST GENERATION

The DMA channel supports two types of request generation methods: internal and external.
Internally generated requests can be programmed to limit the amount of bus utilization.

6-4 MC68341 USER'S MANUAL MOTOROLA

Externally generated requests can be either burst mode or cycle steal mode. The request
generation method used for the channel is programmed by the REQ field in the channel
control register (CCR).

6.3.1 Internal Request Generation

The channel is started as soon as the STR bit in the CCR is set. The channel immediately
requests the bus and begins transferring data. Only internal requests can limit the amount
of bus utilization. The percentage of the bus bandwidth that the DMA channel uses during a
transfer is selected by the CCR bus bandwidth (BB) field.

6.3.1.1 INTERNAL REQUEST, MAXIMUM RATE. Internal generation using 100% of the
internal bus always has a transfer request pending for the channel until the block transfer is
complete. As soon as the channel is started, the DMA will arbitrate for the internal bus and
begin to transfer data when it becomes bus master. If no exceptions occur, all operands in
the data block will be transferred in one burst so that the DMA will use 100% of the
available bus bandwidth.

6.3.1.2 INTERNAL REQUEST, LIMITED RATE. To guarantee that the DMA does not use
all of the available bus bandwidth during a transfer, the bus bandwidth allocated to the
DMA can be limited. There are three programmed constants in the CCR used to monitor
the bus activity and allow the DMA to use a percentage of the bus bandwidth. Options are
25%, 50%, and 75% of 1024 clock periods. See Table 6-5 for more information.

6.3.2 External Request Generation

To control the transfer of operands to or from memory in an orderly manner, a peripheral
device uses the DREQx input signal to request service. If the channel is programmed for
external request and the CCR STR bit is set, an external request (DREQx) signal must be
asserted before the channel requests the bus and begins a transfer. The DMA supports
external burst mode and external cycle steal mode.

The generation of the request from the source or destination is specified by the ECO bit of
the CCR. The external requests can be for either single- or dual-address transfers.

6.3.2.1 EXTERNAL BURST MODE. For external devices that require very high data
transfer rates, the burst request mode allows the DMA channel to use all of the bus
bandwidth under control of the external device. In burst mode, the DREQx input to the DMA
is level sensitive and is sampled at certain points to determine when a valid request is
asserted by the device. The device requests service by asserting DREQx and leaving it
asserted. In response, the DMA arbitrates for the bus and performs an operand transfer.
During each operand transfer, the DMA asserts DMA acknowledge (DACKXx) to indicate to
the device that a request is being serviced. DACKXx is asserted on the cycle of either the
source or destination device, depending on which one generated the request as
programmed by the CCR ECO bit.

To allow more than one transfer to be recognized, DREQx must meet the asynchronous
setup and hold times while DACKXx is asserted in the DMA bus cycle. Upon completion of a

MOTOROLA MC68341 USER'S MANUAL 6-5

request, DREQx should be held asserted (bursting) into the following DMA bus cycle to
allow another transfer to occur. The recognized request will immediately be serviced. If
DREQx is negated before DACKXx is asserted, a new request is not recognized, and the
DMA channel releases ownership of the bus.

6.3.2.2 EXTERNAL CYCLE STEAL MODE. For external devices that generate a pulsed
signal for each operand to be transferred, the cycle steal request mode uses the DREQx
signal as a falling-edge-sensitive input. The DREQx pulse generated by the device must be
asserted during two consecutive falling edges of the clock to be recognized as valid.
Therefore, if a peripheral generates it asynchronously, it must be at least two clock periods
long.

The DMA channel responds to cycle steal requests the same as all other requests.
However, if subsequent DREQx pulses are generated before DACKx is asserted in
response to each request, they are ignored. If DREQx is asserted after the DMA channel
request is serviced before bus ownership is released. If a new request is not generated by
the time DACKXx is negated, the bus is released.

6.3.2.3 EXTERNAL REQUEST WITH OTHER MODULES. The DMA controller can be
externally connected to the serial module and used in conjunction with the serial module to
send or receive data. The DMA takes the place of a separate service routine for accessing
or storing data that is sent or received by the serial module. Using the DMA also lowers the
CPU32 overhead required to handle the data transferred by the serial module. Figure 6-4
shows the external connections required for using the DMA with the serial module.

DMA MODULE SERIAL MODULE
DREQ!1 |=< TxRDYA
DREQ? |-« RXRDYA

Figure 6-4. DMA External Connections to Serial Module

For serial receive, the DMA reads data from the serial receive buffer register (when the
serial module has filled the buffer on input) and writes data to memory. For serial transmit,
the DMA reads data from memory and writes data to the serial transmit buffer register. Only
dual-address mode can be used with the serial module. The MC68341 on-chip peripherals
do not support single-address transfers.

6-6 MC68341 USER'S MANUAL MOTOROLA

6.4 DATA TRANSFER MODES

The DMA channel supports single- and dual-address transfers. The single-address transfer
mode consists of one DMA bus cycle, which allows either a read or a write cycle to occur.
The dual-address transfer mode consists of a source operand read and a destination
operand write. Two DMA bus cycles are executed for the dual-address mode: a DMA read
cycle and a DMA write cycle.

6.4.1 Single-Address Mode

The single-address DMA bus cycle allows data to be transferred directly between a device
and memory without going through the DMA. In this mode, the operand transfer takes place
in one bus cycle, where only the memory is explicitly addressed. The DMA bus cycle may
be either a read or a write cycle. The DMA provides the address and control signals
required for the operation. The requesting device either sends or receives data to or from
the specified address. Only external requests can be used to start a transfer when the
single-address mode is selected. An external device uses DREQx to request a transfer.

Each DMA channel can be independently programmed to provide single-address transfers.
The CCR ECO bit controls whether a source read or a destination write cycle occurs on the
data bus. If the ECO bit is set, the external handshake signals are used with the source
operand and a single-address source read occurs. If the ECO bit is cleared, the external
handshake signals are used with the destination operand, and a single-address destination
write occurs. The channel can be programmed to operate in either burst transfer mode or
cycle steal mode. See 6.7 Register Description for more information.

6.4.1.1 SINGLE-ADDRESS READ. During the single-address source (read) cycle, the
DMA controls the transfer of data from memory to a device. The memory selected by the
address specified in the source address register (SAR), the source function codes in the
function code register (FCR), and the source size in the CCR provides the data and control
signals on the data bus. This bus cycle operates like a normal read bus cycle. The DMA
control signals (DACKx and DONEXx) are asserted in the source (read) cycle. See Figures
6-5 and 6-6 for timing diagrams single-address read for external burst and cycle steal
modes.

MOTOROLA MC68341 USER'S MANUAL 6-7

6-8

CPUCYCLE DMA READ DMA READ CPU CYCLE
SO S2 S4 SO S2 S4 SO S2 S4 SO

CLKOUT_IlIlIUl_ILIUl_Il_IU
A31-A0:><

FC3-FCO

SIZ1-S120 X

:

LJ
>

= TN /T /]

D31-D0 :>—<_
DREQX -_\ /
U N/
DACKx \ ™\ /

DONEX —
(OUTPUT) ___ /
NOTES:

1. Timing to generate more than one DMA request.

2. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.
3. DREQx must be asserted while DACKXx is asserted and meet the setup and hold times for
more than one DMA transfer to be recognized.

N
]
<

iR

Figure 6-5. Single-Address Read Timing (External Burst)

MC68341 USER'S MANUAL MOTOROLA

V104OL10N

CLKOUT
A31-A0
I
«Q |
= FC3-FCO
=
(0]
o) SI1Z1-S1Z0
o
0 AS
]
= Q
9 ® oS
o] >
@ o
S _
= o RIW
C
7 3
Py % D15-D0
» ®
< s} -
> o DSACKx
Z
S 5
o =. DREQx
>
«Q
,a DONEX
& (INPUT)
Q
@ DACKx
9]
—+
8 DONEX
= (OUTPUT)
NOTE:

CPU CYCLE

SO S2 S4

oo LU

CPU CYCLE

SO S2 S4

DMA READ
SO S2 S4

L LY

CPU CYCLE

SO S2

L L L

S4

DMA READ
SO S2 S4

LI LT L

X

X

i —

/

'

/
D
X

A
A

A

g

_/

1. DREQx must be active for two consecutive clocks for a DMA request to be recognized.
2. To cause another DMA transfer, DREQXx is asserted after DACKX is asserted and before DACKX is negated.
3. DACKx and DONEXx (DMA control signals) are asserted in the source (read) DMA cycle.

69

n/

6.4.1.2 SINGLE-ADDRESS WRITE. During the single-address destination (write) cycle, the
DMA controls the transfer of data from a device to memory. The data is written to memory
selected by the address specified in the destination address register (DAR), the destination
function codes in the FCR, and the size in the CCR. The destination (write) DMA bus cycle
has timing identical to a write bus cycle. The DMA control signals (DACKx and DONEX) are
asserted in the destination (write) cycle. See Figures 6-7 and 6-8 for timing diagrams of
single-address write for external burst and cycle steal modes.

CPU CYCLE DMA WRITE DMA WRITE CPU CYCLE

SO S2 S4 SO S2 S4 SO S2 S4 SO

CLKOUT J | | | | | | | | | | | | | | | |
A31-A0 _><
FC3-FCO _><

SIZ1-5120 ><

:

DREQx __\ /
pUn ____/
DACKx \ T\ /
U ___/
NOTES:

1. Timing to generate more than one DMA request.

2. DACKx and DONEXx (DMA control signals) are asserted in the source (read) DMA cycle.
3. DREQx must be asserted while DACKXx is asserted, and meet the setup and hold times for
more than one DMA transfer to be recognized.

AR

Figure 6-7. Single-Address Write Timing (External Burst)

6-10 MC68341 USER'S MANUAL MOTOROLA

V104OL10N

AVNNVYIA S, d3SN T¥rE890IN
(Jeo1s 8]9AD) Bulwil 81UM SSaippVv-9|buls 'g-9 ainbi

119

CPU CYCLE CPUCYCLE DMA WRITE CPU CYCLE DMA WRITE

G I I I

A31-AO :>< X

FC3-FCO :>< ><

SIZ1-510 _>< X

a —\ /
b1s-00 - |) 7/ 1 r— 1 »— —

owee: ORDC_ DAC - DC DSC DS

DREQx N /

DACKx

N
N

DONEx —
(OUTPUT) ____/

NOTE:
1. DREQx must be active for two consecutive clocks for a DMA request to be recognized.
2. To cause another DMA transfer, DREQXx is asserted after DACKXx is asserted and before DACKX is negated.
3. DACKx and DONEx (DMA control signals) are asserted in the destination (write) DMA cycle.

6.4.2 Dual-Address Mode

The dual-address DMA bus cycle transfers data between a device or memory and the DMA
internal data holding register (DHR). In this mode, any operand transfer takes place in two
DMA bus cycles, one where a device is addressed and one where memory is addressed.
The data transferred during a dual-address operation is either read from the data bus into
the DHR or written from the DHR to the data bus.

Each DMA channel can be programmed to operate in the dual-address transfer mode. In
this mode, the operand is read from the source address specified in the SAR and placed in
the DHR. The operand read may take up to four bus cycles to complete because of
differences in operand sizes of the source and destination. The operand is then written to
the address specified in the DAR. This transfer may also be up to four bus cycles long. In
this manner, various combinations of peripheral, memory, and operand sizes may be used.
See 6.7 Register Description for more information.

The dual-address transfers can be started by either the internal request mode or by an
external device using the DREQx input signal. When the external device uses DREQx, the
channel can be programmed to operate in either burst transfer mode or cycle steal mode.

6.4.2.1 DUAL-ADDRESS READ. During the dual-address read cycle, the DMA reads data
from a device or memory into the internal DHR. The device or memory is selected by the
address specified in the SAR, the source function codes in the FCR, and the source size in
the CCR. Data is read from the memory or peripheral and placed in the DHR when the bus
cycle is terminated. When the complete operand has been read, the SAR is incremented by
0, 1, 2, or 4, according to the size and increment information specified by the SSIZE and
SAPI bits of the CCR. The DMA control signals (DACKx and DONEXx) are asserted in the
source (read) cycle when the source device makes a request. See Figures 6-9 and 6-10 for
timing diagrams of dual-address reads for external burst and cycle steal modes.

6-12 MC68341 USER'S MANUAL MOTOROLA

V104OL10N

IVNANVIN S.d3SN TrE890IN

€19

(Bunsanbay 221n0s-1sing [eula1x3) Buiwil peay SSaIppy-end '6-9 ainbi4

CPU CYCLE DMA READ DMA WRITE DMA READ DMA WRITE CPU CYCLE
S

o

S2 S4 SO S2 S4 SO S2 S4 SO S2 S4 SO S2 S4 SO S2 S4

JERSREREE SRR SR -
X X X X X X

X X X X X X

CLKOUT

E

A31-A0

FC3-FCO

SIZ1-S1Z0

T\ 2 4 I N4 I N]
T\ /T /] \ /TN

™~

\JJBJ%%
™

D15-D0 :>—<:'\ N N\ B o N
L/ N4 n_/ L/ o [—
N\
DREQX \ /

DONEx _J
(INPUT)
DACKx \ / \ /
DONEX \ /
(OUTPUT)
NOTE:
1. Timing to generate more than one DMA transfer.
2. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.

3. DREQx must be asserted while DACKXx is asserted and meet the setup and hold times for more than one DMA transfer to be recognized.
4. DONEX (input) can be asserted in either the read or write DMA bus cycle to indicate that the next DMA transfer will be the last one.

¥1-9

IVNANVIA S.d3SN TrE890IN

VI1OdOLON

(bunsanbay a2inog-eals 8104AD) Bulwil peay Ssalppy-leng ‘0T-9 ainbi4

CLKOUT

A31-A0

FC3-FCO

SIZ1-S120

D15-D0

DSACKXx

DREQx

DONEX
(INPUT)

DACKx

DONExX
(OUTPUT)

NOTE

!

CPU CYCLE
SO S2 S4

CPU CYCLE

DMA READ DMA WRITE
S4 SO S2 S4 S0 S2 S4

SO

CPU CYCLE

S2

JESRERERERERERERS

S4 S0

DMA READ

DMA WRITE

Sl

Nalalals

NN

/

%
%
%
%
%

I

A

A

1. DREQx must be active for two consecutive clocks for a DMA request to be recognized.

To cause another DMA transfer, the DREQX is asserted after DACKXx is asserted and before DACKXx is negated.

2.
3. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.
4. DONEX (input) can be asserted in either the read or write DMA bus cycle to indicate that the next DMA transfer will be the last one.

A

6.4.2.2 DUAL-ADDRESS WRITE. During the dual-address write cycle, the DMA writes
data to a device or memory from the internal DHR. The data in the DHR is written to the
device or memory selected by the address in the DAR, the destination function codes in the
FCR, and the size in the CCR. When the complete operand is written, the DAR is
incremented by 0, 1, 2, or 4, according to the increment and size information specified by
the DAPI and DSIZE bits of the CCR, and the byte transfer count register (BTC) is
decremented by the number of bytes transferred. If the BTC is equal to zero and there were
no errors, the channel status register (CSR) DONE bit is set, and the DONEXx signal for the
DMA handshake is asserted. The DMA control signals (DACKx and DONEXx) are asserted
in the destination (write) cycle when the destination device makes a request. See Figures
6-11 and 6-12 for timing diagrams of dual-address writes for external burst and cycle steal
modes.

MOTOROLA MC68341 USER'S MANUAL 6-15

919

IVNANVIA S.d3SN TrE890IN

VI1OdOLON

(Bunsanbay uolreunsag-1sing reulaix3y) Buiwil dIM SSaIppy-lenq "TT-9 24nbi4

CPU CYCLE DMA READ DMA WRITE DMA READ DMA WRITE CPU CYCLE

SO S2 S4 SO S2 S4 SO S2 S4 SO S2 S4 SO S2 S4 SO S2 S4

A31-A0 :>< X
FC3-FCO :X
SIZ1-5120 :><

:
:
:

><><><’_|

/]j><><><
)><><><

jj><><><
g\

o5\ /T \

RIW /

DREQx \ /

DONEX

(INPUT) _/

DACKx \ / \ /

DONEX \ /
(OUTPUT)
NOTE:

1. Timing to generate more than one DMA transfer.
2. DACKx and DONEx (DMA control signals) are asserted in the destination (write) DMA cycle.

3. DREQx must be asserted while DACKX is asserted and meet the setup and hold times for more than one DMA transfer to be recognized.
4. DONEX (input) can be asserted in either the read or write DMA bus cycle to indicate that the next DMA transfer will be the last one.

/S I\ /
|

:
|
|
:

V104OL10N

IVNANVIN S.d3SN TrE890IN

LT9

(Bunsanbay uoneunsag-feals a|2AD) bulwil a1IA SSa1ppV-eng "ZT-9 ainbi4

Y

CPU CYCLE CPU CYCLE DMA READ DMA WRITE CPU CYCLE DMA READ OMA WRITE
SO Ss2 sS4 SO S2 S4 |SO S2 s4 [sO S2 s4 |so S2 0S4 |0 Ss2 s4 |SO S2 s4
eorr [T LU
A31-A0 :>< X
FC3-FCO :>< X X
SI1Z1-5120 :>< X
s TN/ N S TN T\ S
s | N/ _/ _/ T\ S _/
W/ N/ N
pi5-p0 |) 0D N % _/ \ NN [_/
-/ L/ |/ \ / \ / 1|/ \ / \
osAckx | KK AKX X A R REX REX
DREOx |\ / \ /
wNPUD _/
DACKX \ \
U A
NOTE:

1. DREQx must be active for two consecutive clocks for a DMA request to be recognized.
2. To cause another DMA transfer, DREQXx is asserted after DACKXx is asserted and before DACKX is negated.
3. DACKx and DONEXx (DMA control signals) are asserted in the destination (write) DMA cycle.

4. DONEX (Input) can be asserted in either the read or write DMA bus cycle to indicate that the next DMA transfer will be the last one.

6.5 BUS ARBITRATION

The DMA controller module uses the 68000 bus arbitration protocol to request bus
mastership for DMA transfers. Each channel arbitrates for the bus independently. The
source (read) DMA bus cycle has timing identical to a read bus cycle. The destination
(write) DMA bus cycle has timing identical to a write bus cycle. However, the DMA channel
transfers are unique in that the FC3 signal can be asserted during the source operand bus
cycle and remain asserted until the end of the destination operand bus cycle.

For internal request generation, as soon as the CCR STR bit is set, the DMA channel
arbitrates for the bus and begins to transfer data when it becomes bus master. For external
request generation, the STR bit must be set and a DREQx signal must be asserted before
the channel arbitrates for the bus and begins a transfer.

6.6 DMA CHANNEL OPERATION

The following paragraphs describe the programmable channel functions available for the
DMA channel, the data transfer operations, and behavior during cycle termination. This
description applies to both channels.

Any DMA channel operation adheres to the following basic sequence:
1. Channel Initialization and Startup—The channel registers are initialized. The channel

is then started by setting the CCR STR bit. The first operand transfer request (either
internally or externally generated) is recognized.

2. Data Transfer—After a channel is started, it transfers one operand in response to
each request until an entire data block is transferred.

3. Channel Termination—The channel can terminate by normal completion or from an
error. The CSR indicates the status of the operation.

6.6.1 Channel Initialization and Startup

Before starting a block transfer operation, the channel registers must be initialized with
information describing the channel configuration, request generation method, and data
block. This initialization is accomplished by programming the appropriate information into
the channel registers.

The SAR is loaded with the source (read) address. If the transfer is from a peripheral
device to memory, the source address is the location of the peripheral data register. If the
transfer is from memory to a peripheral device or memory to memory, the source address
is the starting address of the data block. This address may be any byte address. In the
single-address mode with the destination (write) device requesting mode of operation, this
register is not used.

The DAR should contain the destination (write) address. If the transfer is from a peripheral
device to memory or memory to memory, the DAR is loaded with the starting address of the
data block to be written. If the transfer is from memory to a peripheral device, the DAR is

6-18 MC68341 USER'S MANUAL MOTOROLA

loaded with the address of the peripheral data register. This address may be any byte
address. In the single-address mode with the source (read) device requesting mode of
operation, this register is not used.

The manner in which the SAR and DAR change after each cycle depends upon the values
in the CCR SSIZE and DSIZE fields and SAPI and DAPI bits, and the starting address in
the SAR and DAR. If programmed to increment, the increment value is 1, 2, or 4 for byte,
word, or long-word operands, respectively. If the address register is programmed to remain
unchanged (no count), the register is not incremented after the operand transfer. The SAR
and DAR are incremented if a bus error terminates the transfer. Therefore, either the SAR
or the DAR contain the next address after the one that caused the bus error.

The BTC must be loaded with the number of byte transfers that are to occur. This register
is decremented by 1, 2, or 4 at the end of each transfer. The FCR must be loaded with the
source and destination function codes. Although these function codes may not be used in
the address decode for the memory or peripheral, they are provided if needed. The CSR
must be cleared for channel startup.

Once the channel has been initialized, it is started by writing a one to the STR bit in the
CCR. Programming the channel for internal request causes the channel to request the bus
and start transferring data immediately. If the channel is programmed for external request,
DREQx must be asserted before the channel requests the bus. The DREQx input is ignored
until the channel is started, since the channel does not recognize transfer requests until it is
active.

If any fields in the CCR are modified while the channel is active, that change is effective
immediately. To avoid any problems with changing the setup for the DMA channel, a zero
should be written to the STR bit in the CCR to halt the DMA channel at the end of the
current bus cycle.

6.6.2 Data Transfers

Each operand transfer requires from one to five bus cycles to complete. Once a bus
request is recognized and the operand transfer begins, both the source (read) cycle and/or
the destination (write) cycle occur before a new bus request may be honored, even if the
new bus request is of higher priority.

6.6.2.1 INTERNAL REQUEST TRANSFERS. The percentage of bus bandwidth utilization
can be limited for internal request transfers.

6.6.2.2 EXTERNAL REQUEST TRANSFERS. In single-address mode, only one bus cycle
is run for each request. Since the operand size must be equal to the device port size in
single-address mode, the number of normally terminated bus cycles executed during a
transfer operation is always equal to the value programmed into the corresponding size
field of the CCR. The sequencing of the address bus follows the programming of the CCR
and address register (SAR or DAR) for the channel.

Each operand transfer in dual-address mode requires from two to five bus cycles in
response to each operand transfer request. If the source and destination operands are the

MOTOROLA MC68341 USER'S MANUAL 6-19

same size, two cycles will transfer the complete operand. If the source and destination
operands are different sizes, the number of cycles will vary. If the source is a long-word and
the destination is a byte, there would be one bus cycle for the read and four bus cycles for
the write. Once the DMA channel has started a dual-address operand transfer, it must
complete that transfer before releasing ownership of the bus or servicing a request for
another channel of equal or higher priority, unless one of the bus cycles is terminated with
a bus error during the transfer.

6.6.3 Channel Termination

The channel can terminate by normal completion or as the result of an error. The status of
a DMA operation can be determined by reading the CSR. The DMA channel can also
interrupt the processor to inform it of errors, normal transfer completion, or breakpoints.
The fast termination option can also be used to provide a two-clock access for external
requests.

6.6.3.1 CHANNEL TERMINATION. The channel operation can be terminated for several
reasons: the BTC is decremented to zero, a peripheral device asserts DONEx during an
operand transfer, the STR bit is cleared in the CCR, a bus cycle is terminated with a bus
error, or a reset occurs.

6.6.3.2 INTERRUPT OPERATION. Interrupts can be generated by error termination of a
bus cycle or by normal channel completion. Specifically, if the CCR interrupt error (INTE)
bit is set and a bus error on source (CCR BES) bit, bus error on destination (CCR BED) bit,
or configuration error (CCR CONF) bit is set, the CCR IRQ bit is set. In this case, clearing
the INTE, BES, BED, or CONF bits causes the IRQ bit to be cleared. If the interrupt normal
(CCR INTN) bit is set and the CCR DONE bit is set, the IRQ bit is set. In this case, clearing
the INTN or the DONE bit causes the IRQ bit to be cleared. If the interrupt breakpoint (CCR
INTB) and the CSR BRKP bits are set, the IRQ bit is set. Clearing INTB or BRKP clears

IRQ.

6-20 MC68341 USER'S MANUAL MOTOROLA

6.6.3.3 FAST TERMINATION OPTION. Using the system integration module (SIM41) chip
select logic, the fast termination option (Figure 6-13) can be employed to give a fast bus
access of two clock cycles rather than the standard three-cycle access time for external
requests. The fast termination option is described in Section 3 Bus Operation and
Section 4 System Integration Module.

CPU CYCLE DMA READ CPU CYCLE DMA READ
SO S4 S0 S2 S4 SO S2

e ininipininininliy
o X
i X X
szvam Y

AN /T N/ \ /
RIW | / \
s N\ /]

DACKx

>

i
I
16¢ -

g
§
|

(B

DONEX
(OUTPUT)

—

([|F

NOTES:
1. To cause another DMA transfer, DREQX is asserted after DACKXx is asserted and before
DACKX is negated.
2. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.

Figure 6-13. Fast Termination Option Timing (Cycle Steal)

If the fast termination option is used with external burst request mode (Figure 6-14), an
extra DMA cycle may result on every burst transfer. Normally, DREQx is negated when
DACKXx is returned. In the burst mode with fast termination selected, a new cycle starts
even if DREQx is negated simultaneously with DACKx assertion.

MOTOROLA MC68341 USER'S MANUAL 6-21

CPU CYCLE DMAREAD DMA WRITE CPU CYCLE DMAREAD DMA WRITE
SO S2 S4 SO S4 SO S4 S0 S2 S4 S0 sS4 S0 S4

nJyyyuyuyuyuyyo
X X

CLKOUT

aln

A31-A0

FC3-FCO

gigiph
X
X
aavsm X X
s TN\ S
P M\
|
X

RIW

/

D31-D0 _->

sson. DX D DYDY
reoc ___/ [\
DACKx \J _

5 -
NOTES:

1. To cause another DMA transfer, the DREQX is asserted after DACKXx is asserted and before DACKX is negated.
2. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.

N
N
N
N
N
~
N
-~

Figure 6-14. Fast Termination Option Timing (External Burst—Source Requesting)

6.7 REGISTER DESCRIPTION

The following paragraphs contain a detailed description of each register and its specific
function. Figure 6-15 is a programmer's model (register map) of all registers in the DMA
module. Each channel has an independent set of registers. For more information about a
particular register, refer to the individual register description. The ADDRESS column
indicates the offset of the register from the base address of the DMA channel. The FC
column designation of S indicates that register access is restricted to supervisor only. A
designation of S/U indicates that access is governed by the SUPV bit in the module
configuration register (MCR).

Unimplemented memory locations return logic zero when accessed. All registers support
byte, word, and long-word transfers. The register interface from the IMB is 16 bits, which
forces long-word accesses to complete as two successive word accesses.

6-22 MC68341 USER'S MANUAL MOTOROLA

ADDRESS FC

CH1 CH2 15 8 7 0
780 7A0 S MODULE CONFIGURATION REGISTER

782 TA2 S RESERVED

784 TA4 S INTERRUPT REGISTER

786 7A6 S/U RESERVED

788 7A8 S/U CHANNEL CONTROL REGISTER

78A TAA S/U CHANNEL STATUS REGISTER FUNCTION CODE REGISTER
78C 7AC S/U SOURCE ADDRESS REGISTER MSBs

78E TAE S/U SOURCE ADDRESS REGISTER LSBs

790 7B0O S/U DESTINATION ADDRESS REGISTER MSBs

792 7B2 S/U DESTINATION ADDRESS REGISTER LSBs

794 7B4 S/U BYTE TRANSFER COUNTER MSBs

796 7B6 S/U BYTE TRANSFER COUNTER LSBs

798 7B8 S/U RESERVED

79A 7BA S/U RESERVED

79C 7BC S/U RESERVED

79E 7BE S/U RESERVED

Figure 6-15. DMA Module Programming Model

The registers are discussed in the following paragraphs in alphabetical order. The numbers
in the upper right-hand corner of the register diagrams indicate the offset of the register
from the base address specified by the module base address register (MBAR) in the
SIM41. The first number is the offset for channel 1; the second number is the offset for
channel 2. The numbers above the register represent the bit position in the register. The
register contains the mnemonic for the bit. The value of these bits after a hardware reset is
shown below the register. The access privilege is shown in the lower right-hand corner.

NOTE

A CPU32 RESET instruction will not affect the MCR but will
reset all other registers in the DMA module as though a
hardware reset occurred. The term DMA is used to reference
either channel 1 or channel 2, since the two are functionally
equivalent.

MOTOROLA MC68341 USER'S MANUAL 6-23

6.7.1 Byte Transfer Counter Register (BTC)

The BTC is a 32-bit register that contains the number of bytes left to transfer in a given
block. This register is accessible in either supervisor or user space. The BTC can always
be read or written to when the DMA module is enabled (i.e., the STP bit in the MCR is
cleared).

BTC1, BTC2 $794, $7B4

31 30 29 28 27 2 25 24 PA] 2 21 2 19 18 17 16

| A3l | A30 | A29 | A28 | A27 | A26 | A25 | A24 | A23 | A22 | A21 | A20 | Al19 | Al8 | Al7 | Al6 |

RESET:

U U U U U U U U U U U U U U] U

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| A15 | Al4 | A13 | A12 | All | A10 | A9 | A8 | A7 | A6 | A5 | A4 | A3 | A2 | Al | A0 |
RESET:

U U U U U U U U U U U U] U]]
U = Unaffected by reset Supervisor/User

This register is decremented by 1, 2, or 4 for each successful operand transfer from source
to destination locations. When the BTC decrements to zero and no error has occurred, the
CSR DONE bit is set. In the external request mode, the DONEx handshake line is also
asserted when the BTC is decremented to zero.

If the operand size is byte, then the register is always decremented by 1. If the operand
size is word and the starting count is even word, the register is decremented by 2. If the
operand size is word and the byte count is not a multiple of 2, the CSR CONF bit is set, and
a transfer does not occur. If the operand size is long word and the count is a multiple of
four, then the register is decremented by 4. If the operand size is long word and the byte
count is not a multiple of 4, the CSR CONF bit is set, and a transfer does not occur. If the
STR bit is set with a zero count in the BTC, the CONF bit is set, and the STR bit is cleared.

When read, this register always contains the count for the next access. If a bus error
terminates the transfer, this register contains the count for the next access that would have
been run had the error not occurred.

6.7.2 Channel Control Register (CCR)

The CCR controls the configuration of the DMA channel. This register is accessible in
either supervisor or user space. The CCR can always be read or written to when the DMA
module is enabled (i.e., the STP bit in the MCR is cleared).

CCR1, CCR2 $788, $7A8
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
| INTB | INTN | INTE | ECO | SAPI | DAPI | SSIZE DSIZE | REQ | BB | SID | STR |
RESET:
U U U U U U U U U U U U U U U 0
U = Unaffected by reset Supervisor/User

6-24 MC68341 USER'S MANUAL MOTOROLA

INTB—Interrupt Breakpoint
Setting the interrupt breakpoint bit sets the BRKP bit in the CSR. The logic AND of INTB
and BRKP generates an interrupt request.
1 = Enables an IRQx when a breakpoint is recognized and the channel is the bus

master.
0 = Does not enable an IRQx when a breakpoint is recognized and the channel is the

bus master.

INTN—Interrupt Normal

1 = Enables IRQx when the channel finishes a transfer without an error condition
(CSR DONE bit is set).

0 = Does not enable IRQx when the channel finishes a transfer without an error
condition.

INTE—Interrupt Error
1 = Enables IRQx when the channel encounters an error on source read (CSR BES
bit is set), destination write (CSR BED bit is set), or configuration for channel
setup (CSR CONF bit is set).
0 = Does not enable IRQx when the channel encounters an error on source read,
destination write, or configuration for channel setup.

ECO—External Control Option
If request generation is programmed to be internal (REQ bits = 00), this bit has no effect.
Single-Address Mode—This bit defines the direction of transfer.

1 = If request generation is programmed to be external (REQ = 1x), the requesting
device receives the data (read from memory), and the control signals (DREQX,
DACKXx, and DONEX) are used by the requesting device to write data during the
source (read) portion of the transfer.

0 = If request generation is programmed to be external (REQ = 1x), the requesting
device provides the data (write to memory), and the control signals (DREQX,
DACKXx, and DONEX) are used by the requesting device to provide data during the
destination (write) portion of the transfer.

Dual-Address Mode—This bit defines which device generates requests.

1 = If request generation is programmed to be external (REQ = 1x), the source device
generates the request, and the control signals (DREQx, DACKx , and DONEX) are
part of the source (read) portion of the transfer.

0 = If request generation is programmed to be external (REQ = 1x), the destination
device generates the request, and the control signals (DREQx, DACKx , and
DONEXx) are part of the destination (write) portion of the transfer.

MOTOROLA MC68341 USER'S MANUAL 6-25

SAP|—Source Address Pointer Increment

1=

The SAR is incremented by 1, 2, or 4 after each transfer, according to the source
size. The address that is written into the SAR points to a memory block and is
incremented to complete the data transfer.

The SAR is not incremented during operand transfer. The address that is written
into the SAR points to a peripheral device and is used for the complete data
transfer.

DAPI—Destination Address Pointer Increment

1=

The DAR is incremented by 1, 2, or 4 after each transfer, according to the source
size. The address that is written into the DAR points to a memory block and is
incremented to complete the data transfer.

The DAR is not incremented during operand transfer. The address that is written
into the DAR points to a peripheral device and is used for the complete data
transfer.

SSIZE—Source Size Control Field

This field controls the size of the source (read) bus cycle that the DMA channel is
running. Table 6-1 defines these bits.

Table 6-1. SSIZEx Encoding

Bit 9 Bit 8 Definition
0 0 Long Word
0 1 Byte
1 0 Word
1 1 Not Used

DSIZE—Destination Size Control Field

This field controls the size of the destination (write) bus cycle that the DMA channel is
running. Table 6-2 defines these bits.

6-26

Table 6-2. DSIZEx Encoding

Bit 7 Bit 6 Definition
0 0 Long Word
0 1 Byte
1 0 Word
1 1 Not Used
MC68341 USER'S MANUAL MOTOROLA

REQ—Request Generation Field

This field controls the mode of operation the DMA channel uses to make an operand
transfer request. Table 6-3 defines these bits.

Table 6-3. REQx Encoding

Bit 5 Bit 4 Definition
0 0 Internal Request at Programmable Rate
0 1 Reserved
1 0 External Request Burst Transfer Mode
1 1 External Request Cycle Steal

BB—Bus Bandwidth Field

This field controls the percentage of 1024 clock periods of the IMB that the DMA channel
can use during internal requests only (REQx = 00). Table 6-4 defines these bits.

Table 6-4. BBx Encoding and Bus Bandwidth

BB Field Bus Bandwidth
Bit 3 Bit 2 Definition (Clock Periods)

0 0 25% 256

0 1 50% 512

1 0 75% 768

1 1 100% 1024

S/D—Single-/Dual-Address Transfer

1 = The DMA channel runs single-address transfers from a peripheral to memory or
from memory to a peripheral. The destination holding register is not used for these
transfers because the data is transferred directly into the destination location. The
MC68341 on-chip peripherals do not support single-address transfers.

0 = The DMA channel runs dual-address transfers.

STR—Start

This bit is cleared by a hardware/software reset, writing a logic zero, or setting one of the
following CSR bits: DONE, BES, BED, CONF, or BRKP. The STR bit cannot be set when
the CSR IRQ bit is set. The DMA channel cannot be started until the CSR DONE, BES,
BED, CONF, and BRKP bits are cleared.
Internal Request Mode:

1 = The DMA transfer starts as soon as this bit is set.

0 = The DMA transfer can be stopped by clearing this bit.

External Request Mode:

1 = Setting this bit allows the DMA to start the transfer when a DREQx input is
received from an external device.
0 = The DMA transfer can be stopped by clearing this bit.

MOTOROLA MC68341 USER'S MANUAL 6-27

NOTE

If any fields in the CCR are modified while the channel is active,
that change is effective immediately. To avoid any problems
with changing the setup for the DMA channel, a zero should be
written to the STR bit in the CCR to halt the DMA channel at the
end of the current bus cycle.

6.7.3 Channel Status Register (CSR)

The CSR contains the channel status information. This register is accessible in either
supervisor or user space. The CSR can always be read or written to when the DMA module
is enabled (i.e., the STP bit in the MCR is cleared).

CSR1, CSR2 $78A, $7AA
7 6 5 4 3 2 1 0
| IRQ | DONE | BES | BED |CONF | BRKP | 0 | 0 |
RESET
0 0 0 0 0 0 0 0
Supervisor/User

IRQ—Interrupt Request

This bit is the logical OR of the DONE, BES, BED, CONF, and BRKP bits and is cleared
when they are all cleared. IRQ is positioned to allow conditional testing as a signed
binary integer. The state of this bit is not affected by the interrupt enable bits in the CCR.
The STR bit in the CCR cannot be set when this bit is set; all error status bits, except the
BRKP bit, must be cleared before the STR bit can be set.

1 = An interrupt condition has occurred.
0 = An interrupt condition has not occurred.

DONE—DMA Done

1 = The DMA channel has terminated normally.
0 = The DMA channel has not terminated normally. This bit is cleared by writing a
logic one or by a hardware reset. Writing a zero has no effect.

BES—Bus Error on Source

1 = The DMA channel has terminated with a bus error during the read bus cycle.

0 = The DMA channel has not terminated with a bus error during the read bus cycle.
This bit is cleared by writing a logic one or by a hardware reset. Writing a zero has
no effect.

BED—Bus Error on Destination

1 = The DMA channel has terminated with a bus error during the write bus cycle.

0 = The DMA channel has not terminated with a bus error during the write bus cycle.
This bit is cleared by writing a logic one or by a hardware reset. Writing a zero has
no effect.

6-28 MC68341 USER'S MANUAL MOTOROLA

CONF—Configuration Error

A configuration error results when either the SAR or the DAR contains an address that
does not match the port size specified in the CCR and the BTC register does not match
the larger port size or is zero.
1= The CCR STR bit is set, and a configuration error is present.
0 = The CCR STR bit is set, and no configuration error exists. This bit is cleared by
writing a logic one or by a hardware reset. Writing a zero has no effect.

BRKP—Breakpoint

1 = The breakpoint signal was set during a DMA transfer.
0 = The breakpoint signal was not set during a DMA transfer. This bit is cleared by
writing a logic one or by a hardware reset. Writing a zero has no effect.

Bits 1, 0—Reserved by Motorola
NOTE

The CSR is cleared by writing $7C to its location. The DMA
channel cannot be started until the CSR DONE, BES, BED,
CONF and BRKP bits are cleared.

6.7.4 Destination Address Register (DAR)

The DAR is a 32-bit register that contains the address of the destination operand used by
the DMA to write to memory or peripheral registers. This register is accessible in either

supervisor or user space. The DAR can always be read or written to when the DMA module
is enabled (i.e., the STP bit in the MCR is cleared).

DAR1, DAR2 $790, $7B0
31 0 2 28 27 % % 2 2 2 2 2 19 18 17 16

| A3l | A30 | A29 | A28 | A27 | A26 | A25 | A24 | A23 | A22 | A21 | A20 | Al19 | Al8 | Al7 | Al6 |
RESET:

U U U U U U U U U U U U U U U U

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
| A15 | Al4 | A13 | A12 | A1l | A10 | A9 | A8 | A7 | A6 | A5 | A4 | A3 | A2 | Al | A0 |
RESET:

U U U U U U U U U U U U U U U U
U = Unaffected by reset Supervisor/User

During the DMA write cycle, this register drives the address on the address bus. This
register can be programmed to increment (CCR DAPI bit set) or remain constant (CCR
DAPI bit cleared) after each operand transfer.

The register is incremented using unsigned arithmetic and will roll over if overflow occurs.
For example, if a register contains $FFFFFFFF and is incremented by 1, it will roll over to
$00000000. This register can be incremented by 1, 2, or 4, depending on the size of the
operand and the starting address. If the operand size is byte, the register is always
incremented by 1. If the operand size is word and the starting address is word aligned, the

MOTOROLA MC68341 USER'S MANUAL 6-29

register is incremented by 2. If the operand size is long word and the address is word
aligned, the register is incremented by 4. The DAR value must be aligned to an word
boundary if the transfer size is word or long word; otherwise, the CSR CONF bit is set, and
the transfer does not occur.

When read, this register always contains the next destination address. If a bus error
terminates the transfer, this register contains the next destination address that would have
been run had the error not occurred.

6.7.5 Function Code Register (FCR)

The FCR contains the source and destination function codes for the channel. This register
is accessible in either supervisor or user space. The FCR can always be read or written to
when the DMA module is enabled (i.e., the STP bit in the MCR is cleared).

FCR1, FCR2 $78B, $7AB
7 6 5 4 3 2 1 0
| SFC | DFC |
RESET:
U U] U] U]]
U = Unaffected by reset Supervisor/User

SFC—Source Function Code Field

This field specifies the source access to a certain address space type. The source
function code bits 3-0 are defined in Table 6-5.

DFC—Destination Function Code Field

This field specifies the destination access to a certain address space type. The
destination function code bits 3—0 are defined in Table 6-5.

Table 6-5. Address Space Encoding

Source/Destination
Function Code Bits
3 2 1 0 Address Spaces
0 0 0 0 Reserved (Motorola)
0 0 0 1 User Data Space
0 0 1 0 User Program Space
0 0 1 1 Reserved (User)
0 1 0 0 Reserved (Motorola)
0 1 0 1 Supervisor Data Space
0 1 1 0 Supervisor Program
Space
1 1 1 CPU Space
X X X DMA Space

6-30 MC68341 USER'S MANUAL MOTOROLA

NOTE

Although SFC3/DFC3 can be set for DMA transfers to
distinguish the source or destination space from other data or
program spaces, it is not required to be set. Since the CPU32
currently has only 3-bit SFC and DFC capability, it cannot
emulate SFC3 = 1 or DFC3 = 1 at this time. However, it is
recommended that SFC3/DFC3 be set to one to distinguish
DMA and CPU accesses during debug.

6.7.6 Interrupt Register (INTR)

The INTR contains the priority level for the channel interrupt request and the 8-bit vector
number of the interrupt. The register can be read or written to at any time while in
supervisor mode and while the DMA module is enabled (i.e., the STP bit in the MCR is
cleared).

INTR1, INTR2 $784, $7A4
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
o [o o o o] T |

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Supervisor Only

Bits 15-11—Reserved by Motorola

INTL—Interrupt Level Bits

Each module that can generate interrupts has an interrupt level field. The interrupt level
field contains the priority level of the interrupt for its associated channel. The priority level
encoded in these bits is sent to the CPU32 on the appropriate IRQx signal. The CPU32
uses this value to determine servicing priority. See Section 5 CPUO030 for more
information.

INTV—Interrupt Vector Bits

Each module that can generate interrupts has an interrupt vector field. The interrupt
vector field contains the vector number of the interrupt for its associated channel. This 8-
bit field indicates the offset from the base of the vector table where the address of the
exception handler for the specified interrupt is located. The INTV field is reset to $0F,
which indicates an uninitialized interrupt condition. See Section 5 CPUO030 for more
information.

MOTOROLA MC68341 USER'S MANUAL 6-31

6.7.7 Module Configuration Register (MCR)

The MCR controls the DMA channel configuration. Each DMA channel has an MCR. This
register can be either read or written when the channel is enabled and is in the supervisor
state. The MCR is not affected by a CPU32 RESET instruction.

MCR1, MCR2 $780, $7A0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| sTP | FRZ1 | FRZ0 | SE | 0 | ISM | SUPV | MAID | IARB |
RESET:
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Supervisor Only

STP—Stop Bit

1 = Setting the STP bit stops all clocks within the DMA module except for the clock
from the IMB. The clock from the IMB remains active to allow the CPU32 access
to the MCR. The clock stops on the low phase of the clock and remains stopped
until the STP bit is cleared by the CPU32 or a hardware reset. Accesses to DMA
module registers while in stop mode produce a bus error. The DMA module
should be disabled in a known state before setting the STP bit. The STP bit should
be set prior to executing the LPSTOP instruction to reduce overall power
consumption.

0 = The channel operates in normal mode.

NOTE

The DMA module uses only one STP bit for both channels. A
read or write to either MCR accesses the same STP control bit.

FRZ1, FRZ0—Freeze

These bits determine the action taken when the FREEZE signal is asserted on the IMB
when the CPU32 has entered background debug mode. The DMA module negates BR
and keeps it negated until FREEZE is negated or reset. Table 6-6 lists the action taken
for each bit combination.

Table 6-6. FRZx Control Bits

FRZ1 FRZO Action
0 0 Ignore FREEZE
0 1 Reserved
1 0 Freeze on Boundary*
1 1 Reserved

*The boundary is defined as any bus cycle by
the DMA module.

6-32 MC68341 USER'S MANUAL MOTOROLA

NOTE

The DMA module uses only one set of FRZx bits for both
channels. A read or write to either MCR accesses the same
FRZx control bits.

SE—Single-Address Enable
This bit is implemented for future M68300 family compatibility.

1 = In single-address mode, the external data bus is driven during a DMA transfer.
0 = In single-address mode, the external data bus remains in a high-impedance state
during a DMA transfer (used for intermodule DMA).
In dual-address mode, the SE bit has no effect.

Bit 11—Reserved by Motorola

ISM2—-ISMO—Interrupt Service Mask

These bits contain the interrupt service mask level for the channel. When the interrupt
service level on the IMB is greater than the interrupt service mask level, the DMA
vacates the bus and negates BR until the interrupt service level is less than or equal to
the interrupt service mask level.

NOTE

When the CPU32 status register (SR) interrupt priority mask bits
I2—10 are at a higher level than the DMA ISM bits, the DMA
channel will not start. The channel will begin operation when the
level of the SR 1210 bits is less than or equal to the level of the
DMA ISM bits.

SUPV—Supervisor/User

The value of this bit has no effect on registers permanently defined as supervisor-only
access.

1 = The DMA channel registers defined as supervisor/user reside in supervisor data
space and are only accessible from supervisor programs.

0 = The DMA channel registers defined as supervisor/user reside in user data space
and are accessible from either supervisor or user programs.

MAID—Master Arbitration 1D

These bits establish bus arbitration priority level among modules that have the capability
of becoming bus master. For the MC68341, the MAID bits are used to arbitrate between
DMA channel 1 and channel 2. If both channels are programmed with the same MAID
level, channel 1 will have priority. These bits are implemented for future M68300 family
compatibility. In the MC68341, only the SIM and the DMA can be bus masters. However,
future versions of the M68300 family may incorporate other modules that may also be
bus masters. For these devices, the MAID bits will be required. For the MAID bits, zero is
the lowest priority and seven is the highest priority.

MOTOROLA MC68341 USER'S MANUAL 6-33

IARB — Interrupt Arbitration 1D

Each module that generates interrupts has an IARB field. These bits are used to arbitrate
for the bus in the case that two or more modules simultaneously generate an interrupt at
the same priority level. No two modules can share the same IARB value. The reset value
of the IARB field is $0, which prevents the DMA module from arbitrating during the
interrupt acknowledge cycle. The system software should initialize the IARB field to a
value from $F (highest priority) to $1 (lowest priority).

NOTE

The DMA module uses only one set of IARB bits for both
channels. A read or write to either MCR accesses the same
IARB control bits.

6.7.8 Source Address Register (SAR)

The SAR is a 32-bit register that contains the address of the source operand used by the
DMA to access memory or peripheral registers. This register is accessible in either
supervisor or user space. The SAR can always be read or written to when the DMA module
is enabled (i.e., the STP bit in the MCR is cleared).

SAR1, SAR2 $78C, $7AC

31 30 29 28 27 % 25 24 23 2 21 20 19 18 17 16

| A3l | A30 | A29 | A28 | A27 | A26 | A25 | A24 | A23 | A22 | A21 | A20 | Al19 | Al8 | Al7 | Al6 |

RESET:

U U U U U U U U U U U U] U]]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| A15 | Al4 | A13 | A12 | All | A10 | A9 | A8 | A7 | A6 | A5 | A | A3 | A2 | Al | A0 |
RESET:

U U U U U U U U U U U U U U] U
U = Unaffected by reset Supervisor/User

During the DMA read cycle, the SAR drives the address on the address bus. This register
can be programmed to increment (CCR SAPI bit set) or remain constant (CCR SAPI bit
cleared) after each operand transfer.

The register is incremented using unsigned arithmetic and will roll over if overflow occurs.
For example, if the register contains $FFFFFFFF and is incremented by 1, it will roll over to
$00000000. This register is incremented by 1, 2, or 4, depending on the size of the operand
and the memory starting address. If the operand size is byte, then the register is always
incremented by 1. If the operand size is word and the starting address is word aligned, then
the register is incremented by 2. If the operand size is long word and the address is word
aligned, then the register is incremented by 4. The SAR value must be aligned to an word
boundary if the transfer size is word or long word; otherwise, the CSR CONF bit is set, and
the transfer does not occur.

6-34 MC68341 USER'S MANUAL MOTOROLA

When read, this register always contains the next source address. If a bus error terminates
the transfer, this register contains the next source address that would have been run had
the error not occurred.

6.8 DATA PACKING

The internal DHR is a 32-bit register that can serve as a buffer register for the data being
transferred during dual-address DMA cycles. No address is specified since this register can
not be addressed by the programmer. The DHR allows the data to be packed and
unpacked by the DMA during the dual-address transfer. For example, if the source operand
size is byte and the destination operand size is word, then for each DMA request two byte
read cycles occur, followed by one word write cycle (see Figure 6-16). The two bytes of
data are buffered in the DHR until the destination (write) word cycle occurs. The DHR
allows for packing and unpacking of operands for the following sizes: bytes to words, bytes
to long words, words to long words, words to bytes, long words to bytes, and long words to
words.

SOURCE/DESTINATION DESTINATION/SOURCE
BYTEO
<> R
BYTEL
BYTEO
BYTEL <~—> | BYTEO | BYTEL | BYTE2 | BYTE3
BYTE2
BYTE3
BYTEO BYTEL
~<—> | B0 | eviet | ez | evies
BYTE2 BYTE3

Figure 6-16. Packing and Unpacking of Operands

For normal transfers aligned with the size and address, only two bus cycles are required for
each transfer: a read from the source and a write to the destination.

6.9 DMA CHANNEL INITIALIZATION SEQUENCE

The following paragraphs describe DMA channel initialization and operation. If the DMA
capability of the MC68341 is being used, the initialization steps should be performed during
the part initialization sequence. The mode operation steps should be performed to start a
DMA transfer. The DONEXx pin requires an external pullup resistor even if operating only in
the internal request mode.

MOTOROLA MC68341 USER'S MANUAL 6-35

6.9.1 DMA Channel Configuration

The following steps can be accomplished in any order when initializing the DMA channel.
These steps need to be performed for each channel used.

Module Configuration Register (MCR)

Clear the stop bit (STP) for normal operation. (Only one STP bit exists for both
channels.)

Select whether to respond to or ignore FREEZE (FRZx bits). (Only one set of FRZx
bits exists for both channels.)

If desired, enable the external data bus operation in single-address mode (SE bit).

Program the interrupt service mask to set the level below which interrupts are ignored
during a DMA transfer (ISM bits). The channel will begin operation when the level of
the CPU32 SR 12-10 bits is less than or equal to the level of the DMA ISM bits.

Select the access privilege for the supervisor/user registers (SUPV bit).

Program the master arbitration ID (MAID) to establish priority on the IMB between both
DMA channels. Note that the two DMA channels should have distinct MAIDs if both
channels are being used. (If they are programmed the same, channel 1 has priority.)

Select the interrupt arbitration level for the DMA channel (IARB bits). (Only one set of
IARB bits exists for both channels.)

Interrupt Register (INTR)

Program the interrupt priority level for the channel interrupt (INTL bits).
Program the vector number for the channel interrupt (INTV bits).

Channel Control Register (CCR)

6-36

If desired, enable the interrupt when breakpoint is recognized and the channel is the
bus master (INTB bit).

If desired, enable the interrupt when done without an error condition (INTN bit).
If desired, enable the interrupt when the channel encounters an error (INTE bit).

Select the direction of transfer if in single-address mode (ECO bit), or select which
device generates requests if in dual-address mode.

MC68341 USER'S MANUAL MOTOROLA

6.9.1.1 DMA CHANNEL OPERATION IN SINGLE-ADDRESS MODE. The following steps
are required to begin a DMA transfer in single-address mode.
Channel Control Register (CCR)

» Write a zero to the start bit (STR) to prevent the channel from starting the transfer
prematurely.

» Select the amount by which to increment the source address for a read cycle (SAPI bit)
or the destination address for a write cycle (DAPI bit).

» Define the transfer size by selecting the source size for a read cycle (SSIZE field) or by
selecting the destination size for a write cycle (DSIZE field).

» Select external burst request mode or external cycle steal request mode (REQ field).
» Set the S/D bit for signal-address transfer.

Channel Status Register (CSR)

* Clear the CSR by writing $7C into it. The DMA cannot be started until the DONE, BES,
BED, CONF, and BRKP bits are cleared.

Function Code Register (FCR)

» Encode the source function code for a read cycle or the destination function code for a
write cycle.

Address Register (SAR or DAR)
 Write the source address for a read cycle or the destination address for a write cycle.

Byte Transfer Counter (BTC)
» Encode the number of bytes to be transferred.

Channel Control Register (CCR)
» Write a one to the start bit (STR) to allow the transfer to begin.

MOTOROLA MC68341 USER'S MANUAL 6-37

6.9.1.2 DMA CHANNEL OPERATION IN DUAL-ADDRESS MODE. The following steps
are required to begin a DMA transfer in dual-address mode.
Channel Control Register (CCR)

» Write a zero to the start bit (STR) to prevent the channel from starting the transfer
prematurely.

» Select the amount by which to increment the source and destination addresses (SAPI
and DAPI bits).

» Select the source and destination sizes (SSIZE and DSIZE fields).

» Select internal request, external burst request mode, or external cycle steal request
mode (REQ field).

* If using internal request, select the amount of bus bandwidth to be used by the DMA
(BB field).

e Clear the S/D bit for dual-address transfer.

Channel Status Register (CSR)

e Clear the CSR by writing $7C into it. The DMA cannot be started until the DONE, BES,
BED, CONF, and BRKP bits are cleared.

Function Code Register (FCR)
* Encode the source and destination function codes.

Address Registers (SAR and DAR)
» Write the source and destination addresses.

Byte Transfer Counter (BTC)
* Encode the number of bytes to be transferred.

Channel Control Register (CCR)
» Write a one to the start bit (STR) to allow the transfer to begin.

6-38 MC68341 USER'S MANUAL MOTOROLA

6.9.2 DMA Channel Example Configuration Code

The following are examples of configuration sequences for a DMA channel in single- and
dual-addressing modes.

This common set of equates is used by all of the following examples:

*% *% *% *% *% *% *% *% *% *% *% *% *

* SIM41 equates

kkhhkhkkkkkkkkkkkhkhkhkkkkk

MBAR EQU $0003FF00 Address of SIM41 Module Base Address Reg.
MODBASE EQU $FFFFFO00 SIM41 MBAR address value
PPARC EQU $29 Port C pin assignment register

*% *% *% *% *% *% *% *% *% *% *% *% *

* DMA Channel 1 equates

DMACH1 EQU $780 Offset from MBAR for channel 1 regs
DMAMCR1 EQU $0 MCR for channel 1

* Channel 1 register offsets from channel 1 base address

DMAINT1 EQU $4 interrupt register channel 1
DMACCR1 EQU $8 control register channel 1

DMACSR1 EQU $A status register channel 1

DMAFCR1 EQU $B function code register channel 1
DMASAR1 EQU $C source address register channel 1
DMADAR1 EQU $10 destination address register channel 1
DMABTC1 EQU $14 byte transfer count register channel 1

*% *% *% *% *% *% *% *% *% *% *% *% *

In addition to the initialization shown in each example, the Port C Pin Assignment Register
should also be configured if DTC, RDYX, or delayed DACKXx signals are used:
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkk
* PPARC initialization for DMA signal functionality
* The following example selects RDY1 and delayed DACKXx functionality for
* DMA channel 1 - other pins unchanged:

OR.B #%$50,MODBASE+PPARC Select RDY1 & delayed DACKZ1 funct

*% *% *% *% *% *% *% *% *% *% *% *% *

Example 1: External Burst Request Generation, Single-Address Transfers.
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkk

* MC68341 basic DMA channel register initialization example code.

* This code is used to initialize the 68341's internal DMA channel

* registers, providing basic functions for operation.

* The code sets up channel 1 for external burst request generation,

* single-address mode, long word size transfers.

* Control signals are asserted on the DMA read cycle.

kkhkkkkkkkkkkkkhhhkkkkkkkkkkkhkhkkkkkk

* Equates

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkk

SARADD EQU $10000 source address

MOTOROLA MC68341 USER'S MANUAL 6-39

NUMBYTE EQU $C number of bytes to transfer

*% *% *% *% *% *% *% *% *% *% *% *% *

* |nitialize DMA Channel 1

kkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhhkkkkkkkkkkkkhkhkhkkkkkkkkkkhkhkhhkkkkkkkk

LEA MODBASE+DMACH1,A0 Pointer to channel 1

* |nitialize DMA channel 1 MCR
* Normal Operation, ignore FREEZE, single-address mode. ISM field at 2. Make
* sure SR 12-10 bits are less than or equal to ISM bits for channel startup.
* Supervisor/user reg. unrestricted, MAID field at 7. IARB priority at 1.
MOVE.W #$1271,(A0)

* Clear channel control reg.
* Clear STR (start) bit to prevent the channel from starting a transfer early.
CLR.W DMACCR1(A0)

* |nitialize interrupt reg.
* Interrupt priority at 7, interrupt vector at $42.
MOVE.W #$0742,DMAINT1(A0Q)

* |nitialize channel status reg.
* Clear the DONE, BES, BED, CONF and BRKP bits to allow channel to startup.
MOVE.B #$7C,DMACSR1(A0)

* |nitialize function code reg.
* DMA space, user data space for source.
MOVE.B #$99,DMAFCR1(A0)

* |nitialize source operand address
* Source address is equal to $10000.
MOVE.L SARADD,DMASAR1(A0)

* Initialize the byte transfer count reg.
* The number of bytes to be transferred is $C or 3 long words
MOVE.L NUMBYTE,DMABTC1(AO)

* Channel control reg. init. and Start DMA transfers
* No interrupts are enabled, source (read) cycle. Increment source
* address, source size is long word, REQ is external burst request.
* Single-address mode, start the DMA transfers.

MOVE.W #$1823,DMACCR1(A0)

6-40 MC68341 USER'S MANUAL

MOTOROLA

Example 2: Internal Request Generation, Memory to Memory Transfers.

kkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkhkhkkkkkkkkkkkhkhkhhkkkkkkkkkkhkhkhkhkhkkrkkkkkk

* MC68341 basic DMA channel register initialization example code.
* This code is used to initialize the 68341's internal DMA channel

* registers, providing basic functions for operation.

* The code sets up channel 1 for internal request generation

* memory to memory transfers.

kkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkhhkkkkkkkkkkkhkhkhhkkkkkkkkkkhkhkhhkkkkkkkk

* Equates
kkkkkkkkkkkkkkkkkkkkhkkkkkhkhkkkkkhkhkkkkkhkhkkkkhkhkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkk
SARADD EQU $6000 source address

DARADD EQU $8000 destination address
NUMBYTE EQU $E number of bytes to transfer

*% *% *% *% *% *% *% *% *% *% *% *% *

* |nitialize DMA Channel 1

LEA MODBASE+DMACH1,A0 Pointer to channel 1

* |nitialize DMA channel 1 MCR
* Normal Operation, ignore FREEZE, dual-address mode. ISM field at 3. CPU32
* SR 12-10 bits must be less than or equal to ISM bits for channel startup.
* Supervisor/user reg. unrestricted, MAID field at 3. IARB priority at 4.
MOVE.W #$0334,(A0)

* Clear channel control reg.
* Clear STR (start) bit to prevent the channel from starting a transfer early.
CLR.W DMACCR1(A0)

* |nitialize interrupt reg.
* Interrupt priority at 7, interrupt vector at $42.
MOVE.W #$0742,DMAINT1(AQ)

* |nitialize channel status reg.
* Clear the DONE, BES, BED, CONF and BRKP bits to allow channel to startup.
MOVE.B #$7C,DMACSR1(A0)

* |nitialize function code reg.
* DMA space, supervisor data space for source and destination.
MOVE.B #$DD,DMAFCR1(A0)

* |nitialize source operand address
* Source address is equal to $6000.

MOVE.L SARADD,DMASARZ1(AO0)

* Initialize destination operand address
* Destination address is equal to $8000.

MOTOROLA MC68341 USER'S MANUAL

6-41

MOVE.L DARADD,DMADAR1(A0)

* |nitialize the byte transfer count reg.
* The number of bytes to be transferred is $E or 7 words
MOVE.L NUMBYTE,DMABTC1(A0)

* Channel control reg. init. and Start DMA transfers
* No interrupts are enabled, destination (write) cycle. Increment source and
* destination addresses,source size is word, destination size is word.
* REQ is internal. 100% of bus bandwidth, dual-address transfers,
* start the DMA transfers.
MOVE.W #$0E8D,DMACCR1(A0)

* MC68341 basic DMA channel register initialization example code.
* This code is used to initialize the 68341's internal DMA channel

* registers, providing basic functions for operation.

* The code sets up channel 1 for internal request generation

* to perform a memory block initialization for 100 bytes.

kkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkhhkkkkkkkkkkkhkhkhkhkkkkkkkkkkhkhkhkhkhkkrkkkkkk

* Equates
kkkkkkkkkkkkkkkkkkkkhkkkkhkhkkkkkhkhkkkkkkhkhkkkkkhkhkkkkkkhkkkkkhkkkkkkkkkkkkkkkkkkkkkk
SARADD EQU $6000 source address

DARADD EQU $8000 destination address
NUMBYTE EQU $64 number of bytes to transfer

*% *% *% *% *% *% *% *% *% *% *% *% *

* |nitialize DMA Channel 1

LEA MODBASE+DMACH1,A0 Pointer to channel 1

* |nitialize DMA channel 1 MCR
* Normal Operation, ignore FREEZE, dual-address mode. ISM field at 3. CPU32
* SR 12-10 bits must be less than or equal to ISM bits for channel startup.
* Supervisor/user reg. unrestricted, MAID field at 3.
* |ARB priority at 4.
MOVE.W #$0334,(A0)

* Clear channel control reg.
* Clear STR (start) bit to prevent the channel from starting a transfer early.
CLR.W DMACCR1(AO0)

* |nitialize interrupt reg.

6-42 MC68341 USER'S MANUAL

MOTOROLA

* Interrupt priority at 7, interrupt vector at $42.
MOVE.W #$0742,DMAINT1(A0Q)

* |nitialize channel status reg.
* Clear the DONE, BES, BED, CONF and BRKP bits to allow channel to startup.
MOVE.B #$7C,DMACSR1(A0)

* |nitialize function code reg.
* DMA space, supervisor data space for source and destination.
MOVE.B #$DD,DMAFCR1(A0)

* |nitialize source operand address
* Source address is equal to $6000.
MOVE.L SARADD,DMASAR1(A0)

* Initialize destination operand address
* Destination address is equal to $8000.
MOVE.L DARADD,DMADARZ1(A0)

* |nitialize the byte transfer count register
* The number of bytes to be transferred is $64 or 50 words
MOVE.L NUMBYTE,DMABTC1(A0)

* Channel control reg. init. and Start DMA transfers

* No interrupts are enabled, destination (write) cycle.

* Source address is not incremented. Increment the destination address.

* Source size is word, destination size is word. REQ is internal.

* 100% of bus bandwidth, dual-address transfers, start the DMA transfers.
MOVE.W #$068D,DMACCR1(A0)

Example 4: Cycle Steal Request Generation, Dual-Address Transfers.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkk

* MC68341 basic DMA channel register initialization example code.

* This code is used to initialize the 68341's internal DMA channel

* registers, providing basic functions for operation.

* The code sets up channel 1 for external cycle steal request generation,
* dual-address transfers. DMA 16-bit wide data from an odd address to an
* even address. Control signals are asserted on the DMA read cycle.

kkkhkkkkkkkkkkkkhhhkkkkkkkkkkkhkhkkkkkk

* Equates

kkkkkkkkkkkkkkkkkkkhkkkkhkhkkkkkhkhkkkkkkhkhkkkkhkhkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkk

SARADD EQU $6001 source address is an ODD address
DARADD EQU $10000 destination address is and EVEN address
NUMBYTE EQU $14 number of bytes to transfer

MOTOROLA MC68341 USER'S MANUAL

6-43

* |nitialize DMA Channel 1

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkk

LEA MODBASE+DMACH1,A0 Pointer to channel 1

* |nitialize DMA channel 1 MCR
* Normal Operation, ignore FREEZE, dual-address mode. ISM field at 0. CPU32
* SR 12-10 bits must be less than or equal to ISM bits for channel startup.
* Supervisor/user reg. unrestricted, MAID field at 4. IARB priority at 8.
MOVE.W #$00C8,(A0)

* Clear channel control reg.
* Clear STR (start) bit to prevent the channel from starting a transfer early.
CLR.W DMACCR1(AO0)

* |nitialize interrupt reg.
* Interrupt priority at 7, interrupt vector at $42.
MOVE.W #$0742,DMAINT1(A0Q)

* |nitialize channel status reg.
* Clear the DONE, BES, BED, CONF and BRKP bits to allow channel to startup.
MOVE.B #$7C,DMACSR1(A0)

* |nitialize function code reg.
* DMA space, supervisor data space for source and destination.
MOVE.B #$DD,DMAFCR1(AQ)

* |nitialize source operand address
* Source address is equal to $6001, and odd address.
MOVE.L SARADD,DMASAR1(A0)

* Initialize destination operand address
* Destination address is equal to $10000, and even address.
MOVE.L DARADD,DMADAR1(A0)

* Initialize the byte transfer count register
* The number of bytes to be transferred is $14 or 20 bytes
MOVE.L NUMBYTE,DMABTC1(AO)

* Channel control reg. init. and Start DMA transfers
* No interrupts are enabled, source (read) cycle.
* Increment the source and destination addresses.
* Source size is byte, destination size is word. REQ is external cycle steal.
* dual-address transfers, start the DMA transfers.
MOVE.W #$1DB1,DMACCR1(A0)

END

kkhkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkk

6-44 MC68341 USER'S MANUAL

MOTOROLA

6.10 MC68341 DMA ENHANCEMENTS

The MC68341 DMA module implementation adds three new signals - RDY1, RDY2, and
DTC - and a new delayed DACKx operating mode to the original MC68340 DMA. These
changes provide additional handshaking flexibility and minimize additional glue logic for
single address transfers. RDY1 and RDY2 are multiplexed with timer signals TGATE and
TIN, and DTC is multiplexed with FC3. Selection of these multiplexed pin functions, and
normal versus delayed DACKXx assertion, is controlled by programming the Port C Pin
Assignment Register in the SIM41. Refer to the PPARC register description in Section 4
SIM for initialization information.

6.10.1 RDYx

Configuring TGATE/RDY1 or TIN/RDY2 as a RDYx input for single address transfers
automatically enables the ready handshake function for that channel. In this mode,
termination of the DMA transfer requires the assertion of both DSACKx and RDYx, instead
of just DSACKXx. This feature allows a slow external peripheral device to delay termination
of the DMA transfer until it has supplied data or is ready to receive data from memory.

Like DSACKx, RDYx is an asynchronous input which is sampled on the falling edge of
CLKOUT, but must be recognized one clock cycle sooner than DSACKXx to provide the
same termination timing. If RDYx is asserted for the same clock falling edge or a later edge
than DSACKXx, termination of the bus cycle is controlled by RDYx and will occur two clocks
after RDYx is recognized. An early internal DSACKx termination (M68300 fast termination
or 68000 3-clock termination) is delayed to the earliest external DSACKXx recognition point,
forcing a minimum three clock bus cycle for M68300 transfers, and four clock for 68000
transfers.

RDYx can be held asserted between DMA cycles to allow DSACKXx to control termination of
the cycle. Note that fast termination M68300 and 3-clock 68000 cycles are still forced to 3
clocks and 4 clocks, respectively. Note that RDYx should not be enabled during dual
address mode transfers.

6.10.2 Delayed DACKXx

Delayed DACKx operation can be selected during single address transfers to delay
assertion of DACKx to the peripheral device on reads until memory has provided valid data
on the data bus. For transfers from memory to device, DACKXx is asserted after DSACKXx is
recognized. On device to memory transfers, DACKXx is asserted with AS. Delayed DACKx
programmed without RDYx generates a one clock assertion of the DACKXx pin (except on
fast termination cycles). Typically, delayed DACKXx is programmed with RDYx to allow the
peripheral to delay termination of the cycle and negation of DACKXx.

6.10.3 DTC

DTC is asserted for one clock at the end of all MC68341 bus cycles when selected (CPU or
DMA) to indicate the bus transfer is complete. DTC does not assert for bus cycles
terminated with a normal bus error or retry, but does assert for cycles terminated with late
bus error or late retry.

MOTOROLA MC68341 USER'S MANUAL 6-45

DTC can be used by device or memory control logic during DMA transfers with RDYx to
detect the last clock of a bus cycle, before the address or data strobes negate. Since
termination of the bus cycle is dependent on two different termination sources (DSACKXx
and RDYXx), neither the device nor the memory can deterministically predict the end of the
bus cycle unless the alternate termination is also taken into account. DTC provides a direct
end-of-transfer indication.

6.10.4 Timing Examples

Figures 6-17—6-20 show timing examples of the the DMA handshake signals used with
M68300 bus cycles. DREQx timing is not shown in these examples.

Figure 6-17 shows single-address burst reads from two-clock memory with RDYx enabled.
Although the memory interface in this example is configured for internal fast termination,
enabling RDYx delays termination until two clocks after RDYx is recognized. The first bus
cycle shows RDYx asserted for the S2 falling edge - this causes the bus cycle to terminate
two clocks later for a four clock bus cycle. If RDYx remains asserted into the next DMA
transfer, it is recognized asserted on the falling edge of SO and the bus cycle ends two
clocks later for a three clock bus cycle.

A single address write with RDYx enabled is shown in Figure 6-18. The memory interface in
this example again uses fast termination, but end of the bus cycle is delayed by RDYx. The
assertion of DS and UWE /LWE is delayed until one clock after RDYx is recognized to allow
write data from the device to become valid before data strobes are asserted to memory.

Figure 6-19 shows a single address read with both delayed DACKx and RDYx enabled.
DACKXx remains negated until after DSACKx from memory is recognized, allowing memory
to place valid data on the bus before DACKx is asserted to the peripheral device. The
device asserts RDYx to signal readiness to complete the transfer.

In Figure 6-20, a single address write with delayed DACKx and RDYx is shown. DACKx
asserts immediately with AS in this example to select the device and gate its data onto the
bus for the memory write. RDYx asserts before DSACKXx, delaying the bus cycle until
DSACKXx asserts.

6-46 MC68341 USER'S MANUAL MOTOROLA

SO s1 S2 s3 s4 s3 s4 s5 SO Sl sz S3 S4 S5 SO
CLOCK _/__/_\ /\ \ I\ —\ I\ / \
FCIADDRISIZ X X

RIW
AIS — \ / \ /
AS68K
ps / \ / \ /
LDS/UDS
LWE/UWE
o0) <) C—

DSACKL /
RDYx, \
DACKX \ / \ /

e __/ / n__/

BERR

Figure 6-17. M68300 Single Address Read with RDYx

MOTOROLA MC68341 USER'S MANUAL 6-47

S0 S1 S2 S3 S4 S3 S4 S5 S0 S1 S2 S3 S4 S5 SO
ws_ /NN S S\
FC/ADDR/SIZ X X

R/w—\
E_/ \ / \ /

LDS/UDS

Ve ____/ ___/
oo — >

DSACK1 /
RDYx, \
DACKX \ / \ /

e/ n/ /S

BERR

Figure 6-18. M68300 Single Address Write with RDYx

6-48 MC68341 USER'S MANUAL MOTOROLA

SO S1 S2 S3 S4 S3 S4 S3 S4 S3 S4 S5 SO

coo_ /N S\

FC/ADDRI/SIZ X

RIW

S /T

LDS/UDS

LWE/UWE /
DSACKx J \

DACKx \
RDYx \

DTC /

BERR

i
ETWTT W W ﬁg

Figure 6-19. M68300 Single Address Read with Delayed DACKx and RDYx

MOTOROLA MC68341 USER'S MANUAL 6-49

SECTION 7
SERIAL MODULE

The MC68341 serial module is a dual universal asynchronous/synchronous
receiver/transmitter that interfaces directly to the CPU32 processor via the intermodule
bus (IMB). The serial module, shown in Figure 7-1, consists of the following major

functional areas:

¢ Two Independent Serial Communication Channels (A and B)

« Baud Rate Generator Logic
 Internal Channel Control Logic
* Interrupt Control Logic

[<—— CTSA
—> RTSA
~<——— RxDA
—> TxDA
SERIAL COMMUNICATIONS ~ [—> RXRDYA
CHANNELS A AND B —> TxRDYA
~<— CTSB
—> RTSB
l<<—— RxDB
—> TxDB
le——— X1
BAUD RATE I
GENERATOR LOGIC ok
INTERNAL CHANNEL
CONTROL LOGIC
INTERRUPT CONTROL
LOGIC

Figure 7-1. Simplified Block Diagram

MOTOROLA MC68341 USER’S MANUAL 7-1

7.1 MODULE OVERVIEW

Features of the serial module are as follows:

7-2

Two, Independent, Full-Duplex Asynchronous/Synchronous Receiver/Transmitter
Channels

Quadruple-Buffered Receiver
Double-Buffered Transmitter

Independently Programmable Baud Rate for Each Receiver and Transmitter
Selectable from:

—19 Fixed Rates: 50 to 76.8k Baud

—External 1x Clock or 16x Clock

Programmable Data Format:

—Five to Eight Data Bits Plus Parity

—QOdd, Even, No Parity, or Force Parity

—Nine-Sixteenths to Two Stop Bits Programmable in One-Sixteenth Bit Increments
Programmable Channel Modes:

—Normal (Full Duplex)

—Automatic Echo

—Local Loopback

—Remote Loopback

Automatic Wakeup Mode for Multidrop Applications

Seven Maskable Interrupt Conditions

Parity, Framing, and Overrun Error Detection

False Start-Bit Detection

Line-Break Detection and Generation

Detection of Breaks Originating in the Middle of a Character
Start/End Break Interrupt/Status

On-Chip Crystal Oscillator

MC68341 USER’S MANUAL MOTOROLA

7.1.1 Serial Communication Channels A and B

Each communication channel provides a full-duplex asynchronous/synchronous receiver
and transmitter using an operating frequency independently selected from a baud rate
generator or an external clock input.

The transmitter accepts parallel data from the IMB, converts it to a serial bit stream,
inserts the appropriate start, stop, and optional parity bits, then outputs a composite serial
data stream on the channel transmitter serial data output (TxDx). Refer to 7.3.2.1
Transmitter for additional information.

The receiver accepts serial data on the channel receiver serial data input (RxDx), converts
it to parallel format, checks for a start bit, stop bit, parity (if any), or break condition, and
transfers the assembled character onto the IMB during read operations. Refer to 7.3.2.2
Receiver for additional information.

7.1.2 Baud Rate Generator Logic

The crystal oscillator operates directly from a 3.6864-MHz crystal connected across the
X1 input and the X2 output or from an external clock of the same frequency connected to
X1. The clock serves as the basic timing reference for the baud rate generator and other
internal circuits.

The baud rate generator operates from the oscillator or external TTL clock input and is
capable of generating 19 commonly used data communication baud rates ranging from 50
to 76.8k by producing internal clock outputs at 16 times the actual baud rate. Refer to 7.2
Serial Module Signal Definitions and 7.3.1 Baud Rate Generator for additional
information.

The external clock input (SCLK), which bypasses the baud rate generator, provides a
synchronous clock mode of operation when used as a divide-by-1 clock and an
asynchronous clock mode when used as a divide-by-16 clock. The external clock input
allows the user to use SCLK as the only clock source for the serial module if multiple baud
rates are not required.

7.1.3 Internal Channel Control Logic

The serial module receives operation commands from the CPU32 and, in turn, issues
appropriate operation signals to the internal serial module control logic. This mechanism
allows the registers within the module to be accessed and various commands to be
performed. Refer to 7.4 Register Description and Programming for additional
information.

7.1.4 Interrupt Control Logic

Seven interrupt request (IRQ7-IRQ1) signals are provided to notify the CPU32 that an
interrupt has occurred. These interrupts are described in 7.4 Register Description and
Programming. The interrupt status register (ISR) is read by the CPU32 to determine all

MOTOROLA MC68341 USER’S MANUAL 7-3

currently active interrupt conditions. The interrupt enable register (IER) is programmable
to mask any events that can cause an interrupt.

7.1.5 Comparison of the Serial Module to the MC68681

The serial module is code compatible with the MC68681 with some modifications. The
following paragraphs describe the differences.

The programming model is slightly altered. The supervisor/user block in the MC68341
closely follows the MC68681. The supervisor-only block has the following changes:

» The interrupt vector register is moved from supervisor/user to supervisor only at a
new address.

+ MR2A and MR2B are moved from a hidden address location to a location at the
bottom of the programming model.

The timer/counter is eliminated as well as all associated command and status registers.
Only certain output port pins are available.

There are no IP pins on the MC68341.

RXRTS is more automated on the MC68341.

The XTAL_RDY bit in the ISR should be polled until it is cleared to prevent an unstable
frequency from being applied to the baud rate generator. The following pseudocode is an
example:

if (XTAL_RDY==0)
begin
write CSR
end
else
begin
wait
jump loop
end

7.2 SERIAL MODULE SIGNAL DEFINITIONS

The following paragraphs contain a brief description of the serial module signals. Figure 7-
2 shows both the external and internal signal groups.

NOTE

The terms assertion and negation are used throughout this
section to avoid confusion when dealing with a mixture of
active-low and active-high signals. The term assert or assertion
indicates that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

7-4 MC68341 USER’S MANUAL MOTOROLA

ADDRESS BUS
o x1
INTERNAL BAUD RATE X2
CONTROL CONTROL GENERATOR >
LOGIC LOGIC
IMB <:> s < SCLK
INTERFACE —| E
SIGNALS R
[
DATA A
DATA BUS L CHANNEL A
DATA BUS
MUX
_— M FOUR-CHARACTER RxDA
0 RECEIVE BUFFER |
D
U
TWO-CHARACTER TXDA _
L TRANSMIT BUFFER >
E EXTERNAL
RTSA _ | — IN;I(EBF’{\IIZ’-'_%E
! CTSA
N
T TXRDYA
E RXRDYA
R
N
A CHANNEL B
L
5 FOUR-CHARACTER RxDB
U RECEIVE BUFFER |
S
TWO-CHARACTER TXDB
TRANSMIT BUFFER -
RTSB
CTSB

Figure 7-2. External and Internal Interface Signals

7.2.1 Crystal Input or External Clock (X1)

This input is one of two connections to a crystal or a single connection to an external
clock. A crystal or an external clock signal, at 3.6864 MHz, must be supplied when using
the baud rate generator. If a crystal is used, a capacitor of approximately 10 pF should be
connected from this signal to ground. If this input is not used, it must be connected to Vcc
or GND. Refer to Section 11 Applications for an example of a clock driver circuit.

7.2.2 Crystal Output (X2)

This output is the additional connection to a crystal. If a crystal is used, a capacitor of
approximately 5 pF should be connected from this signal to ground. If an external TTL-
level clock is used on X1, the X2 output must be left open. Refer to Section 11
Applications for an example of a clock driver circuit.

MOTOROLA MC68341 USER’S MANUAL 7-5

7.2.3 External Input (SCLK)

This input can be used as the clock input for channel A and/or channel B and is
programmable in the clock-select registers (CSR). When used as the receiver clock,
received data is sampled on the rising edge of the clock. When used as the transmitter
clock, data is output on the falling edge of the clock. If this input is not used, it must be
connected to Vcc or GND.

7.2.4 Channel A Transmitter Serial Data Output (TxDA)

This signal is the transmitter serial data output for channel A. The output is held high
(‘'mark’ condition) when the transmitter is disabled, idle, or operating in the local loopback
mode. Data is shifted out on this signal on the falling edge of the clock source, with the
least significant bit transmitted first.

7.2.5 Channel A Receiver Serial Data Input (RxDA)

This signal is the receiver serial data input for channel A. Data received on this signal is
sampled on the rising edge of the clock source, with the least significant bit received first.

7.2.6 Channel B Transmitter Serial Data Output (TxDB)

This signal is the transmitter serial data output for channel B. The output is held high
(‘'mark’ condition) when the transmitter is disabled, idle, or operating in the local loopback
mode. Data is shifted out on this signal at the falling edge of the clock source, with the
least significant bit transmitted first.

7.2.7 Channel B Receiver Serial Data Input (RxDB)

This signal is the receiver serial data input for channel B. Data on this signal is sampled
on the rising edge of the clock source, with the least significant bit received first.

7.2.8 Channel A Request-To-Send (RTSA)

This active-low output signal is programmable as the channel A request-to-send or as a
dedicated parallel output.

RTSA

When used for this function, this signal can be programmed to be automatically negated
and asserted by either the receiver or transmitter. When connected to the clear-to-send
(CTSx) input of a transmitter, this signal can be used to control serial data flow.

OPO

When used for this function, this output is controlled by bit O in the output port data
register (OP).

7-6 MC68341 USER’S MANUAL MOTOROLA

7.2.9 Channel B Request-To-Send (RTSB)

This active-low output signal is programmable as the channel B request-to-send or as a
dedicated parallel output.

RTSB

When used for this function, this signal can be programmed to be automatically negated
and asserted by either the receiver or transmitter. When connected to the CTSx input of
a transmitter, this signal can be used to control serial data flow.

OP1
When used for this function, this output is controlled by bit 1 in the OP.

7.2.10 Channel A Clear-To-Send (CTSA)

This active-low input is the channel A clear-to-send.

7.2.11 Channel B Clear-To-Send (CTSB)

This active-low input is the channel B clear-to-send.

7.2.12 Channel A Transmitter Ready (TxRDYA)

This active-low output signal is programmable as the channel A transmitter ready or as a
dedicated parallel output and cannot be masked by the IER.

TxRDYA

When used for this function, this signal reflects the complement of the status of bit 2 of
the channel A status register (SRA). This signal can be used to control parallel data flow
by acting as an interrupt to indicate when the transmitter contains a character.

OP6
When used for this function, this output is controlled by bit 6 in the OP.

7.2.13 Channel A Receiver Ready (RxRDYA)

This active-low output signal is programmable as the channel A receiver ready, channel A
first-in-first-out (FIFO) full indicator, or a dedicated parallel output and cannot be masked
by the IER.

RxRDYA

When used for this function, this signal reflects the complement of the status of bit 1 of
the ISR. This signal can be used to control parallel data flow by acting as an interrupt to
indicate when the receiver contains a character.

MOTOROLA MC68341 USER’S MANUAL 7-7

FFULLA

When used for this function, this signal reflects the complement of the status of bit 1 of
the ISR. This signal can be used to control parallel data flow by acting as an interrupt to
indicate when the receiver FIFO is full.

OP4
When used for this function, this output is controlled by bit 4 in the OP.

7.3 OPERATION

The following paragraphs describe the operation of the baud rate generator, transmitter
and receiver, and other functional operating modes of the serial module.

7.3.1 Baud Rate Generator

The baud rate generator consists of a crystal oscillator, baud rate generator, and clock
selectors (see Figure 7-3). The crystal oscillator operates directly from a 3.6864-MHz
crystal or from an external clock of the same frequency. The SCLK input bypasses the
baud rate generator and provides a synchronous clock mode of operation when used as a
divide-by-1 clock and an asynchronous clock mode when used as a divide-by-16 clock.
The clock is selected by programming the CSR for each channel.

BAUD RATE
GENERATOR LOGIC

CRYSTAL

OSCILLATOR EXTERNAL
INTERFACE
X1
l~———————
BAUD RATE X2
GENERATOR >

SCLK

CLOCK
SELECTORS

Figure 7-3. Baud Rate Generator Block Diagram

7.3.2 Transmitter and Receiver Operating Modes

The functional block diagram of the transmitter and receiver, including command and
operating registers, is shown in Figure 7-4. The paragraphs that follow contain
descriptions for both these functions in reference to this diagram. For detailed register
information, refer to 7.4 Register Description and Programming.

7-8 MC68341 USER’S MANUAL MOTOROLA

CHANNEL A EXTERNAL
INTERFACE
COMMAND REGISTER (CRA) w
MODE REGISTER A (MR1A) RIW
MODE REGISTER B (MR2A) RIW
STATUS REGISTER (SRA) R
TRANSMIT [,
BUFFER (TBA) —) TRANSMIT HOLDING REGISTER W A
(2 REGISTERS) | TRANSMIT SHIFT REGISTER >
FIFO
— RECEIVER HOLDING REGISTER 1 R
| RECEIVER HOLDING REGISTER 2
| RECEIVER HOLDING REGISTER 3
RECEIVE RXDA
BUFFER (RBA) | RECEIVER SHIFT REGISTER <
(4 REGISTERS)
CHANNEL B
COMMAND REGISTER (CRB) W
MODE REGISTER 1 (MR1B) RIW
MODE REGISTER 2 (MR2B) RIW
STATUS REGISTER (SRB) R
TRANSMIT | —— TRANSMIT HOLDING REGISTER w
BUFFER (TBB) — TXDB
(2 REGISTERS) | TRANSMIT SHIFT REGISTER >
— RECEIVER HOLDING REGISTER 1 R \\FIFO
| RECEIVER HOLDING REGISTER 2
| RECEIVER HOLDING REGISTER 3
RECEIVE RECEIVER SHIFT REGISTER <[P
BUFFER (RBB) | =~
(4 REGISTERS)
NOTE:
RIW = READ/WRITE
R=READ
W = WRITE

Figure 7-4. Transmitter and Receiver Functional Diagram

MOTOROLA MC68341 USER’S MANUAL

7.3.2.1 TRANSMITTER. The transmitters are enabled through their respective command
registers (CR) located within the serial module. The serial module signals the CPU32
when it is ready to accept a character by setting the transmitter-ready bit (TXRDY) in the
channel's status register (SR). Functional timing information for the transmitter is shown in
Figure 7-5.

The transmitter converts parallel data from the CPU32 to a serial bit stream on TxDx. It
automatically sends a start bit followed by the programmed number of data bits, an
optional parity bit, and the programmed number of stop bits. The least significant bit is
sent first. Data is shifted from the transmitter output on the falling edge of the clock
source.

C1IN
TRANSMISSION

y

TxDx C1 : / C2 C3 | BREAK | | c4 Cé

I
|
TRANSMITTER |
ENABLED |

TXRDY
(SR2)

A A A

\
| |
St e

C1 C2 C3 START C4 STOP C5 C6
BREAK BREAK NOT
TRANSMITTED
Cctsl
RTS 2 MANUALLY ASSERTED MANUALLY
BY BIT- SET COMMAND |_| ASSERTED

NOTES:
1. TIMING SHOWN FOR MR2(4) =1
2. TIMING SHOWN FOR MR2(5) = 1
3. Cy = TRANSMIT CHARACTER
4. W=WRITE

Figure 7-5. Transmitter Timing Diagram

7-10 MC68341 USER’S MANUAL MOTOROLA

Following transmission of the stop bits, if a new character is not available in the transmitter
holding register, the TxDx output remains high (‘mark’ condition), and the transmitter
empty bit (TXEMP) in the SR is set. Transmission resumes and the TXEMP bit is cleared
when the CPU32 loads a new character into the transmitter buffer (TB). If a disable
command is sent to the transmitter, it continues operating until the character in the
transmit shift register, if any, is completely sent out. If the transmitter is reset through a
software command, operation ceases immediately (refer to 7.4.1.3 Command Register
(CR)). The transmitter is re-enabled through the CR to resume operation after a disable or
software reset.

If clear-to-send operation is enabled, CTSx must be asserted for the character to be
transmitted. If CTSx is negated in the middle of a transmission, the character in the shift
register is transmitted, and TxDx remains in the 'mark’ state until CTSx is asserted again.
If the transmitter is forced to send a continuous low condition by issuing a send break
command, the state of CTSx is ignored by the transmitter.

The transmitter can be programmed to automatically negate request-to-send (RTSx)
outputs upon completion of a message transmission. If the transmitter is programmed to
operate in this mode, RTSx must be manually asserted before a message is transmitted.
In applications in which the transmitter is disabled after transmission is complete and
RTSx is appropriately programmed, RTSx is negated one bit time after the character in the
shift register is completely transmitted. The transmitter must be manually re-enabled by
reasserting RTSx before the next message is to be sent.

7.3.2.2 RECEIVER. The receivers are enabled through their respective CRs located within
the serial module. Functional timing information for the receiver is shown in Figure 7-6.
The receiver looks for a high-to-low (mark-to-space) transition of the start bit on RxDx.
When a transition is detected, the state of RxDx is sampled each 16x clock for eight
clocks, starting one-half clock after the transition (asynchronous operation) or at the next
rising edge of the bit time clock (synchronous operation). If RxDx is sampled high, the
start bit is invalid, and the search for the valid start bit begins again. If RxDx is still low, a
valid start bit is assumed, and the receiver continues to sample the input at one-bit time
intervals, at the theoretical center of the bit, until the proper number of data bits and parity,
if any, is assembled and one stop bit is detected. Data on the RxDx input is sampled on
the rising edge of the programmed clock source. The least significant bit is received first.
The data is then transferred to a receiver holding register, and the RxRDY bit in the
appropriate SR is set. If the character length is less than eight bits, the most significant
unused bits in the receiver holding register are cleared.

After the stop bit is detected, the receiver immediately looks for the next start bit.
However, if a nonzero character is received without a stop bit (framing error) and RxDx
remains low for one-half of the bit period after the stop bit is sampled, the receiver
operates as if a new start bit is detected. The parity error (PE), framing error (FE), overrun
error (OE), and received break (RB) conditions (if any) set error and break flags in the
appropriate SR at the received character boundary and are valid only when the RxRDY bit
in the SR is set.

MOTOROLA MC68341 USER’S MANUAL 7-11

I
|
RyD cL c2 |1 | c3 c4 | | c5 /+ C6 c7 cs
: | L C6, C7, C8 ARE LOST
| | |
| | | !
I | [
RECEIVER : [I
ENABLED , | ||
| |
| 1 : !
I
RXRDY I
(SR0) \ | |
: |
|
|
FFULL [
oy i A
|
|
|
RXRDYA !
|
1
I \
|
|
1
o |
cs |
|
R R | RR|RRRR R
STATUS DATA ! STATUS DATA |§TATUIS DATA”STATUIS DATAJ
c1 ! c2 c3 c4
c5
OVERRUN LOSN
(SR4) i
|
|
|
— J
RTS /’ RESET BY COMMAND
OPR(0)=1
NOTES:

1. Timing shown for MR1(7) = 1

2. Timing shown for OPCR(4) = 1 and MR1(6) =0
3. R=Read

4. Cy = Received Character

Figure 7-6. Receiver Timing Diagram

If a break condition is detected (RxDx is low for the entire character including the stop bit),
a character of all zeros is loaded into the receiver holding register, and the receive buffer
(RB) and RxRDY bits in the SR are set. The RxDx signal must return to a high condition
for at least one-half bit time before a search for the next start bit begins.

The receiver detects the beginning of a break in the middle of a character if the break
persists through the next character time. When the break begins in the middle of a
character, the receiver places the damaged character in the receiver FIFO stack and sets
the corresponding error conditions and RxRDY bit in the SR. Then, if the break persists

7-12 MC68341 USER’S MANUAL MOTOROLA

until the next character time, the receiver places an all-zero character into the receiver
FIFO and sets the corresponding RB and RxRDY bits in the SR.

7.3.2.3 FIFO STACK. The FIFO stack is used in each channel's receiver buffer logic. The
stack consists of three receiver holding registers. The receive buffer consists of the FIFO
and a receiver shift register connected to the RxDx (refer to Figure 7-4). Data is
assembled in the receiver shift register and loaded into the top empty receiver holding
register position of the FIFO. Thus, data flowing from the receiver to the CPU32 is
quadruple buffered.

In addition to the data byte, three status bits, PE, FE, and RB, are appended to each data
character in the FIFO; OE is not appended. By programming the ERR bit in the channel's
mode register (MR1), status is provided in character or block modes.

The RXRDY bit in the SR is set whenever one or more characters are available to be read
by the CPU32. A read of the receiver buffer produces an output of data from the top of the
FIFO stack. After the read cycle, the data at the top of the FIFO stack and its associated
status bits are 'popped’, and new data can be added at the bottom of the stack by the
receiver shift register. The FIFO-full status bit (FFULL) is set if all three stack positions are
filled with data. Either the RxRDY or FFULL bit can be selected to cause an interrupt.

In the character mode, status provided in the SR is given on a character-by-character
basis and thus applies only to the character at the top of the FIFO. In the block mode, the
status provided in the SR is the logical OR of all characters coming to the top of the FIFO
stack since the last reset error command. A continuous logical OR function of the
corresponding status bits is produced in the SR as each character reaches the top of the
FIFO stack. The block mode is useful in applications where the software overhead of
checking each character's error cannot be tolerated. In this mode, entire messages are
received, and only one data integrity check is performed at the end of the message. This
mode allows a data-reception speed advantage, but does have a disadvantage since
each character is not individually checked for error conditions by software. If an error
occurs within the message, the error is not recognized until the final check is performed,
and no indication exists as to which character in the message is at fault.

In either mode, reading the SR does not affect the FIFO. The FIFO is 'popped’ only when
the receive buffer is read. The SR should be read prior to reading the receive buffer. If all
three of the FIFQO's receiver holding registers are full when a new character is received,
the new character is held in the receiver shift register until a FIFO position is available. If
an additional character is received during this state, the contents of the FIFO are not
affected. However, the character previously in the receiver shift register is lost, and the OE
bit in the SR is set when the receiver detects the start bit of the new overrunning
character.

To support control flow capability, the receiver can be programmed to automatically
negate and assert RTSx. When in this mode, RTSx is automatically negated by the
receiver when a valid start bit is detected and the FIFO stack is full. When a FIFO position

MOTOROLA MC68341 USER’S MANUAL 7-13

becomes available, RTSx is asserted by the receiver. Using this mode of operation,
overrun errors are prevented by connecting the RTSx to the CTSx input of the transmitting
device.

If the FIFO stack contains characters and the receiver is disabled, the characters in the
FIFO can still be read by the CPU32. If the receiver is reset, the FIFO stack and all
receiver status bits, corresponding output ports, and interrupt request are reset. No
additional characters are received until the receiver is re-enabled.

7.3.3 Looping Modes

Each serial module channel can be configured to operate in various looping modes as
shown in Figure 7-7. These modes are useful for local and remote system diagnostic
functions. The modes are described in the following paragraphs with further information
available in 7.4 Register Description and Programming.

The channel's transmitter and receiver should both be disabled when switching between
modes. The selected mode is activated immediately upon mode selection, regardless of
whether a character is being received or transmitted.

7.3.3.1 AUTOMATIC ECHO MODE. In this mode, the channel automatically retransmits
the received data on a bit-by-bit basis. The local CPU32-to-receiver communication
continues normally, but the CPU32-to-transmitter link is disabled. While in this mode,
received data is clocked on the receiver clock and retransmitted on TxDx. The receiver
must be enabled, but the transmitter need not be enabled.

Since the transmitter is not active, the SR TXEMP and TxRDY bits are inactive, and data
is transmitted as it is received. Received parity is checked, but not recalculated for
transmission. Character framing is also checked, but stop bits are transmitted as received.
A received break is echoed as received until the next valid start bit is detected.

7.3.3.2 LOCAL LOOPBACK MODE. In this mode, TxDx is internally connected to RxDx.
This mode is useful for testing the operation of a local serial module channel by sending
data to the transmitter and checking data assembled by the receiver. In this manner,
correct channel operations can be assured. Also, both transmitter and CPU32-to-receiver
communications continue normally in this mode. While in this mode, the RxDx input data
is ignored, the TxDx is held marking, and the receiver is clocked by the transmitter clock.
The transmitter must be enabled, but the receiver need not be enabled.

7.3.3.3 REMOTE LOOPBACK MODE. In this mode, the channel automatically transmits
received data on the TxDx output on a bit-by-bit basis. The local CPU32-to-transmitter link
is disabled. This mode is useful in testing receiver and transmitter operation of a remote
channel. While in this mode, the receiver clock is used for the transmitter.

Since the receiver is not active, received data cannot be read by the CPU32, and the error
status conditions are inactive. Received parity is not checked and is not recalculated for
transmission. Stop bits are transmitted as received. A received break is echoed as
received until the next valid start bit is detected.

7-14 MC68341 USER’S MANUAL MOTOROLA

RX RxDx
INPUT

CPU

| DISABLED | | DISABLED TxDx
X OUTPUT

" _ DISABLED Rypy
INPUT

CPU

T DISABLED TxDx
- —
X — OUTPUT

(b) Local Loopback

| DISABLED |, | DISABLED. RXDX
INPUT

CPU

77777 7« | DISABLED. TXDX
OUTPUT

(c) Remote Loopback

Figure 7-7. Looping Modes Functional Diagram

7.3.4 Multidrop Mode

A channel can be programmed to operate in a wakeup mode for multidrop or
multiprocessor applications. Functional timing information for the multidrop mode is shown
in Figure 7-8. The mode is selected by setting bits 3 and 4 in mode register 1 (MR1). This
mode of operation allows the master station to be connected to several slave stations
(maximum of 256). In this mode, the master transmits an address character followed by a
block of data characters targeted for one of the slave stations. The slave stations have
their channel receivers disabled. However, they continuously monitor the data stream sent
out by the master station. When an address character is sent by the master, the slave
receiver channel notifies its respective CPU by setting the RXRDY bit in the SR and
generating an interrupt (if programmed to do so). Each slave station CPU then compares
the received address to its station address and enables its receiver if it wishes to receive
the subsequent data characters or block of data from the master station. Slave stations
not addressed continue to monitor the data stream for the next address character. Data
fields in the data stream are separated by an address character. After a slave receives a
block of data, the slave station's CPU disables the receiver and initiates the process
again.

MOTOROLA MC68341 USER’S MANUAL 7-15

MASTER STATION AD AD AD N
TXD '

A00R | o ol | AODR | |

TRANSMITTER h
ENABLED
i N N

TXRDY 4 —)
(SR2) o \
N I I

/ wooow wo\ w / W

=11 MR1(2) = I\ ADDR?2 N

w
MR1(4:3) = 1 ADDRL MR1(2)=0
MR1(2) = 1
N\ —
PERIPHERAL N N\
STATION AD AD AD AD AD
T T T T T T T
RxD
) ADDR | 4 o Tol T)\ ADZDR|1 o | |
| 1] | I | ’{]
RECEIVER |
ENABLED \

RXRDY J
(SR0)

w

ENARI
N

él__fz

I

R R R
MR1(4-3) =11 ADDR STATUS DATA STATUS DATA
(I
Co ADDR

Figure 7-8. Multidrop Mode Timing Diagram

A transmitted character from the master station consists of a start bit, a programmed
number of data bits, an address/data (A/D) bit flag, and a programmed number of stop
bits. The A/D bit identifies the type of character being transmitted to the slave station. The
character is interpreted as an address character if the A/D bit is set or as a data character
if the A/D bit is cleared. The polarity of the A/D bit is selected by programming bit 2 of the
MR1. The MR1 should be programmed before enabling the transmitter and loading the
corresponding data bits into the transmit buffer.

In multidrop mode, the receiver continuously monitors the received data stream,
regardless of whether it is enabled or disabled. If the receiver is disabled, it sets the
RxRDY bit and loads the character into the receiver holding register FIFO stack provided
the received A/D bit is a one (address tag). The character is discarded if the received A/D
bit is a zero (data tag). If the receiver is enabled, all received characters are transferred to
the CPU32 via the receiver holding register stack during read operations.

7-16 MC68341 USER’S MANUAL MOTOROLA

In either case, the data bits are loaded into the data portion of the stack while the A/D bit
Is loaded into the status portion of the stack normally used for a parity error (SR bit 5).
Framing error, overrun error, and break detection operate normally. The A/D bit takes the
place of the parity bit; therefore, parity is neither calculated nor checked. Messages in this
mode may still contain error detection and correction information. One way to provide
error detection, if 7-bit characters are not required, is to use software to calculate parity
and append it to the 5-, 6-, or 7-bit character.

7.3.5 Bus Operation

This section describes the operation of the IMB during read, write, and interrupt
acknowledge cycles to the serial module. All serial module registers must be accessed as
bytes.

7.3.5.1 READ CYCLES. The serial module is accessed by the CPU32 with no wait states.
The serial module responds to byte reads. Reserved registers return logic zero during
reads.

7.3.5.2 WRITE CYCLES. The serial module is accessed by the CPU32 with no wait
states. The serial module responds to byte writes. Write cycles to read-only registers and
reserved registers complete in a normal manner without exception processing; however,
the data is ignored.

7.3.5.3 INTERRUPT ACKNOWLEDGE CYCLES. The serial module is capable of
arbitrating for interrupt servicing and supplying the interrupt vector when it has
successfully won arbitration. The vector number must be provided if interrupt servicing is
necessary; thus, the interrupt vector register (IVR) must be initialized. If the IVR is not
initialized, a spurious interrupt exception will be taken if interrupts are generated.

MOTOROLA MC68341 USER’S MANUAL 7-17

7.4 REGISTER DESCRIPTION AND PROGRAMMING

This section contains a detailed description of each register and its specific function as
well as flowcharts of basic serial module programming.

7.4.1 Register Description

The operation of the serial module is controlled by writing control bytes into the
appropriate registers. A list of serial module registers and their associated addresses are
shown in Figure 7-9. The mode, status, command, and clock-select registers are
duplicated for each channel to provide independent operation and control.

NOTE

All serial module registers are only accessible as bytes. The
contents of the mode registers (MR1 and MR2), CSR, and the
auxiliary control register (ACR) bit 7 should only be changed
after the receiver/transmitter is issued a software RESET
command—i.e., channel operation must be disabled. Care
should also be taken if the register contents are changed
during receiver/transmitter operations, as undesirable results
may be produced.

The registers of the serial module are discussed in the following paragraphs in
alphabetical order. The numbers in the upper right-hand corner indicate the offset of the
register from the base address specified in the module base address register (MBAR) in
the SIM41. The numbers above the register description represent the bit position in the
register. The register description contains the mnemonic for the bit. The values shown
below the register description are the values of those register bits after a hardware reset.
A value of U indicates that the bit value is unaffected by reset. The read/write status and
the access privilege are shown in the last line.

NOTE

A CPU32 RESET instruction will not affect the MCR, but will
reset all the other serial module registers as though a
hardware reset had occurred. The module is enabled when the
STP bit in the MCR is cleared. The module is disabled when
the STP bit in the MCR is set.

7-18 MC68341 USER’S MANUAL MOTOROLA

Address
700
701
702
703
704
705

710
711
712
713
714
715
716
717
718
719
71A
71B
71C
71D
71E
71F
720
721

NOTES:

FC

n nu nu nu n

s/u?
S/U
SIU
S/U
SIU
S/U
SIU
S/U
SIU
S/U
SIU
S/U
SIU
S/U
SIU
S/U
SIU
S/U

Register Read (R/W =1)

Register Write (R/W = 0)

MCR (HIGH BYTE)

MCR (HIGH BYTE)

MCR (LOW BYTE)

MCR (LOW BYTE)

DO NOT ACCESS3

DO NOT ACCESS3

DO NOT ACCESS3

DO NOT ACCESS3

INTERRUPT LEVEL (ILR)

INTERRUPT LEVEL (ILR)

INTERRUPT VECTOR (IVR)

INTERRUPT VECTOR (IVR)

MODE REGISTER 1A (MR1A)

MODE REGISTER 1A (MR1A)

STATUS REGISTER A (SRA)

CLOCK-SELECT REGISTER A (CSRA)

DO NOT ACCESS3

COMMAND REGISTER A (CRA)

RECEIVER BUFFER A (RBA)

TRANSMITTER BUFFER A (TBA)

INPUT PORT CHANGE REGISTER (IPCR)

AUXILIARY CONTROL REGISTER (ACR)

INTERRUPT STATUS REGISTER (ISR)

INTERRUPT ENABLE REGISTER (IER)

DO NOT ACCESS3

DO NOT ACCESS3

DO NOT ACCESS3

DO NOT ACCESS3

MODE REGISTER 1B (MR1B)

MODE REGISTER 1B (MR1B)

STATUS REGISTER B (SRB)

CLOCK-SELECT REGISTER B (CSRB)

DO NOT ACCESS3

COMMAND REGISTER B (CRB)

RECEIVER BUFFER B (RBB)

TRANSMITTER BUFFER B (TBB)

DO NOT ACCESS3

DO NOT ACCESS3

INPUT PORT REGISTER (IP)

OUTPUT PORT CONTROL REGISTER (OPCR)

DO NOT ACCESS3

OUTPUT PORT (OP)# BIT SET

DO NOT ACCESS3

OUTPUT PORT (OP)4 BIT RESET

MODE REGISTER 2A (MR2A)

MODE REGISTER 2A (MR2A)

MODE REGISTER 2B (MR2B)

MODE REGISTER 2B (MR2B)

1. S = Register permanently defined as supervisor-only access

2. S/U = Register programmable as either supervisor or user access

3. Aread or write to these locations currently has no effect.
4. Address-triggered commands

MOTOROLA

Figure 7-9. Serial Module Programming Model

MC68341 USER’S MANUAL

7-19

7.4.1.1 AUXILIARY CONTROL REGISTER (ACR). The ACR selects which baud rate is
used and controls the handshake of the transmitter/receiver. This register can only be
written when the serial module is enabled (i.e., the STP bit in the MCR is cleared).

ACR $714
7 6 5 4 3 2 1 0
| BRG | 0 | 0 | 0 | 0 | 0 | IECB | IECA |
RESET:
0 0 0 0 0 0 0 0
Write Only Supervisor/User

BRG—Baud Rate Generator Set Select

1 = Set 2 of the available baud rates is selected.
0 = Set 1 of the available baud rates is selected. Refer to 7.4.1.2 Clock-Select
Register (CSR) for more information on the baud rates.

IECB, IECA—Input Enable Control
1 = ISR bit 7 will be set and an interrupt will be generated when the corresponding bit
in the IPCR (COSB or COSA) is set by an external transition on the channel's
CTSx input (if bit 7 of the IER) is set to enable interrupts).
0 = Setting the corresponding bit in the IPCR has no effect on ISR bit 7.

7.4.1.2 CLOCK-SELECT REGISTER (CSR). The CSR selects the baud rate clock for the
channel receiver and transmitter. This register can only be written when the serial module
Is enabled (i.e., the STP bit in the MCR is cleared).

NOTE

This register should only be written after the external crystal is
stable (XTAL_RDY bit of the ISR is zero).

CSRA, CSRB $711, $719
7 6 5 4 3 2 1 0
| RCS3 | RCS2 | RCS1 | RCSO | TCS3 | TCS2 | TCS1 | TCS0 |

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

RCS3-RCS0—Receiver Clock Select

These bits select the baud rate clock for the channel receiver from a set of baud rates
listed in Table 7-1. The baud rate set selected depends upon the ACR bit 7. Set 1 is
selected if ACR bit 7 = 0, and set 2 is selected if ACR bit 7 = 1. The receiver clock is
always 16 times the baud rate shown in this list, except when SCLK is used.

7-20 MC68341 USER’S MANUAL MOTOROLA

Table 7-1. RCSx Control Bits

RCS3 | RCS2 | RCS1 | RCSO Set 1l Set 2
0 0 0 0 50 75
0 0 0 1 110 110
0 0 1 0 134.5 134.5
0 0 1 1 200 150
0 1 0 0 300 300
0 1 0 1 600 600
0 1 1 0 1200 1200
0 1 1 1 1050 2000
1 0 0 0 2400 2400
1 0 0 1 4800 4800
1 0 1 0 7200 1800
1 0 1 1 9600 9600
1 1 0 0 38.4k 19.2k
1 1 0 1 76.8k 38.4k
1 1 1 0 SCLK/16 | SCLK/16
1 1 1 1 SCLK/1 SCLK/1

TCS3-TCSO—Transmitter Clock Select

These bits select the baud rate clock for the channel transmitter from a set of baud rates
listed in Table 7-2. The baud rate set selected depends upon ACR bit 7. Set 1 is
selected if ACR bit 7 = 0, and set 2 is selected if ACR bit 7 = 1. The transmitter clock is

always 16 times the baud rate shown in this list, except when SCLK is used.

MOTOROLA

MC68341 USER’S MANUAL

7-21

Table 7-2 . TCSx Control Bits

TCS3 | TCS2 | TCS1 | TCSO Set 1l Set 2
0 0 0 0 50 75
0 0 0 1 110 110
0 0 1 0 134.5 134.5
0 0 1 1 200 150
0 1 0 0 300 300
0 1 0 1 600 600
0 1 1 0 1200 1200
0 1 1 1 1050 2000
1 0 0 0 2400 2400
1 0 0 1 4800 4800
1 0 1 0 7200 1800
1 0 1 1 9600 9600
1 1 0 0 38.4k 19.2k
1 1 0 1 76.8k 38.4k
1 1 1 0 SCLK/16 | SCLK/16
1 1 1 1 SCLK/1 SCLK/1

7.4.1.3 COMMAND REGISTER (CR). The CR is used to supply commands to the
channel. Multiple commands can be specified in a single write to the CR if the commands
are not conflicting—e.g., reset transmitter and enable transmitter commands cannot be
specified in a single command. This register can only be written when the serial module is
enabled (i.e., the STP bit in the MCR is cleared).

CRA, CRB $712, $71A

7 6 5 4 3 2 1 0
|MISC3 | MISC2 | MISC1 | MISCOl TC1 | TCO | RC1 | RCO |

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

MISC3-MISCO0—Miscellaneous Commands
These bits select a single command as listed in Table 7-3.

7-22 MC68341 USER’S MANUAL MOTOROLA

Table 7-3. MISCx Control Bits

MISC3 MISC2 MISC1 MISCO Command

0 0 0 0 No Command

0 0 0 1 No Command

0 0 1 0 Reset Receiver

0 0 1 1 Reset Transmitter

0 1 0 0 Reset Error Status

0 1 0 1 Reset Break-Change

Interrupt

Start Break
Stop Break
Assert RTS
Negate RTS

No Command

No Command

No Command

No Command

No Command

Rl]l ||, |lo]|o
Rl |lo|lo|lo]lo]|r |+
Rl lolo|lr|rr|lolo]|r |-
R lolr|lo]lr|lo|lr|lo]|r]|o

No Command

Reset Receiver—The reset receiver command resets the channel receiver. The receiver
Is immediately disabled, the FFULL and RxRDY bits in the SR are cleared, and the
receiver FIFO pointer is reinitialized. All other registers are unaltered. This command
should be used in lieu of the receiver disable command whenever the receiver
configuration is changed because it places the receiver in a known state.

Reset Transmitter—The reset transmitter command resets the channel transmitter. The
transmitter is immediately disabled, and the TXEMP and TxRDY bits in the SR are
cleared. All other registers are unaltered. This command should be used in lieu of the
transmitter disable command whenever the transmitter configuration is changed
because it places the transmitter in a known state.

Reset Error Status—The reset error status command clears the channel's RB, FE, PE,
and OE bits (in the SR). This command is also used in the block mode to clear all error
bits after a data block is received.

Reset Break-Change Interrupt—The reset break-change interrupt command clears the
delta break (DBXx) bits in the ISR.

MOTOROLA MC68341 USER’S MANUAL 7-23

Start Break—The start break command forces the channel's TxDx low. If the transmitter
is empty, the start of the break conditions can be delayed up to one bit time. If the
transmitter is active, the break begins when transmission of the character is complete. If
a character is in the transmitter shift register, the start of the break is delayed until the
character is transmitted. If the transmitter holding register has a character, that
character is transmitted after the break. The transmitter must be enabled for this
command to be accepted. The state of the CTSx input is ignored for this command.

Stop Break—The stop break command causes the channel's TxDx to go high (mark)
within two bit times. Characters stored in the transmitter buffer, if any, are transmitted.

Assert RTS—The assert RTS command forces the channel's RTSx output low.
Negate RTS—The negate RTS command forces the channel's RTSx output high.

TC1-TCO—Transmitter Commands
These bits select a single command as listed in Table 7-4.

Table 7-4. TCx Control Bits

TC1 TCO Command
0 0 No Action Taken
0 1 Enable Transmitter
1 0 Disable Transmitter
1 1 Do Not Use

No Action Taken—The no action taken command causes the transmitter to stay in its
current mode. If the transmitter is enabled, it remains enabled; if disabled, it remains
disabled.

Transmitter Enable—The transmitter enable command enables operation of the
channel's transmitter. The TXEMP and TxRDY bits in the SR are also set. If the
transmitter is already enabled, this command has no effect.

Transmitter Disable—The transmitter disable command terminates transmitter operation
and clears the TXEMP and TxRDY bits in the SR. However, if a character is being
transmitted when the transmitter is disabled, the transmission of the character is
completed before the transmitter becomes inactive. If the transmitter is already
disabled, this command has no effect.

Do Not Use—Do not use this bit combination because the result is indeterminate.

RC1-RC0—Receiver Commands
These bits select a single command as listed in Table 7-5.

7-24 MC68341 USER’S MANUAL MOTOROLA

Table 7-5. RCx Control Bits

RC1 RCO Command
0 0 No Action Taken
0 1 Enable Receiver
1 0 Disable Receiver
1 1 Do Not Use

No Action Taken—The no action taken command causes the receiver to stay in its
current mode. If the receiver is enabled, it remains enabled; if disabled, it remains
disabled.

Receiver Enable—The receiver enable command enables operation of the channel's
receiver. If the serial module is not in multidrop mode, this command also forces the
receiver into the search-for-start-bit state. If the receiver is already enabled, this
command has no effect.

Receiver Disable—The receiver disable command disables the receiver immediately.
Any character being received is lost. The command has no effect on the receiver status
bits or any other control register. If the serial module is programmed to operate in the
local loopback mode or multidrop mode, the receiver operates even though this
command is selected. If the receiver is already disabled, this command has no effect.

Do Not Use—Do not use this bit combination because the result is indeterminate.

7.4.1.4 INPUT PORT CHANGE REGISTER (IPCR). The IPCR shows the current state
and the change-of-state for the CTSA and CTSB pins. This register can only be read when
the serial module is enabled (i.e., the STP bit in the MCR is cleared).

IPCR $714
7 6 5 4 3 2 1 0
| 0 | 0 | COSB | COSA | 0 | 0 | CTSB | CTSA |
RESET:
0 0 0 0 0 0 U U
Read Only Supervisor/User

Bits 7, 6, 3, 2—Reserved by Motorola

COSB, COSA—Change-of-State

1 = A change-of-state (high-to-low or low-to-high transition), lasting longer than 25—
50 us when using a crystal as the sampling clock or longer than one or two
periods when using SCLK, has occurred at the corresponding CTSx input (MCR
ICCS bit controls selection of the sampling clock for clear-to-send operation).
When these bits are set, the ACR can be programmed to generate an interrupt to
the CPU32.

0 = The CPU32 has read the IPCR. No change-of-state has occurred. A read of the
IPCR also clears the ISR COS bit.

MOTOROLA MC68341 USER’S MANUAL 7-25

CTSB, CTSA—Current State

Starting two serial clock periods after reset, the CTSx bits reflect the state of the CTSx
pins. If a CTSx pin is detected as asserted at that time, the associated COSx bit will be
set, which will initiate an interrupt if the corresponding IECx bit of the ACR register is
enabled.

1 = The current state of the respective CTSx input is negated.
0 = The current state of the respective CTSx input is asserted.

7.4.1.5 INPUT PORT REGISTER (IP). The IP shows the current state of the CTSx inputs.
This register can only be read when the serial module is enabled (i.e., the STP bit in the
MCR is cleared).

IP $71D
7 6 5 4 3 2 1 0
| 0 | 0 | 0 | 0 | 0 | 0 | CTSB | CTSA |
RESET:
0 0 0 0 0 0 U U
Read Only Supervisor/User

CTSB, CTSA—Current State

1 = The current state of the respective CTSx input is negated.

0 = The current state of the respective CTSx input is asserted.
The information contained in these bits is latched and reflects the state of the input pins
at the time that the IP is read.

NOTE

These bits have the same function and value of the IPCR bits 1 and 0.

7-26 MC68341 USER’S MANUAL MOTOROLA

7.4.1.6 INTERRUPT ENABLE REGISTER (IER). The IER selects the corresponding bits
in the ISR that cause an interrupt output (IRQx). If one of the bits in the ISR is set and the
corresponding bit in the IER is also set, the IRQx output is asserted. If the corresponding
bit in the IER is zero, the state of the bit in the ISR has no effect on the IRQx output. The
IER does not mask the reading of the ISR. The ISR XTAL_RDY bit cannot be enabled to
generate an interrupt. This register can only be written when the serial module is enabled

(i.e., the STP bit in the MCR is cleared).

IER
7 6 5 4 3 2
| COos | DBB |RxRDYB|TxRDYB| 0 | DBA |RxRDYA|TxRDYA|
RESET:
0 0 0 0 0 0
Write Only Supervisor/User

COS—Change-of-State

1 = Enable interrupt
0 = Disable interrupt

DBB—Delta Break B

1 = Enable interrupt
0 = Disable interrupt

RxRDYB—Channel B Receiver Ready or FIFO full

1 = Enable interrupt
0 = Disable interrupt

TXRDYB—Channel B Transmitter Ready

1 = Enable interrupt
0 = Disable interrupt

Bit 3—Reserved by Motorola

DBA—Delta Break A

1 = Enable interrupt
0 = Disable interrupt

RxRDYA—Channel A Receiver Ready or FIFO full

1 = Enable interrupt
0 = Disable interrupt

TXRDYA—Channel A Transmitter Ready

1 = Enable interrupt
0 = Disable interrupt

MOTOROLA MC68341 USER’S MANUAL

7-27

7.4.1.7 INTERRUPT LEVEL REGISTER (ILR). The ILR contains the priority level for the
serial module interrupt request. When the serial module is enabled (i.e., the STP bit in the
MCR is cleared), this register can be read or written to at any time while in supervisor
mode.

ILR $704
7 6 5 4 3 2 1 0
o [o[o] oo [u]uw]

RESET:
0 0 0 0 0 0 0 0
Read/Write Supervisor Only

Bits 7-3—Reserved by Motorola

IL2—-1LO—Interrupt Level Bits

Each module that can generate interrupts has an interrupt level field. The priority level
encoded in these bits is sent to the CPU32 on the appropriate IRQx signal. The CPU32
uses this value to determine servicing priority. The hardware reset value of $00 will not
generate any interrupts. See Section 5 CPU030 for more information.

7.4.1.8 INTERRUPT STATUS REGISTER (ISR). The ISR provides status for all potential
interrupt sources. The contents of this register are masked by the IER. If a flag in the ISR
is set and the corresponding bit in IER is also set, the IRQx output is asserted. If the
corresponding bit in the IER is cleared, the state of the bit in the ISR has no effect on the
output. This register can only be read when the serial module is enabled (i.e., the STP bit
in the MCR is cleared).

NOTE

The IER does not mask reading of the ISR. True status is
provided regardless of the contents of IER. The contents of
ISR are cleared when the serial module is reset.

ISR $715

7 6 5 4 3 2 1 0

COos DBB |RXxRDYB|TXRDYB| XTAL_ | DBA |[RxRDYA|TXRDYA
RDY

RESET:
0 0 0 0 1 0 0 0

Read Only Supervisor/User

COS—Change-of-State

1 = A change-of-state has occurred at one of the CTSx inputs and has been selected
to cause an interrupt by programming bit 1 and/or bit O of the ACR.
0 = The CPU32 has read the IPCR.

7-28 MC68341 USER’S MANUAL MOTOROLA

DBB—Delta Break B

1 = The channel B receiver has detected the beginning or end of a received break.

0 = The CPU32 has issued a channel B reset break-change interrupt command.
Refer to 7.4.1.3 Command Register (CR) for more information on the reset
break-change interrupt command.

RxRDYB—Channel B Receiver Ready or FIFO Full
The function of this bit is programmed by MR1B bit 6.

1 = If programmed as receiver ready, a character has been received in channel B
and is waiting in the receiver buffer FIFO. If programmed as FIFO full, a
character has been transferred from the receiver shift register to the FIFO, and
the transfer has caused the channel B FIFO to become full (all three positions
are occupied).

0 = If programmed as receiver ready, the CPU32 has read the RB. After this read, if
more characters are still in the FIFO, the bit is set again after the FIFO is
'‘popped'. If programmed as FIFO full, the CPU32 has read the RB. If a character
is waiting in the receiver shift register because the FIFO is full, the bit will be set
again when the waiting character is loaded into the FIFO.

TXRDYB—Channel B Transmitter Ready
This bit is the duplication of the TXRDY bit in SRB.

1 = The transmitter holding register is empty and ready to be loaded with a character.
This bit is set when the character is transferred to the transmitter shift register.
This bit is also set when the transmitter is first enabled. Characters loaded into
the transmitter holding register while the transmitter is disabled are not
transmitted.

0 = The transmitter holding register was loaded by the CPU32, or the transmitter is
disabled.

XTAL_RDY—Serial Clock Running
This bit is always read as a zero when the X1 clock is running. This bit cannot be
enabled to generate an interrupt.
1 = This bit is set at reset.

0 = This bit is cleared after the baud rate generator is stable. The CSR should not be
accessed until this bit is zero.

DBA—Delta Break A

1 = The channel A receiver has detected the beginning or end of a received break.

0 = The CPU32 has issued a channel A reset break-change interrupt command.
Refer to 7.4.1.3 Command Register (CR) for more information on the reset
break-change interrupt command.

MOTOROLA MC68341 USER’S MANUAL 7-29

RxXRDYA—Channel A Receiver Ready or FIFO Full
The function of this bit is programmed by MR1A bit 6.

1 = If programmed as receiver ready, a character has been received in channel A
and is waiting in the receiver buffer FIFO. If programmed as FIFO full, a
character has been transferred from the receiver shift register to the FIFO, and
the transfer has caused the channel A FIFO to become full (all three positions
are occupied).

0 = If programmed as receiver ready, the CPU32 has read the receiver buffer. After
this read, if more characters are still in the FIFO, the bit is set again after the
FIFO is 'popped'. If programmed as FIFO full, the CPU32 has read the receiver
buffer. If a character is waiting in the receiver shift register because the FIFO is
full, the bit will be set again when the waiting character is loaded into the FIFO.

TXRDYA—Channel A Transmitter Ready
This bit is the duplication of the TXRDY bit in SRA.

1 = The transmitter holding register is empty and ready to be loaded with a character.
This bit is set when the character is transferred to the transmitter shift register.
This bit is also set when the transmitter is first enabled. Characters loaded into
the transmitter holding register while the transmitter is disabled are not
transmitted.

0 = The transmitter holding register was loaded by the CPU32, or the transmitter is
disabled.

7.4.1.9 INTERRUPT VECTOR REGISTER (IVR). The IVR contains the 7-bit vector
number of the interrupt. When the serial module is enabled (i.e., the STP bit in the MCR is
cleared), this register can be read or written to at any time while in supervisor mode.

IVR $705

7 6 5 4 3 2 1 0

| IVR7 | IVR6 | IVR5S | IVR4 | IVR3 | IVR2 | IVR1 | IVRO |

RESET:
0 0 0 0 1 1 1 1

Read /Write Supervisor Only

IVR7-IVRO—Interrupt Vector Bits

Each module that generates interrupts has an interrupt vector field. This 7-bit number
indicates the offset from the base of the vector table where the address of the exception
handler for the specified interrupt is located. The IVR is reset to $0F, which indicates an
uninitialized interrupt condition. See Section 5 CPU32 for more information.

7-30 MC68341 USER’S MANUAL MOTOROLA

7.4.1.10 MODULE CONFIGURATION REGISTER (MCR). The MCR controls the serial
module configuration. This register can be either read or written when the module is
enabled and is in the supervisor state. The MCR is not affected by a CPU32 RESET
instruction. Only the MCR can be accessed when the module is disabled (i.e., the STP bit
in the MCR is set).

MCR $700
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| STP | FRZ1 | FRZ0 | ICCS | 0 | 0 | 0 | 0 | supvl 0 | 0 | 0 | IARB |
RESET:
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Read/Write Supervisor Only

STP—Stop Mode Bit

1 = The serial module will be disabled. Setting the STP bit stops all clocks within the
serial module (including the crystal or external clock and SCLK), except for the
clock from the IMB. The clock from the IMB remains active to allow CPU32
access to the MCR. The clock stops on the low phase of the clock and remains
stopped until the STP bit is cleared by the CPU32 or a hardware reset. Accesses
to serial module registers while in stop mode produce a bus error. The serial
module should be disabled in a known state prior to setting the STP bit;
otherwise, unpredictable results may occur. The STP bit should be set prior to
executing the LPSTOP instruction to reduce overall power consumption.

0 = The serial module is enabled and will operate in normal mode. When STP =0,
make sure the external crystal is stable (XTAL_RDY bit (bit 3) of the ISR is zero)
before continuing.

NOTE

The serial module should be disabled (i.e., the STP bit in the
MCR is set) before executing the LPSTOP instruction to obtain
the lowest power consumption. The X1/X2 oscillator will
continue to run during LPSTOP if STP = 0.

FRZ1-FRZ0—Freeze

These bits determine the action taken when the FREEZE signal is asserted on the IMB
when the CPU32 has entered background debug mode. Table 7-6 lists the action taken
for each combination of bits.

Table 7-6. FRZx Control Bits

FRZ1 FRZO Action
0 0 Ignore FREEZE
0 1 Reserved (FREEZE Ignored)
1 0 Freeze on Character Boundary
1 1 Freeze on Character Boundary

MOTOROLA MC68341 USER’S MANUAL 7-31

If FREEZE is asserted, channel A and channel B freeze independently of each other.
The transmitter and receiver freeze at character boundaries. The transmitter does not
freeze in the send break mode. Communications can be lost if the channel is not
programmed to support flow control. See Section 5 CPU32 for more information on
FREEZE.

ICCS—Input Capture Clock Select
1 = Selects SCLK as the clear-to-send input capture clock for both channels. Clear-
to-send operation is enabled by setting bit 4 in MR2. The data is captured on the
CTSx pins on the rising edge of the clock.
0 = The crystal clock is the clear-to-send input capture clock for both channels.

Bits 11-8, 6-4—Reserved by Motorola

SUPV—Supervisor/User
The value of this bit has no affect on registers permanently defined as supervisor only.

1 = The serial module registers, which are defined as supervisor or user, reside in
supervisor data space and are only accessible from supervisor programs.

0 = The serial module registers, which are defined as supervisor or user, reside in
user data space and are accessible from either supervisor or user programs.

IARB3—-IARBO—Interrupt Arbitration Bits

Each module that generates interrupts has an IARB field. These bits are used to
arbitrate for the bus in the case that two or more modules simultaneously generate an
interrupt at the same priority level. No two modules can share the same IARB value.
The reset value of the IARB field is $0, which prevents this module from arbitrating
during the interrupt acknowledge cycle. The system software should initialize the IARB
field to a value from $F (highest priority) to $1 (lowest priority).

7-32 MC68341 USER’S MANUAL MOTOROLA

7.4.1.11 MODE REGISTER 1 (MR1). MR1 controls some of the serial module
configuration. This register can be read or written at any time when the serial module is
enabled (i.e., the STP bit in the MCR is cleared).

MR1A, MR1B $710, $718

7 6 5 4 3 2 1 0

|RXRTS| R/IF | ERR | PM1 | PMO | PT |B/C1 |B/CO |

RESET:
0 0 0 0 0 0 0 0

Read/Write Supervisor/User

RxRTS—Receiver Request-to-Send Control

1 = Upon receipt of a valid start bit, RTSx is negated if the channel's FIFO is full.
RTSx is reasserted when the FIFO has an empty position available.
0 = RTSx is asserted by setting bit 1 or 0 in the OP and negated by clearing bit 1 or 0
in the OP.
This feature can be used for flow control to prevent overrun in the receiver by using the
RTSx output to control the CTSx input of the transmitting device. If both the receiver and
transmitter are programmed for RTS control, RTS control will be disabled for both since
this configuration is incorrect. See 7.4.1.12 Mode Register 2 for information on
programming the transmitter RTSx control.

R/F—Receiver-Ready Select

1 = Bit 5 for channel B and bit 1 for channel A in the ISR reflect the channel FIFO full
status. These ISR bits are set when the receiver FIFO is full and are cleared
when a position is available in the FIFO.

0 = Bit 5 for channel B and bit 1 for channel A in the ISR reflect the channel receiver-
ready status. These ISR bits are set when a character has been received and are
cleared when the CPU32 reads the receive buffer.

ERR—Error Mode

This bit controls the meaning of the three FIFO status bits (RB, FE, and PE) in the SR
for the channel.

1 = Block mode—The values in the channel SR are the accumulation (i.e., the logical
OR) of the status for all characters coming to the top of the FIFO since the last
reset error status command for the channel was issued. Refer to 7.4.1.3
Command Register (CR) for more information on serial module commands.

0 = Character mode—The values in the channel SR reflect the status of the
character at the top of the FIFO.

NOTE

ERR = 0 must be used to get the correct A/D flag information
when in multidrop mode.

MOTOROLA MC68341 USER’S MANUAL 7-33

PM1-PMO—Parity Mode

These bits encode the type of parity used for the channel (see Table 7-2). The parity bit
iIs added to the transmitted character, and the receiver performs a parity check on
incoming data. These bits can alternatively select multidrop mode for the channel.

PT—Parity Type

This bit selects the parity type if parity is programmed by the parity mode bits, and if
multidrop mode is selected, it configures the transmitter for data character transmission
or address character transmission. Table 7-7 lists the parity mode and type or the
multidrop mode for each combination of the parity mode and the parity type bits.

Table 7-7. PMx and PT Control Bits

PM1 PMO Parity Mode PT Parity Type
0 0 With Parity 0 Even Parity
0 0 With Parity 1 Odd Parity
0 1 Force Parity 0 Low Parity
0 1 Force Parity 1 High Parity
1 0 No Parity X No Parity
1 1 Multidrop Mode 0 Data Character
1 1 Multidrop Mode 1 Address Character

B/C1-B/C0—aBits per Character

These bits select the number of data bits per character to be transmitted. The character
length listed in Table 7-8 does not include start, parity, or stop bits.

Table 7-8. B/Cx Control Bits

B/C1 B/CO Bits/Character
0 0 Five Bits
0 1 Six Bits
1 0 Seven Bits
1 1 Eight Bits

7-34

MC68341 USER’S MANUAL

MOTOROLA

7.4.1.12 MODE REGISTER 2 (MR2). MR2 controls some of the serial module
configuration. This register can be read or written at any time the serial module is enabled
(i.e., the STP bit in the MCR is cleared).

MR2A, MR2B $720, $721

7 6 5 4 3 2 1 0

| CMm1 | CMOo |TXRTS |TXCTS| SB3 | SB2 | SB1 | SBO |

RESET:
0 0 0 0 0 0 0 0

Read/Write Supervisor/User

CM1, CM0—Channel Mode

These bits select a channel mode as listed in Table 7-9. See 7.3.3 Looping Modes for
more information on the individual modes.

Table 7-9. CMx Control Bits

CM1 CMO Mode
0 0 Normal
0 1 Automatic Echo
1 0 Local Loopback
1 1 Remote Loopback

TXRTS—Transmitter Ready-to-Send

This bit controls the negation of the RTSA or RTSB signals. The output is normally
asserted by setting OPO or OP1 in the OPCR and negated by clearing OPO or OP1 in
the OPCR (see 7.4.1.14 Output Port Control Register (OPCR)).

1 = In applications where the transmitter is disabled after transmission is complete,
setting this bit causes the particular OP bit to be cleared automatically one bit
time after the characters, if any, in the channel transmit shift register and the
transmitter holding register are completely transmitted, including the programmed
number of stop bits. This feature is used to automatically terminate transmission
of a message. If both the receiver and the transmitter in the same channel are
programmed for RTSx control, RTSx control is disabled for both since this is an
incorrect configuration.

0 = Clearing this bit has no effect on the transmitter RTSx.

TXCTS—Transmitter Clear-to-Send

1 = Enables clear-to-send operation. The transmitter checks the state of the CTSx
input each time it is ready to send a character. If CTSx is asserted, the character
is transmitted. If CTSx is negated, the channel TxDx remains in the high state,
and the transmission is delayed until CTSx is asserted. Changes in CTSx while a
character is being transmitted do not affect transmission of that character. If both
TXCTS and TXRTS are enabled, TXCTS controls the operation of the transmitter.

0 = The CTSx has no effect on the transmitter.

MOTOROLA MC68341 USER’S MANUAL 7-35

SB3-SB0—Stop-Bit Length Control

These bits select the length of the stop bit appended to the transmitted character as
listed in Table 7-10. Stop-bit lengths of nine-sixteenth to two bits, in increments of one-
sixteenth bit, are programmable for character lengths of six, seven, and eight bits. For a
character length of five bits, one and one-sixteenth to two bits are programmable in
increments of one-sixteenth bit. In all cases, the receiver only checks for a high
condition at the center of the first stop-bit position—i.e., one bit time after the last data

bit or after the parity bit, if parity is enabled.

If an external 1x clock is used for the transmitter, MR2 bit 3 = 0 selects one stop bit, and

MR2 bit 3 = 1 selects two stop bits for transmission.

Table 7-10. SBx Control Bits

SB3 SB2 SB1 SBO Length 6-8 Bits Length 5 Bits
0 0 0 0 0.563 1.063
0 0 0 1 0.625 1.125
0 0 1 0 0.688 1.188
0 0 1 1 0.750 1.250
0 1 0 0 0.813 1.313
0 1 0 1 0.875 1.375
0 1 1 0 0.938 1.438
0 1 1 1 1.000 1.500
1 0 0 0 1.563 1.563
1 0 0 1 1.625 1.625
1 0 1 0 1.688 1.688
1 0 1 1 1.750 1.750
1 1 0 0 1.813 1.813
1 1 0 1 1.875 1.875
1 1 1 0 1.938 1.938
1 1 1 1 2.000 2.000

7-36 MC68341 USER’'S MANUAL

MOTOROLA

7.4.1.13 OUTPUT PORT DATA REGISTER (OP). The bits in the OP register are set by
performing a bit set command (writing to offset $71E) and are cleared by performing a bit
reset command (writing to offset $71F). This register can only be written when the serial
module is enabled (i.e., the STP bit in the MCR is cleared).

Bit Set
oP $71E
7 6 5 4 3 2 1 0
[[[o= [[oo o= [o [om |
RESET:
0 0 0 0 0 0 0 0
Write Only Supervisor/User
NOTE

OP bits 7, 5, 3, and 2 are not pinned out on the MC68341;
thus, changing these bits has no effect.

OP6, OP4, OP1, OPO0 —Output Port Parallel Outputs

The state of these register bits is the complement of the output signal level (e.g., a reset
clears these bits (logic 0), while the output signals are asserted (logic 1))

1 = These bits can be set by writing a one to the bit position(s) at this address.
0 = These bits are not affected by writing a zero to this address.

Bit Reset

oP $71F

7 6 5 4 3 2 1 0
[Tow [0 o [om [o= [om [om |
RESET:

0 0 0 0 0 0 0 0
Write Only Supervisor/User

NOTE

OP bits 7, 5, 3, and 2 are not pinned out on the MC68341;
thus, changing these bits has no effect.

OP6, OP4, OP1, OPO —Output Port Parallel Outputs

The state of these register bits is the complement of the output signal level (e.g., a reset
clears these bits (logic 0), while the output signals are asserted (logic 1))

1 = These bits can be cleared by writing a one to the bit position(s) at this address.
0 = These bits are not affected by writing a zero to this address.

MOTOROLA MC68341 USER’S MANUAL 7-37

7.4.1.14 OUTPUT PORT CONTROL REGISTER (OPCR). The OPCR individually
configures four bits of the 7-bit parallel OP for general-purpose use or as an auxiliary
function serving the communication channels. This register can only be written when the
serial module is enabled (i.e., the STP bit in the MCR is cleared).

OPCR $71D
7 6 5 4 3 2 1 0
OoP7 OP6 OP5 OP4 OP3 OoP2 OP1 OPO
TxRDYB |TxRDYA |RxRDYB |RxRDYA RTSB RTSA

RESET:
0 0 0 0 0 0 0 0
Write Only Supervisor/User
NOTE

OP bits 7, 5, 3, and 2 are not pinned out on the MC68341;
thus, changing these bits has no effect.

OP6—Output Port 6/TxRDYA

1= The OP6/TxRDYA pin functions as the transmitter-ready signal for channel A.
The signal reflects the complement of the value of bit 2 of the SRA; thus,
TxRDYA is a logic zero when the transmitter is ready.

0 = The OP6/TxRDYA pin functions as a dedicated output. The signal reflects the
complement of the value of bit 6 of the OP.

OP4—Output Port 4/RxRDYA

1 = The OP4/RxRDYA pin functions as the FIFO-full or receiver-ready signal for
channel A (depending on the value of bit 6 of MR1A). The signal reflects the
complement of the value of ISR bit 1; thus, RxRDYA is a logic zero when the
receiver is ready.

0 = The OP4/RxRDYA pin functions as a dedicated output. The signal reflects the
complement of the value of bit 4 of the OP.

OP1—Output Port 1/RTSB

1= The OP1/RTSB pin functions as the ready-to-send signal for channel B. The
signal is asserted and negated according to the configuration programmed by
RXRTS bit 7 in the MR1B for the receiver and TXRTS bit 5 in the MR2B for the
transmitter.

0 = The OP1/RTSB pin functions as a dedicated output. The signal reflects the
complement of the value of bit 1 of the OP.

7-38 MC68341 USER’S MANUAL MOTOROLA

OPO—Output Port O/RTSA

1 = The OPO/RTSA pin functions as the ready-to-send signal for channel A. The
signal is asserted and negated according to the configuration programmed by
RXRTS bit 7 in the MR1A for the receiver and TXRTS bit 5 in the MR2A for the
transmitter.

0 = The OPO/RTSA pin functions as a dedicated output. The signal reflects the
complement of the value of bit 0 of the OP.

7.4.1.15 RECEIVER BUFFER (RB). The RB contains three receiver holding registers and
a serial shift register. The channel's RxDx pin is connected to the serial shift register. The
holding registers act as a FIFO. The CPU32 reads from the top of the stack while the
receiver shifts and updates from the bottom of the stack when the shift register has been
filled (see Figure 7-4). This register can only be read when the serial module is enabled
(i.e., the STP bit in the MCR is cleared).

RBA, RBB $713, $71B

7 6 5 4 3 2 1 0

|RB7 |RBS |RBS |RBA |RBS |RBZ |RBl |RBO |

RESET:
0 0 0 0 0 0 0 0

Read Only Supervisor/User
RB7—RB0—These bits contain the character in the RB.

7.4.1.16 STATUS REGISTER (SR). The SR indicates the status of the characters in the
FIFO and the status of the channel transmitter and receiver. This register can only be read
when the serial module is enabled (i.e., the STP bit in the MCR is cleared).

SRA, SRB $711, $719
7 6 5 4 3 2 1 0
| RB | FE | PE | OE |TxEMP |TxRDY | FFULL | RxRDYl
RESET:
0 0 0 0 0 0 0 0
Read Only Supervisor/User

RB—Received Break

1 = An all-zero character of the programmed length has been received without a stop
bit. The RB bit is only valid when the RXRDY bit is set. Only a single FIFO
position is occupied when a break is received. Further entries to the FIFO are
inhibited until the channel RxDx returns to the high state for at least one-half bit
time, which is equal to two successive edges of the internal or external 1x clock
or 16 successive edges of the external 16x clock.

The received break circuit detects breaks that originate in the middle of a
received character. However, if a break begins in the middle of a character, it
must persist until the end of the next detected character time.

0 = No break has been received.

MOTOROLA MC68341 USER’S MANUAL 7-39

FE—Framing Error

1 = A stop bit was not detected when the corresponding data character in the FIFO
was received. The stop-bit check is made in the middle of the first stop-bit
position. The bit is valid only when the RXRDY bit is set.

0 = No framing error has occurred.

PE—Parity Error

1 = When the with parity or force parity mode is programmed in the MR1, the
corresponding character in the FIFO was received with incorrect parity. When the
multidrop mode is programmed, this bit stores the received A/D bit. This bit is
valid only when the RxRDY bit is set.

0 = No parity error has occurred.

OE—Overrun Error

1 = One or more characters in the received data stream have been lost. This bit is
set upon receipt of a new character when the FIFO is full and a character is
already in the shift register waiting for an empty FIFO position. When this occurs,
the character in the receiver shift register and its break detect, framing error
status, and parity error, if any, are lost. This bit is cleared by the reset error status
command in the CR.

0 = No overrun has occurred.

TXEMP—Transmitter Empty

1 = The channel transmitter has underrun (both the transmitter holding register and
transmitter shift registers are empty). This bit is set after transmission of the last
stop bit of a character if there are no characters in the transmitter holding register
awaiting transmission.

0 = The transmitter buffer is not empty. The transmitter holding register is loaded by
the CPU32, or the transmitter is disabled. The transmitter is enabled/disabled by
programming the TCx bits in the CR.

TXRDY—Transmitter Ready
This bit is duplicated in the ISR; bit O for channel A and bit 4 for channel B.

1 = The transmitter holding register is empty and ready to be loaded with a character.
This bit is set when the character is transferred to the transmitter shift register.
This bit is also set when the transmitter is first enabled. Characters loaded into
the transmitter holding register while the transmitter is disabled are not
transmitted and are lost.

0 = The transmitter holding register was loaded by the CPU32, or the transmitter is
disabled.

7-40 MC68341 USER’S MANUAL MOTOROLA

FFULL—FIFO Full

1 = A character was transferred from the receiver shift register to the receiver FIFO
and the transfer caused the FIFO to become full (all three FIFO holding register
positions are occupied).

0 = The CPU32 has read the receiver buffer and one or more FIFO positions are
available. Note that if there is a character in the receiver shift register because
the FIFO is full, this character will be moved into the FIFO when a position is
available, and the FIFO will remain full.

RxRDY—Receiver Ready

1 = A character has been received and is waiting in the FIFO to be read by the
CPU32. This bit is set when a character is transferred from the receiver shift
register to the FIFO.

0 = The CPU32 has read the receiver buffer, and no characters remain in the FIFO
after this read.

7.4.1.17 TRANSMITTER BUFFER (TB). The TB consists of two registers, the transmitter
holding register and the transmitter shift register (see Figure 7-4). The holding register
accepts characters from the bus master if the TXRDY bit in the channel's SR is set. A write
to the TB clears the TXRDY bit, inhibiting any more characters until the shift register is
ready to accept more data. When the shift register is empty, it checks to see if the holding
register has a valid character to be sent (TXRDY bit cleared). If there is a valid character,
the shift register loads the character and reasserts the TxRDY bit in the channel's SR.
Writes to the TB when the channel's SR TxRDY bit is clear and when the transmitter is
disabled have no effect on the TB. This register can only be written when the serial
module is enabled (i.e., the STP bit in the MCR is cleared).

TBA, TBB $713, $71B

7 6 5 4 3 2 1 0

|TB7|TB6|TB5|TB4|TBS|TBZ|TBl|TBO|

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

TB7-TB0O—These bits contain the character in the TB.

7.4.2 Programming

The basic interface software flowchart required for operation of the serial module is shown
in Figure 7-10. The routines are divided into three categories:

* Serial Module Initialization
¢ |/O Driver
* Interrupt Handling

MOTOROLA MC68341 USER’S MANUAL 7-41

7.4.2.1 SERIAL MODULE INITIALIZATION. The serial module initialization routines
consist of SINIT and CHCHK. SINIT is called at system initialization time to check channel
A and channel B operation. Before SINIT is called, the calling routine allocates two words
on the system stack. Upon return to the calling routine, SINIT passes information on the
system stack to reflect the status of the channels. If SINIT finds no errors in either channel
A or channel B, the respective receivers and transmitters are enabled. The CHCHK
routine performs the actual channel checks as called from the SINIT routine. When called,
SINIT places the specified channel in the local loopback mode and checks for the
following errors:

» Transmitter Never Ready

« Receiver Never Ready
 Parity Error

 Incorrect Character Received

7.4.2.2 1/0 DRIVER EXAMPLE. The 1/O driver routines consist of INCH, OUTCH, and
POUTCH. INCH is the terminal input character routine and gets a character from the
channel A receiver and places it in the lower byte of register DO. OUTCH is used to send
the character in the lower byte of register DO to the channel A transmitter. POUTCH sends
the character in the lower byte of DO to the channel B transmitter.

7.4.2.3 INTERRUPT HANDLING. The interrupt handling routine consists of SIRQ, which
is executed after the serial module generates an interrupt caused by a channel A change-
in-break (beginning of a break). SIRQ then clears the interrupt source, waits for the next
change-in-break interrupt (end of break), clears the interrupt source again, then returns
from exception processing to the system monitor.

7-42 MC68341 USER’S MANUAL MOTOROLA

MOTOROLA

(SERIAL MODULE)

SINIT

\

INITIATE:

CHANNEL A
CHANNEL B
INTERRUPTS

CHKIJ

POINT TO CHANNEL A

A
CALL CHCHK

\

SAVE CHANNEL A
STATUS

CHK2
A

POINT TO CHANNEL B

A
CALL CHCHK

\

SAVE CHANNEL B
STATUS

Figure 7-10. Serial Module Programming Flowchart (1 of 5)

ENABLA

ANY
ERRORS IN

CHANNEL A
2

ENABLE CHANNEL
A'S RECEIVER

ASSERT CHANNEL A
REQUEST TO SEND

ENABLB <

ANY

ERRORS IN

CHANNEL B
?

ENABLE CHANNEL
B'S TRANSMITTER

SINITR

C

RETURN)

MC68341 USER’S MANUAL

7-43

=)

CHCHK

PLACE CHANNEL IN
LOCAL LOOPBACK
MODE

ENABLE CHANNEL'S
TRANSMITTER CLEAR
CHANNEL
STATUS WORD

TXCHK =<

)

IS WAITED
TRANSMITTER NG SET TRANSMITTER-
READY ool NEVER-READY FLAG
; .

SNDCHR i{ N

SEND CHARACTER
TO TRANSMITTER

RxCHK

HAS

RECEIVER WAITED _
NARACTE TOOLONG NEVER READY FLAG >
CHARACTER 5
?

Figure 7-10. Serial Module Programming Flowchart (2 of 5)

7-44 MC68341 USER’S MANUAL MOTOROLA

MOTOROLA

FRCHK

HAVE
FRAMING ERROR
?

SET FRAMING
ERROR FLAG

PRCHK

HAVE
PARITY ERROR
?

SET PARITY
ERROR FLAG

CHRCHK

GET CHARACTER
FROM RECEIVER

SAME
AS CHARACTER
TRANSMITTED

SET INCORRECT
CHARACTER FLAG

MC68341 USER’S MANUAL

]

RSTCHN

DISABLE CHANNEL'S
TRANSMITTER

RESTORE CHANNEL
TO ORIGINAL MODE

)

(RETURN)

Figure 7-10. Serial Module Programming Flowchart (3 of 5)

7-45

7-46

IRQx CAUSED
BY BEGINNING
OF A BREAK

CLEAR CHANGE-IN-
BREAK STATUS BIT

ABRKI1

HAS
END-OF-BREAK
IRQx ARRIVED

YET
?

CLEAR CHANGE-IN-
BREAK STATUS BIT

REMOVE BREAK
CHARACTER FROM
RECEIVER FIFO

REPLACE RETURN
ADDRESS ON SYSTEM
STACK AND MONITOR

WARM START ADDRESS

SIRQR

RTE

DOES
CHANNEL A

RECEIVER HAVE A
CHARACTER

PLACE CHARACTER
IN DO

y

(RETURN)

Figure 7-10. Serial Module Programming Flowchart (4 of 5)

MC68341 USER’S MANUAL

MOTOROLA

IS
CHANNEL A
TRANSMITTER

READY
?

SEND CHARACTER
IN DO TO CHANNEL A
TRANSMITTER

WAS
CHARACTER A
CARRIAGE

RETURN
?

OUTCHI

IS
CHANNEL A
TRANSMITTER

READY
2

SEND A LINE
FEED CHARACTER TO
CHANNEL A
TRANSMITTER

OUTCHR

RETURN

IS

CHANNEL B
TRANSMITTER
READY
?

SEND CHARACTER
IN DO TO CHANNEL
B TRANSMITTER

WAS
CHARACTER A
CARRIAGE
RETURN
2

POUTCHI

IS
CHANNEL B
TRANSMITTER

READY
?

SEND A LINE
FEED CHARACTER TO
CHANNEL B
TRANSMITTER

POUTCHR

Y

(RETURN)

Figure 7-10. Serial Module Programming Flowchart (5 of 5)

MOTOROLA

MC68341 USER’S MANUAL

7-47

7.5 SERIAL MODULE INITIALIZATION SEQUENCE

The following paragraphs discuss a suggested method for initializing the serial module.

7.5.1 Serial Module Configuration
If the serial capability of the MC68341 is being used, the following steps are required to
properly initialize the serial module.
NOTE
The serial module registers can only be accessed by byte operations.

Command Register (CR)
* Reset the receiver and transmitter for each channel.

The following steps program both channels:

Module Configuration Register (MCR)
* Initialize the stop bit (STP) for normal operation.

Select whether to respond to or ignore FREEZE (FRZx bits).
Select the input capture clock (ICCS bit).
Select the access privilege for the supervisor/user registers (SUPV bit).

Select the interrupt arbitration level for the serial module (IARBX bits).

Interrupt Vector Register (IVR)
« Program the vector number for a serial module interrupt.

Interrupt Level Register (ILR)
» Program the interrupt priority level for a serial module interrupt.

Interrupt Enable Register (IER)
» Enable the desired interrupt sources.

Auxiliary Control Register (ACR)
» Select baud rate set (BRG bit).

« Initialize the input enable control (IEC bits).

Output Port Control Register (OPCR)
e Select the function of the output port pins.

Interrupt Status Register (ISR)

» The XTAL_RDY bit should be polled until it is cleared to ensure that an unstable
crystal input is not applied to the baud rate generator.

7-48 MC68341 USER’S MANUAL MOTOROLA

The following steps are channel specific:

Clock Select Register (CSR)
+ Select the receiver and transmitter clock.

Mode Register 1 (MR1)
« If desired, program operation of receiver ready-to-send (RxXRTS bit).

» Select receiver-ready or FIFO-full notification (R/F bit).
» Select character or block error mode (ERR bit).
» Select parity mode and type (PM and PT bits).
» Select number of bits per character (B/Cx bits).

Mode Register 2 (MR2)
Select the mode of channel operation (CMx bits).

If desired, program operation of clear-to-send (TxCTS bit).
Select stop-bit length (SBx bits).

Command Register (CR)
* Enable the receiver and transmitter.

MOTOROLA MC68341 USER’S MANUAL

If desired, program operation of transmitter ready-to-send (TXRTS bit).

7-49

7.5.2 Serial Module Example Configuration Code
The following code is an example of a configuration sequence for the serial module.

EE R R R I R I R I I R I R I R I I R S R R R R I R R I I R I R R S R R S R R S R O

MC68341 basic serial nodule register initialization exanple code.

This code is used to initialize the 68341's internal serial nodule registers,
provi di ng basic functions for operation.

It sets up serial channel A for conmunication with a 9600 baud terninal.

* Note: Al serial nodule registers nmust be accessed as bytes.

EE R I R I R I R I I R I R I I R I R S R I R R R R R I I R I R R S R R S R R S R R

*
*
*
*

EE R I R I R I R I I R I R I I R I R S R I R R R R R I I R I R R S R R S R R S R R

* equates

EE R I R I R I R I I R I R I I R I I R R R R R I R R I I R I R R S R R S R R S R O

MBAR EQU $0003FFO00 Address of SI M4l Modul e Base Address Reg.
MODBASE EQU $FFFFFO00 SI w1 MBAR address val ue

EIE R I R S R R I I R I R R I R R I R R O R S I R R I R R I R O O

* Serial nodul e equates

SERI AL EQU $700 O fset from MBAR for serial nodule regs
MCRH EQU $0 serial MCR high byte

MCRL EQU $1 serial MCR | ow byte

* Serial register offsets fromserial base address

MR1A EQU $10 Mbde register 1 A

MR2A EQU $20 Mbde register 2 A

SRA EQU $11 Status register A

CSRA EQU $11 Clock select reg A

CRA EQU $12 Command reg A

ACR EQU $14 Auxiliary control reg

OPCR EQU $1D Qut put port control reg

OP_BS EQU $1E Qutput port bit set (wite 1 to set)
OP_BR EQU $1F Qutput port bit reset (wite 1 to clear)

EE R I R I R I R R I R I R I R I R R R I R R R I R R I I R R R S R R S R R S R O

EE R I R R I R R I I R I R I R I R I R R I R R R I R R I I R R R S R R R R R R R

* |nitialize Serial channel A

EE R I R R I R I I R I I R I R I R I R S R R R R I R R I I R R R S R R I R R S R R

LEA MODBASE+SERI AL, AO Pointer to serial channel A

* Modul e configuration register:
* Enabl e serial nodule for nornmal operation, ignore FREEZE, sel ect the
* crystal clock. Supervisor/user serial registers unrestricted.
* Interrupt arbitration at priority $02.
MOVE. B #$00, MCRH(A0)
MOVE. B #$02, MCRL(A0)
* WAIT FOR TRANSM TTER EMPTY (OR TI MEQUT)
MOVE. W #$2000, DO init loop counter
XBMIM'WAI T EQU *
BTST #3, SRA(A0) TX enpty in status reg?
NOP
DBNE DO, XBMI'\WAI T | oop until set or tineout

7-50 MC68341 USER’S MANUAL MOTOROLA

NEGATE RTSA S| GNAL OUTPUT
MOVE. B #0, OPCR(AO)
MOVE. B #$01, OP_BR(A0)

make OPO-7 general purpose
cl ear RTSA/ OPO out put

* RESET RECEI VER/ TRANSM TTER
MOVE. B #$20, CRA(AO)
MOVE. B #$30, CRA(AO)

| ssue reset receiver command
| ssue reset transmtter comand

* SET BAUD RATE SET 2
MOVE. B #$80, ACR(A0)

* MODE REQ STER 1

MOVE. B #$93, MR1A(AD) 8 bits, no parity, auto RTS control
* MODE REQ STER 2
MOVE. B #3$07, MR2A(AD) Normal, 1 stop bit

* SET UP BAUD RATE FOR PORT I N CLOCK
MOVE. B #$BB, CSRA(A0)

SELECT REG STER
Set 9600 baud for RX and TX
* SET RTSA ACTI VE

MOVE. B #$01, OP_BS(A0) set RTSA/ OPO out put

* ENABLE PORT

MOVE. B #$45, CRA(AD) Reset error status, enable RX & TX
EE R R I S b b b b b R b I S I R R R R S I R I I R R I I I I I R I I S
END
EE R R R I S b b b I b b b I S S I R R R S R I R S I I R I S
MOTOROLA MC68341 USER’'S MANUAL

7-51

SECTION 8
TIMER MODULE

The MC68341 timer module contains a counter/timer as shown in Figure 8-1. The timer
interfaces directly to the CPUS32 via the intermodule bus (IMB). The timer consists of the
following major areas:

» A General-Purpose Counter/Timer
« Internal Control Logic
* Interrupt Control Logic

TIN

COUNTER/ TOUT >
TIMER TGATE

INTERRUPT
CONTROL
LOGIC

IMB
INTERFACE

Figure 8-1. Simplified Block Diagram

8.1 MODULE OVERVIEW

The timer module consists of the following functional features:
* Versatile General-Purpose Timer
« 8-Bit Prescaler/16-Bit Counter
* Programmable Timer Modes:
— Input Capture/Output Compare
— Square-Wave Generation
— Variable Duty-Cycle Square-Wave Generation
— Variable-Width Single-Shot Pulse Generation
— Pulse-Width Measurement

MOTOROLA MC68341 USER’S MANUAL 81

— Period Measurement
— Event Counting
» Seven Maskable Interrupt Conditions Based on Programmable Events

8.1.1 Timer and Counter Functions

The timer can perform virtually any application traditionally assigned to timers and
counters. The timer can be used to generate timed events that are independent of the
timing errors to which real-time programmed microprocessors are susceptible—for
example, those of dynamic memory refreshing, DMA cycle steals, and interrupt servicing.

The timer has several functional areas: an 8-bit countdown prescaler, a 16-bit down
counter, time-out logic, compare logic, and clock selection logic. Figure 8-2 shows a
functional diagram of the timer module.

8.1.1.1 PRESCALER AND COUNTER. The counter can be driven directly by the selected
clock or the prescaler output. Both the counter and prescaler are updated on the falling
edge of the clock. During reset, the prescaler is set to $FF, and the counter is set to
$0000. The counter is loaded with a programmed value on the first falling edge of the
counter clock after the timer is enabled and again when a time-out occurs (counter
reaches $0000). The prescaler and counter can be used as one 24-bit counter by enabling
the prescaler and selecting the divide-by-256 prescaler output. Refer to 8.4 Register
Description for additional information on how to program the timer.

8.1.1.2 TIME-OUT DETECTION. Time-out is achieved when all 16 stages of the counter
transition to zero, a counter value of $0000. Time-out is a defined counter event which
triggers specific actions depending upon the programmed mode of operation. Refer to 8.3
Operating Modes for descriptions of the individual modes.

8.1.1.3 COMPARATOR. The comparator block compares the value in the 16-bit compare
register (COM) with the output of the 16-bit counter. When an exact match is detected,
bits in the status register (SR) are set to indicate this condition. When in the input
capture/output compare mode, a match is a defined counter event that can affect the
output of the timer (TOUT). Refer to 8.3.1 Input Capture/Output Compare for additional
information on this mode.

82 MC68341 USER’S MANUAL MOTOROLA

TIMER

EXTERNAL
INTERFACE
MODULE CONFIGURATION REGISTER
INTERRUPT REGISTER
CONTROL REGISTER
4 E > STATUS REGISTER

PRELOAD 1 REGISTER

I o TIN
CLOCK (SYSTEM CLOCK) ~ CLOCK [*& —

M > LOGIC < TGATE
B

PRELOAD 2 REGISTER SELECTED

CLOCK
AV COUNTER < Y
‘ 16-BIT CLOCK
MUX :> < MUX
COUNTER BT
~~ | PRESCALER
TOUT
COUNTER REGISTER TIMEOUT >
16-BIT
COMPARE REGISTER :} COMPARATOR

Figure 8-2. Timer Functional Diagram

8.1.1.4 CLOCK SELECTION LOGIC. The clock selection logic consists of two
multiplexers that select the clocks applied to the prescaler and counter. The first
multiplexer (labeled clock logic in Figure 8-2) selects between the clock input to the timer
(TIN) or one-half the frequency of the system clock (CLKOUT). This output of the first
multiplexer (called selected clock) is applied to both the 8-bit prescaler and the second
multiplexer. The second multiplexer selects the clock for the 16-bit counter, which is either
the selected clock or the 8-bit prescaler output.

8.1.2 Internal Control Logic

The timer receives operation commands on the IMB and, in turn, issues appropriate
operation signals to the internal timer control logic. This mechanism allows the timer
registers to be accessed and programmed. Refer to 8.4 Register Description for
additional information.

MOTOROLA MC68341 USER’S MANUAL 83

8.1.3 Interrupt Control Logic

The timer provides seven interrupt request outputs (IRQ7-IRQ1) to notify the CPU32 that
an interrupt has occurred. The interrupts are described in 8.4 Register Description. Bits
in the SR indicate all currently active interrupt conditions. The interrupt enable (IE) bits in
the control register (CR) are programmable to mask any events that may cause an

interrupt.

8.2 TIMER MODULES SIGNAL DEFINITIONS

This section contains a brief description of the timer module signals (see Figure 8-3).

NOTE

The terms assertion and negation are used throughout this
section to avoid confusion when dealing with a mixture of
active-low and active-high signals. The term assert or assertion
indicates that a signal is active or true independent of the level
represented by a high or low voltage. The term negate or

negation indicates that a signal is inactive or false.

CLOCK
LOGIC

TIN

<

TGATE

i

PRESCALER

o —

COUNTER

y

OUTPUT
CONTROL

TOUT

INTERRUPT
CONTROL

EXTERNAL
— INTERFACE
SIGNALS

Figure 8-3. External and Internal Interface Signals

84 MC68341 USER’S MANUAL

MOTOROLA

8.2.1 Timer Input (TIN)

This input can be programmed to be the clock that causes events to occur in the counter
and prescaler. TIN is internally synchronized to the system clock to guarantee that a valid
TIN level is recognized. Additionally, the high and low levels of TIN must each be stable
for at least one system clock period plus the sum of the setup and hold times for TIN.
Refer to Section 12 Electrical Characteristics, for additional information.

8.2.2 Timer Gate (TGATE)

This active-low input can be programmed to enable and disable the counter and prescaler.
TGATE may also be programmed to be a simple input. For more information on the
modes of operation, refer to 8.3 OPERATING MODES. To guarantee that the timer
recognizes a valid level on TGATE, the signal is synchronized with the system clock.
Additionally, the high and low levels of this input must each be stable for at least one
system clock period plus the sum of the setup and hold times for TGATE. Refer to
Section 12 Electrical Characteristics, for additional information.

8.2.3 Timer Output (TOUT)

This output drives the various output waveforms generated by the timer. The initial level
and transitions can be programmed by the output control (OC) bits in the CR.

8.3 OPERATING MODES

The following paragraphs contain a detailed description of each timer operation mode and
of the IMB operation during accesses to the timer. Changing the contents of the CR
should only be attempted when the timer is disabled (the software reset (SWR) bit in the
CR is cleared). Changing the CR while the timer is running may produce unpredictable
results.

8.3.1 Input Capture/Output Compare

This mode has the capability of capturing a counter value by holding the value in the
counter register (CNTR). Additionally, this mode can provide compare information via
TOUT to indicate when the counter has reached the compare value. This mode can be
used for square-wave generation, pulse-width modulation, or periodic interrupt generation.
This mode can be selected by programming the operation mode bits (MODEX) in the CR
to 000.

The timer is enabled when the counter prescaler enable (CPE) and SWRx bits in the CR
are set. Once enabled, the counter enable (ON) bit in the SR is set, and the next falling
edge of the counter clock causes the counter to be loaded with the value in the preload 1
register (PREL1).

The TGATE signal functions differently in this mode than it does in the other modes.
TGATE does not enable or disable the counter/prescaler input clock; instead, it is used to
disable shadowing. Normally, the counter is decremented on the falling edge of the
counter clock, and the CNTR is updated on the next rising edge of the system clock; thus,

MOTOROLA MC68341 USER’S MANUAL 85

the CNTR shadows the actual value of the counter. The timer gate interrupt (TG) bit in the
SR must be cleared for shadowing to occur. TGATE is used to set the TG bit and disable
shadowing. If the timing gate is enabled (TGE bit of the CR is set), the TG bit is set by the
rising edge of TGATE. Shadowing is disabled until the TG bit is cleared by writing a one to
its location in the SR. See Figure 8-4 for a depiction of this mode. If the timing gate is
disabled (CR TGE bit is cleared), TGATE has no effect on the operation of the timer; thus
the input capture function is inoperative. At all times, the TGATE level bit (TGL) in the SR
reflects the level of the TGATE signal.

|
COUNTER }
CLOCK

| | | |
I I I I
COUNTER o 0 0 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 10 0 8 8 7 7
COUNTER 0o 0o 0 0 8 8 7 7 6 6 6 6 6/'3 2 2 1 1 0 0 8 8 8
REGISTER ! : : } ‘
|
—] ! ‘ﬂ _W ! Y —
TGATE ! ! ! !
1 F— | K
| } TG SET TG CLEARED } TG SET
| | | |
|
TOUT ‘ | |
!
ENABLE TC SET TIMEOUT TC SET

Modex Bits in Control Register = 000
Preload 1 Register = 8

Compare Register = 7

TGE Bit of Status Register = 1

TG Bit in Status Register Initially = 0
OCx Bits in Control Register = 10

Figure 8-4. Input Capture/Output Compare Mode

Since the counter is not affected by TGATE, it continues to decrement on the falling edge
of the counter clock and load from the PRELL1 at time-out, regardless of the value of
TGATE.

When the counter counts down to the value contained in the COM, this condition is
reflected by setting the timer compare (TC) and compare (COM) bits in the SR. TOUT
responds as selected by the OCx bits in the CR. The output level (OUT) bit in the SR
reflects the value on TOUT. Shadowing does not affect this operation.

If the counter counts down to $0000, a time-out is detected, causing the SR time-out
interrupt (TO) bit to be set and the SR COM bit to be cleared. On the next falling edge of
the counter clock after the time-out is detected, the value in PRELL is again loaded into
the counter. TOUT responds as selected by the CR OCx bits.

A square-wave generator can be implemented by programming the CR OCx bits to toggle

mode. The value in the COM should be one-half the value in PREL1 to cause an event to
happen twice in the countdown.

86 MC68341 USER’S MANUAL MOTOROLA

This mode can be used as a pulse-width modulator by programming the CR OCx bits to
zero mode or one mode. The value in the PREL1 specifies the frequency, and the COM
determines the pulse width. The pulse widths can be changed by writing a new value to
the COM.

Periodic interrupt generation can be accomplished by enabling the TO, TG, and/or TC bits
in the SR to generate interrupts by programming the IE bits of the CR. When enabled, the
programmed IRQx signal is asserted whenever the specified bits are set.

TOUT signal transitions can be controlled by writing new values into the COM. Caution
must be exercised when accessing the COM. If it were to be accessed simultaneously by
the compare logic and by a write, the old compare value may actually get compared to the
counter value.

8.3.2 Square-Wave Generator

This mode can be used for generating both square-wave output and periodic interrupts.
The square wave is generated by counting down from the value in the PREL1 to time-out
(counter value of $0000). TOUT changes state on each time-out as programmed. This
mode can be selected by programming the CR MODEX bits to 001.

The timer is enabled by setting the SWR and CPE bits in the CR and, if TGATE is
programmed to control the enabling and disabling of the counter (TGE bit set in the CR),
then asserting TGATE. When the timer is enabled, the ON bit in the SR is set. On the next
falling edge of the counter clock, the counter is loaded with the value stored in the PREL1
(N). With each successive falling edge of the counter clock, the counter decrements. The
time between enabling the timer and the first time-out can range from N to N + 1 periods.
When TGATE is used to enable the timer, the enabling of the timer is asynchronous;
however, if timing is carefully considered, the time to the first time-out can be known. For
additional details on timing, see Section 12 Electrical Characteristics.

TOUT behaves as a square wave when the OCx bits of the CR are programmed for toggle
mode. A time-out occurs every N + 1 periods (allowing for the zero cycle), resulting in a
change of state on TOUT (see Figure 8-5). The SR OUT bit reflects the level of TOUT. If
this mode is used to generate periodic interrupts, TOUT may be enabled if a square wave
is also desired.

MOTOROLA MC68341 USER’S MANUAL 87

COUNTER
CLOCK

| | |
COUNTER 0 0 : 3 2 1 10 3 2 1 0 3 2 1 0 3

| | |
| |) |
| | N+1 \\ I

out I N:N+1 / | N+1 /
T 1 | |
ENABLE TIMEOUT TIMEOUT TIMEOUT

MODEX Bits in Control Register = 001
Preload 1 Register =N =3
OCx Bits in Control Register = 01

Figure 8-5. Square-Wave Generator Mode

If TGATE is negated when it is enabled to control the timer (TGE = 1), the prescaler and
counter are disabled. Additionally, the SR TG bit is set, indicating that TGATE was
negated. The SR ON bit is cleared, indicating that the timer is disabled. If TGATE is
reasserted, the timer is re-enabled and begins counting from the value attained when
TGATE was negated. The SR ON bit is set again.

If TGATE is disabled (TGE = 0), TGATE has no effect on the operation of the timer. In this
case, the counter begins counting on the falling edge of the counter clock immediately
after the SWR and CPE bits in the CR are set. The TG bit of the SR cannot be set. At all
times, TGL in the SR reflects the level of TGATE.

If the counter counts down to the value stored in the COM register, then the COM and TC
bits in the SR are set. The counter continues counting down to time-out. At this time, the
SR TO bit is set, and the SR COM bit is cleared. The next falling edge of the counter clock
after time-out causes the value in PREL1 to be loaded back into the counter, and the
counter begins counting down from this value.

The period of the square-wave generator can be changed dynamically by writing a new
value into the PREL1. Caution must be used because, if PREL1 is accessed
simultaneously by the counting logic and a CPU32 write, the old PREL1 value may
actually get loaded into the counter at time-out.

Periodic interrupt generation can be accomplished by enabling the TO, TG, and/or TC bits
in the SR to generate interrupts by programming the CR IE bits. When enabled, the
programmed IRQx signal is asserted whenever the specified bits are set.

8.3.3 Variable Duty-Cycle Square-Wave Generator

In this mode, both the PREL1 and PREL2 registers are used to generate a square wave
with virtually any duty cycle. The square wave is generated by counting down from the
value in the PRELL1 to time-out (count value $0000), then loading that value from PREL2
and again counting down to time-out. When this second time-out occurs, the value from
PRELL1 is loaded into the counter, and the cycle repeats. TOUT can be programmed to
change state with every time-out, thus generating a variable duty-cycle square wave. This
mode can be selected by programming the MODE bits in the CR to 010.

88 MC68341 USER’S MANUAL MOTOROLA

The timer is enabled by setting both the SWR and CPE bits in the CR and, if TGATE is
enabled (CR TGE bit is set), then asserting TGATE . When the timer is enabled, the ON bit
in the SR is set. On the next falling edge of the counter clock, the counter is loaded with
the value stored in the PREL1 register (N1). With each successive falling edge of the
counter clock, the counter decrements. The time between enabling the timer and the first
time-out can range from N1 to N1+1 periods. When TGATE is used to enable the timer,
the enabling of the timer is asynchronous; however, if timing is carefully considered, the
time to the first time-out can be known. For additional details on timing, see the Section
12 Electrical Characteristics.

If the counter counts down to the value stored in the COM register, the COM and timer
compare interrupt (TC) bits in the SR are set. The counter continues counting down to
time-out. At this time, the TO bit in the SR is set, and the COM bit is cleared. The next
falling edge of the counter clock after time-out causes the value in PREL2 (N2) to be
loaded into the counter, and the counter begins counting down from this value. Each
successive time-out causes the counter to be loaded alternately with the values from
PREL1 and PRELZ2.

TOUT behaves as a variable duty-cycle square wave when the CR OC bits are
programmed for toggle mode. The second time-out occurs after N2 + 1 periods (allowing
for the zero cycle), resulting in a change of state on TOUT. The third time-out occurs after
N1 + 1 periods, resulting in a change of state on TOUT, and so on (see Figure 8-6). The
OUT bit in the SR reflects the level of TOUT.

[\ [[
COUNTER |
CLOCK

|

COUINTER 0 0/ 4 3 2 1 0 2 1 0 2 1 o
| |
| |
|

/ N2+ 1 \ N2+ 1
Tout NI NL+1 l ‘ NL+1 / \

1 1 |
ENABLE TIMEOUT TIMEOUT TIMEOUT TIMEOUT

MODEX Bits in Control Register = 010
Preload 1 Register = N1 =4

Preload 2 Register = N2 = 2

OCx Bits in Control Register = 01

Figure 8-6. Variable Duty-Cycle Square-Wave Generator Mode

If TGATE is negated when it is enabled (TGE = 1), the prescaler and counter are disabled.
Additionally, the TG bit of the SR is set, indicating that TGATE was negated. The ON bit of
the SR is cleared, indicating that the timer is disabled. If TGATE is reasserted, the timer is
re-enabled and begins counting from the value attained when TGATE was negated. The
ON bit is set again.

If TGATE is not enabled (TGE = 0), TGATE has no effect on the operation of the timer. In
this case, the counter would begin counting on the falling edge of the counter clock
immediately after the SWR and CPE bits in the CR are set. The SR TG bit cannot be set.
At all times, the TGL bit in the SR reflects the level of TGATE.

MOTOROLA MC68341 USER’S MANUAL 89

The duty cycle of the waveform generated on TOUT can be dynamically changed by
writing new values into PREL1 and/or PREL2. If PREL1 or PREL2 is being accessed
simultaneously by the counter logic and a CPU32 write, the old preload value may actually
get loaded into the counter at time-out. If at time-out, the counting logic was accessing
PREL2 and the CPU32 was writing to PREL1 (or vice versa), there would be no
unexpected results.

8.3.4 Variable-Width Single-Shot Pulse Generator

This mode is used to produce a one-time pulse that has a delay controlled by the value
stored in PREL1 and a duration controlled by the value stored in PREL2. With TOUT
programmed to change state, this sequence creates a single pulse of variable width. This
mode can be selected by programming the CR MODE bits to 011.

The timer is enabled by setting both the SWR and CPE bits in the CR and, if TGATE is
enabled (TGE bit in the CR is set), then asserting TGATE. When the timer is enabled, the
ON bit in the SR is set. On the next falling edge of the counter clock, the counter is loaded
with the value stored in the PRELL1 register (N1). With each successive falling edge of the
counter clock, the counter decrements. The time between enabling the timer and the first
time-out can range from N1 to N1 + 1 periods. When TGATE is used to enable the
counter, the enabling of the timer is asynchronous; however, if timing is carefully
considered, the time to the first time-out can be known. For additional details on timing,
see Section 12 Electrical Characteristics.

If the counter counts down to the value stored in the COM, the COM and TC bits in the SR
are set. The counter continues counting down to time-out. At this time, the SR TO bit is set
and the SR COM bit is cleared. The next falling edge of the counter clock after time-out
causes the value in PREL2 (N2) to be loaded into the counter, and the counter begins
counting down from this value. After the second time-out, the selected clock is held high,
disabling the prescaler and counter. Additionally, the SR ON and COM bits are cleared.

TOUT behaves as a variable-width pulse when the OCx bits of the CR are programmed
for toggle mode. TOUT is a logic zero between the time that the timer is enabled and the
first time-out. When this event occurs, TOUT transitions to a logic one. The second time-
out occurs after N2 + 1 periods (allowing for the zero cycle), resulting in TOUT returning to
a logic zero (see Figure 8-7). The OUT bit in the SR reflects the level of TOUT.

810 MC68341 USER’S MANUAL MOTOROLA

[
|
COUNTER [
CLOCK [

[
COUNTER 0 0 2 1 : 0 5 4 3 2 1 0
[

[
[N2 +1
N1: N1+1 ‘

TOUT

[[
ENABLE TIMEOUT TIMEOUT

MODEX Bits in Control Register = 011
Preload 1 Register = N1 =2

Preload 2 Register = N2 =5

OCx bits in Control Register = 01

Figure 8-7. Variable-Width Single-Shot Pulse Generator Mode

If TGATE is negated when it is enabled (TGE = 1), the prescaler and counter are disabled.
Additionally, the SR TG bit is set, indicating that TGATE was negated. The SR ON bit is
cleared, indicating that the timer is disabled. If TGATE is reasserted, the timer is re-
enabled and begins counting from the value attained when TGATE was negated. The ON
bit is set again.

If TGATE is not enabled (TGE = 0), TGATE has no effect on the operation of the timer. In
this case, the counter would begin counting on the falling edge of the counter clock
immediately after the SWR and CPE bits in the CR are set. The SR TG bit cannot be set.
At all times, the TGL bit in the SR reflects the level of TGATE.

The width of the pulse generated on TOUT (the value in PREL2) can be changed while
the counter is counting down from the value in PREL1. Caution must be used because, if
PREL?2 is accessed simultaneously by the counting logic and a CPU32 write, the old
PREL2 value may actually get loaded into the counter at time-out.

8.3.5 Pulse-Width Measurement

This mode is used to count the clock cycles during a particular event (see Figure 8-8). The
event is defined by the assertion and negation of TGATE. When TGATE is asserted, the
counter begins counting down from $FFFF. When TGATE is negated, the counter stops
counting and holds the value at which it stopped. Further assertions and negations of
TGATE have no effect on the counter. This mode can be selected by programming the CR
MODEX bits to 100.

The timer is enabled by setting the SWR, CPE, and TGE bits in the CR. Asserting TGATE
starts the counter. When the timer is enabled, the SR ON bit is set. On the next falling
edge of the counter clock, the counter is loaded with the value $FFFF. With each
successive falling edge of the counter clock, the counter decrements. The PREL1 and
PREL2 registers are not used in this mode.

When TGATE is negated, the SR TG bit is set, the ON bit is negated, and the prescaler
and counter are disabled. Subsequent transitions on TGATE do not re-enable the counter.
The TGL bit in the SR reflects the level of TGATE at all times.

MOTOROLA MC68341 USER’S MANUAL 811

|

|

COUNTER [

clock |
COUNTER ¢ |

O — —n —n
—
T — — —n

f
f
f
e

TGATE } MEASURED PULSE \ | A
I | |
ENABLE } \T /
START STOP NO EFFECT
COUNTING COUNTING

MODEX Bits in Control Register = 100
TGE Bit of Control Register = 1

Figure 8-8. Pulse-Width Measurement Mode

If the counter counts down to the value stored in the COM register, the COM and TC bits
in the SR are set. If the counter counts down to $0000, a time-out is detected. This sets
the SR TO, and the clears the COM bit. At time-out, the next falling edge of the counter
clock causes the counter to reload with $FFFF. TOUT transitions at time-out or is disabled
as programmed by the CR OCx bits. The SR OUT bit reflects the level on TOUT.

To determine the number of cycles counted, the value in the CNTR must be read,
inverted, and incremented by 1 (the first count is $FFFF which, in effect, includes a count
of zero). The counter counts in a true 216 fashion. For measuring pulses of even greater
duration, the value in the POx bits in the SR is readable and can be thought of as an
extension of the least significant bits in the CNTR.

NOTE

Once the timer has been enabled, do not clear the SR TG bit
until the pulse has been measured and TGATE has been
negated.

8.3.6 Period Measurement

This mode is used to count the period of a particular event. The event is defined by the
assertion, negation, and subsequent reassertion of TGATE . When TGATE is asserted, the
counter begins counting down from $FFFF. The negation of TGATE has no effect on the
counter. When TGATE is reasserted, the counter stops counting and holds the value at
which it stopped. Further assertions and negations of TGATE have no effect on the
counter. This mode can be selected by programming the CR MODEX bits to 101.

The timer is enabled by setting the SWR, CPE, and the TGE bits in the CR. The assertion
of TGATE starts the counter. When the timer is enabled, the SR ON bit is set. On the next
falling edge of the counter clock, the counter is loaded with the value of $FFFF. With each
successive falling edge of the counter clock, the counter decrements. The PREL1 and
PREL2 registers are not used in this mode.

812 MC68341 USER’S MANUAL MOTOROLA

The first negation of TGATE is ignored, but on the second assertion of TGATE, the SR TG
bit is set, the SR ON bit is negated, and the prescaler and counter are disabled.
Subsequent transitions on TGATE do not re-enable the counter. See Figure 8-9 for a
depiction of this mode. The SR TGL bit reflects the level of TGATE at all times.

|
COUNTER [
CLOCK|‘||||||||||||||
COUNTER

o
ENABLE @ PERIOD MEASURED > ‘\\ /
|
START STOP NO EFFECT
COUNTING COUNTING

MODEX Bits in Control Register = 101
TGE Bit of Control Register = 1

Figure 8-9. Period Measurement Mode

If the counter counts down to the value stored in the COM register, the COM and TC bits
in the SR are set. If the counter counts down to $0000, a time-out is detected. This sets
the SR TO bit, and clears the SR COM bit. At time-out, the next falling edge of the counter
clock reloads the counter with $FFFF. TOUT transitions at time-out or is disabled as
programmed by the OCx bits of the CR, and the OUT bit in the SR reflects the level on
TOUT.

To determine the number of cycles counted, the value in the CNTR must be read,
inverted, and incremented by 1 (the first count is $FFFF which, in effect, includes a count
of zero). The counter counts in a true 216 fashion. For measuring pulses of even greater
duration, the value in the POXx bits in the SR are readable and can be thought of as an
extension of the least significant bits in the CNTR.

NOTE

Once the timer has been enabled, do not clear the SR TG bit
until the pulse has been measured and TGATE has been
negated.

8.3.7 Event Count

This mode is used to count events by interpreting the falling edges of the counter clock as
events (see Figure 8-10). These events may be external or internal to the chip—for
example, counting the number of system clock cycles required to execute a sequence of
instructions. As another example, by connecting AS to TIN, the number of bus cycles to
complete a sequence of instructions could be counted. This mode can be selected by
programming the CR MODEX bits to 110.

MOTOROLA MC68341 USER’S MANUAL 813

\ [
COUNTER | [
CLOCK : !

|
COUNTER 0 | f f f f f 0 0 0 0 0 10 f f
ot f f f f 0 0! 0 0 0 0 f f
o f f f f f 0 0 0 0 0 10 f f
o f e d c b 2 i 1 1 1 0 f e
| |
- |
TGATE —|\
: N ‘ |
ENABLE TG BILF SET TIMEOUT

TO BIT SET

MODEX Bits in Control Register = 110
TGE Bit of the Control Register = 1

Figure 8-10. Event Count Mode

The timer is enabled by setting the SWR and CPE bits in the CR and, if TGATE is enabled
(TGE bit of the CR is set), then asserting TGATE . When the timer is enabled, the SR ON
bit is set. On the next falling edge of the counter clock, the counter is loaded with the value
of $FFFF. With each successive falling edge of the counter clock, the counter decrements.
The PREL1 and PRELZ2 registers are not used in this mode.

If TGATE is not enabled (CR TGE bit is cleared), then TGATE does not start or stop the
timer or affect the TG bit of the SR. In this case, the counter would begin counting on the
falling edge of the counter clock immediately after the SWR and CPE bits in the CR are
set.

If TGATE is enabled (CR TGE bit is set), then the assertion of TGATE starts the counter.
The negation of TGATE disables the counter, sets the SR TG bit, and clears the ON bit in
the SR. If TGATE is reasserted, the timer resumes counting from where it was stopped,
and the ON bit is set again. Further assertions and negations of TGATE have the same
effect. The TGL bit in the SR reflects the level of TGATE at all times.

If the counter counts down to the value stored in the COM register, the COM and TC bits
in the SR are set. If the counter counts down to $0000, a time-out is detected. This event
sets the TO in the SR and clears the COM bit. At time-out, the next falling edge of the
counter clock reloads the counter with $FFFF. TOUT transitions at time-out or is disabled
as programmed by the CR OC bits. The SR OUT bit reflects the level on TOUT.

To determine the number of cycles counted, the value in the CNTR must be read,
inverted, and incremented by 1 (the first count is $FFFF which, in effect, includes a count
of zero). The counter counts in a true 216 fashion. For measuring pulses of even greater
duration, the value in the POx bits in the SR are readable and can be thought of as an
extension of the least significant bits in the CNTR.

814 MC68341 USER’S MANUAL MOTOROLA

8.3.8 Timer Bypass

In this mode, the counter and prescaler cannot be enabled. However TGATE and TOUT
can be used for 1/0. This mode can be selected by programming the CR MODE bits to
111.

TGATE can be used as a simple input port when the CR is configured as follows:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| SWR | IE2 | IE1 | IEO | TGE |PCLK | CPE | CLK |POT2 | POT1 | POTO |MODE2|MODE1|MODEO| ocC1 | ocCo |

TGATE AS A SIMPLE INPUT
X X 0 X X X 1 X X X X 1 1 1 X X

X-Don't care

When TGATE is asserted, the SR ON bit is set. When TGATE is negated, the ON bit is
cleared. The value of the TGL bit in the SR reflects the level of TGATE. TGATE can also
be used as an input port that generates interrupts on a low-to-high transition of TGATE
when the CR is configured as follows:

CR

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| SWR | IE2 | IE1 | IEO | TGE | PCLK | CPE | CLK | POT2 | POT1 | POTO |MODE2|MODE1|MODEO| OC1 | 0OCo |
TGATE AS AN INPUT/INTERRUPT

X X 1 X 1 X 1 X X X X 1 1 1 X X

When TGATE is negated, the SR TG bit is set, and the programmed IRQx signal is
asserted to the CPU32. The TG bit can only be cleared by writing a one to this bit position.
The value of the SR TGL bit reflects the level of TGATE.

Additionally, TOUT can be used as a simple output port when the CR is configured as
follows:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| SWR | IE2 | IE1 | IEO | TGE |F’CLK | CPE | CLK |POT2 | POT1 | POTO |MODE2|MODE1|MODEO| OC1 | OCo |

TGATE AS A SIMPLE OUTPUT
0 X X X X X 1 X X X X 1 1 1 OC1 0OCo

SWR must be a zero to change the value of TOUT. Changing the value of the CR OCx
bits determines the level of TOUT as shown in Table 8-1.

MOTOROLA MC68341 USER’S MANUAL 815

Table 8-1. OCx Encoding

OC1 0OCo TOUT
Hi-Z
0
0
1

0 0
0 1
1 0
1 1

A read of the SR while in this mode always shows the TO, TC, and COM bits cleared, and
the PO bits as $FF. The SR OUT bit always indicates the level on the TOUT pin.

8.3.9 Bus Operation

The following paragraphs describe the operation of the IMB during read, write, and
interrupt acknowledge cycles to the timer.

8.3.9.1 READ CYCLES. The timer is accessed with no wait states. The timer responds to
byte, word, and long-word reads, and 16 bits of valid data are returned. Read cycles from
reserved registers return logic zero.

8.3.9.2 WRITE CYCLES. The timer is accessed with no wait states. The timer responds to
byte, word, and long-word writes. Write cycles to read-only registers and bits as well as
reserved registers complete in a normal manner without exception processing; however,
the data is ignored.

8.3.9.3 INTERRUPT ACKNOWLEDGE CYCLES. The timer is capable of arbitrating for
interrupt servicing and supplying the interrupt vector when it has successfully won
arbitration. The vector number must be provided if interrupt servicing is necessary; thus,
the interrupt register (IR) must be initialized. If the IR is not initialized, a spurious interrupt
exception will be taken if interrupt servicing is necessary.

8.4 REGISTER DESCRIPTION

The following paragraphs contain a detailed description of each register and its specific
function. The operation of the timer is controlled by writing control words into the
appropriate registers. Timer registers and their associated addresses are listed in Figure
8-11. For more information about a particular register, refer to the individual register
description. The ADDR column indicates the offset of the register from the base address
of the timer. An FC column designation of S indicates that register access is restricted to
supervisor only. A designation of S/U indicates that access is governed by the SUPV bit in
the module configuration register (MCR).

816 MC68341 USER’S MANUAL MOTOROLA

ADDR FC 15 0
$600 S MODULE CONFIGURATION REGISTER (MCR)
$602 S RESERVED
$604 S INTERRUPT REGISTER (IR)
$606 S/U CONTROL REGISTER (CR)
$608 S/U STATUS/PRESCALER REGISTER (SR)
$60A S/U COUNTER REGISTER (CNTR)
$60C S/U PRELOAD 1 REGISTER (PREL1)
$60E S/U PRELOAD 2 REGISTER (PREL2)
$610 S/U COMPARE REGISTER (COM)

$612-$63F S/U RESERVED

Figure 8-11. Timer Module Programming Model

In the registers discussed in the following paragraphs, the numbers in the upper right-
hand corner indicate the offset of the register from the base address specified by the
module base address register (MBAR) in the SIM40. The numbers on the top line of the
register represent the bit position in the register. The register contains the mnemonic for
the bit. The value of these bits after a hardware reset is shown below the register. The
access privilege is shown in the lower right-hand corner.

NOTE

A CPU32 RESET instruction will not affect the MCR, but will
reset all other registers in the timer modules