SEMICONDUCTORS

Epoch API Software Users Manual

Revision 1
December 1, 2000

http://www.music-ic.com

email: info@music-ic.com

© MUSIC Semiconductors 2000 — All rights reserved.

MUSIC Semiconductors provides the information in this document for your benefit, but it is not possible for us to entirely verify and test all
of this information in all circumstances, particularly information relating to non-MUSIC manufactured products. MUSIC Semiconductors
makes no warranties or representations relating to the quality, content or adequacy of this information. Every effort has been made to
ensure the accuracy of this manual, however, MUSIC assumes no responsibility for any errors or omissions in this document. MUSIC
Semiconductors shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, perfor-
mance, or use of this manual or the examples herein. MUSIC Semiconductors assumes no responsibility for any damage or loss resulting
from the use of this manual. MUSIC Semiconductors also assumes no responsibility for any loss or claims by third parties which may arise
through the use of this document or the API which it describes; and for any damage or loss caused by deletion of data as a result of mal-
function or repair. The information in this document is subject to change without notice.

MUSIC Semiconductors, the MUSIC logo, the phrase “MUSIC Semiconductors” and Epoch are registered trademarks of MUSIC Semicon-
ductors.

Section 1: OVeIVIEW e e 1-1
It OUCTION. . . . 1-1
APPICAIONS . . . 1-1
Features and Benefits 1-1
AP FUNCHONS. . ..o e e e 1-1
RCP AdAreSS SPaCeottt e e e e e 1-2
Physical AdAresso 1-2
Page AdOress 1-2
Virtual Address or Contiguous Virtual Address i e e 1-2
EPOChR CPINIL. . . . 1-2
LOW-LeVvel FUNCLIONS e e e e e e 1-2
Function Calls e 1-2
Document Structure and CONVENLIONSt e 1-3
SHTUCIUNE . . .o e e 1-3
CONVENLIONS. . . 1-3
Section 2: StruCtUres e 2-1
INtrOTUCTION. . . .o 2-1
RCP Database 2-2
RCP Physical Address Translation e e e 2-2
Contiguous Virtual Block Formation e 2-2
NON-BK DVICES . . . ittt et e 2-3
RCP MeMOIY SPaCE . . .ottt e e e 2-3
Device Size TracKingo e 2-3
Epoch Routing Table 2-4
Layer 3and Layer 4 Port Bitmap Datat 2-4
BAC Table Flow Handles. e e 2-5

IP Multicast MIAN ValUes oo e e e e e e 2-5
Default Flow Table Flow Handles e e 2-5
RO P ENrieS . . . 2-5
RCP BIOCKS . . . 2-5
epoch_t Member Initialization 2-6

Layer 4 Microflow BIOCK 2-6

IPVA CIDR BIOCK . . .ot e e e 2-6

IP Multicast BloCK e 2-6

IPX BIOCK. . .o e 2-6
SHTUCTUINES . . . o o e e e e e 2-7
DIOCK SOt L. .. 2-7
PUIPOSE . . . 2-7
MEMEIS .« . o 2-7

BIOCK Pt . 2-10
PUIPOSE . . oo e e e 2-10
MEMDEIS . . o 2-10
OWBIOCK t. .. o 2-11

Epoch API Software Users Manual Contents

PUIPOSE . . oo e e 2-11
MM DS .« . . 2-11
MICTOf oW L. . . 2-12
PUIPOSE . . oo e 2-12
MM EIS .« . . e 2-12

(o o 2-13
PUIPOSE . . oo e e e e 2-13
MM S .« . . e 2-13
FCPRESUISIAtUS T . . . o 2-14
PUIPOSE . . o e e 2-14
MM DS .« . . 2-14
BPOCN b L 2-15
PUIPOSE . . . 2-15
MEMDEIS . . 2-15
Section 3: Epoch APl 3-1
INtrOTUCTION. . . . o 3-1
P UNICASt AP . . 3-4
FINAMasSKo 3-5
S X . o ot e 3-5
DS CIIPtION . o ot ettt 3-5
INPUL Parameters. 3-5
Return Value e 3-5
PrE-TEqUISIEES . . . oo 3-5
USBgE . oottt e e 3-5
ePOChIPUAAAENIIY e 3-6
Y11= 3-6
DS I PN . vttt et e e 3-6
INpuUt Parameters. 3-6
Return Valueo 3-6
Pre-reqUISIEES 3-6
USAgE . ..ot 3-7
ePOChIPUCIEatEENLIYo 3-8
S X . o o e e e 3-8
DS CIIPHION . . .ttt 3-8
INPUL ParameterS. . . .o e 3-8
Return Value 3-8
PrE-TEqUISIEES . . . oo 3-8
USBE . oot 3-8
epochlPUDUMPBIOCKPOINIEIS o e 3-9
SYNAX . . o ot 3-9
DESCIIPlION . ..o 3-9
INpUL Parameters. 3-9
RetUrn Value e 3-9
PrE-TEqUISIEES e 3-9
USA0E . ..ottt 3-9
ePOChIPUREMOVEENIY e 3-10
R 112 3-10
DS CIIPtION . o ottt 3-10

Contents

Epoch API Software Users Manual

INPUL Parameters. . . .o 3-10
Return Value 3-10
Pre-reqUISIEES e 3-10
USAgE . ..ot 3-11
epOChIPUSEArCh 3-12
S X . o o e e e 3-12
DESCIIPHION . . .ttt 3-12
Input Parameters. 3-12
RetUrn Value: 3-12
PrE-TEQUISIEES . . . oo 3-12
USBE . ottt e 3-13
SelBaCKPIESSUIE o 3-14
SYNAX . . o ot 3-14
DS CIPtION . o ottt 3-14
INPUL ParameterS. . . .o 3-14
Return Value 3-14
PrE-TEqUISIEES 3-14
USA0E . . . oot 3-15
SOM D OWN . . . e 3-16
R 112 3-16
DESCIIPlION . .o e 3-16
INpUL Parameters. 3-16
Return Value 3-16
Pre-TEqUISIEES . . . o oo 3-16
USA0E . . . oottt 3-17
SOMU L .t e 3-18
)11 €= G 3-18
DS CIPtION . o ottt 3-18
INPUL Parameters. 3-18
Return Value e 3-18

P T qUISIEES . . . ot 3-18
USBE . oottt e 3-19

IP MUlticast APl . . . 3-20
EPOChIPMAAENTIY . . .o e e 3-21
Y11= 3-21
DESCIIPlION . .. 3-21
INpUL Parameters. 3-21
Return Value 3-21
Pre-TEqUISIEES . . o oo 3-21
USA0E . . . oottt 3-22
EPOChIPM CrreateENtrY o 3-23
)12 G 3-23
DS PO . o ottt 3-23
INPUL Parameters. 3-23
Return Value 3-23

P T QUISIEES . . . ot 3-23
USBE . oottt e e e 3-23
epoChIPMREMOVEENLIY o 3-24
Y11= 3-24

Epoch API Software Users Manual Contents

DESCIIPlION . .. 3-24
Input Parameters. 3-24
Return Value 3-24
PrE-TEqUISIEES . . . oo 3-24
USA0E . .. oottt 3-25
EPOCHIPM S arCh e 3-26
SYNAX . . o ot 3-26
DESCIPLION . o ottt 3-26
INPUL Parameters. . . .o 3-26
Return Value 3-26
PrE-TEOUISIEES . . . oot e e 3-26
USBE .« oottt e e 3-27
epoChIPMSearchMian 3-28
Y11= 3-28
DESCIIPlION . .. 3-28
INpUEt Parameters. 3-28
Return Value 3-28
Pre-TEqUISIEES . . . o oo 3-28
USA0E . . .ot 3-29

P X AP 3-30
EPOChIP X AdAENIIY . . .o 3-31
SYNAX . . o ot 3-31
DS PO . o ottt 3-31
INPUL Parameters. . . .o 3-31
Return Value 3-31
PrE-TEOUISIEES . . . oot e e 3-31
USSR .« o ottt e e e 3-32
ePOChIPXCreate ENtryo 3-33
R 112 3-33
DESCIIPlION . . e 3-33
INpUL Parameters. 3-33
Return Value 3-33
Pre-TEqUISIEES . . o oo 3-33
USA0E . .. oottt 3-33
EPOChIPXREMOVEENIIY 3-34
1162 G 3-34
DS CIIPHION . . .ot 3-34
INPUL ParameterS. . . .o 3-34
Return Value 3-34
PrE-TEqUISIEES . . . o o 3-34
USBE .« ottt e 3-35
epochIPXSearch 3-36
R 1= 3-36
DS P ION . o ottt 3-36
Input Parameters. 3-36
RetUrn Value e 3-36
PrE-TEqUISIEESo e 3-36
USA0E . .. oottt 3-37
LAYl 4 APl o 3-38

Contents Epoch API Software Users Manual

DecodeMicroflowo 3-39
S NAX . . o ot 3-39
DS CIPtION . o ottt 3-39
INPUL ParameterS. . . .o 3-39
Return Value 3-39
PrE-TEqUISIEESo 3-39
USA0E . .. oot 3-40

EXtraCtPINd . . . o 3-41
R 1= 3-41
DESCHIPlION . .. 3-41
INpUL Parameters. 3-41
Return Value 3-41
Pre-TEqUISIEES . . . o oo 3-41
USA0E . . . oottt 3-41

LACreateChildo 3-42
S X . o o e 3-42
DS CIIPtION . o ottt 3-42
INPUL Parameters. 3-42
Return Value 3-42
P T qUISIEES . . . o oo 3-42
USBE . oottt e e e 3-43

LACreateParent 3-44
Y11= 3-44
DS I PO . . ittt e e 3-44
Input Parameters. 3-44
Return Valueo 3-44
PrE-reqUISIEES 3-44
USAgE . ..ot 3-45

LARINASIDINGo 3-46
S X . o o e 3-46
DESCIIPHION . . .ottt 3-46
INPUL ParameterS. . . .o e 3-46
Return Value 3-46
PrE-TEqUISIEES . . . oo 3-46
USBE .« ot t 3-47

ePOChLAFIOWAAENTIY. . . . oo e e e e e e 3-48
SYNAX . . o ot 3-48
DS IIPlION . .. 3-48
INpUL Parameters. 3-48
Return Value 3-48
PrE-TeqUISIEES e 3-48
USA0E . . oottt 3-49

EPOCHLAFIOWAGE 3-50
R 112 3-50
DS CIPtION . o ottt 3-50
INPUL Parameters. 3-50
Return Value e 3-50
Pre-TeqUISIEES . . . o oo 3-50
USBE . oot te 3-50

Epoch API Software Users Manual Contents

epPOChLAFIOWREMOVEENTIY 3-51
S NAX . . o ot 3-51
DS CIPtION . o ottt 3-51
INPUL ParameterS. . . .o 3-51
Return Value 3-51
PrE-TEqUISIEESo 3-51
USA0E . .. oot 3-52

ePOChLAFIOWSEarch 3-53
R 1= 3-53
DESCHIPlION . .. 3-53
INpUL Parameters. 3-53
Return Value 3-53
Pre-TEqUISIEES . . . o oo 3-53
USA0E . . . oottt 3-54

epoChBACReadTableENtry 3-55
S X . o o e 3-55
DS CIIPtION . o ottt 3-55
INPUL Parameters. 3-55
Return Value 3-55
P T qUISIEES . . . o oo 3-55
USBE . oottt e e e 3-55

epoChBACWIIteTableENtry e 3-56
Y11= 3-56
DS I PO . . ittt e e 3-56
Input Parameters. 3-56
Return Valueo 3-56
PrE-reqUISIEES 3-56
USAgE . ..ot 3-56

INitialiZation APl e 3-57

EPOCHPKMINIE L . . 3-58
)1 €= G 3-58
DS CIIPtION . o ottt 3-58
INPUL Parameters. 3-58
Return Value e 3-58
P T qUISIEES . . . ot 3-58
USBE .« oottt e 3-59

EPOChR CPINIL. . . . 3-60
Y11= 3-60
DS I PO .« v vttt e 3-60
Input Parameters. 3-60
Return Valueo 3-60
PrE-TeqUISIEES e 3-60
USAgE . . .ot 3-61

EPOChSDRAMINILo 3-62
S X . o o e 3-62
DS CIIPHION . . .ttt 3-62
INPUL ParameterS. . . .o 3-62
Return Value 3-62
P T qUISIEES . . . oo 3-62

Contents Epoch API Software Users Manual

USBE & o ottt e e e e 3-63
epochQueuePtrMemMINIt. 3-64
R 1= 3-64
DESCIIPlION . .. 3-64
INpUt Parameters. 3-64
Return Value 3-64
Pre-TEqUISIEES . . . o oo 3-64
USA0E . . .ot 3-64
EPOChPACKE PN, 3-65
1= G 3-65
DS CIIPHION . . .ttt 3-65
INPUL ParameterS. . . .o 3-65
Return Value 3-65

P T qUISIEES . . . oo 3-65
USBE . ottt e e 3-65
ePOChPACKEtPtrCIEar.o 3-66
Y11= 3-66
DESCIIPlION . .. 3-66
Input Parameters. 3-66
RetUrn Value e e 3-66
PrE-reqUISIEES 3-66
USA0E . .ottt 3-66
Lower-Level APl . . 3-67
AIOC S o 3-68
1162 G 3-68
DS CIIPHION . . .ot 3-68
INPUL Parameters. . . .o 3-68
Return Value 3-68
PrE-TEqUISIEES . . . o o 3-68
USBE . ottt e 3-69
A0 A o 3-70
R 1= 3-70
DS CIPtION . o ot 3-70
Input Parameters. 3-70
RetUrn Value e 3-70
PrE-TeqUISIEES 3-70
USA0E . ..ottt 3-71

P O A . e 3-72
S N X . o o 3-72
DS CIPtION . o ottt 3-72
INPUL Parameters. . . .o 3-72
Return Value 3-72
PrE-TEQUISIEES . . . oo 3-72
USB0E . .. oottt 3-73
epoChRCPBINarySearch 3-74
SYNAX . . o ot 3-74
DS IIPlION . .. e 3-74
INpUL Parameters. 3-74
Return Value 3-74

Epoch API Software Users Manual Contents

Pre-reqUISIEES e 3-74
USAgE . ..ot 3-75
epochRCPDeletebyAddr 3-76
S X . o o e e 3-76
DS PO . o ottt 3-76
INPUL ParameterS. . . .o 3-76
Return Value 3-76
PrE-TEqUISIEES . . . oo 3-76
USBE .« ottt e 3-76
ePOChRCPINITAAITIANS . . . o e e e e e e e e 3-77
SYNAX . . o ot 3-77
DESCIIPlION . .. 3-77
INpUL Parameters. 3-77
RetUrn Value 3-77
PrE-reqUISIEES 3-77
USA0gE . . .ottt 3-78
EPOCHR C P MOVEENIIY . . . e 3-79
) 1162 G 3-79
DS CIIPtION . o ottt 3-79
INPUL Parameters. 3-79
Return Value 3-79
Pre-TEqUISIEES . . . o oo 3-79
USBE . ottt e e 3-79
EPOCHR CPINEXIFIEE. e e 3-80
R 1= 3-80
DS I PN .« . ettt e e 3-80
INPUL Parameters. . . .o 3-80
Return Value e 3-80
P T qUISIEES . . . oo 3-80
USAgE . ..ot 3-80
EPOChRCPREATENIIY o 3-81
S X . o o e e 3-81
DESCIIPHION . . .ttt 3-81
INpUEt Parameters. 3-81
Return Valueo 3-81
PrE-TEqUISIEES . . . oo 3-81
USBE .« ottt e 3-81
epOoChRCPSRAMREAd e 3-82
S NAX . . o oot 3-82
DS PO . o ottt 3-82
INPUL ParameterS. . . .o 3-82
Return Value 3-82
PrE-TEqUISIEES 3-82
USA0E . . .ottt 3-82
ePOChRCPSRAMREAUDIN . . . ot e e e 3-83
Y11= 3-83
DESCIIPlION . .. 3-83
INpUL Parameters. 3-83
Return Value 3-83

Contents Epoch API Software Users Manual

Pre-reqUISIEES e 3-83
USAgE . ..ot 3-83
EPOChR C P SRAMWIItE. e e e 3-84
S X . o o e e 3-84
DS PO . o ottt 3-84
INPUL ParameterS. . . .o 3-84
Return Value 3-84
PrE-TEqUISIEES . . . oo 3-84
USBE .« ottt e 3-84
ePOChRCPSRAMWIIEDIr . . . o e e 3-85
SYNAX . . o ot 3-85
DESCIIPlION . .. 3-85
INpUL Parameters. 3-85
RetUrn Value 3-85
PrE-reqUISIEES 3-85
USA0gE . . .ottt 3-85
EPOChR C P Wt EENTIY. e 3-86
) 1162 G 3-86
DS CIIPtION . o ottt 3-86
INPUL Parameters. 3-86
Return Value 3-86
Pre-TEqUISIEES . . . o oo 3-86
USBE . ottt e e 3-86
EPOCHR CPWIItE3 e 3-87
R 1= 3-87
DS I PN .« . ettt e e 3-87
INPUL Parameters. 3-87
Return Value 3-87

P T EqUISIEES . . . ot 3-87
USAgE . ..o 3-88
DU AP 3-89
epochCheckLeakedPacketPoiNters. i e e 3-90
RS 1= 3-90
DS CIIPtION . o ottt 3-90
INPUL Parameters. 3-90
Return Value 3-90
Pre-TEqUISIEES . . . o oo 3-90
USBE . oot e 3-90

Index

Epoch API Software Users Manual Contents

Section 1

Overview

INTRODUCTION

This document describes how to use the functions in the Epoch Application Programming Interface (API) to implement a
wire-speed Router system using the MUSIC Semiconductors Epoch chipset.

Applications

The Epoch chipset allows the construction of a MultiLayer Switch or Router system that performs Layer 3 and Layer 4
routing functions at wire-speed and consists of the following:

* Epoch MultiLayer Switch
*+ MUSIC MUAC Routing Co-Processor (RCP)
* Generic SRAM and SDRAM

In a system using the Epoch MultiLayer Switch, the Routing Table operations are mostly performed in hardware (using
RCPs and SRAM). Although some operations would be performed in software, the RCPs and SRAM would allow the
storage of the following:

e IP Unicast, IP Multicast, and IPX entries

+ Behavior Aggregate Classification (BAC) and Microflow entries for Layer 4 classification

Features and Benefits

The Epoch API facilitates fast system development by handling complex initialization and Routing Table maintenance
routines. Functions are provided with the following capabilities:

* Entries may be searched for, added, and removed

* Users can initialize the necessary pointers for proper system operation

Note: The customer may use the API code as provided or modify it for use in their Epoch application. There are several patents pending
for RCP table maintenance and searching algorithms, however, and the customer is prohibited from using these in non-Epoch
applications.

API FUNCTIONS

The Epoch API provides a comprehensive set of functions. Many are lower-level functions called by the top-level
functions. The user may facilitate fast system development by using only the higher-level code. Lower-level code may
never be required but is provided as a reference to allow maximum flexibility. Users may develop their own higher-level
code by using or altering the lower-level code. Each function is marked to indicate if it is higher- or lower-level. Table 1-1
describes the three files used by the API functions.

Table 1-1: API Function Files

Flle Description

epoch.h Structure and enumerated type definitions. Defines for Routing Table manipulation such as RCP op-codes and
function declarations.

epochLib.c Initialization, SRAM read and write functions

epochTable.c IP Unicast Table, IP Multicast, Layer 4, and IPX functions

Rev. 1 1-1

Epoch API Software Users Manual RCP Address Space

RCP ADDRESS SPACE

This document refers to the following expressions when describing the RCP address space:

* Physical address
» Page address
e Virtual address or contiguous virtual address

Physical Address

This is the actual physical address location in a single RCP entry. It ranges from 0 through 4095 for a 4k RCP device and
0 through 8191 for an 8k RCP device. When a result of a search of a device returns an address on the RCP Active Address
output bus, it is the physical address of the matching entry. If an address location of a particular device is accessed using
the RCP hardware or software mode, as described above, it is this physical address that is required.

Page Address

When multiple RCP devices are cascaded or chained to provide a larger database, each device is given a unique page
address value. Usually the values would be 0 through 3 with highest priority device being given the page address 0. When
a result of a search of the whole database is given, the page address is given on the RCP Page Address output bus.

Virtual Address or Contiguous Virtual Address

Both of these expressions refer to the address used by the Epoch API. To give the RCP database maximum flexibility, the
RCP database may be built from any combination of devices (up to a maximum of four). However, by allowing both 4k
and 8k devices to be "mixed and matched", the usual RCP Page Address and Physical Address structure is slightly
inadequate. If a combination of 4k and 8k devices are used unaltered, the address values normally used may be misleading
and may direct the user to an address location that does not physically exist.

Example: If a system is using two 4k devices and the user wishes to access RCP physical location 4096, the first RCP may
be incorrectly accessed on the assumption that the first device has 8192 locations. The correct action is to access the
second device, as its first location is the virtual address 4096. Therefore, the virtual address is the address of any location
in a multiple RCP database when it has been translated to one large contiguous block.

epochRCPInit

The epochRCPInit function initializes the RCPs into one contiguous block. When using epochRCPInit, the following
occurs:

1. The RCPs are initialized with Page Address values and the epoch_t structure is initialized with the appropriate values
required for translating between physical addresses and virtual addresses.

2. When epochRCPInit has initialized the database, the other RCP functions operate using contiguous virtual addresses.

Low-Level Functions

The API provides high-level functions that allow initialization and Routing Table operations. There are no functions
supplied that perform the low-level access to the Epoch register space. The user must provide these functions. The Epoch
register space can be either memory-mapped or /O mapped. Both mapping schemes are supported in the Epoch API and
are implemented to allow the user to choose any offset or any number of Epoch devices. Refer to Lower-Level API on
page 3-67 for more information on the API low-level functions.

Function Calls
Throughout the API code, the following two function calls are used to access an Epoch register for reading or writing:

epochM sRegRead (pEpoch, regAddress) ;

These are the low-level functions used to access the Epoch registers for reading data. The user should provide a function
that takes the register address and returns the 32-bit data found in that register. A pointer to the epoch_t data structure
should be passed as an input parameter.

epochM sRegWite (pEpoch, regAddress, regData) ;

These are the low-level functions that access the Epoch registers for writing data. The user should provide a function that
takes the 32-data and writes it into the provided register address. A pointer to the epoch_t data structure should be passed

as an input parameter.
L. .|

1-2 Rev. 1

Document Structure and Conventions Epoch API Software Users Manual

DOCUMENT STRUCTURE AND CONVENTIONS

Structure

This section details the contents and organization of each section in this manual.

Table 1-2: Document Contents and Organization

Section

Contents and Organization

Section 1, Overview

This section provides a general overview of the Epoch APl including applications, API functions, and
RCP address space.

Section 2, Structures

This section describes the seven Epoch API data structures. The syntax and purpose of each struc-
ture is described along with any members belonging to that structure. The RCP database and Epoch
routing table are also described.

Section 3, Epoch API

This section describes each of the API functions including syntax, input parameters, return values,
any structures used, and usage. Each function is grouped with similar functions and is listed in alpha-
betical order for easy reference. Tables are provided that allow the user to quickly locate any particu-
lar function in this manual and in which file each function can be found.

Index An index listing functions, structures, and other important features.

Conventions
Table 1-3 describes the font conventions used for identification of file types and features.

Table 1-3: Font Conventions

Feature/File Type Convention Example

Structure Helvetica, italic, bold rep_t

Function Helvetica, bold epochlPUAddEnNtry
Block Member Times New Roman, italic, bold ipmblk

Status Code Times New Roman, capitals, bold RCP_NO_MATCH
Input Parameters Times New Roman, italic *rword

Rev. 1

1-3

Epoch API Software Users Manual

Document Structure and Conventions

1-4

Rev. 1

Section 2

INTRODUCTION

The Epoch Application Programming Interface (API) uses seven data structures to store data and pointer information.
Table 2-1 shows the seven data structures and their purpose. epoch_t is the main Epoch API data structure and has the
following functions and characteristics:

* Contains all information for maintaining the IP Unicast, [P Multicast, Layer 4 Microflow, and IPX tables. This allows
the API to keep track of how the Routing Table is partitioned to store each of the different entry types.

* Stores translation information used when functions have to convert physical addresses to virtual addresses (and vice
versa)

+ Contains a pointer to the starting address of the memory-mapped or I/O mapped Epoch register space

* Contains initialized fields (by the epochRCPInit function) used by Epoch API functions when making the RCP
address space contiguous

Most of the Epoch API functions take a pointer to the epoch_t data structure as an argument. This offers the advantage of
portability and the ability to maintain and access several Epoch RCP databases with a relatively small data structure.

Table 2-1: API Data Structures

Structure Purpose Page
blockSort_t Stores RCP page and physical address to virtual address translation data 2-7

blockPtr_t Stores specific pointer information for the IP Unicast, IP Multicast and IPX blocks 2-10
flowBlock_t Stores pointer information for the Layer 4 Microflow "parent” and "child" block 2-11
microflow_t Stores Layer 4 Microflow information 2-12
rep_t Stores a 64-bit RCP entry 2-13
rcpResultStatus_t Stores the result of RCP operations 2-14
epoch_t Stores block pointer information for the Routing Table set up 2-15

Rev. 1 1-1

Epoch API Software Users Manual RCP Database

RCP DATABASE

The Epoch Routing Table is built using RCPs and associated data SRAM. The total memory RCP space is divided into the
following blocks or partitions for each type of entry:

e [P Unicast

+ [P Multicast

« Layer 4 parent

+ Layer 4 child

« IPX

The Epoch API uses the epoch_t and the blockPtr_t data structures to store the block control information.

RCP Physical Address Translation

To allow the user the flexibility to use any combination of RCP sizes when building the system Routing Table, the API
must translate normal RCP physical addresses into some form of virtual address scheme. This is because the normal RCP
operation produces a large contiguous address block only when RCPs of the same size are used. The API provides
functions that easily translate between the two formats. The blockSort_t data structure stores the required data for
performing a translation.

Contiguous Virtual Block Formation

The following is a brief explanation of how the Epoch Routing Table is formed into a contiguous virtual block. The Epoch
uses a shared RCP address bus to access the RCP memory locations and four chip select outputs to enable it to access
individual devices. During the RCP chain configuration process, each RCP is assigned a unique page address starting
from 0 and incrementing. In the example shown in Section , the page addresses ranges from 0 through 3. When all
8k-location devices are used, the physical address space is naturally contiguous, and the physical address space is
identical to the virtual address space.

Chip Select 0 0
4k
RCP
Page Address 0
4095
Chip Select 1 4096
Address 7096 8k
RCP
Page Address 1
12287
Chip Select 2 12288
4k
RCP
Page Address 2
16383
Chip Select 3 16384
4k
RCP
Page Address 3
20479

Figure 2-1: RCP Page Address and Virtual Address Example
L. .|

1-2 Rev. 1

RCP Database Epoch API Software Users Manual

Non-8K Devices

When all the devices used are not 8k devices, the page address format must be translated to the virtual address. This
mapping process is handled by the Epoch API functions, making the RCP space transparent to the user. The blockSort _t
structure keeps track of the address information, allowing the use of any combination of RCP size and still use contiguous
addresses. The user should use the epochRCPInit function. This determines the size of each device used, and
automatically initialize the relevant members of the blockSort_t structure with the correct translation data.

RCP Memory Space

Because the RCP database may not be built using more than four individual devices, the memory space available to the
Epoch can range from 4096 locations up to maximum 32,768 locations. Table 2-2 shows the direct relationship between
the used RCPs and available memory space. Because of the flexibility allowed by using different size RCP devices in this
way, the Epoch is unable to know how many RCPs are used or of what size. Instead, the Epoch API initializes the RCP
memory space into one large contiguous block (using the epochRCPInit function).

Table 2-2: RCP Memory Space

4096 Location RCPs 8192 Location RCPs Address Space Available (locations)
0 1 8,192
0 2 16,384
0 3 24,576
0 4 32,768
1 0 4,096
1 1 12,288
1 2 20,480
1 3 28,672
2 0 8,192
2 1 16,384
2 2 24,576
3 0 12,288
3 1 20,480
4 0 16,364

Device Size Tracking

The translation process involves keeping track of the size of each RCP used in the Routing Table and where it is located in
the chain. The blockSort t structure keeps track of the size of each device so that the device chip selects can be mapped
to the appropriate device when the relevant device memory location is accessed.

Example: Section shows an RCP database that is built using four devices. It is initialized (using the epochRCPInit
function) so that a contiguous block of 20,480 virtual memory locations is available to the user. If a write is attempted to
virtual address 7096 (in the second device), the API uses the structure to determine the Page address, Physical address,
and chip select number of the location. The structure would contain the information that showed that chip select 1 should
be used when a virtual memory location between 4,096 and 12,287 is accessed. It would also show that this virtual
address is actually located at Page address 1 and Physical address 3000. However, if the first device had 8,192 locations
instead of 4,096 it should be accessed using chip select 0. The Page address would be 0 and the Physical address would
be 7096.

Rev. 1 1-3

Epoch API Software Users Manual Epoch Routing Table

EPOCH ROUTING TABLE

The Epoch System Routing Table consists of the contiguous virtual RCP database (refer to RCP Database on page 2-2)
and a 128K-deep SRAM for storing the Port Bitmaps and Layer 4 Flow Handles. The Routing Table may use any number
of RCPs up to a maximum of four devices. This gives the system from 4092 to 32,768 entries in which the user partitions
into block sizes best suiting the specific application. The associated data is stored in a 16-bit wide SRAM. It must be a
128K deep SRAM to accommodate all the possible entries. Section shows how the Routing Table is constructed using
RCPs and associated data SRAM.

0x0_0000
RCP Chain
1-4RCPS) «
4K to 32K deep Layer 3 and Layer 4 Port Bitmap Data &
64 bits wide
= = 0x0_7FFF
0x0_8000
BAC Table entries
0x0_81FF Layer 3
Unused Multi- S
cast ™
. MIAN
IPv4 CIDR entries
IP Multicast entries 0x0_FFFF
IPX entries 0x1_0000
Layer 4 Microflow "parent" entries
Layer 4 Microflow "child" entries
Default Flow Table Flow Handles é
Ox1_FFFF J

Figure 2-2: Epoch System Routing Table

Layer 3 and Layer 4 Port Bitmap Data

When the system uses the maximum possible 32K of RCP address space, the RCP entries are mapped directly to the
corresponding entry in the associated data SRAM. This means that each entry in the RCP database is associated with a
corresponding entry in the SRAM in locations 0x0000 through Ox7FFF. The associated data SRAM stores the 16-bit port
bitmap value indicating to which physical port a packet should be forwarded. The Page Address and Physical Address of
each RCP entry is used as an index to locate each SRAM entry.

Note: In cases where the user may have a smaller RCP database than the maximum possible size, it is highly recommended that the
Routing Table is constructed using the full 128K deep SRAM. This is because the Epoch API uses the Page Address and Physical
Address values, which may indicate any possible value in the full 32K-address range depending how many RCPs are used.

1-4 Rev. 1

Epoch Routing Table Epoch API| Software Users Manual

BAC Table Flow Handles

The next 32K deep block of associated data SRAM is the memory locations 0x8000 through OXxFFFF. This block stores
the layer 4 BAC Table entries and IP Multicast Interface Authorization Number (MIAN) values. The BAC table block
must start at memory location 0x8000 and uses 512 locations to store the possible 256 16-bit Flow Handles. Each entry is
stored in two 8-bit slices of each individual SRAM location. The BAC Table functions allow the user to add and remove
entries by specifying the 8-bit Type of Service (or DS) field that directly relates the Flow Handle. The API positions the
BAC Table entries accordingly, so the user does have to place the entries in the appropriate SRAM section. The file
"epoch.h" declares the starting address using the line:

#def i ne BAC_TABLE_START 0x8000

IP Multicast MIAN Values

The IP Multicast block must start at location 0x8000. The stored MIAN data is directly related to the location of the IP
Multicast entry in the RCP database shifted to start at 0x8000. The provided IP Multicast functions allow the user to add
and remove entries by specifying the appropriate IP Multicast data. The API positions the MIAN Table entries
accordingly, so the user does not have to place the entries in the appropriate SRAM section. The file "epoch.h" declares
the starting address using the line:

#defi ne M AN_START 0x8000

Default Flow Table Flow Handles

The last 32K deep block of associated data SRAM (memory location 0x10000 through 0x1FFFF) stores the Layer 4
Default Flow Table entries. The Default Flow Table block must start at location 0x10000 and uses 32,768 locations to
store all possible 16-bit default Flow Handles. The Layer 4 Microflow functions provided allow the user to add and
remove entries by specifying the 16-bit UDP or TCP port number that directly relates to the Flow Handle. The API
positions the Default Flow Table entries accordingly, so the user does not have to place the entries in the appropriate
SRAM section. The file "epoch.h" declares the starting address using the line:

#defi ne DEF_F_START 0x10000L

RCP Entries

The RCP database stores the five different entry types. Therefore, the Epoch API partitions the database into four distinct
blocks. The Layer 4 Microflow "parent" and "child" entries are both stored in the same block. The four blocks store each
of the following entry types:

+ Layer 4 Microflow "parent" and "child" entries
» IPv4 CIDR entries

« [P Multicast entries

+ IPX entries

RCP Blocks

Full control over how large each block should be allows the user to allocate space best suiting the application. The block
partitioning system is allowable due to the encoding method used for each type of entry. Each type of entry has its own
distinct encoding method and is described in full in the Epoch data sheet. The only restriction placed on the RCP database
is that the user must place the block used for the Layer 4 Microflow entries at the beginning of the virtual address space.

Example: If the total address space available is 4096 entries and each of the four blocks are given 1024 entries, the Layer
4 block must be placed in RCP locations 0 through 1023. The other three blocks may be placed anywhere in the
remaining address space.

The Epoch API provides functions that create the RCP entry from the appropriate information (IP addresses, CIDR mask,
IPX net, etc.) and places it in the proper partition of the database. The user must initialize the epoch_t data structure with
the relevant information for each block of memory space. The block storing the IPv4 CIDR entries is further divided into
32 blocks that directly relate to the 32 possible CIDR mask values. A function is provided that allocates and partitions the
32 possible IPv4 CIDR blocks.

Rev. 1 1-5

Epoch API Software Users Manual

Epoch Routing Table

epoch_t Member Initialization

The epoch_t data structure must be initialized with all relevant information relating to each of the four RCP blocks. The
members that require initialization are as follows:

Layer 4 Microflow Block

L4blk. maddr

IPv4 CIDR Block

ipublk[n].floor

ipublk[n].bs

ipublk[n].nextFree

ipublk[31].threshold

IP Multicast Block

ipmblk.floor

ipmblk.bs

ipmblk.nextFree

IPX Block

ipxblk.floor
ipxblk.bs

ipxblk.nextFree

1-6

This should be initialized with the last virtual address of the block that stores the Layer 4
"parent" and "child" entries. The first virtual address of the block does not need to be
initialized because it is always location 0.

This should be initialized with the first virtual address of the block storing the IPv4 CIDR
entries relating to the CIDR block specified by n. There are 32 possible CIDR blocks from
0 through 31.

This should be initialized with the block size storing the IPv4 CIDR entries relating to the
CIDR block specified by n. There are 32 possible CIDR blocks from 0 through 31.

This should be initialized with the first virtual address of the first empty location of the
block storing the IPv4 CIDR entries relating to the CIDR block specified by n. At
initialization, this should be the same as the floor member.

There are 32 possible CIDR blocks from 0 through 31.

This should be initialized with the last possible virtual address of the complete CIDR area.
This may be greater than ipublk.[31].floor + ipublk[31].bs. However, it should never
encroach the IP Multicast block or IPX block if they are supported in an application.

This should be initialized with the first virtual address of the block storing the IP Multicast
entries.

This should be initialized with the size of the block storing the IP Multicast entries (in RCP
entries).

This should be initialized with the virtual address of the first empty location of the block
storing the IP Multicast entries. At initialization, this should be the same as the floor
member.

This should be initialized with the first virtual address of the block storing the IPX entries.
This should be initialized with the size of the block storing the IPX entries (in RCP entries).

This should be initialized with the virtual address of the first empty location of the block
storing the IPX entries. At initialization, this should be the same as the floor member.

Rev. 1

Structures Epoch API Software Users Manual

STRUCTURES

blockSort_t

#defi ne EPOCH_NUMPAGES 4

typedef struct ({

U32 pageSi ze[EPOCH_NUMPAGES] ;

Ul6 pageAddr [EPOCH NUMPAGES] ;

U32 chi pSel ect Lkup[EPOCH_NUMPAGES * 2] ;
U32 pageAddr Lkup[EPOCH_NUMPAGES * 2];
U32 pktPtr;

} blockSort t;

Purpose

This structure stores the control information that initializes and maintains the RCP database as one contiguous virtual
memory space.

Members

pageSize[EPOCH_NUMPAGES]
This is a four-element array that holds four 32-bit values. It is intended to store the size of each RCP in an RCP chain.
The member is used by the address translation functions when determining the appropriate address mask. pageSize/0]

stores the size of the highest priority device, pageSize/1] holds the second device size and so on. The size should be the
number of entries the RCP can hold.

Example: If the RCP database consists of three 4K devices and one 8K device where the second device is the 8K
device, the elements are as follows:

pageSize[0] = 4096

pageSize[l] = 8192

pageSize[2] = 4096

pageSize[3] = 4096

If the chain has less than four devices, unused elements should contain zero. This member is automatically initialized
by the function epochRCPInit().

pageAddr[EPOCH_NUMPAGES]

This is a four-element array that holds four 16-bit values. It is intended to store RCP page address information that is
used by the function PAtoA when translating the Physical Address and Page Address given by the RCP database to a
contiguous virtual address. They should be initialized to store the virtual page address values for each device using
the function epochRCPInit().

Example: pageAddr[0] should be initialized with 0, pageAddr[1] should be initialized with the first address of the sec-
ond device assuming all devices produce a contiguous address space.

The same action is performed for all devices in the chain. The elements of the array that corresponds to the actual
number of devices in the user’s application need only be initialized.

Example: If the application is only using two devices, there is no need to initialize the elements with the indexes 2 and
3. An RCP chain using an 8k device and two 4k devices, with the 8k device being the highest priority device (lowest
virtual addresses) would have the elements set as follows:

pageAddr[0] = 0 (0x0)

pageAddr([1] = 8192 (0x2000)

pageAddr[2] = 12288 (0x3000)
pageAddr([3] = doesn t need to be initialized.

This member is automatically initialized by the functions epochRCPInitAddrTrans() and epochRCPInit().

.|
Rev. 1 1-7

Epoch API Software Users Manual

Structures

chipSelectLkup[EPOCH_NUMPAGES * 2]

This is an eight-element array that holds eight 32-bit values. It is intended to store the chip select data required for
determining which of the four possible chip selects should be used. They should be initialized to store the correct
op-code used by the Epoch when accessing an individual RCP using InitRCP. The four possible op-codes that should
be stored are:

Chip select for RCP connected to RCPCS20b = 0x0001C000
Chip select for RCP connected to RCPCS21b = 0x0001A000
Chip select for RCP connected to RCPCS22b = 0x00016000
Chip select for RCP connected to RCPCS23b = 0x0000E000

There are two sizes of RCP available: 4k and 8k location devices. Assuming that a system could use any combination
of four RCPs to create up to the maximum 32k RCP address space available, every time an RCP virtual address is to
be accessed, the chip select to use must be found. Each of the eight array elements correspond to a virtual contiguous
address in each of the following ranges:

00000 — 04095 = chipSelectLkup[0]
04096 — 08191 = chipSelectLkup[1]
08192 — 12287 = chipSelectLkup[2]
12288 — 16383 = chipSelectLkup[3]

16384 — 20479 = chipSelectLkup[4]
20480 — 24575 = chipSelectLkup/[5]
24474 — 28671 = chipSelectLkup[6]
28672 — 32767 = chipSelectLkup[7]

This element array provides the following functions and characteristics:

+ Eight elements correspond to the eight possible changes in virtual address size from 0 through 32k.
» Each element (up to the total address space being used) should be initialized with the appropriate op-code.

* When the Epoch reads chipSelectLkup[3] to determine which op-code to use for a virtual contiguous address =
14004, it finds the appropriate value (0x1C000, 0x1A000, 0x16000, or 0xOE000). Unused elements (above
contiguous address range) should be initialized with 0x0001E000.

This member is initialized automatically by the functions epochRCPInitAddrTrans() and epochRCPInit().

pageAddrLkup[EPOCH_NUMPAGES * 2]

1-8

This is an eight-element array that holds eight 32-bit values. It is intended to store the page address data required for
a virtual address to a RCP Page Address and Physical Address format translation. They should be initialized to store
the correct translation for each block of 4096 entries. The translation data required is as follows:

Page Address 0 = 0x00000000
Page Address 1 = 0x00010000
Page Address 2 = 0x00020000
Page Address 3 = 0x00030000

There are 2 sizes of RCP available: 4k and 8k location devices. Assuming that a system could use any combination of
four RCPs to create up to the maximum 32k RCP address space available, every time an RCP virtual address is to be
provided for translation, we must find the RCP Page Address. Each of the eight array elements correspond to a
contiguous virtual address in each of the following ranges:

00000 — 04095 = pageAddrLkup[0]
04096 — 08191 = pageAddrLkup[1]
08192 — 12287 = pageAddrLkup|[2]
12288 — 16383 = pageAddrLkup/[3]

16384 — 20479 = pageAddrLkup[4]
20480 — 24575 = pageAddrLkup[5]
24474 — 28671 = pageAddrLkup[6]
28672 — 32767 = pageAddrLkup[7]

Rev. 1

Structures Epoch API Software Users Manual

This element array provides the following functions and characteristics:

* Eight elements correspond to the eight possible changes in virtual address size from 0 through 32k.

* Each element (up to the total address space being used) should be initialized with the appropriate Page Address
code.

* The op-code that corresponds to the appropriate Page Address should be placed in each element of the array.

Example: If the first device is a 4k device, pageAddrLkup [0] is always 0x00000000, pageAddrLkup[1] = 0x0001000.
If the first device is an 8k device, pageAddrLkup[1] = 0x00000000. After initialization, the pageAddrLkup[n] ele-
ments should contain the Page Address codes that show the appropriate Page Addresses for the contiguous virtual
address given. Unused elements (above contiguous address range) do not have to be initialized. The following are
two examples of how the elements would be initialized:

4k, 8k, 8k, 4k devices: pageAddrLkup[0] = 0x00000, pageAddrLkup[1] = 0x10000, pageAddrLkup[2] = 0x10000,
pageAddrLkup [3] = 0x20000, pageAddrLkup [4] = 0x20000, pageAddrLkup[5] = 0x30000.

8k, 4k, 4k, 4k devices: pageAddrLkup[0] = 0x00000, pageAddrLkup[1] = 0x00000, pageAddrLkup[2] = 0x10000,
pageAddrLkup [3] = 0x20000, pageAddrLkup [4] = 0x30000.

This member is automatically initialized by the functions epochRCPInitAddrTrans() and epochRCPInit().
init_ok

This Flag indicates if the RCP initialization is successful. 1 = successful initialization, 0 = unsuccessful initialization.

Rev. 1 1-9

Epoch API Software Users Manual Structures

blockPtr_t
typedef struct {
Ul6 fl oor;

Ul6 next Free;
Ul6 bs;

Ul6 nask;

ULl6 bkp;

Ul6 t hreshol d;

} bl ockPtr_t;
Purpose

This structure has the following functions and characteristics:

+ Stores the IPv4 CIDR pointers for sorting the table. [IPv4 CIDR uses a maximum 32 blocks to store entries of similar
network mask values. One block for each mask value from 0x00000000 to OxXFFFFFFFF. The Epoch associates block
0 with network mask = 32, block 1 with mask = 31 and so on.

* Stores pointers for a single block, therefore an array of 32 structures is required for IPv4 CIDR information
* Stores the [PX pointers

« Stores the IP Multicast pointers

Members

floor
This is the pointer to the first RCP location of this block.

nextFree
This is the next free RCP location in this block and is where the next entry may be placed.
bs
This is the block size (the number of RCP entries in this block).
mask
This is the mask value in bits that are set to 1. Used only when the structure stores IPv4 CIDR information.

Example: Stores 32 if the block is for a 32-bit mask value of all 1s (OxFFFFFFFF). 28 = OxFFFFFFF0, 24 =
OxFFFFFF00, 23 = OxFFFFFEO00 and so on.

bkp

This is the BackPressure Flag. This is set to FULL if all blocks below this block are filled and are unable to store any
more RCP entries. If there is space in any of the blocks below, it is set to NFULL. Used only when the structure stores
IPv4 CIDR information.

threshold

This is the threshold. It is the last RCP address location of the complete IPv4 CIDR partition of the Routing Table.
This is required, when blocks are being resized, so that the user can keep track of where the IPv4 blocks end. Used
only when the structure stores IPv4 CIDR information, specifically for block 31.

1-10 Rev. 1

Structures Epoch API Software Users Manual

flowBlock_t
typedef struct {
Ul6 maxAddr;

Ul6 nParent;

ULl6 nChil d;

} flowBl ock_t;

Purpose

This structure stores the number of "parent" and "child" entries in the Layer 4 Microflow partition of the Routing Table.
Every time a "parent" or "child" is removed from the Table, the user should decrement the appropriate member.
Alternatively, the member should be incremented if the appropriate entry is added.

Members
maxAddr

This is the maximum address. It is the last virtual RCP address location of the Layer 4 Microflow partition of the
Routing Table.

nParent
This is the number of "parent" entries presently stored in the RCP database.
nChild

This is the number of "child" entries presently stored in the RCP database.

Rev. 1 1-11

Epoch API Software Users Manual

Structures

microflow _t
typedef struct {
U32 sa;

U32 da;

Ul6 sp;

Ul6 dp;

Ul6 ifc;

} mcroflow.t;

Purpose

This structure stores all relevant information that constitutes a Layer 4 Microflow entry in the RCP database.

Members

sa
This is the IP Source Address.

da
This is the IP Destination Address.

sp

This is the TCP or UDP Source Port number.

dp

This is the TCP or UDP Destination Port number.

This is the physical port number that the flow was received by Epoch and should have a value from 0 through 15.

1-12

Rev. 1

Structures Epoch API Software Users Manual

rcp_t

typedef struct {

U32 | o;

U32 hi;

} rep_t;

Purpose

This structure stores a 64-bit RCP entry. The 64-bit entry is split into two 32-bit sections.

Members

lo

This is the 32-bit low word of the 64-bit RCP entry. It relates directly to bits [31:0] of the RCP location.
hi

This is the 32-bit high word of the 64-bit RCP entry. It relates directly to bits [63:32] of the RCP location.

Rev. 1 1-13

Epoch API Software Users Manual

Structures

rcpResultStatus_t
typedef struct ({

U32 addr;
Ul6 code;
Ul6 dat a;
} rcpResultStatus t;

Purpose

Structure used to store the status information regarding RCP and associated SRAM operations. When any RCP or

Associated SRAM operation is performed, this structure is updated with the results of an operation.
Members
addr

This is the resulting address of any RCP or SRAM operation that should yield an address. It is stored as a contiguous

virtual address.
code
The result of the operation is returned as a status code. The following codes are possible:

RCP_FAIL

The attempt to write an entry to the RCP or associated data SRAM was unsuccessful.
RCP_OK

The attempt to write an entry to the RCP or associated data SRAM was successful.
RCP_CMP_MATCH

The RCP search operation yielded a match.

RCP_NO_MATCH

The RCP search operation did not yield a match.

RCP_CMP_MMATCH

The RCP search operation yielded a multiple-match.

RCP_BLOCK_FULL

An attempt is made to write an entry to an RCP block or partition and it is full.
RCP_OUT_OF_RANGE

An attempt is made to write an entry to an RCP block or partition and the specified block is out of range.

RCP_CHILD_DELETE

The attempt to delete an "child" entry is successful.
RCP_PARENT_DELETE

The attempt to delete an "parent" entry is successful.

RCP_PARENT_CREATED

A "parent" entry was successfully added to the Routing Table.

RCP_CHILD_CREATED

A "child" entry was successfully added to the Routing Table.
data

This is the resulting data of any associated SRAM read.

1-14

Rev. 1

Structures Epoch API Software Users Manual

epoch_t

typedef struct ({

u32 epochMenBase;
bl ockSort t bl ockSort ;

bl ockPtr t i pnbl k;

bl ockPtr t i pxbl k;

bl ockPtr _t i publ k[32];
fl owBl ock_t 14bl k;

} epoch_t;

Purpose

This structure stores the control information used to initialize and maintain the RCP database as one contiguous virtual
memory space (blockSort member). It also stores the block pointers for the IP Unicast, IP Multicast, IPX partitions of the
database, and the number of Layer 4 Microflow entries.

Members
epochMemBase

This is the Epoch base address. This should be initialized with the base address of where Epoch is located in the
system address space. Any register access routines would subsequently use this address.

blockSort

This is a blockSort_t structure that stores and retrieves the address translation information used to maintain the RCP
database.

ipmblk

This is a blockPtr_t structure that stores and retrieves the block pointer for the IP Multicast partition of the RCP
database.

ipxblk
This is a blockPtr_t structure that stores and retrieves the block pointer for the IPX partition of the RCP database.
ipublk(32]

This is an array of 32 blockPtr_t structures. Each of the array elements stores and retrieves the block pointers for the
IPv4 CIDR block index. For example, if ipublk[0] is accessed, it should store and retrieve the information for block
number 0.

14blk

This is a flowBlock_t structure that stores and retrieves Layer 4 Microflow information.

Rev. 1 1-15

Epoch API Software Users Manual Structures

1-16 Rev. 1

Epoch API

Section 3

INTRODUCTION

The Epoch Application Programming Interface (API) is split into the following seven categories:

e [P Unicast

* [P Multicast

« IPX

« Layer4

* Initialization

* Lower-level API
* Debug API

The lower-level API functions perform address translation, RCP and SRAM data tasks, and other data manipulation
functions used by the higher-level API functions.Refer to

Note: If the user wishes to perform Routing Table initialization and maintenance, the low-level API functions do not need to be used
individually as they are called by the higher-level API.

Table 3-1 shows each of the Epoch API in alphabetical order. The page where the function is located in the manual is
shown. Low- and high-level functions are identified by (H) = high-level, (L) = low-level.

Table 3-1: API Descriptions

API Function Name Purpose File Name Page
AtoCS Converts an input RCP physical address to the appropriate RCP epochLib.c 3-68
(L) output Chip Select.

AtoPA Converts an input RCP physical address to the appropriate RCP epochLib.c 3-70
(L) page address value.

DecodeMicroflow Decodes the Layer 4 “parent” and “child” RCP entries to produce epochTable.c 3-39
(L) the Microflow information.

epochBACReadTableEntry Reads a BAC Table Flow Handle from the BAC partition of the epochLib.c 3-55
H) Routing Table.

epochBACWriteTableEntry Writes a BAC Table Flow Handle into the BAC partition of the epochLib.c 3-56
(H) Routing Table.

epochCheckLeakedPacketPointers Checks that all Packet pointers are still linked properly. epochLib.c 3-90
(H)

epochlPMAddEntry Adds an IP Multicast entry to the IP Multicast partition of the epochTable.c 3-21
H) Routing Table.

epochlPMCreateEntry Creates the 64-bit RCP entry from the input IP Multicast data (IP epochTable.c 3-23
(L) SA and DA).

epochlPMRemoveEntry Removes an IP Multicast entry from the IP Multicast partition of the | epochTable.c 3-24
(H) Routing Table.

epochlPMSearch Searches the Routing Table for an IP Multicast entry. epochTable.c 3-26
(H)

Rev. 1

3-1

Epoch API Software Users Manual

Introduction

Table 3-1: API Descriptions (continued)

API Function Name Purpose File Name Page
epochlPMSearchMian Searches the Routing Table for an IP Multicast entry and the MIAN. | epochTable.c 3-28
(H)

epochlPUAddENtry Adds an IP Unicast entry to the IP Unicast partition of the Routing epochTable.c 3-6

(H) Table.

epochlPUCreateEntry Creates the 64-bit ternary RCP entry from the input Unicast IP data | epochTable.c 3-8

(L) (IP DA and mask).

epochlPUDumpBIlockPointers Dumps all the IPv4 CIDR block information to a file called epochTable.c 3-9

(H) "block.dmp".

epochlPURemoveEntry Removes an IP Unicast entry from the IP Unicast partition of the epochTable.c 3-10
(H) Routing Table.

epochlPUSearch Searches the Routing Table for an IP Unicast entry. epochTable.c 3-12
(H)

epochlPXAddEntry Adds an IPX entry to the IPX partition of the Routing Table. epochTable.c 3-31
(H)

epochlPXCreateEntry Creates the 64-bit RCP entry from input IPX net. epochTable.c 3-33
L

epochlPXRemoveEntry Removes an IPX entry from the IPX partition of the Routing Table. epochTable.c 3-34
(H)

epochlPXSearch Searches the Routing Table for an IPX entry. epochTable.c 3-36
(H)

epochL4FlowAddEntry Adds a Layer 4 Microflow entry to the Layer 4 (Microflow) partition epochTable.c 3-48
(H) of the Routing Table.

epochL4FlowAge Ages (or deletes) all Layer 4 entries with the “touch” bit set to 0. epochTable.c 3-50
(H)

epochL4FlowRemoveEntry Removes a Layer 4 Microflow entry from the Layer 4 (Microflow) epochTable.c 3-51
H) partition of the Routing Table.

epochL4FlowSearch Searches the Routing Table for a Layer 4 Microflow. epochTable.c 3-53
(H)

epochPacketPtrClear Clears the external 64K (65,536) location Packet Pointer SRAM, epochLib.c 3-66
(L) setting the entries to 0.

epochPacketPtrinit Initializes the external 64K (65,536) location Packet Pointer SRAM. | epochLib.c 3-65
L

epochPKMInit Initializes the Packet Manager SRAM. This involves initializing the epochLib.c 3-58
(H) internal Queue pointers and the external Packet pointers.

epochQueuePtrMeminit Initializes the 128-entry internal Queue Pointer SRAM. epochLib.c 3-64
L

epochRCPBinarySearch Performs a binary search in the RCP for the 64-bit input data. epochTable.c 3-74
L

epochRCPDeleteByAddr Deletes a 64-bit entry from the RCP memory location specified by epochLib.c 3-76
(L) an address input parameter.

epochRCPInit Initializes the RCP(s). epochLib.c 3-60
(H)

3-2

Rev. 1

Introduction

Epoch API| Software Users Manual

Table 3-1: API Descriptions (continued)

API Function Name Purpose File Name Page
epochRCPInitAddrTrans Initializes the address translation pointers. epochLib.c 3-77
L
epochRCPMoveEntry Moves a 64-bit RCP entry from a source RCP physical locationtoa | epochLib.c 3-79
L destination location.
epochRCPNextFree Finds the next free RCP location. epochTable.c 3-80
L
epochRCPReadEntry Reads a 64-bit entry from the RCP memory location specified by epochLib.c 3-81
(L) an address input parameter.
epochRCPSRAMRead Reads the 16-bit RCP associated data SRAM entry specified by an epochlLib.c 3-82
(L) address input parameter. Used for SRAM locations OXFFFF or less.
epochRCPSRAMReadDir Reads the 16-bit RCP associated data SRAM entry specified by an | epochLib.c 3-83
(L) address input parameter. Used for SRAM locations 0x10000 or

greater.
epochRCPSRAMWrite Writes the 16-bit RCP associated data SRAM entry specified by an | epochLib.c 3-84
(L) address input parameter. Used for SRAM locations OxFFFF or less.
epochRCPSRAMWriteDir Writes the 16-bit RCP associated data SRAM entry specified by an | epochLib.c 3-85
(L) address input parameter. Used for SRAM locations 0x10000 or

greater.
epochRCPWrite32 Function for writing instructions in the form of op-code and 32-bit epochLib.c 3-87
L data to RCP.
epochRCPWriteEntry Writes a 64-bit entry into the RCP at the memory location specified | epochLib.c 3-86
(L) by an address input parameter.
epochSDRAMInit Initializes the control SDRAM and tests the data SDRAM. epochLib.c 3-62
(H)
ExtractPind Extracts the RCP physical address of a Layer 4 “parent” entry from epochTable.c 3-41
(L) the corresponding “child” entry.
FindMask Finds the IPv4 CIDR mask value from the 64-bit RCP word input epochLib.c 3-5
(L) parameter.
L4CreateChild Creates the 64-bit RCP “child” entry from an input Microflow and epochTable.c 3-42
(L “parent” index.
L4CreateParent Creates the 64-bit RCP “parent” entry from the input Microflow. epochTable.c 3-44
L
L4FindSibling Finds Layer 4 “child” entries that have the same “parent”. epochTable.c 3-46
L
PAtoA Converts an input page address value to the appropriate RCP epochLib.c 3-72
(L) physical address.
SetBackPressure Sets the BackPressure “flag” for IPv4 block manipulation. epochTable.c 3-14
L
SortDown Recursive sorting function used to insert IP Unicast entry by epochTable.c 3-16
L sorting downwards.
SortUp Recursive sorting function used to insert IP Unicast entry by epochTable.c 3-18

L

sorting upwards.

Rev. 1

3-3

Epoch API Software Users Manual

IP Unicast API

IP UNICAST API

The functions in this section are responsible for maintaining the IPv4 CIDR longest match database table (IP Unicast) in
the RCP. The IP Unicast table has 32 blocks that represent the 32 possible masks. The user has control over the initial
block sizes and start address, subject to the following conditions.

* First Condition—Each block in use must have at least one entry reserved at initialization time. This is to ensure that the
sorting algorithm, as it is currently implemented, works properly. The worst case causes up to 32 RCP entries to be

wasted.

* Second Condition—Blocks are adjacent to each other, i.e., if the last entry in block 2 is at address x, the first entry in
block 3 is at address x+1. This condition is beneficial to the user because it ensures that no limited RCP address space

is lost.

Table 3-2 shows all the IP Unicast functions, the files in which they may be found and the page in this manual where they
are located. Low- and high-level functions are identified by (H) = high-level, (L) = low-level.

Table 3-2: IP Unicast Functions

()

upwards.

API Function Name Purpose File Name Page
FindMask Finds the IPv4 CIDR mask value from the 64-bit RCP word input epochLib.c 3-5

(L) parameter.

epochlPUAddENtry Adds an IP Unicast entry to the IP Unicast partition of the Routing epochTable.c 3-6

(H) Table.

epochlPUCreateEntry Creates the 64-bit ternary RCP entry from the input Unicast IP data epochTable.c 3-8

(L) (IP DA and mask).

epochlPUDumpBIlockPointers Dumps all the IPv4 CIDR block information to a file called epochTable.c 3-9

H) “block.dmp”.

epochlPURemoveEntry Removes an IP Unicast entry from the IP Unicast partition of the epochTable.c 3-10
(H) Routing Table.

epochlPUSearch Searches the Routing Table for an IP Unicast entry. epochTable.c 3-12
(H)

SetBackPressure Sets the BackPressure “flag” for IPv4 block manipulation. epochTable.c 3-14
L

SortDown Recursive sorting function used to insert IP Unicast entry by sorting epochTable.c 3-16
(L) downwards.

SortUp Recursive sorting function used to insert IP Unicast entry by sorting epochTable.c 3-18

Rev. 1

IP Unicast API Epoch API Software Users Manual

FindMask

Syntax
Ul6 Fi ndvask(rcp_t *rword);

Description

This function finds the IPv4 CIDR mask value from the input 64-bit RCP word. This function is useful if the user wishes
to inspect all entries found in the IPv4 partition of the Routing Table as it allows finding the mask value for each entry
located during the inspection.

Input Parameters

*rword The 64-bit RCP word that is to be inspected to locate the mask value. The parameter should
be a variable in the form of the structure rcp_t. The rcp_t variable should hold the
following information:

rcp_t.hi = Bits 63:32 of the RCP entry
rcp_t.lo = Bits 31:0 of the RCP entry

Return Value

A 16-bit unsigned integer is returned. This is the mask value of the input rcp_t variable. It is a value in the range 1 through
32 and signifies the number of contiguous 1s in the IPv4 CIDR mask. For example:

32 = OxFFFFFFFF
31 = OxFFFFFFFE
30 = OxFFFFFFFC
4 = 0xF0000000

3 =0xE0000000

2 = 0xC0000000

1 = 0x80000000
Pre-requisites
None.

Usage
rcp_t rword;

i paddr _t | P_address = Oxbbccaa03;

Ul6 mask = 32;

epoch_t pEpoch;

rword = epochl PUCr eat eEnt ry(&Epoch, |P_address, mask);
Printf(“\nThe mask value of the entry is: %", FindMask(& word));

Rev. 1 3-5

Epoch API Software Users Manual IP Unicast API

epochIPUAddENtry
Syntax

rcpResul t Status_t epochl PUAddENnt ry(epoch_t *pEpoch,

Description

i paddr _t addr,
Ul6 mask,
Ul6 data);

This function adds the input IP address and mask combination to the appropriate IPv4 CIDR block in the Routing Table.

Input Parameters

*pEpoch

addr

mask

data

Return Value

A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

The 32-bit IP address to be added. This can be any class other than class D. The customer is
responsible for ensuring class D addresses are not added to the IP Unicast table.

The mask number of the entry. It should be a number from 1 through 32. The number
determines how many contiguous 1 are in the mask that will be used to encode the entry.
Please refer to MUSIC Application Note AN-N22 for a full description of how masks are
used in adding IPv4 CIDR entries.

The 16-bit associated data that will be added to the associated data SRAM. This is the port
bitmap that indicates where any corresponding packets should be routed. The appropriate
bit is set if the packet is to be routed to the port associated with it. For example, bit 0 = port
0, bit 1 = port 1, bit 2 = port 2 and so on.

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

If the IPv4 CIDR partition of the Routing Table is full the "code" member is RCP_FAIL

Pre-requisites

The IPv4 block structure must be initialized prior to using this function.

3-6

Rev. 1

IP Unicast API

Epoch API Software Users Manual

Usage

i paddr _t | P_address = Oxbbccaa03;

Ul6 nmask = 32, associated _data = 0x0002;
epoch_t pEpoch;

rcpResult Status_t write_status;

int i_stat;

i _stat = epochRCPInit(&pEpoch);
if(i_stat == INIT_OK){

wite status = epochl PUAddEnt ry(&pEpoch, | P_address, nask,

if(wite_status.code & RCP_FAIL){

associ ated_dat a) ;

printf(“\nThere is no nmenory available for RCP wite.”);

printf(“\nThe | P address/ nmask/associ ated data was added.”);

}

el se{

}
}
el se{

printf(“\nERROR : Unable to initialize RCP chain.”);
}

Rev. 1

3-7

Epoch API Software Users Manual IP Unicast API

epochIPUCreateEntry

Syntax

rcp_t epochl PUCreat eEntry(epoch_t *pEpoch,
i paddr _t addr,
Ul6 mask);

Description

This function creates a 64-bit RCP entry from the input 32-bit IP address and mask number. The RCP entry is returned in
the form of the rcp_t structure. The format of the IPv4 CIDR entry created is in the form shown the Epoch data sheet. The
structure member "lo" stores the lower 32-bit value and the member "hi" stores the upper 32-bit value.

Input Parameters
*nEpoch A pointer to the epoch_t structure. This structure must contain information about the

Epoch and the Routing Table.

addr The 32-bit IP address to be added. This can be any class other than class D. The customer is
responsible for ensuring class D addresses are not added to the IP Unicast table.

mask The mask number of the entry. It should be a number from 1 through 32. The number
determines how many contiguous s are in the mask that will be used to encode the entry.
Please refer to MUSIC Application Note AN-N22 for a full description of how masks are
used in adding IPv4 CIDR entries.

Return Value

A variable in the form of the structure rcp_t is returned. This is the RCP entry that is created from the input address and
mask values.

rcp_t.hi = Bits 63:32 of the RCP entry.

rcp_t.lo = Bits 31:0 of the RCP entry.

Pre-requisites

None.

Usage

rcp_t rword;

i paddr _t | P_address = Oxbbccaa03;

Ul6 mask = 32;

epoch_t pEpoch;

rword = epochl PUCreat eEntry(&Epoch, |P_address, mask);

printf(“\nAn entry was created. It is: Ox% x (high word)
0x% x (low word)”, rword. hi, rword.|o0);

3-8 Rev. 1

IP Unicast API Epoch API Software Users Manual

epochIPUDumpBlockPointers
Syntax
voi d epochl PUDunpBI ockPoi nt er s(epoch_t *pEpoch);

Description

This function writes information regarding the IPv4 block structure to the screen for diagnostic purposes. The function
writes the block size (bs), the mask level (or number), the floor RCP virtual address and the next free virtual address for
each of the 32 blocks. The status of the BackPressure flag is also written. The function writes in the information that it
finds in the epoch_t data structure.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

Return Value
None.
Pre-requisites

The IPv4 block structure must be initialized prior to using this function. If this is not done, the function writes the
pre-initialized data it finds in the epoch_t data structure.

Usage

epoch_t pEpoch;

/*assune bl ock pointers have been intialized*/
epochl PUDunpBI ockPoi nt er s(& Epoch) ;

Rev. 1 3-9

Epoch API Software Users Manual IP Unicast API

epochIPURemoveEnNtry

Syntax
rcpResul t Status_t epochl PURenmoveEntry(epoch_t *pEpoch,
i paddr _t i pAddr,
Ul6 mask);
Description
This function removes the input IP address and mask combination from the appropriate IPv4 CIDR block in the Routing
Table. It also sorts the remaining entries, in order to keep the block contiguous.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

ipAddr The 32-bit IP address to be deleted. This can be any class other than class D.

mask The mask number of the entry. It should be a number from 1 through 32. The number
determines how many contiguous 1 are in the mask that will be used to locate the entry.
Please refer to MUSIC Application Note AN-N22 for a full description of how masks are
used in adding IPv4 CIDR entries.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure. The RCP virtual address of where the IPv4 CIDR entry was located (if found) is returned
in the "addr" member.

Pre-requisites

None.

3-10 Rev. 1

IP Unicast API Epoch API Software Users Manual

Usage

i paddr _t | P_address = Oxbbccaa03;

Ul6 nmask = 32, associated _data = 0x0002;
epoch_t pEpoch;

rcpResultStatus_t wite status , del ete_status;
int i_stat;

i _stat = epochRCPInit(&pEpoch);
if(i_stat == INIT_OK){
wite status = epochl PUAddEnt ry(&pEpoch, | P_address, nask,
associ ated_data);
if(wite_status.code & RCP_FAIL){
printf(“\'nThere is no nenory available for RCP wite.”);
}
el se{
printf(“\nThe | P address/ nmask/associ ated data was added.”);
}
del et e_status = epochl PURenoveEnt ry(&pEpoch, | P_address, nmask);
i f(del ete_status.code & RCP_CWVMP_NMATCH) {
printf(“\nUnable to find IP address in Routing Table.”);

}
el se{
printf(“\nThe I P address was deleted.”);

}
}
el se{

printf(“\nERROR : Unable to initialize RCP chain.”);
}

Rev. 1 3-11

Epoch API Software Users Manual IP Unicast API

epochIPUSearch

Syntax

rcpResul t Status_t epochl PUSear ch(epoch_t *pEpoch,
i paddr _t i pAddr);

Description

This function performs a longest match search for the input IPv4 non-class D address. If the address produces a match
during the search, the port bitmap and virtual adjacency pointer/RCP address are returned.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

ipAddr The 32-bit IP address to be searched for. This can be any class other than class D.

Return Value:
A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

* Successful-The RCP virtual address of where the IPv4 CIDR entry was located (if found) is returned in the "addr"
member. The associated data found in the associated data SRAM is returned in the "data" member.
RCP_CMP_MATCH or RCP_CMP_MMATCH are returned in the "code" member to indicate if there was a
match or multiple matches.

¢ Unsuccessful-RCP_NO_MATCH is returned in the "code" member to indicate that there was no match found.

Pre-requisites

None.

3-12 Rev. 1

IP Unicast API

Epoch API Software Users Manual

Usage

i paddr _t | P_address = Oxbbccaa03;

Ul6 nmask = 32, associated _data = 0x0002;
epoch_t pEpoch;

rcpResultStatus_t wite status , search_status
int i_stat;

i _stat = epochRCPInit(&pEpoch);
if(i_stat == INIT_OK){
wite status = epochl PUAddENt r y(&pEpoch,

| P_addr ess,

associ ated_dat a);

if(wite_status.code & RCP_FAIL){

printf(“\'nThere is no nenory avail able for

}

el se{

printf(“\nThe | P address/ nmask/associ ated data was added.”);

}
search_status = epochl PUSear ch(&Epoch,

i f(search_status.code & RCP_CWVMP_NMATCH) {

printf(“\nUnable to find IP address in Routing Table.”);

| P_address);

mask,

RCP write.”);

addr ess

}
el se{
printf(“\nThe I P address was found at virtual
Ox% with assoc. data = Ox% x",
sear ch_status. addr, search_status.data);
}
}
el se{
printf(“\nERROR : Unable to initialize RCP chain.”);
}

Rev. 1

3-13

Epoch API Software Users Manual IP Unicast API

SetBackPressure
Syntax
static int SetBackPressure(epoch_t *pEpoch);

Description

This function sets the BackPressure Flag used in the IPv4 CIDR sorting algorithm. The function checks the state of each
CIDR block to determine the status of available free entry locations. It sets the bkp member of each block to NFULL or
FULL as it finds if there are entries available in the blocks below. Finally, it returns the status of the complete [Pv4 CIDR
Table (FULL or NFULL).

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

Return Value

An integer is returned that indicates if the IPv4 CIDR portion of the Routing Table is completely full and can not accept
any more entries.

« FULL = All possible Table locations have valid [Pv4 CIDR entries.
* NFULL = There is at least one empty location.

Pre-requisites
None.

3-14 Rev. 1

IP Unicast API Epoch API Software Users Manual

Usage

#defi ne L4_STOPADDR 0x1000
#defi ne 1 PU_STOPADDR 0x3000
#defi ne | PM_STOPADDR 0x3800
#defi ne | PX_STOPADDR 0x3C00
epoch_t pEpoch;
int i_stat, x;
bl ockPtr_t *bp;
struct {

ule size;

ul6 mask;

} IPUNfo[] = {

{ 200, 32}, { 100, 31}, { 50, 30}, { 25, 29}, { 20, 28},
{ 20, 27}, { 20, 26}, { 20, 25}, { 20, 24}, { 20, 23},
{ 20, 22}, { 20, 21}, { 20, 20}, { 15, 19 }, { 15, 18},
{ 15, 17}, { 15, 16}, { 15, 15}, { 15, 14}, { 15, 13},
{ 15, 12}, { 15, 11}, { 15, 10}, { 15 9}, { 15, 8},
{10, 7}, {10, 6}, {5 5%}, {5 41}, {4, 3},

{2 2} {2 13},

b

i_stat = epochRCPI nit (&pEpoch);
if(i_stat == INIT_OK){
/linitialiaze the 1 PU bl ock pointers
for (x = 0; x < 32; x++){
pEpoch. i publ k[x] . bs = I PUI nf o[X] . si ze;
pEpoch. i publ k[x] . mask = | PUl nf o[x] . mask;
if (x == 0){
pEpoch. i publ k[x] . fl oor = L4_STOPADDR + 1;
pEpoch. i publ K[X] . next Free = L4_STOPADDR + 1;

}
el se{
bp = & pEpoch.ipubl k[x - 1]);
pEpoch. i publ k[x] . fl oor = bp->floor + bp->bs;
pEpoch. i publ k[x] . next Free = bp->fl oor + bp->bs;
}

pEpoch. i publ k[x] . bkp = NFULL;
}
pEpoch. i publ k[31] .t hreshol d = | PU_STOPADDR,;
/linitialize other pointers
pEpoch. i pnmbl k. fl oor = | PU_STOPADDR + 1;
pEpoch. i pnbl k. bs = | PM_STOPADDR - | PU_STOPADDR,;
pEpoch. i pnbl k. next Free = pEpoch. i pnbl k. f1 oor;
pEpoch. i pxbl k. fl oor = | PM_STOPADDR + 1;
pEpoch. i pxbl k. bs = | PX_STOPADDR - | PM_STOPADDR,;
pEpoch. i pxbl k. next Free = pEpoch. i pxbl k. f 1 oor;

}
el se{

printf("\nERROR: Unable to initialize RCP chain.");
}

/I now set Back pressure Flags
i f (SetBackPressure(&pEpoch) == FULL){
printf("\nThe IPU partition is FULL.");

}
el se{

printf("\nThe I PU partition is NOT FULL.");
}

Rev. 1 3-15

Epoch API Software Users Manual IP Unicast API

SortDown
Syntax

static RCP_Result_Status SortDown(epoch t *pEpoch,

Description

ui6 ei,
UL6 bi);

This function uses the IPv4 CIDR sorting algorithm (downward) to allocate a free location in a previously full block. The
function recursively checks the next block down to see if it has at least one free location. When it finds a free location it
moves the appropriate pointers to create an empty location in the desired block.

Input Parameters

*nEpoch

ei

bi

Return Value

A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

The last RCP virtual address in the block that the user wishes to free. For example, if the
user wishes to place an entry into block 3, but it is full, the user would set the parameter ei
to user epoch_t - >i publ k[3] - >next Fr ee. This assumes that the user has already
tested to see if the block is full. This could be done in more that one way. One example
would be to compare the next free location in the block with the floor pointer added to the
block size:

i f((userepoch_t->i publ k[3] ->fl oor +user epoch_t - >i publ k[3] - >bs)

== userepoch_t - >i publ k[3] - >next Free)

If this comparison is true, then the block is full.

The block from which the user wishes to attempt to free an empty location. This always
should be the block where ei is located plus 1 (one down). For example, if the user wishes
to place an entry into block 3, but it were full, the user would set the parameter bi to 4. The
function attempts to free the location from the block specified by the parameter bi. If this

block is also full, the function recursively attempts to free a location from the next block
down until it is successful.

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

¢ Successful-The RCP virtual address of where the new location was found is returned in the "addr" member.

* Unsuccessful-RCP_BLOCK_FULL is returned in the "code" member to indicate that it is not possible to sort down
because there are no free entries in or below the block specified in bi. All of the current IPv4 CIDR block pointers are
written to a file called "block.dmp" so the user may inspect them.

Pre-requisites

The user should check the BackPressure Flag of the block specified in bi to ensure there is at least on free location in or

below the block.

3-16

Rev. 1

IP Unicast API

Epoch API Software Users Manual

Usage

#defi ne NUVBLOCKS 32
epoch_t pEpoch;

Ul6 This_ bl ock = 5;
rcpResul t Status_t status;

bl ockPtr t

*bp;

//set block pointer for block 5
bp = &(pEpoch. i publ k[Thi s_bl ock]);

/lassuning the RCP has been initialized and contains |IPU entries
if ((bp->floor + bp->bs) == bp->nextFree){
/1 This Block is FULL, so sort down or sort up
if (This_block !'= NUMBLOCKS-1){ /* we are not in last block*/

Rev. 1

if ((bp+l)->bkp == NFULL){ // we can sort down
bp- >next Free++; //create the new entry
bp- >bs++;
status = Sort Down(&pEpoch, bp->nextFree-1,
Thi s_bl ock+1) ;
/Inew entry in block 5 created

}
else { // we must sort up
bp- >bs++;
bp- >fl oor - -;
if ((bp-1)->nextFree == bp->floor+1){
status = Sort Up(&pEpoch, (bp-1)->nextFreee-1,
Thi s_bl ock-1);
}
el se {
(bp -1)->bs--;
}
}

3-17

Epoch API Software Users Manual IP Unicast API

SortUp
Syntax

static rcpResultStatus_t SortUp(epoch_t *pEpoch,

Description

Ui6 ei,
Ul6 bi);

This function uses the IPv4 CIDR sorting algorithm (upward) to allocate a free location in a previously full block. The
function recursively checks the next block up to see if it has at least one free location. Once it finds a free location it
moves the appropriate pointers to create an empty location in the desired block.

Input Parameters

*nEpoch

ei

bi

Return Value

A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

The first RCP virtual address in the block that the user wishes to free (floor). For example,
if the user wishes to place an entry into block 3, but it is full (and all blocks below are full),
the user would set the parameter ei to:

user epoch_t - >i publ k[3] - >f | oor . This assumes that the user has already tested
to see if the block is full. This could be done in more that one way. One example would be
to compare the next free location in the block with the floor pointer added to the block size:

i f((userepoch_t->i publ k[3] ->fl oor +user epoch_t - >i publ k[3] - >bs)
== userepoch_t - >i publ k[3] - >next Free)
If this comparison is true, then the block is full.

The block that the user wishes to attempt to free an empty location from. This should
always be the block where ei is located minus 1 (one up). For example, if the user wishes to
place an entry into block 3, but it were full (and all blocks below are full), the user would
set the parameter bi to 2. The function attempts to free the location from the block specified
by the parameter bi. If this block is also full, the function recursively attempts to free a
location from the next block up until it is successful.

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

e Successful-The RCP virtual address of where the new location was found is returned in the "addr" member.

¢ Unsuccessful-RCP_BLOCK_FULL is returned in the "code" member to indicate that it is not possible to sort up
because there are no free entries in or above the block specified in bi. All of the current IPv4 CIDR block pointers are
written to the screen so the user may inspect them.

Pre-requisites

The user should use the function Set BackPr essur e() to check if there is at least one free entry in the Table. It is
recommended that the user attempt to sort down first.

3-18

Rev. 1

IP Unicast API Epoch API Software Users Manual

Usage

#defi ne NUVBLOCKS 32
epoch_t pEpoch;

Ul6 This_ bl ock = 5;
rcpResul t Status_t status;
bl ockPtr _t *bp;

//set block pointer for block 5
bp = &(pEpoch. i publ k[Thi s_bl ock]);

/lassuning the RCP has been initialized and contains |IPU entries
if ((bp->floor + bp->bs) == bp->nextFree){
/1 This Block is FULL, so sort down or sort up
if (This_block !'= NUMBLOCKS-1){ /* we are not in last block*/
if ((bp+l)->bkp == NFULL){ // we can sort down
bp- >next Free++; //create the new entry
bp- >bs++;
status = Sort Down(&pEpoch, bp->nextFree-1,
Thi s_bl ock+1) ;
/Inew entry in block 5 created

}
else { // we must sort up
bp- >bs++;
bp- >fl oor - -;
if ((bp-1)->nxtfree == bp->floor+1){
status = SortUp(&pEpoch, (bp-1)->nextFree-1,
Thi s_bl ock-1);
}
el se {
(bp -1)->bs--;
}
}

Rev. 1 3-19

Epoch API Software Users Manual IP Multicast API

IP MULTICAST API

The functions in this section are responsible for maintaining the IP Multicast database table in the RCP. The files in which
they may be found and the page in this manual where they can be located is shown for easy reference. Low- and
high-level functions are identified by (H) = high-level, (L) = low-level.

Table 3-3: IP Multicast Functions

API Function Name Purpose File Name Page
epochlPMAddEntry Adds an IP Multicast entry to the IP Multicast partition of the Routing | epochTable.c 3-21
(H) Table.

epochlPMCreateEntry Creates the 64-bit RCP entry from the input IP Multicast data (IP SA | epochTable.c 3-23
(L) and DA).

epochlPMRemoveEntry Removes an IP Multicast entry from the IP Multicast partition of the epochTable.c 3-24
H) Routing Table.

epochlPMSearch Searches the Routing Table for an IP Multicast entry. epochTable.c 3-26
(H)

epochlPMSearchMian Searches the Routing Table for an IP Multicast entry and the MIAN. epochTable.c 3-28
(H)

3-20 Rev. 1

IP Multicast API

Epoch API Software Users Manual

epochIPMAddEntry
Syntax

rcpResul t Status_t epochl PMAAdENnt ry(epoch_t *pEpoch,

Description

U32 srcAddr,
U32 dst Addr,
Ul6 srcPort,
Ul6 bit map);

This function adds the input IP Multicast address information to the RCP and associated data SRAM. The IP source and
destination address are encoded and added to the IP multicast partition of the Routing Table. The destination ports for the
Multicast group is added to the associated data SRAM. The Multicast Interface Authentication Number (MIAN) is
encoded from the physical source port and added to the MIAN partition of the Associated Data SRAM.

Input Parameters

*nEpoch

srcAddr

dstAddr

srcPort

bitmap

Return Value

A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

The 32-bit IP Source Address to be encoded with the IP Destination Group Address and
added to the Routing Table. This can be any class other than class D. The customer is
responsible for ensuring class D Source addresses are not added to the IP Multicast table.
The Epoch forbids the Source Address from being class D and punts all such packets with
the DROPSAM puntcode (0x3).

The 32-bit IP Destination Group Address to be encoded with the IP Source Address and
added to the Routing Table.

The physical source port that the packet is received on. This should be a value from 0
through 15. This is added to the MIAN partition of the associated data SRAM.

The 16-bit associated data that will be added to the associated data SRAM. This is the port
bitmap that indicates where any corresponding packets should be routed. The appropriate
bit is set if the packet is to be routed to the port associated with it. For example, bit 0 = port
0, bit 1 = port 1, bit 2 = port 2 and so on.

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

If the IP Multicast partition of the Routing Table is full the "code" member is RCP_BLOCK_FULL.

Pre-requisites

The IP Multicast pointers (blockPtr_t) should be initialized prior to using this routine.

Rev. 1

3-21

Epoch API Software Users Manual IP Multicast API

Usage

#defi ne L4_STOPADDR 0x1000

#defi ne | PU_STOPADDR 0x1800
#defi ne | PM_STOPADDR 0x1C00
#defi ne | PX_STOPADDR 0x2000

U32 | P_SA = Oxbbccaa03;

U32 | P_DA = Oxebccaa04;

Ul6 src_port = 2, bitmap = 0x000F;
epoch_t pEpoch;

rcpResult Status_t write_status;
int i_stat;

i _stat = epochRCPI nit (&pEpoch);

/] set block pointers

pEpoch. i pnbl k. fl oor = | PU_STOPADDR+1;

pEpoch. i pnbl k. bs = | PM_STOPADDR - | PU_STOPADDR;
pEpoch. i pnbl k. next Free = pEpoch. i pnbl k. fl oor;
pEpoch. i pxbl k. fl oor = | PM STOPADDR+1;

pEpoch. i pxbl k. bs = | PX_STOPADDR - | PM STOPADDR;

pEpoch. i pxbl k. next Free = pEpoch. i pxbl k. f1 oor;

if(i_stat == INT_OK){
wite status = epochl PMAddEnt ry(&pEpoch, |1 P_SA, I P_DA src_port,
bi t map) ;
if(wite_status.code & RCP_BLOCK FULL){
printf(“\nThere is no nenory available for RCP wite.”);

}
el se{
printf(“\nThe | P addresses/source port/bitmp was added.”);
}
}
el se{
printf(“\nERROR : Unable to initialize RCP chain.”);
}

3-22 Rev. 1

IP Multicast API Epoch API Software Users Manual

epochIPMCreateEntry

Syntax
static rcp_t epochl PMCreat eEntry(epoch_t *pEpoch,
i paddr _t sa,
i paddr _t da);
Description

This function creates a 64-bit RCP entry from the input 32-bit IP Source and Destination group addresses. The RCP entry
is returned in the form of the rcp_t structure. The format of the binary RCP entry created is in the form shown the Epoch
data-sheet. The structure member "lo" stores the lower 32-bit value and the member "hi" stores the upper 32-bit value.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

sa The 32-bit IP Source Address to be encoded with the IP Destination Group Address and
added to the Routing Table. This can be any class other than class D. The customer is
responsible for ensuring class D Source addresses are not added to the IP Multicast table.
The Epoch forbids the Source Address from being class D and punts all such packets with
the DROPSAM puntcode (0x3).

da The 32-bit IP Destination Group Address to be encoded with the IP Source Address and
added to the Routing Table.

Return Value

A variable in the form of the structure rcp_t is returned. This is the RCP entry that is created from the input address and
mask values.

* rcp_t.hi = Bits 63:32 of the RCP entry

* rcp_t.lo = Bits 31:0 of the RCP entry

Pre-requisites

None.

Usage

rcp_t rword;

i paddr _t | P_SA = Oxbbccaa03, |P_DA = Oxebccaal4;

rword = epochl PMCreat eEnt ry(&pEpoch, 1P_SA, |P_DA);
printf(“\nAn entry was created. It is: O0x% x (high word)
0x% x (low word)”, rword. hi, rword.|o0);

Rev. 1 3-23

Epoch API Software Users Manual IP Multicast API

epochIPMRemoveEntry

Syntax

rcpResul t Status_t epochl PMRenmoveEntry(epoch_t *pEpoch,
i paddr _t srcAddr,
i paddr _t dst Addr);

Description

This function removes the input IP Source and Destination address combination from the IP Multicast partition of the
Routing Table.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

srcAddr The 32-bit IP Source Address to be deleted. This can be any class other than class D.
dstAddr The 32-bit IP Destination Group Address to be deleted.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure. The RCP virtual address of where the IPv4 CIDR entry was located (if found) is returned
in the "addr" member.

Pre-requisites
The IP Multicast pointers (blockPtr_t) should be initialized prior to using this routine.

3-24 Rev. 1

IP Multicast API Epoch API Software Users Manual

Usage

#defi ne L4_STOPADDR 0x1000
#defi ne | PU_STOPADDR 0x1800
#define | PM_STOPADDR 0x1C00

#defi ne | PX_STOPADDR 0x2000

i paddr _t | P_SA = Oxbbccaa03;

i paddr _t | P_DA = Oxebccaa04;

Ul6 src_port = 2, bitmap = 0x000F;

epoch_t pEpoch;

rcpResultStatus_t wite_status, delete_status;
int i_stat;

i _stat = epochRCPInit (&pEpoch);

/'l set bl ock pointers

pEpoch. i pnmbl k. fl oor = | PU_STOPADDR+1;

pEpoch. i pnbl k. bs = | PM_STOPADDR - | PU_STOPADDR,
pEpoch. i pnbl k. next Free = pEpoch. i pnbl k. fl oor;
pEpoch. i pxbl k. fl oor = | PM_STOPADDR+1;

pEpoch. i pxbl k. bs = | PX_STOPADDR - | PM _STOPADDR,

pEpoch. i pxbl k. next Free = pEpoch. i pxbl k. f| oor;

if(i_stat == INIT_CK){
wite status = epochl PMADAEntry(&pEpoch, | P_SA, |P_DA, src_port,
bi t map) ;
if(wite_status.code & RCP_BLOCK FULL){
printf(“\nThere is no nenory available for RCP wite.”);
}
el se{
printf(“\nThe | P addresses/source port/bitmap was added.”);
}
del et e_status = epochl PMRenoveEnt ry(&Epoch, 1 P_SA, | P_DA);
i f(del ete_status.code & RCP_CVP_NVATCH) {
printf(“\nUnable to find IP Milticast entry in Routing

Table.”);
}
el se{
printf(“\nThe IP Milticast entry was deleted.”);
}
}
el se{
printf(“\nERROR : Unable to initialize RCP chain.”);
}

Rev. 1 3-25

Epoch API Software Users Manual IP Multicast API

epochIPMSearch

Syntax

rcpResul t Status_t epochl PMsearch(epoch_t *pEpoch,
U32 srcAddr,
U32 dst Addr);

Description

This function performs a binary search for the input IP Source and Destination addresses. The function does not require
the MIAN value associated with the Multicast entry. Therefore the function only searches for the IP address combination
in the RCP database. If the address combination produces a match during the search, the port bitmap and virtual adjacency
pointer/RCP address are returned.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

scrAddr The 32-bit IP Source Address to be searched for along with the Destination address. This
can be any class other than class D.

dstAddr The 32-bit IP Destination Group Address to be searched for along with the Source address.

Return Value
A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

* Successful-The RCP virtual address of where the [P Multicast entry was located (if found) is returned in the "addr"
member. The associated data found in the associated data SRAM is returned in the "data" member.
RCP_CMP_MATCH or RCP_CMP_MMATCH are returned in the "code" member to indicate if there was a
match or multiple matches.

¢ Unsuccessful-RCP_NO_MATCH is returned in the "code" member to indicate that there was no match found.

Pre-requisites

None.

3-26 Rev. 1

IP Multicast API Epoch API Software Users Manual

Usage

i paddr _t | P_SA = 0Oxbbccaa03;

i paddr _t | P_DA = Oxebccaa04;

Ul6 src_port = 2, bitnmap = 0x000F;
epoch_t pEpoch;

rcpResult Status_t wite_status, search_status;
int i_stat;

i _stat = epochRCPInit(&pEpoch);

if(i_stat == INT_OK){
wite status = epochl PMAAdEnt ry(&pEpoch, 1 P_SA, I P_DA src_port,
bi t map) ;

if(wite_status.code & RCP_BLOCK FULL){
printf(“\nThere is no nenory available for RCP wite.”);
}
el se{
printf(“\nThe | P addresses/source port/bitmp was added.”);
}
search_status = epochl PMsear ch(&Epoch, 1 P_SA |P_DA);
i f(search_status.code & RCP_NO MATCH) {
printf(“\nUnable to find IP Milticast entry in Routing

Table.”);
}
el se{
printf(“\nThe IP nmulticast entry was found at virtual
address Ox% with assoc. data = Ox% x”",
search_status. addr, search_status. data);
}
}
el se{
printf(“\nERROR : Unable to initialize RCP chain.”);
}

Rev. 1 3-27

Epoch API Software Users Manual IP Multicast API

epochIPMSearchMian

Syntax

rcpResul t Status_t epochl PMsear chM an(epoch_t *pEpoch,
i paddr _t srcAddr,
i paddr _t dst Addr,
Ul6 mi an);

Description

This function performs a binary search for the input [P Source and Destination addresses. If the address combination
produces a match during the search, the function compares the input MIAN value with the MIAN value found during the
search. If they are not the same, the function returns RCP_NO_MATCH. If the two values are the same, the port bitmap
and virtual adjacency pointer/RCP address are returned.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

scrAddr The 32-bit IP Source Address to be searched for along with the Destination address. This
can be any class other than class D.

dstAddr The 32-bit IP Destination Group Address to be searched for along with the Source address.

mian The MIAN value to be compared if the function finds a match during the binary search for

the TP address combination. This is the physical port that the packet should be received on.

Return Value
A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

* Successful-The RCP virtual address of where the [P Multicast entry was located (if found) is returned in the "addr"
member. The associated data found in the associated data SRAM is returned in the "data" member.
RCP_CMP_MATCH or RCP_CMP_MMATCH are returned in the "code" member to indicate if there was a
match or multiple matches.

¢ Unsuccessful-RCP_NO_MATCH is returned in the "code" member to indicate that there was no match found.

Pre-requisites

None.

3-28 Rev. 1

IP Multicast API Epoch API Software Users Manual

Usage

i paddr _t |1 P_SA

Oxbbccaa0l3;

i paddr _t | P_DA = Oxebccaa04;
Ul6é mian = 1, bitmap = O0xO000F;

epoch_

t *pEpoch;

rcpResult Status_t wite_status, search_status;

int i_stat;
i _stat = epochRCPInit(&pEpoch);
if(i_stat == INT_OK){
wite_status = epochl PMAAdEnt ry(&Epoch, | P_SA, |P_DA nian,
bi t map) ;
if(wite_status.code & RCP_BLOCK FULL){
printf(“\nThere is no nenory available for RCP wite.”);
}
el se{
printf(“\nThe | P addresses/source port/bitmp was added.”);
}
search_status = epochl PMsear chM an(&pEpoch, 1 P_SA |P_DA man);
i f(search_status.code & RCP_NO MATCH) {
printf(“\nUnable to find IP Milticast entry in Routing
Table.”);
}
el se{
printf(“\nThe IP nulticast entry was found at virtual
address Ox% with assoc. data = Ox% x",
search_status. addr, search_status. data);
}
}
el se{
printf(“\nERROR : Unable to initialize RCP chain.”);
}

Rev. 1

3-29

Epoch API Software Users Manual IPX API

IPX API

The functions in this section are responsible for maintaining the IPX database table in the RCP. The files in which they
may be found and the page in this manual where they can be located is shown for easy reference. Low- and high-level
functions are identified by (H) = high-level, (L) = low-level.

Table 3-4: IPX API Functions

API Function Name Purpose File Name Page
epochlPXAddEntry Adds an IPX entry to the IPX partition of the Routing Table. epochTable.c 3-31
(H)
epochlPXCreateEntry Creates the 64-bit RCP entry from input IPX net. epochTable.c 3-33
L
epochlPXRemoveEntry Removes an IPX entry from the IPX partition of the Routing Table. epochTable.c 3-34
(H)
epochlPXSearch Searches the Routing Table for an IPX entry. epochTable.c 3-36
(H)

3-30 Rev. 1

IPX API Epoch API Software Users Manual

epochIPXAddEntry

Syntax
rcpResul t Status_t epochl PXAddEntry(epoch_t *pEpoch,
U32 i pxDn,
Ul6 bit map);
Description

This function adds the input IPX net information to the RCP and associated data SRAM. The IPX destination net is
encoded and added to the IPX partition of the Routing Table. The destination port for the net is added to the associated
data SRAM.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

ipxDn The 32-bit IPX destination net be encoded and added to the Routing Table. This net is
encoded as described in the Epoch data sheet and added to the RCP.

bitmap The 16-bit associated data that will be added to the associated data SRAM. This is the port
bitmap that indicates where any corresponding packets should be routed. The appropriate
bit is set if the packet is to be routed to the port associated with it. For example, bit 0 = port
0, bit 1 = port 1, bit 2 = port 2 and so on.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

If the IP Multicast partition of the Routing Table is full the "code" member is RCP_BLOCK_FULL.

Pre-requisites
The IPX pointers (blockPtr_t) should be initialized prior to using this routine.

Rev. 1 3-31

Epoch API Software Users Manual

IPX API

Usage

#defin
#defin
#defin

#defin

e L4_STOPADDR 0x1000
e | PU_STOPADDR 0x1800
e | PM_STOPADDR 0x1CO00

e | PX_STOPADDR 0x2000

U32 | PX_net
Ul6 associ ated_data = 0x0002;
epoch_t pEpoch;

= 0x4024;

rcpResul t Status_t write_status;

int i_

i _stat

pEpoch
pEpoch
pEpoch
pEpoch
pEpoch
pEpoch

if(i_s

}

el se{

3-32

st at ;

= epochRCPI ni t (&pEpoch);

//set Dblock pointers

.ipnbl k. fl oor = | PU_STOPADDR+1;

.i pnbl k. bs = | PM_STOPADDR - | PU_STOPADDR
. i prbl k. next Free = pEpoch.i pnbl k. f| oor;
.i pxbl k. floor = | PM STOPADDR+1

. i pxbl k. bs = | PX_STOPADDR - | PM_STOPADDR

. i pxbl k. next Free = pEpoch. i pxbl k. fl oor;

tat ==

INIT_OK) {

write status = epochl PXAddEnt ry(&Epoch, | PX net, associ ated_data);

if(wite_status.code & RCP_BLOCK FULL){

}

el se{

printf(“\nThere is no menory available for RCP wite.”);

printf(“\nThe | PX net/associ ated data was added.”);

printf(“\nERROR : Unable to initialize RCP chain.”);

Rev. 1

IPX API Epoch API Software Users Manual

epochIPXCreate Entry

Syntax
static rcp_t | PXCreateEntry(epoch_t *pEpoch,
U32 network);

Description

This function creates a 64-bit RCP entry from the input 32-bit IPX net. The RCP entry is returned in the form of the rcp_t
structure. The format of the binary RCP entry created is in the form shown the Epoch data-sheet. The structure member
"lo" stores the lower 32-bit value and the member "hi" stores the upper 32-bit value.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

network The 32-bit IPX net to be encoded as a 64-bit RCP entry.

Return Value

A variable in the form of the structure rcp_t is returned. This is the RCP entry that is created from the input address and
mask values.

* rcp_t.hi = Bits 63:32 of the RCP entry.
* rcp_t.lo = Bits 31:0 of the RCP entry.
Pre-requisites

None.

Usage

epoch_t pEpoch,

rcp_t rword,

U32 | PX net = 0x4042;

//assunme | PX pointers have been initialized

rword = epochl PXCreat eEnt ry(&Epoch, |PX net);
printf(“\nAn entry was created. It is: 0x% x (high word)
0x% x (low word)”, rword. hi, rword.|0);

Rev. 1 3-33

Epoch API Software Users Manual IPX API

epochIPXRemoveEntry

Syntax

rcpResul t Status_t epochl PXRenmoveEntry(epoch_t *pEpoch,
U32 i pxDn);

Description

This function removes the input IPX net from the IPX partition of the Routing Table.
Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

ipxDn The 32-bit IPX destination net to be deleted.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure. The RCP virtual address of where the IPX entry was located (if found) is returned in the

"addr" member.

Pre-requisites
The IPX pointers (blockPtr_t) should be initialized prior to using this routine.

3-34 Rev. 1

IPX API Epoch API Software Users Manual
Usage

#define L4_STOPADDR 0x1000

#define | PU_STOPADDR 0x1800

#defi ne | PM_STOPADDR 0x1C00

#defin

e | PX_STOPADDR 0x2000

U32 | PX_net = 0x4024;

Ul6 as

epoch_

rcpRes

int i_

i _stat
/] set

pEpoch
pEpoch
pEpoch
pEpoch
pEpoch
pEpoch

if(i_s

Rev. 1

soci at ed_data = 0x0002;
t pEpoch;
ultStatus t wite status, delete_status;

st at ;

= epochRCPI ni t (&pEpoch);
bl ock pointers
.ipnbl k. fl oor = | PU_STOPADDR+1;
.i pnbl k. bs = | PM_STOPADDR - | PU_STOPADDR
. i prbl k. next Free = pEpoch.i pnbl k. f| oor;
.i pxbl k. floor = | PM STOPADDR+1
. i pxbl k. bs = | PX_STOPADDR - | PM_STOPADDR

. i pxbl k. next Free = pEpoch. i pxbl k. fl oor;

tat == INIT_OK){
write _status = epochl PXAddEntry(&Epoch, | PX net, associ ated_data);
if(wite_status.code & RCP_BLOCK FULL){
printf(“\nThere is no nmenory available for RCP wite.”);
}
el se{
printf(“\nThe | PX net/associ ated data was added.”);
}
del et e_status = epochl PXRenoveEnt ry(&Epoch, | PX net);
i f(del ete_status.code & RCP_NO MATCH) {
printf(“\nUnable to find IPX entry in Routing Table.”);
}
el se{
printf(“\nThe I PX entry was del eted.”);

printf(“\nERROR : Unable to initialize RCP chain.”);

3-35

Epoch API Software Users Manual IPX API

epochIPXSearch

Syntax

rcpResul t Status_t epochl PXSearch(epoch_t *pEpoch,
U32 i pxDn);

Description

This function performs a binary search for the input IPX net. If the net produces a match during the search, the port bitmap
and virtual adjacency pointer/RCP address are returned.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

ipxDn The 32-bit IPX destination net to be searched for.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

* Successful-The RCP virtual address of where the IPX entry was located (if found) is returned in the "addr" member.
The associated data found in the associated data SRAM is returned in the "data" member. RCP_CMP_MATCH or
RCP_CMP_MMATCH are returned in the "code" member to indicate if there was a match or multiple matches.

¢ Unsuccessful-RCP_NO_MATCH is returned in the "code" member to indicate that there was no match found.

Pre-requisites

None.

3-36 Rev. 1

IPX API Epoch API Software Users Manual

Usage

U32 | PX net = 0x4024;

Ul6 associ ated data = 0x0002;

epoch_t pEpoch;

rcpResult Status_t wite_status, search_status;
int i_stat;

i _stat = epochRCPInit(&pEpoch);
/lassunmi ng the bl ock pointers have been initialized

if(i_stat == INIT_OK){
wite_status = epochl PXAddEntry(&pEpoch, | PX net, associ ated_data);
if(wite status.code & RCP_BLOCK FULL){
printf(“\nThere is no menory available for RCP wite.”);
}
el se{
printf(“\nThe | PX net/associ ated data was added.”);
}
search_status = epochl PXSear ch(&pEpoch, |PX net);
i f(search_status.code & RCP_NO MATCH) {
printf(“\nUnable to find IPX entry in Routing

Table.”);
}
el se{
printf(“\nThe I PX entry was found at virtual
address Ox% with assoc. data = Ox% x”,
search_status. addr, search_status. data);
}
}
el se{
printf(“\nERROR : Unable to initialize RCP chain.”);
}

Rev. 1 3-37

Epoch API Software Users Manual Layer 4 API

LAYER 4 API

The functions in this section are responsible for maintaining the Layer 4 database table in the RCP. The files in which they
may be found and the page in this manual where they can be located is shown for easy reference. Low- and high-level
functions are identified by (H) = high-level, (L) = low-level.

Table 3-5: Layer 4 APl Functions

API Function Name Purpose File Name Page
DecodeMicroflow Decodes the Layer 4 “parent” and “child” RCP entries to produce the | epochTable.c 3-39
L Microflow information.

ExtractPind Extracts the RCP physical address of a Layer 4 “parent” entry from epochTable.c 3-41
(L) the corresponding “child” entry.

L4CreateChild Creates the 64-bit RCP “child” entry from an input Microflow and epochTable.c 3-42
(L) “parent” index.

L4CreateParent Creates the 64-bit RCP “parent” entry from the input Microflow. epochTable.c 3-44
L

L4FindSibling Finds Layer 4 “child” entries that have the same “parent”. epochTable.c 3-46
L

epochL4FlowAddEntry Adds a Layer 4 Microflow entry to the Layer 4 (Microflow) partition of | epochTable.c 3-48
H) the Routing Table.

epochL4FlowAge Ages (or deletes) all Layer 4 entries with the “touch” bit set to 0. epochTable.c 3-50
(H)

epochL4FlowRemoveEntry Removes a Layer 4 Microflow entry from the Layer 4 (Microflow) epochTable.c 3-51
(H) partition of the Routing Table.

epochL4FlowSearch Searches the Routing Table for a Layer 4 Microflow. epochTable.c 3-53
(H)

epochBACReadTableEntry Reads a BAC Table Flow Handle from the BAC partition of the epochLib.c 3-55
(H) Routing Table.

epochBACWriteTableEntry Writes a BAC Table Flow Handle into the BAC partition of the epochLib.c 3-56
(H) Routing Table.

3-38

Rev. 1

Layer 4 API Epoch API| Software Users Manual

DecodeMicroflow

Syntax

static mcroflowt DecodeM crofl owepoch_t *pEpoch,
rcp_t *parentRcp,
rcp_t *childRep);

Description

This function performs a Layer 4 Microflow conversion from the input RCP words. The user inputs the 64-bit RCP
"parent" and "child" entries and is returned the decoded Layer 4 Microflow. The encoding method of the RCP entries is
described in the Epoch data sheet. The Layer 4 Microflow is returned as the IP Source and Destination addresses,
TCP/UDP Source and Destination port numbers and the input physical port number.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

*parentRcp A pointer to the 64-bit RCP "parent" entry. The parameter should be a pointer to a variable
of the structure rcp_t. The variable has two members:

rcp_t.hi = Bits 63:32 of the RCP entry
rcp_t.lo = Bits 31:0 of the RCP entry

*childRcp A pointer to the 64-bit RCP "child" entry. The parameter should be a pointer to a variable of
the structure rcp_t. The variable has two members:

rcp_t.hi =Bits 63:32 of the RCP entry
rcp_t.lo =Bits 31:0 of the RCP entry

Return Value

A variable in the form of the microflow t structure is returned. This shows each individual element that was used to
encode the two RCP entries. The members are as follows:

microflow_t.sa: The IP Source Address.

microflow_t.da: The IP Destination Address.

microflow_t.sp: The TCP or UDP Source Port.

microflow_t.dp: The TCP or UDP Destination Port.

microflow_t.ifc: The physical port number that Epoch received the flow.

Pre-requisites
None.

Rev. 1 3-39

Epoch API Software Users Manual

Layer 4 API

Usage

#defi ne CMP_ADDR _MASK Ox7FFFL
#defi ne MAG C_AGE_NUM OxFFBF

mcroflowt this flow, read flow,
rcp_t parent, child;

U32 cnp_result;

Ul6 pind, cind, flowhandle;
epoch_t pEpoch;

this_flow sa = Oxbbccaa0O4;

this_flow da = Oxbbccaa05;

this_flow sp = 23;

this_flow dp = 1000;

this flowifc = 3; flow_handl e = 0x0007;

/lassuming the RCPs and the bl ock pointers have been initialized
parent = LA4Creat eParent (&pEpoch, & his_flow);
cnp_result = epochRCPBi narySear ch(&pEpoch, &parent, 0);
if (!(cnmp_result & CMP_M){ [// no parent match
pi nd = epochRCPNext Fr ee(&Epoch) ;
if (pind > pEpoch. L4bl k. maxAddr){ //error, address out of range
printf(“\nCant wite Parent. The Layer 4 block is full.”);
}
else { //wite entry to Routing Table
epochRCPW i t eEntry(&pEpoch, pind, &parent);
epochRCPSRAMW i t e(&pEpoch, pind, MAG C_AGE_NUM ;
pEpoch. L4bl k. nPar ent ++; //increnment parent count
}
}

else { //parent match
pi nd = PAt oA(&Epoch, (U16) (cnp_result & CWMP_ADDR MASK));
}
child = L4Creat eChil d(&Epoch, this_flow, pind);
/lsearch for child
cnp_result = epochRCPBi narySear ch(&pEpoch, &child, 0);
if (!(cmp_result & CMP_M){// no child match
ci nd = epochRCPNext Fr ee(&Epoch) ;
}
else { //child match --just overwite it
cind = PAt oA(&pEpoch, (UL6)(cnp_result & CVMP_ADDR NASK));
}
if (cind > pEpoch. L4bl k. maxAddr) {
/lerror, address out of range
printf(“\nCant wite Child. The Layer 4 block is full.”);

}

el se {
epochRCPW i t eEntry(&Epoch, cind, &child);
epochRCPSRAMW i t e(&pEpoch, cind, flowhandl e);
pEpoch. L4bl k. nChi | d++; //increment child count

}

read_fl ow = DecodeM crof | owm &pEpoch, &parent, &child);
printf(“\nThe parent and child entries were decoded.”);
printf(“\nSA: %x DA: %x”, read_flow sa, read_flow da);
printf(“\nSP: % DP: %", read_flow sp, read_flow. dp);
printf(“\'nlncomng Port #: %x”, read_flow.ifc);

3-40

Rev. 1

Layer 4 API Epoch API| Software Users Manual

ExtractPind

Syntax
static Ul6 ExtractPind(rcp_t *chil dRcp);

Description

This function extracts the "parent" index from the input "child" RCP entry. That means that the function finds the page
and physical address of where the "parent" entry is located in the RCP.

Input Parameters

*childRcp A pointer to the 64-bit RCP "child" entry. The parameter should be a pointer to a variable of
the structure rcp_t. The variable has two members:

rcp_t.hi = Bits 63:32 of the RCP entry.
rcp_t.lo = Bits 31:0 of the RCP entry.

Return Value

The page and virtual address of where the "parent" entry is located in the RCP.
Pre-requisites

None.

Usage

#defi ne CMP_MATCH 6
rcpResul t Status_t rcp_status;
rcp_t child;

Ul6 pind;

mcroflowt this flow
epoch_t pEpoch;

this flow sa Oxbbccaa0l4; this_flow da = Oxbbccaa05;

this flow sp 23; this flow dp 1000;

this flowifc = 3;

/lassum ng the RCPs and bl ock pointers have been initialized.

//find a L4 entry

rcp_status = epochL4Fl owSear ch(&Epoch, &t his_fl ow);

if (rcp_status.code == RCP_CMP_NMATCH) {
child = epochRCPReadEntry(&Epoch, (Ul6) rcp_status.addr);
pi nd = Extract Pi nd(&child);
printf(“\nThe parent was | ocated at Ox%”, pind);
printf(“\n(in Page Address / Physical Address format)”);

el se{
printf(“\nUnable to |ocate parent.”);

Rev. 1 3-41

Epoch API Software Users Manual Layer 4 API

L4ACreateChild

Syntax
static rcp_t L4CreateChild(epoch_t *pEpoch,
m crofl ow_ t *pFl ow,
Ul6 pl nd);
Description

This function creates a 64-bit "child" RCP entry from the input microflow and "parent" index. The RCP entry is returned
in the form of the rcp_t structure. The format of the binary RCP entry created is in the form shown the Epoch data-sheet.
The structure member "lo" stores the lower 32-bit value and the member "hi" stores the upper 32-bit value.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

*nFlow A pointer to the Layer 4 Microflow to be used when creating the "child" entry. The
parameter should be pointer to a variable of the microflow_t structure. The variable has
five members:

microflow_t.sa—The IP Source Address.

microflow_t.da—The IP Destination Address.

microflow_t.sp—The TCP or UDP Source Port.

microflow_t.dp—The TCP or UDP Destination Port.
microflow_t.ifc-The physical port number that Epoch received the flow.

pind The parent Index. That is the contiguous physical address of the corresponding Layer 4
"parent" entry.
Return Value

A variable in the form of the structure rcp_t is returned. This is the RCP entry that is created from the microflow and
index values.

* rcp_t.hi = Bits 63:32 of the RCP entry
* rcp_t.lo = Bits 31:0 of the RCP entry

Pre-requisites

None.

3-42 Rev. 1

Layer 4 API Epoch API| Software Users Manual

Usage

#defi ne CMP_ADDR_MASK Ox7FFFL
#defi ne MAG C_AGE_NUM OxFFBF

mcroflowt this flow
rcp_t parent, child;

U32 cnp_result;

Ul6 pind, cind, flowhandl e;
epoch_t pEpoch;

this_flow sa = Oxbbccaa04;
this_flow da = Oxbbccaa05;
this_flow sp = 23;
this_flow dp = 1000;

this flowifc = 3; flow handl e = 0x0007;

/lassuning the RCPs and the block pointers have been initialized
parent = LACreat eParent (&Epoch, & his flow);
cnp_result = epochRCPBi narySear ch(&Epoch, &parent, 0);
if (!(cnp_result & CVPP_M){ [// no parent natch
pi nd = epochRCPNext Free(&pEpoch);
if (pind > pEpoch. L4bl k. naxAddr){ //error, address out of range
printf(“\nCant wite Parent. The Layer 4 block is full.”);
}
else { //wite entry to Routing Tabl e
epochRCPW i t eEnt ry(&Epoch, pind, &parent);
epochRCPSRAMW i t e(&pEpoch, pind, MAG C_AGE_NUM ;
pEpoch. L4bl k. nPar ent ++; //increment parent count
}
}

else { //parent match
pi nd = PAt oA(&Epoch, (ULl6)(cnp_result & CVP_ADDR _MASK));
}
child = L4CreateChil d(&pEpoch, this_flow, pind);
/lsearch for child
cnp_result = epochRCPBi nar ySear ch(&Epoch, &child, 0);
if (!(cnp_result & CMVP_M){// no child match
ci nd = epochRCPNext Free(&Epoch);

}
else { //child match --just overwite it

ci nd = PAt oA(&pEpoch, (Ul6)(cnp_result & CVP_ADDR _MASK));
}

if (cind > pEpoch. L4bl k. maxAddr) {
/lerror, address out of range
printf(“\nCant wite Child. The Layer 4 block is full.”);

}

el se {
epochRCPW it eEnt ry(&Epoch, cind, &child);
epochRCPSRAMW i t e(&pEpoch, cind, flowhandl e);
pEpoch. L4bl k. nChi I d++; //increnment child count

}

Rev. 1 3-43

Epoch API Software Users Manual Layer 4 API

L4CreateParent

Syntax
static rcp_t L4CreateParent(epoch_t *pEpoch,
m crof | ow *pFl ow) ;

Description

This function creates a 64-bit "parent" RCP entry from the input microflow. The RCP entry is returned in the form of the
rep_t structure. The format of the binary RCP entry created is in the form shown the Epoch data-sheet. The structure
member "lo" stores the lower 32-bit value and the member "hi" stores the upper 32-bit value.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

*nFlow A pointer to the Layer 4 Microflow to be used when creating the "parent" entry. The
parameter should be pointer to a variable of the microflow_t structure. The variable has
five members:

microflow_t.sa—The IP Source Address.
microflow_t.da—The IP Destination Address.
microflow_t.sp—The TCP or UDP Source Port.
microflow_t.dp—The TCP or UDP Destination Port.
microflow_t.ifc—The physical port number that Epoch received the flow.
Return Value
A variable in the form of the structure rcp_t is returned. This is the RCP entry that is created from the microflow.

+ rcp_t.hi = Bits 63:32 of the RCP entry
* rcp_t.lo = Bits 31:0 of the RCP entry

Pre-requisites

None.

3-44 Rev. 1

Layer 4 API Epoch API| Software Users Manual

Usage

#defi ne CMP_ADDR_MASK Ox7FFFL
#defi ne MAG C_AGE_NUM OxFFBF

mcroflowt this flow
rcp_t parent, child;

U32 cnp_result;

Ul6 pind, cind, flowhandl e;
epoch_t pEpoch;

this_flow sa = Oxbbccaa04;
this_flow da = Oxbbccaa05;
this_flow sp = 23;
this_flow dp = 1000;

this flowifc = 3; flow handl e = 0x0007;

/lassuning the RCPs and the block pointers have been initialized
parent = LACreat eParent (&Epoch, & his flow);
cnp_result = epochRCPBi narySear ch(&Epoch, &parent, 0);
if (!(cnp_result & CVPP_M){ [// no parent natch
pi nd = epochRCPNext Free(&pEpoch);
if (pind > pEpoch. L4bl k. naxAddr){ //error, address out of range
printf(“\nCant wite Parent. The Layer 4 block is full.”);
}
else { //wite entry to Routing Tabl e
epochRCPW i t eEnt ry(&Epoch, pind, &parent);
epochRCPSRAMW i t e(&pEpoch, pind, MAG C_AGE_NUM ;
pEpoch. L4bl k. nPar ent ++; //increment parent count
}
}

else { //parent match
pi nd = PAt oA(&pEpoch, (ULl6)(cnp_result & CVP_ADDR _MASK));
}
child = L4CreateChil d(&Epoch, this flow, pind);
/lsearch for child
cnp_result = epochRCPBi nar ySear ch(&Epoch, &child, 0);
if (!(cnp_result & CMVP_M){// no child match
ci nd = epochRCPNext Free(&pEpoch);

}
else { //child match --just overwite it

ci nd = PAt oA(&pEpoch, (Ul6)(cnp_result & CVMP_ADDR _MASK));
}

if (cind > pEpoch. L4bl k. maxAddr) {
/lerror, address out of range
printf(“\nCant wite Child. The Layer 4 block is full.”);

}

el se {
epochRCPW it eEnt ry(&Epoch, cind, &child);
epochRCPSRAMW i t e(&pEpoch, cind, flowhandl e);
pEpoch. L4bl k. nChi I d++; //increnment child count

}

Rev. 1 3-45

Epoch API Software Users Manual Layer 4 API

L4FindSibling

Syntax

static U32 L4Fi ndSi bl i ng(epoch_t *pEpoch,
Ul6 pl nd);

Description

This function searches the Layer 4 RCP database for "child" entries that have the input "parent" index encoded. If any
RCP entries that constitute a "child" of the "parent" index that is given, relevant information is returned.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

plnd The parent Index. That is the contiguous physical address of the corresponding Layer 4
"parent" entry.

Return Value
The contents of the Epoch CRI register 0x134 is returned. This shows relevant information regarding the search for any
"child" entries. The information is as follows:

Bits Explanation

[12:0] This is the Index of any matching entries found during the search. It uses the standard Epoch format and
shows physical address within a specific RCP. Only valid if bit 15=1 or bit 16 = 1.

[14:13] Page address of any matching entries found during the search. This corresponds to the Page Address values
set during initialization. The usual format is:

00 = First device
01 = Second device
10 = Third device
11 = Fourth device

15 Match Flag. If this bit = 1, there was a MATCH and therefore a "child" entry was found.

16 Multiple Match Flag. If this bit = 1, there was a Multiple MATCH and therefore more than one "child"
entry was found. Bits [14:0] specify the highest priority entry matched.

Pre-requisites

None.

3-46 Rev. 1

Layer 4 API Epoch API| Software Users Manual

Usage

U32 search_result;

epoch_t pEpoch;

Ul6 PageAddress, Physical Address, parent_index = 23;

/lassunming the RCPs and the block pointers have been initialized

search_result = L4Fi ndSi bl i ng(&Epoch, (Ul6) parent_i ndex);

PageAddress = (U16) (((search_result & 0x0000600) >> 13) & 0x3);

Physi cal Address = (U16) search_result & O0x00001FFF;

i f(seach_result & 0x8000)
printf(“\nOnly one child entry was found.”);
printf(“\nRCP nunmber : Ox%”, PageAddress);
printf(“\nPhysical address within that device: Ox%”,

Physi cal Addr ess) ;

}

el se if(seach_result & 0x10000) {
printf(“\nMultiple child entries were found.\nH ghest Priority

entry is located at follow ng address. ");
printf(“\nRCP nunber : Ox%”, PageAddress);
printf(“\nPhysical address within that device: Ox%”,
Physi cal Addr ess) ;

}

el se if((search_result & 0x18000) == 0){
printf(“\'nNo child entries were found.”);

}

Rev. 1 3-47

Epoch API Software Users Manual Layer 4 API

epochL4FlowAddEntry

Syntax

rcpResul t Status_t epochL4Fl owAddEntry(epoch_t *pEpoch,
m crofl ow t *pFl ow,
Ul6 fl owhandl e);

Description

This function adds the input Layer 4 Microflow information to the RCP and associated data. The microflow input is
encoded as "parent" and "child" RCP entries and added to the Layer 4 partition of the Routing Table. The input Flow
Handle is added to the associated data SRAM.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

*nFlow A pointer to the Layer 4 Microflow to be added to the Routing Table. The parameter should
be pointer to a variable of the microflow _t structure. The variable has five members:

microflow_t.sa—The IP Source Address.

microflow_t.da—The IP Destination Address.

microflow_t.sp—The TCP or UDP Source Port.

microflow_t.dp—The TCP or UDP Destination Port.
microflow_t.ifc—The physical port number that Epoch received the flow.

owhandle The 16-bit Flow Handle to be added to the associated data SRAM. This is described in the
A
Epoch data sheet.

Return Value
A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

If the Layer 4 partition of the Routing Table is full the "code" member is RCP_BLOCK_FULL and the "addr" member
is the next free location in the RCP.

Pre-requisites
The Layer 4 pointers (b/lockPtr_t) should be initialized prior to using this routine.

3-48 Rev. 1

Layer 4 API Epoch API| Software Users Manual

Usage

#defi ne L4_STOPADDR 0x1000

#defi ne | PU_STOPADDR 0x1800
#defi ne | PM_STOPADDR 0x1C00
#defi ne | PX_STOPADDR 0x2000

rcpResult Status_t write_status;
Ul6 fl owhandl e;

mcroflowt this_flow

epoch_t pEpoch;

int i_stat;
this flow sa = Oxbbccaa04;
this_flow da = Oxbbccaa05;

this flow sp = 23;
this_flow dp = 1000;
this flowifc = 3;

fl ow _handl e = 0x0007;

i _stat = epochRCPI nit (&pEpoch);

//set block pointers

pEpoch. i pnbl k. fl oor = | PU_STOPADDR+1;

pEpoch. i pnbl k. bs = | PM_STOPADDR - | PU_STOPADDR;
pEpoch. i pnmbl k. next Free = pEpoch. i pnbl k. f| oor;
pEpoch. i pxbl k. fl oor = | PM_STOPADDR+1;

pEpoch. i pxbl k. bs = | PX_STOPADDR - | PM_STOPADDR,;
pEpoch. i pxbl k. next Free = pEpoch. i pxbl k. fl oor;

if(i_stat == INNT_OK){
/ladd a L4 entry to the Routing Tabl e
wite status = epochL4Fl owAddEntry(&pEpoch, & his flow, flow handle);
if(wite_status.code == RCP_BLOCK FULL) {

printf(“\'nThere is no nenory available for RCP wite.”);

}
el se{
printf(“\nThe Layer 4 flow was added.”);

}
}
el se{

printf(“\nERROR : Unable to initialize RCP chain.”);
}

Rev. 1 3-49

Epoch API Software Users Manual Layer 4 API

epochL4FlowAge
Syntax
rcpResul t Status_t L4FlI owAge(epoch_t *pEpoch);

Description

If an aging scheme is used, bit 5 of the Flow Handle (the "touch" bit) is set to 1 every time the Epoch receives a particular
flow. This function can be used to remove all the flows from the Routing Table that have not had their "touch" bits set to
1. The function ages the Layer 4 partition of the Routing Table. That means that all Layer 4 entries in RCP and their
corresponding SRAM information are deleted if the "touch" bit of the Flow Handle is 0. All existing entries with their
"touch" bits set to 1 have the bit reset back to 0.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates how many Layer 4 microflows were
deleted from the Table. This information is returned in the "data" member.

Pre-requisites

The Layer 4 pointers (blockPtr_t) should be initialized prior to using this routine.
Usage

epoch_t pEpoch;

rcpResul t Status_t age_stat us;

/1 Assuming the RCPs and the block pointers have bben initialized
/1 Al so assuming that there is some L4 entries in Table.
age_status = epochL4Fl owAge(&pEpoch);

printf(“\nThe |ayer 4 microflow Tabl e was aged.”);
printf(“\n%l entries were deleted fromthe Table.”, age_status.data);

3-50 Rev. 1

Layer 4 API Epoch API| Software Users Manual

epochL4FlowRemoveEntry

Syntax
rcpResul t Status_t epochL4Fl owRenoveEnt ry(epoch_t *pEpoch,
m crofl ow t *pFl ow);

Description
This function removes the input Layer 4 Microflow from the Layer 4 partition of the Routing Table.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

*nFlow A pointer to the Layer 4 Microflow to be added to the Routing Table. The parameter should
be pointer to a variable of the microflow _t structure. The variable has five members:

microflow_t.sa—The IP Source Address.

microflow_t.da—The IP Destination Address.

microflow_t.sp—The TCP or UDP Source Port.

microflow_t.dp—The TCP or UDP Destination Port.
microflow_t.ifc—The physical port number that Epoch received the flow.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure. The RCP virtual address of where the "child" entry was located is returned in the "addr"
member. The "code" member indicates if the "child" and "parent" were successfully deleted.

Pre-requisites
The Layer 4 pointers (blockPtr_t) should be initialized prior to using this routine.

Rev. 1 3-51

Epoch API Software Users Manual Layer 4 API

Usage

#def i ne L4_STOPADDR 0x1000
#defi ne | PU_STOPADDR 0x1800
#define | PM_STOPADDR 0x1C00
#defi ne | PX_STOPADDR 0x2000

rcpRes

ultStatus t wite status, del ete_status;

Ul6 fl owhandl e;

mcroflowt this flow
epoch_t pEpoch;

int i_stat;

this_flow sa = Oxbbccaa04;
this_fl ow da = Oxbbccaa05;
this_flow sp = 23
this_flow dp = 1000

this flowifc 3;

fl ow_handl e = 0x0007;

i _stat
/] set

pEpoch
pEpoch
pEpoch
pEpoch
pEpoch
pEpoch

= epochRCPI ni t (&Epoch) ;
bl ock pointers
.ipnmbl k. fl oor = | PU_STOPADDR+1
.ipmbl k. bs = | PM_STOPADDR - | PU_STOPADDR
. i pnmbl k. next Free = pEpoch. i pnbl k. f1 oor
. i pxbl k. floor = | PM_STOPADDR+1
. i pxbl k. bs = | PX_STOPADDR - | PM _STOPADDR
. i pxbl k. next Free = pEpoch. i pxbl k. f1 oor

if(i_stat == INIT_OK){

el se{

3-52

//add a L4 entry to the Routing Table
wite_status = epochL4Fl owAddEnt ry(&Epoch, &t his_flow, flow_handle);
if(wite_status.code == RCP_BLOCK_ FULL) {
printf(“\nThere is no menory available for RCP wite.”);
}
el se{
printf(“\nThe Layer 4 flow was added.”);
}
del ete_status = epochL4Fl owRenoveEnt ry(&Epoch, &t his_flow);
i f(del ete_status.code & RCP_NO MATCH){
printf(“\nUnable to find L4 entry in Routing Table.”);
}
el se{
printf(“\nThe L4 entry was deleted.”);

printf(“\nERROR : Unable to initialize RCP chain.”);

Rev. 1

Layer 4 API Epoch API| Software Users Manual

epochL4FlowSearch

Syntax

rcpResul t Status_t epochL4Fl owSear ch(epoch_t *pEpoch,
m croflow t *pFlow);

Description

This function performs a two-phase binary search for the input Layer 4 Microflow. The function encodes the microflow
and searches for the "parent" entry. If successful, it also search for the associated "child" entry. If the microflow produces
a match during the search, the Flow Handle and virtual adjacency pointer/RCP address of the "child" entry are returned.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

*nFlow A pointer to the Layer 4 Microflow to be added to the Routing Table. The parameter should
be pointer to a variable of the microflow _t structure. The variable has five members:

microflow_t.sa—The IP Source Address.

microflow_t.da—The IP Destination Address.

microflow_t.sp—The TCP or UDP Source Port.

microflow_t.dp—The TCP or UDP Destination Port.
microflow_t.ifc-The physical port number that Epoch received the flow.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure.

* Successful-The RCP virtual address of where the "child" entry was located (if found) is returned in the "addr"
member. The Flow Handle found in the associated data SRAM is returned in the "data" member.
RCP_CMP_MATCH is returned in the "code" member to indicate that there was a match.

* Unsuccessful-RCP_NO_MATCH is returned in the "code" member to indicate that there was no match found.

Pre-requisites
None.

Rev. 1 3-53

Epoch API Software Users Manual

Layer 4 API

Usage

#defin
#defin

e L4_STOPADDR 0x1000
e | PU_STOPADDR 0x1800

#defi ne | PM_STOPADDR 0x1C00
#def i ne | PX_STOPADDR 0x2000

rcpRes

ultStatus_t wite_status, search_status;

Ul6 fIl owhandl e;

m crofl ow_t this_flow
epoch_t pEpoch;

int i_stat;

this_flow sa = Oxbbccaa04;
this_flow da = OxbbccaaO5;
this_flow sp = 23;
this_flow dp = 1000;

this flowifc = 3;

fl ow_handl e = 0x0007;

i _stat
/] set

= epochRCPI ni t (&pEpoch);
bl ock pointers

pEpoch. i pnbl k. fl oor = | PU_STOPADDR+1;

pEpoch. i pnbl k. bs = | PM_STOPADDR - | PU_STOPADDR,;
pEpoch. i pnbl k. next Free = pEpoch. i prmbl k. f | oor;
pEpoch. i pxbl k. fl oor = | PM_STOPADDR+1;

pEpoch. i pxbl k. bs = | PX_STOPADDR - | PM _STOPADDR,
pEpoch. i pxbl k. next Free = pEpoch. i pxbl k. f1 oor;
if(i_stat == INIT_OK){

el se{

3-54

//add a L4 entry to the Routing Table

wite_status = epochL4Fl owAddEnt ry(&pEpoch, this_flow, flow handle);

if(wite_status.code == RCP_BLOCK_FULL){

printf(“\nThere is no nmenory avail able for

}
el se{
printf(“\nThe Layer 4 fl ow was added.”);

}

search_status = epochL4Fl owSear ch(&Epoch, &t his_flow);

i f(search_status.code & RCP_NO_MATCH) {

printf(“\nUnable to find L4 entry in Routing Table.”);

}
el sef
printf(“\nThe L4 entry (child) was found at virtual
address Ox% with assoc. data = 0x% x”,
search_status. addr, search_status. data);
}

printf(“\nERROR : Unable to initialize RCP chain.”);

RCP wite.”);

Rev. 1

Layer 4 API Epoch API| Software Users Manual

epochBACReadTableEntry

Syntax

Ul6 epochBACReadTabl eEntry(epoch_t *pEpoch,
Ul6 addr);

Description

This function reads the BAC Table entry specified by the input DS field. The input DS field should be any value between
0 and OxFF. The function locates and returns the corresponding 16-bit Flow Handle from the BAC Table.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The DS field for which the user wishes to locate a Flow Handle. The input should be any
valid DS field value between 0 and OxFF.

Return Value

The 16-bit Flow Handle found in the BAC Table partition of the associated data SRAM is returned.
Pre-requisites

None.

Usage

Ul6 DSFi el d, Fl owHandl e;
epoch_t pEpoch;

[/ assumi ng RCPs and bl ock pointers have been initialized.
Fl owHandl e = epochBACReadTabl eEnt ry(&Epoch, addr);

Printf(“\nThe Flow Handle for and entry with a DS field =
Ox% is Ox%”, DSField, FlowHandl e);

Rev. 1 3-55

Epoch API Software Users Manual Layer 4 API

epochBACWriteTableEntry

Syntax
int epochBACW iteTabl eEntry(epoch_t *pEpoch,
Ul6 addr,
Ul6 data);
Description

This function writes the 16-bit BAC Table entry specified by the input flowhandle field into the appropriate location. The
input addr specifies the DS field that is used when placing the entry. The input DS field should be any value between 0
and OxFF.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The DS field for which the user wishes to write a Flow Handle into the BAC Table. The
input should be any valid DS field value between 0 and OxFF.

data The 16-bit Flow Handle that is to be written into the appropriate location in the BAC Table.

Return Value

An integer is returned to relay the status of the attempted write operation. If the write was successful, 0 is returned. If the
write failed, -1 is returned.

Pre-requisites

None.

Usage

Ul6 DSField = 0x23, FlowHandl e = 0x0007;

epoch_t pEpoch;

int i_stat;

[/ assumi ng RCPs and bl ock pointers have been initialized.
i _stat = epochBACW i teTabl eEntry(&pEpoch, addr, Fl owHandl e);
if(i_stat == -1){

printf(“\nThere was an error while witing entry.”);

}
el se{
printf(“\nThe entry with Flow Handle = Ox% and DS field = Ox%
was added”, Fl owHandl e, DSFi el d);
}

3-56 Rev. 1

Initialization API Epoch API Software Users Manual

INITIALIZATION API

The functions in this section are responsible for initializing the Packet pointers, Queue pointers, the Packet Control
pointers and the RCP database. The files in which they may be found and the page in this manual where they can be
located is shown for easy reference. Low- and high-level functions are identified by (H) = high-level, (L) = low-level.

Table 3-6: API Initialization Functions

API Function Name Purpose File Name Page
epochPKMiInit Initializes the Packet Manager SRAM. This involves initializing the epochLib.c 3-58
(H) internal Queue pointers and the external Packet pointers.

epochRCPInit Initializes the RCP(s). epochLib.c 3-60
(H)

epochSDRAMInit Initializes the control SDRAM and tests the data SDRAM. epochLib.c 3-62
(H)

epochQueuePtrMemlnit Initializes the 128-entry internal Queue Pointer SRAM. epochLib.c 3-64
L

epochPacketPtrinit Initializes the external 64K (65,536) location Packet Pointer SRAM. epochLib.c 3-65
L

epochPacketPtrClear Clears the external 64K (65,536) location Packet Pointer SRAM, epochLib.c 3-66
(L) setting the entries to 0.

Rev. 1 3-57

Epoch API Software Users Manual Initialization API

epochPKMiInit

Syntax
i nt epochl ni t PKM epoch_t *pEpoch,
U32 nunBuf s,
U32 usePort);
Description

This function initializes the Epoch Packet pointers and Queue pointers as described in Packet Manager section of the
Epoch data sheet. There are 128 Queue pointers that are stored in an internal and 64K (65,536) Packet pointers that are
stored in an external SRAM that both require initialization. The user may select the number of physical ports and the
number of pointers to initialize.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure is initialized with information required
for RCP address to RCP virtual address translation.

numBufs This is the number of Packet pointers to be initialized. The Epoch has 65,536 Packet
pointers that allow it to store 65,536 64-byte packets. This parameter indicates how many
of the 65,536 Packet pointers are to be initialized. The parameter should be a value from 0
through 65,535 (0x0000 through OXxFFFF). The relationship between the Queue pointers
and Packet pointers must be maintained or an error occurs. This means that there must be
enough packet pointers initialized to satisfy the number of Queue pointers that are
initialized. Therefore numBufs must always be greater than the number of ports specified by
usePort times eight.

usePort This is the 16-bit port bitmap. There are 128 Queue pointers that are used by Epoch for
sixteen ports each having eight queues. Each physical port (0 — 15) may have its pointers
initialized. The appropriate bit is set to 1 if the port that is indicated is to be initialized. If
the bit is set to 0, the port is not affected by the function. For example, bit 0 = port 0,
bit 1 =port 1, bit 2 = port 2, and so on. For normal initialization of sixteen ports this
parameter should be set to OxFFFF.

Return Value

An integer is returned if the initialization was successful. If successful, INIT_OK is returned. If not successful,
INIT_FAIL is returned.

Pre-requisites

None.

3-58 Rev. 1

Initialization API

Epoch API Software Users Manual

Usage

Ul6 useport = OxFFFF;
U32 num of _bufs = OxFFFF;
epoch_t pEpoch;

int i_stat;

/lassuni ng RCPs and bl ock pointers have been initialized.

/[linitialize all ports and all buffers
i _stat = epochPKM nit (&pEpoch, num of bufs, useport);
if(i_stat == INIT_OK){
printf(“\nThe PKMwas initialized.”);

}
el se {
print(“\nThere was an error during initialization.
\ nPl ease investigate.”);
}

Rev. 1

3-59

Epoch API Software Users Manual Initialization API

epochRCPInit

Syntax

int epochRCPInit(epoch_t *pEpoch);
Description

This function initializes the Epoch RCP chain into one contiguous virtual address space and initializes the page address
conversion data in the blockSort_t structure. The function performs the following tasks:

1. Detects how many RCPs are being used in the system (maximum = 4).
. Detects the size of each RCP being used.

2

3. Places all RCPs in hardware mode.

4. Initializes all RCPs with correct Page Address values.
5

. Initializes the pageAddr[n], pageSize[n], chipSelectLkup[n], and pageAddrLkup[n] members of the blockSort_t
structure. This allows the conversion between RCP address and Page address values and virtual contiguous address val-
ues.

6. Sets the RCP Mask registers to the values required for Layer 4 searches and binary searches that return a match for any
valid entry.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure is initialized with information required
for RCP address to RCP virtual address translation.

Return Value

An integer is returned if the intialization was successful. If successful, INIT_OK is returned. If not successful,
INIT_FAIL is returned.

Pre-requisites

None.

3-60 Rev. 1

Initialization API Epoch API Software Users Manual

Usage
epoch_t pEpoch;
int i_stat;

/1 assuni ng bl ock pointers have been initialized.

i _stat = epochRCPInit (&pEpoch);
if(i_stat == INT_OK){
printf(“\nThe RCP chain was initialized.”);
}
el se{
printf(“\nERROR : Unable to initialize RCP chain.”);

Rev. 1 3-61

Epoch API Software Users Manual Initialization API

epochSDRAMInit
Syntax

i nt epochSDRAM ni t (epoch_t *pEpoch,

Description

U32 refreshPeri od,
U32 progSync);

This function initializes the Epoch SDRAM memories. This involves initializing the Buffer Control pointer SDRAM and
testing the Buffer Data SDRAM.

Input Parameters

*pEpoch

refreshPeriod

progSync

Return Value

A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

The refresh period for the system SDRAM. This is the number of system clock cycles
between Buffer and Buffer control refresh cycles. This number is calculated by the
following formula:

refresh_period = system_clock x required_SDRAM_period
system_clock is the Epoch and the SDRAM clock frequency.

Required_SDRAM_period is the refresh period required by the SDRAM being used. For a
32ms, 2K-refresh period, this is usually 15.6 us.

For example, a system operating at 50 MHz using typical 15.6 us SDRAM, the
refresh_period would be 50,000,000 x 0.0000156 = 780.

The number of clock cycles between the system SYNC pulse and the first word of TDM Rx
data. This is the value that is written into Epoch register 0x054. For normal operation, set to
three.

An integer is returned if the intialization was successful. If successful, INIT_OK is returned. If not successful,

INIT_FAIL is returned.

Pre-requisites

The system sync pulse must be off prior to using this function. If the sync pulse is on, the Epoch attempts to access the
SDRAM for refresh and maintenance tasks. The Epoch sync pulse is switched on and off using register 0x03c. The user
must ensure that the sync pulse is switched back on prior to receiving network traffic.

3-62

Rev. 1

Initialization API Epoch API Software Users Manual

Usage

U32 refresh_period, prog_sync;
epoch_t pEpoch;
int i_stat;

/lassum ng RCPs and bl ock pointers have been initialized.
/1 set progSync for normal operation
prog_sync = 3;

/[linitialize SDRAM operating at 50MHz
refresh_period = 780;
i _stat = epochSDRAM nit (&pEpoch, refresh _period, prog_sync);
if(i_stat == INNT_FAIL){
printf(“\nThere was an error while initializing the Queue SDRAM contr ol
pointers or testing the buffer data SDRAM \nPl ease
I nvestigate.”);

el se{
printf(“\nThe SDRAM was initialized.”);

Rev. 1 3-63

Epoch API Software Users Manual Initialization API

epochQueuePtrMemInit
Syntax
i nt epochQueuePtrMenl nit(epoch _t *pEpoch,
Ul6 usePort);
Description
This function initializes the 128-entry internal Queue Pointer SRAM.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure is initialized with information required
for RCP address to RCP virtual address translation.

usePort This is the 16-bit port bitmap. There are 128 Queue pointers that are used by Epoch for
sixteen ports each having eight queues. Each physical port (0 — 15) may have its pointers
initialized. The appropriate bit is set to 1 if the port that is indicated is to be initialized. If
the bit is set to 0, the port is not affected by the function. For example, bit 0 = port 0, bit 1 =
port 1, bit 2 = port 2, and so on. For normal initialization of sixteen ports this parameter
should be set to OxFFFF.

Return Value

An integer is returned if the intialization was successful. If successful, INIT_OK is returned. If not successful,
INIT_FAIL is returned.

Pre-requisites

None.

Usage

U32 useport = OxFFFF;

epoch_t pEpoch;

int i_stat;

[linitialize all ports
i _stat = epochQueuePtrMem nit (&pEpoch, useport);
if(i_stat == INNT_FAIL){
print(“\nThere was an error while initializing the Queue
poi nters.\nPl ease investigate.”);
}
el se {
printf(“\'nThe Queue Pointers were initialized.”);

3-64 Rev. 1

Initialization API Epoch API Software Users Manual

epochPacketPtrinit

Syntax

i nt epochPacketPtrinit(epoch_t *pEpoch,
U32 nunBuf s) ;

Description

This function initializes the external 64K (65,536) location Packet Pointer SRAM.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure is initialized with information required
for RCP address to RCP virtual address translation.

numBufs This is the number of Packet pointers to be initialized. The Epoch has 65,536 Packet
pointers that allow it to store 65,536 64-byte packets. This parameter indicates how many
of the 65,536 Packet pointers are to be initialized. The parameter should be a value from 0
through 65,535 (0x0000 through OXxFFFF). The relationship between the Queue pointers
and Packet pointers must be maintained or an error occurs. This means that there must be
enough packet pointers initialized to satisfy the number of Queue pointers that are
initialized. Therefore numBufs must always be greater than the number of ports specified by
usePort times eight.

Return Value

An integer is returned if the intialization was successful. If successful, INIT_OK is returned. If not successful,
INIT_FAIL is returned.

Pre-requisites

The epochQueuePtrMem() function must be used prior to using this function in order to set the pktPtr member of the
blockSort t structure. If the epochQueuePtrMem() function is not called prior to using this function, then an error may
result.

Usage

U32 nunbufs = OxFFFF, useport = OxFFFF;
epoch_t pEpoch;
int i_stat;

epochQueuePt r Menl ni t (&pEpoch, useport);
[linitialize all buffers
i _stat = epochPacket PtrMem nit (&Epoch, nunbufs);
if(i_stat == INNT_FAIL){
print(“\nThere was an error while intializing the packet
poi nters.\nPl ease investigate.”);
}
el se {
printf(“\nThe packet pointers were initialized.”);

Rev. 1 3-65

Epoch API Software Users Manual Initialization API

epochPacketPtrClear

Syntax

i nt epochPacket Pt rCl ear (epoch_t *pEpoch,
U32 nunBufs);

Description

This function clears the external 64K (65,536) location Packet Pointer SRAM, setting the entries to 0.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure is initialized with information required
for RCP address to RCP virtual address translation.

numBufs This is the number of Packet pointers to be cleared. The Epoch has 65,536 Packet pointers
that allow it to store 65,536 64-byte packets. This parameter indicates how many of the
65,536 Packet pointers are to be set to 0. The parameter should be a value from 0 through
65,535 (0x0000 through OxFFFF). The relationship between the Queue pointers and Packet
pointers must be maintained or an error occurs. This means that there must be enough
packet pointers chosen with this parameter to satisfy the number of Queue pointers that are
initialized. Therefore numBufs must always be greater than the number of ports specified by
usePort times eight.

Return Value

An integer is returned if the operation was successful. If successful, INIT_OK is returned. If not successful, INIT_FAIL
is returned.

Pre-requisites

The epochQueuePtrMem() function must be used prior to using this function in order to set the pktPtr member of the
blockSort t structure. If the epochQueuePtrMem() function is not called prior to using this function, then an error may
result.

Usage

U32 nunbufs = OxFFFF, useport = OxFFFF;
epoch_t pEpoch;

int i_stat;

epochQueuePt r Menl ni t (&pEpoch, useport);
[linitialize all buffers
i _stat = epochPacket PtrMenCd ear (&pEpoch, nunbufs);
if(i_stat == INNT_FAIL){
print(“\nThere was an error while clearing the packet
poi nters.\nPl ease investigate.”);
}
el se {
printf(“\nThe packet pointers were set to 0.7);

3-66 Rev. 1

Lower-Level API Epoch API Software Users Manual

LOWER-LEVEL API

The functions in this section are responsible for the lower-level operations on the Routing Table entries. This involves
adding and removing RCP and SRAM entries. Routines are also provided for conversion from RCP page address and
physical address format to RCP virtual contiguous address format. The files in which they may be found and the page in
this manual where they can be located is shown for easy reference. Low- and high-level functions are identified by (H) =
high-level, (L) = low-level.

Table 3-7: Lower-Level APl Functions

API Function Name Purpose File Name Page
AtoCS Converts an input RCP physical address to the appropriate RCP epochLib.c 3-68
(L) output Chip Select.
AtoPA Converts an input RCP physical address to the appropriate RCP epochLib.c 3-70
(L) page address value.
PAtoA Converts an input page address value to the appropriate RCP epochLib.c 3-72
(L) physical address.
epochRCPBinarySearch Performs a binary search in the RCP for the 64-bit input data. epochTable.c 3-74
L
epochRCPDeleteByAddr Deletes a 64-bit entry from the RCP memory location specified by an | epochLib.c 3-76
(L) address input parameter.
epochRCPInitAddrTrans Initializes the address translation pointers. epochLib.c 3-77
L
epochRCPMoveEntry Moves a 64-bit RCP entry from a source RCP physical location to a Ipusort.c 3-79
(L) destination location.
epochRCPNextFree Finds the next free RCP location. epochTable.c 3-80
L
epochRCPReadEntry Reads a 64-bit entry from the RCP memory location specified by an epochLib.c 3-81
(L) address input parameter.
epochRCPSRAMRead Reads the 16-bit RCP associated data SRAM entry specified by an epochLib.c 3-82
(L) address input parameter. Used for SRAM locations OXFFFF or less.
epochRCPSRAMReadDir Reads the 16-bit RCP associated data SRAM entry specified by an epochLib.c 3-83
(L) address input parameter. Used for SRAM locations 0x10000 or

greater.
epochRCPSRAMWrite Writes the 16-bit RCP associated data SRAM entry specified by an epochLib.c 3-84
(L) address input parameter. Used for SRAM locations OxFFFF or less.
epochRCPSRAMWriteDir Writes the 16-bit RCP associated data SRAM entry specified by an epochLib.c 3-85
(L) address input parameter. Used for SRAM locations 0x10000 or

greater.
epochRCPWriteEntry Writes a 64-bit entry into the RCP at the memory location specified epochLib.c 3-86
(L) by an address input parameter.
epochRCPWrite32 Function for writing instructions in the form of op-code and 32-bit epochLib.c 3-87
L data to RCP.

Rev. 1

3-67

Epoch API Software Users Manual Lower-Level API

AtoCS

Syntax
U32 At oCS(epoch_t *pEpoch,
Ul6 addr);

Description

This function converts the input RCP virtual contiguous address to the appropriate RCP chip select op-code and physical
address combination. The physical address is the address within the device specified by the chip select op-code.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The RCP virtual contiguous address of the entry that is to be accessed. This location is
found in one of up to four devices when using an RCP chain. The function take this input
and returns which of the four devices the address is located along with physical address
within the device specified.

Return Value

The contents of the appropriate chipSelectLkup[n] member of the blockSort_t structure converts the input addr. If the
members were initialized properly prior to using this function, the chip select information for RCP 0, 1, 2 or 3 should be
returned. This indicates which of the four possible RCPs in a chain should be accessed when attempting to read or write
the RCP address specified by addr. The physical address within the device specified is also returned. The return value is
decoded as follows:

Bits Explanation

[12:0] This is the RCP Physical address of the virtual address given as an input to the function. It uses the
standard Epoch format and shows physical address within a specific RCP.

[16:13] This is the RCP chip select code that is required to select one of a chain of up to four devices. It is decoded
as follows:

1110b = First device
1101b = Second device
1011b = Third device
0111b = Fourth device

Pre-requisites

The chipSelectLkup[n], pageAddrLkup[n], and pageSize[n], members of the blockSort_t structure must be initialized to
the correct values. epochRCPInit() automatically does this if it is executed prior to using this function.

3-68 Rev. 1

Lower-Level API Epoch API Software Users Manual

Usage

Ul6 vir_addr = 5000;

U32 RCP_opcode, cs_addr;
epoch_t pEpoch;

int i_stat;

/1 assum ng bl ock pointers have been initialized.

i _stat = epochRCPI nit (&pEpoch);

if(i_stat == INIT_OK){
printf(“\nThe RCP chain was initialized.”);
printf(“\nAdding an entry to RCP at virtual address: Ox%",

vir_addr);

cs_addr = At oCS(&pEpoch, vir_addr);
RCP_opcode = 0x80000 | cs_addr; // /av low, dsc low, /vb hi
[Iwite low 32 bits to RCP
epochRCPW i t e32(&Epoch, 0x12345678, RCP_opcode);
RCP_opcode = 0x20000 | cs_addr; // /av low, dsc hi, /vb | ow
/Iwite high 32 bits to RCP
epochRCPW it e32(&Epoch, 0x87654321, RCP_opcode);

el se{
printf(“\nERROR : Unable to initialize RCP chain.”);

Rev. 1 3-69

Epoch API Software Users Manual Lower-Level API

AtoPA

Syntax

Ul6 At oPA(epoch_t *pEpoch,
Ul6 addr);

Description

This function converts an input RCP virtual contiguous address to the corresponding RCP page address and physical
address combination. This function is primarily used by higher-level functions that read and write entries from and to the
associated data SRAM. The function is required, because the SRAM entries must be accessed using the standard page and
physical address format.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The RCP virtual contiguous address of the entry that is to be converted. This location is
found in one of up to 4 devices when using an RCP chain. The function takes this input and
returns the physical address and page address.

Return Value

The contents of the appropriate pageAddrLkup[n] member of the blockSort_t structure converts the input addr. The page
address and the physical address of the entry are returned. If the members of the structure were initialized properly prior to
using this function, the page address are bits [14:13] and the physical address within that device are bits [12:0].

Pre-requisites

The pageAddrLkup[n] and pageSize[n] members of the blockSort_t structure must be initialized to the correct values.
epochRCPInit() automatically does this if it is executed prior to using this function.

3-70 Rev. 1

Lower-Level API Epoch API Software Users Manual

Usage

Ul6 p_addr, vir_addr = 5000;
Ul6 page_addr;
U32 RCP_opcode;
epoch_t pEpoch;

int i_stat;

[/ assumi ng bl ock pointers have been initialized.

i _stat = epochRCPInit(&pEpoch);
if(i_stat & INIT_OK){
printf(“\nThe RCP chain was initialized.”);
printf(“\nAdding an entry to RCP at virtual address: Ox%”,
vir_addr);
p_addr = At oPA(&pEpoch, vir_addr);
page_addr = p_addr >> 13;
printf(“\nThe page address of virtual address : Ox% is %",
vir_addr, page_addr);

el se{
printf(“\nERROR : Unable to initialize RCP chain.”);

Rev. 1 3-71

Epoch API Software Users Manual Lower-Level API

PAtoA

Syntax
Ul6 PAt oA(epoch_t *pEpoch,
Ul6 addr);

Description

This function converts an input RCP page address and physical address combination to the corresponding RCP virtual
contiguous address. This function is primarily used by higher-level functions that read and write entries from and to the
RCP database.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The RCP page address and physical address of the entry that is to be converted. The page
address are bits [14:13] and the physical address within that device are bits [12:0]. The
function takes this input and returns the RCP contiguous virtual address.

Return Value

The contents of the appropriate pageAddrLkup[n] member of the blockSort t structure converts the input addr. If the
members were initialized properly prior to using this function, the RCP contiguous virtual address is returned.
Pre-requisites

The pageAddrLkup[n] and pageSize[n] members of the blockSort_t structure must be initialized to the correct values.
epochRCPInit() automatically does this if it is executed prior to using this function.

3-72 Rev. 1

Lower-Level API Epoch API Software Users Manual

Usage

#defi ne CMP_M (0x1L<<15)
#defi ne CMP_ADDR_MASK Ox7FFFL

rcp_t parent, child;
mcroflowt this_flow
U32 cnp_result;

Ul6 vir_addr, pa_addr;
epoch_t pEpoch;

int i_stat;

/lassum ng bl ock pointers have been initialized.

this_flow sa = Oxbbccaa04;
this _flow da = Oxbbccaa05;
this flow sp = 23;
this_flow dp = 1000;

this flowifc = 3;

i _stat = epochRCPInit(&pEpoch);
//assum ng the L4 Table has entries
if(i_stat == INNT_OK){
parent = LACreateParent (&Epoch, & his flow);
cnp_result = epochRCPBi narySear ch(&Epoch, &parent, 0);
if (cnp_result & CVP_M{
pa_addr = (U16)(cnp_result & CMP_ADDR MASK);
vi r_addr = PAt oA(&Epoch, pa_addr);
child = L4Creat eChil d(&pEpoch, & his _flow, vir_addr);
cnp_result = epochRCPBi narySear ch(&Epoch, &child, 0);
if (cnp_result & CMP_M{ //child natches
printf(“\nThere was a child MATCH at virtual address
OxX%%”, vir_addr;

}
el se{
printf(“\nThere was no child MATCH.");
}
}
el se {
printf(“\nThere was no parent MATCH.");
}
}
el se{
printf(“\nERROR : Unable to initialize RCP chain.”);
}

Rev. 1

3-73

Epoch API Software Users Manual Lower-Level API

epochRCPBinarySearch

Syntax

static U32 epochRCPBi narySear ch(epoch_t *pEpoch,

Description

rcp_t *pWwrd,
Ul6 mask);

This function performs a RCP binary search for the input rcp_t through the RCP mask register specified by the input

mask.

Input Parameters

*pEpoch

*nWord

mask

A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

A pointer to the 64-bit RCP entry. The parameter should be a pointer to a variable of the
structure rcp_t. The variable has two members:

rcp_t.hi = Bits 63:32 of the RCP entry
rcp_t.lo = Bits 31:0 of the RCP entry

The mask register number that is to be used if the search is to be done using a mask. If no
mask register is to be used, this input should be 0.

Return Value
The contents of the Epoch CRI register 0x134 is returned. This shows relevant information regarding the search for any
entries. The information is as follows:

Bits Explanation

[12:0] This is the Index of any matching entries found during the search. It uses the standard Epoch format and
shows physical address within a specific RCP. Only valid if bit 15 =1 or bit 16 = 1.

[14:13] Page address of any matching entries found during the search. This corresponds to the Page Address values
set during initialization. The usual format is:
00 = First device
01 = Second device
10 = Third device
11 = Fourth device.

15 Match Flag. If this bit = 1, there was a MATCH and therefore an entry matching the input was found.

16 Multiple Match Flag. If this bit = 1, there was a Multiple MATCH and therefore more than one matching
entry was found. Bits [14:0] specify the highest priority entry matched.

Pre-requisites

None.

3-74

Rev. 1

Lower-Level API

Epoch API Software Users Manual

Usage
#define CVP_

M (0x1L<<15)

#defi ne CVP_ADDR_MASK Ox7FFFL

rcp_t parent

, child;

mcroflowt this_flow

U32 cnp_resu
Ul6 vir_addr
epoch_t pEpo
int i_stat;

/lassunming b
this_flow sa
this flow da
this flow sp
this_flow dp

this flowif

i _stat = epo
/lassum ng t
if(i_stat &
par ent
cnp_re

lt;
, pa_addr;
ch;

| ock pointers have been initialized.
Oxbbccaa04;

Oxbbccaal5;

23;

1000;

c = 3;

chRCPI ni t (&Epoch);
he L4 Table has entries

I NIT_OK) {
= L4Creat ePar ent (&pEpoch, &t his_flow);
sult = epochRCPBi narySear ch(&Epoch, &parent, 0);

if (cnp_result & CVP_M{

}
el se {
}
}
el se{
printf
}

Rev. 1

pa_addr = (U16)(cnp_result & CMP_ADDR MASK);
vi r_addr = PAt oA(&Epoch, pa_addr);
child = L4Creat eChil d(&pEpoch, & his _flow, vir_addr);
cnp_result = epochRCPBi narySear ch(&Epoch, &child, 0);
if (cnp_result & CMP_M{ //child nmatches
printf(“\nThere was a child MATCH at virtual address
OxX%”, vir_addr;
}
el se{
printf(“\nThere was no child MATCH.");

}

printf(“\nThere was no parent MATCH.");

(“\nERROR : Unable to initialize RCP chain.”);

3-75

Epoch API Software Users Manual Lower-Level API

epochRCPDeletebyAddr

Syntax

rcpResul t Status_t epochRCPDel et eByAddr (epoch_t *pEpoch,
Ul6 addr);

Description

This function deletes the 64-bit RCP entry specified by the input contiguous virtual address.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The RCP contiguous virtual address of the entry that is to be deleted from the RCP
database.
Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure. The RCP physical address of the entry deleted is returned in the addr member.

Pre-requisites

The chipSelectLkup[n] members of the blockSort_t structure must be initialized to the correct values. epochRCPInit()
automatically does this if it is executed prior to using this function.

Usage

Ul6 vir_addr = 5000;

epoch_t pEpoch;

rcpResul tStatus_t r_stat;

[/ assuming the RCPs and bl ock pointers have been initialized

rstat = epochRCPDel et eByAddr (&Epoch, vir_addr);
printf(“\nThe entry at Ox% has been deleted.”, rstat.addr);

3-76 Rev. 1

Lower-Level API Epoch API Software Users Manual

epochRCPInitAddrTrans

Syntax

static int epochRCPInitAddrTrans(epoch_t *pEpoch,
Ul6 nunRcp);

Description

This function initializes the blockSort_t members pageAddr[n], pageAddrLkup[n], and chipSelectLkup[n] that are used
by the functions epochRCPDeleteByAddr, AtoCS, AtoPA, and PAtoA. It uses the pageSize information found in the
blockSort structure to determine page address boundaries and chip select values, etc.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

numRcp The number of RCPs that are chained together to form one contiguous virtual address
space.

Return Value
The number of RCP entries found in the contiguous virtual address space.

Pre-requisites
The pageSize[n] members of the blockSort _t structure must be initialized with the size of each RCP in the RCP chain.

Rev. 1 3-77

Epoch API Software Users Manual Lower-Level API

Usage

#define CS_NULL OxFL<<13
#defi ne DEC_AR 0x25L

#defi ne ALL_RCPS 0x00000000L
#define AV_H GH ((0x1L<<18))
#define AV_LOW (0x0L<<18)
#def i ne RCPW Dat aReg 0x120
#defi ne RCPW OpReg 0x124
#defi ne RCPRdDat aReg 0x11C

Ul6 numrcp, address_space;
U32 chip_select = CS _NULL;
U32 i, ThisRCPSize ;

U32 rcp_ar[4];

epoch_t pEpoch;

[/l assunmi ng bl ock pointers have been initialized.

numrcp = 4;
/I broadcast decrement address to determ ne RCP sizes
epochM sRegW i t e(&pEpoch, RCPW Dat aReg, DEC AR);
epochM sRegW it e(&pEpoch, RCPW OpReg, (ALL_RCPS | AV_H GH));
for (i=0; i< numrcp; i++){
chip_select = (CS_NULL) ™ (1L << (i+13));
//read address register to read out RCP size
epochM sRegW i t e(&pEpoch, RCPW Dat aReg, RD_AR | (1L<<13));
epochM sRegW it e(&pEpoch, RCPW OpReg, (chip_select | AV H GH));
epochM sRegW it e(&pEpoch, RCPRdOpReg, (chip_select | AV_LOWN));
Thi sRCPSi ze = epochM.sRegRead(&pEpoch, RCPRdDat aReq) ;
i f(Thi sRCPSi ze == OxFFFFFFFFL){//no RCP found
pEpoch. pageSi ze[i] = OL;
}
el se{
pEpoch. pageSi ze[i] = Thi sRCPSi ze + 1;
}
}

/[linitialize address conversion

address_space = epochRCPI ni t Addr Tr ans(&Epoch, numrcp);

printf(“\'nThe Address translation info has been initialized.”);
printf(“\nThe total address space found is %l entries”, address_space);

3-78 Rev. 1

Lower-Level API Epoch API Software Users Manual

epochRCPMoveEntry

Syntax
rcpResul t Status_t epochRCPMoveEntry(epoch_t *pEpoch,
Ul6 scr Addr,
Ul6 dst Addr);
Description
This function moves the 64-bit RCP entry specified by the input contiguous virtual address "scrAddr" to the input
contiguous virtual address "dstAddr".

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

scrAddr The RCP contiguous virtual address of the entry that is to be moved.

dstAddr The RCP contiguous virtual address of the location where the entry specified by "fraddr" is
to be moved to.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure. The RCP physical address of the where the entry was moved from is returned in the addr
member.

Pre-requisites

The chipSelectLkup[n] members of the blockSort_t structure must be initialized to the correct values. epochRCPInit()
automatically does this if it is executed prior to using this function.

Usage

Ul6 from addr = 5000, to_addr = 5005;
epoch_t pEpoch;

/1 assuning the RCPs and bl ock pointers have been initialized

epochRCPMoveEnt ry(&pEpoch, from addr, to_addr);

printf(“\nThe entry at Ox% has been noved to Ox%.",
fromaddr, to_addr);

Rev. 1 3-79

Epoch API Software Users Manual Lower-Level API

epochRCPNextFree

Syntax

static Ul6 epochRCPNext Free(epoch_t *pEpoch);
Description

This function returns the contiguous virtual address of the next free location in the RCP database.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

Return Value

The RCP contiguous virtual address of the next free location in the RCP database.

Pre-requisites

The pageAddrLkup[n] members of the blockSort t structure must be initialized to the correct values. epochRCPInit()
automatically does this if it is executed prior to using this function.

Usage

Ul6 nf addr;
epoch_t pEpoch;

[/ assuming the RCPs and bl ock pointers have been initialized

nf _addr = epochRCPNext Free(&Epoch);
printf(“\nThe next free location is at Ox%”, nf_addr);

3-80 Rev. 1

Lower-Level API Epoch API Software Users Manual

epochRCPReadEnNtry

Syntax

rcp_t epochRCPReadEntry(epoch_t *pEpoch,
Ul6 addr);

Description

This function returns the 64-bit RCP entry specified by the input contiguous virtual address.

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The RCP contiguous virtual address of the entry that is to be read from the RCP database.

Return Value
A variable in the form of the structure rcp_t is returned. This is the RCP entry that is read from the input address.

* rcp_t.hi = Bits 63:32 of the RCP entry
* rcp_t.lo = Bits 31:0 of the RCP entry
Pre-requisites

The chipSelectLkup[n] members of the blockSort_t structure must be initialized to the correct values. epochRCPInit()
automatically does this if it is executed prior to using this function.

Usage

rcp_t this_word;
Ul6 addr = 5000;
epoch_t pEpoch;

/lassunm ng the RCPs and bl ock pointers have been initialized
epochRCPReadEnt r y(&Epoch, addr);

printf(“\nThe RCP entry at Ox% is:”, addr);

printf(“\n[63:32] : Ox%Wx [31:0] : Ox%x”, this_word.hi, this_word.|o0);

Rev. 1 3-81

Epoch API Software Users Manual Lower-Level API

epochRCPSRAMRead

Syntax
Ul6 epochRCPSRAMRead(epoch_t *pEpoch,
Ul6 addr);
Description
This function returns the 16-bit associated data SRAM entry specified by the input address. This function is used when the
user wishes to access the lower 32K portion of the associated data SRAM.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The contiguous virtual address of the entry that is to be read from the associated data
SRAM database. The input can be any valid value from 0x0000 through OxFFFF.

Return Value
The 16-bit value found in the associated data SRAM at the location specified by the input parameter addr.

Pre-requisites

None.
Usage

rcp_t this_word;
Ul6 addr = 5000;
Ul6 SRAM entry;
epoch_t pEpoch;

/lassuni ng the RCPs and bl ock pointers have been initialized

this.word = epochRCPReadEnt ry(&Epoch, addr);

printf(“\nThe RCP entry at Ox% is:”, addr);

printf(“\n[63:32] : Ox%Wx [31:0] : Ox% x”, this_word.hi, this_word.|o0);
SRAM entry = epochRCPSRAMRead(&pEpoch, addr);

printf(“\nThe SRAM entry at Ox% is Ox%:”, addr, SRAM entry);

3-82 Rev. 1

Lower-Level API Epoch API Software Users Manual

epochRCPSRAMReadDir

Syntax

Ul6 epochRCPSRAMReadDi r (epoch_t *pEpoch,
U32 addr);

Description

This function returns the 16-bit associated data SRAM entry specified by the input address. This function is used when the
user wishes to access the upper 64K portion of the associated data SRAM.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The contiguous virtual address of the entry that is to be read from the associated data
SRAM database. The input can be any valid value from 0x10000 through Ox1FFFF.

Return Value

The 16-bit value found in the associated data SRAM at the location specified by the input parameter addr.

Pre-requisites

None.

Usage

#defi ne DEF_F_START 0x10000

Ule f Il owhandl e;
U32 addr = 0x0234;
epoch_t pEpoch;

/11 ook up default flow handle

fl owhandl e = epochRCPSRAMReadDi r (& Epoch, (DEF_F_START | addr));

printf(“\nThe flow handle for UDP / TCP port number OX% is :
Ox%”, addr, fl owhandle);

Rev. 1 3-83

Epoch API Software Users Manual Lower-Level API

epochRCPSRAMWrite

Syntax
rcpResul t Status_t epochRCPSRAMN i t e(epoch_t *pEpoch,
Ul6 addr,
Ul6 data);
Description

This function writes the 16-bit associated data SRAM entry specified by the input "data" in the location specified by
"addr". This function is used when the user wishes to write an entry into the lower 64K portion of the associated data
SRAM.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The contiguous virtual address of the entry that is to be written into the associated data
SRAM database. The input can be any valid value from 0x0000 through OxFFFF.

data The 16-bit associated data entry that is to be written into the associated data SRAM
database.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure. The SRAM address of the where the entry was written is returned in the "addr" member.
The data that was written is returned in the "data" member. If the data was successfully written into the location specified,
RCP_OK is returned in the "status" member. If the function was unsuccessful, RCP_FAIL is returned.

Pre-requisites

None.

Usage

Ul6 addr = 0x0234;

Ul6 SRAM entry 0x1234;
epoch_t pEpoch;
rcpResul t Status_t r_stat;

/lassum ng the RCPs and bl ock pointers have been initialized
r_stat = epochRCPSRAMN it e(&pEpoch, addr, SRAM entry);
if(r_stat.status == RCP_OK){

printf(“\nThe SRAM entry was witten to address : Ox%”, addr);
}
el se{

printf(“\nERROR Unable to wite entry to SRAM);

3-84 Rev. 1

Lower-Level API Epoch API Software Users Manual

epochRCPSRAMWriteDir

Syntax
rcpResul t Status_t epochRCPSRAMN i teDir(epoch_t *pEpoch,
U32 addr);
Ul6 dat a,
Description

This function writes the 16-bit associated data SRAM entry specified by the input "data" in the location specified by
"addr". This function is used when the user wishes to write an entry into the upper 64K portion of the associated data
SRAM.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The contiguous virtual address of the entry that is to be written into the associated data
SRAM database. The input can be any valid value from 0x10000 through Ox1FFFF.

data The 16-bit associated data entry that is to be written into the assoc. data SRAM database.

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure. The SRAM address of the where the entry was written is returned in the addr member.
The data that was written is returned in the data member. If the data was successfully written into the location specified,
RCP_OK is returned in the status member. If the function was unsuccessful, RCP_FAIL is returned.

Pre-requisites
None.

Usage

#defi ne DEF_F_START 0x10000
Ul6 fl owhandl e = 0x0007;
U32 addr = 0x0234;
epoch_t pEpoch;
rcpResul t Status_t r_stat;
[/ assuming the RCPs and bl ock pointers have been initialized
r_stat = epochRCPSRAMN it eDi r (&pEpoch, DEF_F_START | addr, flowhandle);
if(r_stat.status == RCP_OK){
printf(“\nThe SRAM entry was witten to address : Ox% x”,
DEF_F_START | addr);
}
el se{
printf(“\nERROR Unable to wite entry to SRAM);

}

Rev. 1 3-85

Epoch API Software Users Manual Lower-Level API

epochRCPWriteEntry

Syntax
rcpResul t Status_t epochRCPWiteEntry(epoch_t *pEpoch,
Ul6 addr,
rcp *pEntry);
Description

This function writes the 64-bit RCP entry pointed to by the input "*pEntry" into the location specified by the input
contiguous virtual address "addr".

Input Parameters

*pEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

addr The RCP contiguous virtual address of the entry that is to be written into the RCP database.

*pEntry A pointer to the 64-bit RCP entry that is to be written. The parameter should be a pointer to
a variable of the structure rcp_t. The variable has two members:

rcp_t.hi = Bits 63:32 of the RCP entry
rcp_t.lo = Bits 31:0 of the RCP entry

Return Value

A variable in the form of the structure rcpResultStatus_t is returned. This indicates any relevant information regarding
the function’s success or failure. The RCP contiguous virtual address of the where the entry was written is returned in the
addr member. If the data was successfully written into the location specified, RCP_OK is returned in the status member.
If the function was unsuccessful, RCP_FAIL is returned.

Pre-requisites
None.

Usage

rcp_t this_word;
Ul6 addr = 5000;
epoch_t *pEpoch;
rcpResul t Status_t r_stat;

/lassunm ng the RCPs and bl ock pointers have been initialized
this word.lo = 0x12345678;
t hi s_wor d. hi 0x87654321;
r_stat = epochRCPWIiteEntry(&pEpoch, addr, & his_ word);
if(r_stat.status == RCP_OK){
printf(“\nThe RCP entry was witten to address : Ox%”, addr);

}

el se{
printf(“\nERROR. Unable to wite entry to RCP");

3-86 Rev. 1

Lower-Level API

Epoch API Software Users Manual

epochRCPWrite32
Syntax

int epochRCPW ite32(epoch_t *pEpoch,

Description

U32 dat a,
U32 opCode);

This function writes a 32-bit data word to the RCP chain along with an instruction specified by the input op-code. The
op-code instructs the RCP chain to act accordingly when dealing with the 32-bit word. The op-code is written to the
Epoch RCP op-code register 0x124 and is described in the Epoch data sheet. The MUAC RCP Data Sheet contains a list
and description of all the possible op-codes.

Input Parameters

*pEpoch

data

opCode

Return Value

The function returns 0.

Pre-requisites
None.

Rev. 1

A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

The 32-bit data word that is to be written to the RCP database. This data is dealt with
according to the instruction specified by the op-code.

The op-code that is to be written to the RCP database. The op-code is the value that will be
written into Epoch register 0x124. This op-code causes the RCP chain to write the 32-bit
data word accordingly.

3-87

Epoch API Software Users Manual

Lower-Level API

Usage

Ul6 cs_addr, vir_addr = 5000;
U32 RCP_opcode;
epoch_t *pEpoch;

int i_

st at ;

/1 assum ng bl ock pointers have been initialized.

i _stat

= epochRCPI ni t (&pEpoch);

if(i_stat == INIT_OK){

el se{

3-88

printf(“\nThe RCP chain was initialized.”);

printf(“\nAdding an entry to RCP at virtual address: Ox%",
vir_addr);

cs_addr = At oCS(&pEpoch, vir_addr);

RCP_ocode = 0x80000 | cs_addr; // /av low, dsc low, /vb hi

[Iwite low 32 bits to RCP

epochRCPW it e32(& Epoch, 0x12345678, RCP_opcode);

RCP_ocode = 0x20000 | cs_addr; // /av low, dsc hi, /vb | ow

/Iwite high 32 bits to RCP

epochRCPW it e32(& Epoch, 0x87654321, RCP_opcode);

printf(“\nERROR : Unable to initialize RCP chain.”);

Rev. 1

Debug API

Epoch API| Software Users Manual

DEBUG API

The functions in this section are responsible for debug operations on the Routing Table entries. This involves dumping all
valid entries from the Routing Table into a file, and testing for leaking packet pointers. The files in which they may be
found and the page in this manual where they can be located is shown for easy reference. Low- and high-level functions
are identified by (H) = high-level, (L) = low-level.

Table 3-8: Debug API Functions

API Function Name

Purpose

File Name

Page

epochCheckLeakedPacketPointers
(H)

Checks that all Packet pointers are still linked properly.

epochLib.c

3-90

Rev. 1

3-89

Epoch API Software Users Manual Debug API

epochCheckLeakedPacketPointers

Syntax

i nt epochCheckLeakedPacket Poi nt er s(epoch_t *pEpoch);

Description

This function reads the next free packet pointer and uses this to check that all the packet pointers are linked together

properly. This function also checks that all the queue pointers are linked together properly.

Input Parameters

*nEpoch A pointer to the epoch_t structure. This structure must contain information about the
Epoch and the Routing Table.

Return Value

If the packet pointers and queue pointers are okay the function returns 0, otherwise —1 is returned.
Pre-requisites

None.

Usage

epoch_t pEpoch;

/lassunmi ng the RCPs and bl ock pointers have been initialized
i f (epochCheckLeakedPacket Poi nt ers(&Epoch) == 0){
printf(“\nThe packet pointers are okay.”);

}
el se{
printf(“\nThe packet pointers have a leak.”);

}

3-90 Rev. 1

IndeXx

A

address
contiguous virtual 1-2
contiguous virtual block formation 2-2
IP multicast block 2-6
IP unicast conditions 3-4
IPv4 CIDR block 2-6
IPX block 2-6
layer 3 and layer 4 port bitmap data 2-4
layer 4 microflow block 2-6
non-8K devices 2-3
page address 1-2
physical space 1-2
RCP address space 1-2
RCP database restriction 2-5
RCP physical address translation 2-2
virtual 1-2
applications 1-1
AtoCS 3-68
AtoPA 3-70

B
BAC
epochBACReadTableEntry 3-55
epochBACWriteTableEntry 3-56
table flow handles 2-5
behavior aggregate classification, see BAC
blockPtr_t 2-10
blocks
IP multicast 2-6
IPv4 CIDR 2-6
IPX 2-6
layer 4 microflow 2-6
blockSort_t 2-7

C
child entries 2-11
conventions 1-3

D

database
blockSort_t 2-7
child entries 2-11
initialization 3-57
IP multicast table 3-20
IP unicast table 3-4
IPX table 3-30
layer 4 microflow 2-12
layer 4 table 3-38
memory space device limits 2-3

MIAN data 2-5
next free location address 3-80
parent entries 2-11
port bitmap data 2-4
RCP 2-2
RCP block restrictions 2-5
RCP entry types 2-5
read entries 3-72
routing table 2-4
write entries 3-72
debug API 3-89
DecodeMicroflow 3-39

E

epoch.h 1-1

epoch_t 2-15
epochBACReadTableEntry 3-55
epochBACWriteTableEntry 3-56
epochChecklLeakedPacketPointers 3-90
epochIPMAddEntry 3-21
epochIPMCreateEntry 3-23
epoch]PMRemoveEntry 3-24
epochIPMSearch 3-26
epochIPMSearchMian 3-28
epoch]PUAddEntry 3-6
epochIPUCreateEntry 3-8
epoch]PUDumpBlockPointers 3-9
epoch]PURemoveEntry 3-10
epochIPUSearch 3-12
epochIPXAddEntry 3-31
epochIPXCreateEntry 3-33
epochIPXRemoveEntry 3-34
epochIPXSearch 3-36
epochL4FlowAddEntry 3-48
epochL4FlowAge 3-50
epochL4FlowRemoveEntry 3-51
epochL4FlowSearch 3-53
epochLib.c 1-1
epochMIsRegRead 1-2
epochMIsRegWrite 1-2
epochPacketPtrClear 3-66
epochPacketPtrInit 3-65
epochPKMInit 3-58
epochQueuePtrMemlnit 3-64
epochRCPBinarySearch 3-74
epochRCPDeletebyAddr 3-76
epochRCPInit 3-60
epochRCPInitAddrTrans 3-77
epochRCPMoveEntry 3-79
epochRCPNextFree 3-80

Rev. 1

Index-1

Epoch API Software Users Manual

Index

epochRCPReadEntry 3-81
epochRCPSRAMRead 3-82
epochRCPSRAMReadDir 3-83
epochRCPSRAMWrite 3-84
epochRCPSRAMWriteDir 3-85
epochRCPWrite32 3-87
epochRCPWriteEntry 3-86
epochSDRAMInit 3-62
epochTable.c 1-1

ExtractPind 3-41

F

FindMask 3-5

flowBlock t2-11

function calls 1-2

function files 1-1

functions
AtoCS 3-68
AtoPA 3-70
DecodeMicroflow 3-39
epochBACReadTableEntry 3-55
epochBACWriteTableEntry 3-56
epochCheckLeakedPacketPointers 3-90
epoch]PMAddEntry 3-21
epochIPMCreateEntry 3-23
epochIPMRemoveEntry 3-24
epochIPMSearch 3-26
epochIPMSearchMian 3-28
epochIPUAddEntry 3-6
epochIPUCreateEntry 3-8
epoch]PUDumpBlockPointers 3-9
epochIPURemoveEntry 3-10
epochIPUSearch 3-12
epochIPXAddEntry 3-31
epochIPXCreateEntry 3-33
epochIPXRemoveEntry 3-34
epochIPXSearch 3-36
epochL4FlowAddEntry 3-48
epochL4FlowAge 3-50
epochL4FlowRemoveEntry 3-51
epochL4FlowSearch 3-53
epochPacketPtrClear 3-66
epochPacketPtrInit 3-65
epochPKMInit 3-58
epochQueuePtrMemInit 3-64
epochRCPBinarySearch 3-74
epochRCPDeletebyAddr 3-76
epochRCPInit 3-60
epochRCPInitAddrTrans 3-77
epochRCPMoveEntry 3-79
epochRCPNextFree 3-80
epochRCPReadEntry 3-81
epochRCPSRAMRead 3-82
epochRCPSRAMReadDir 3-83

epochRCPSRAMWrite 3-84
epochRCPSRAMWriteDir 3-85
epochRCPWrite32 3-87
epochRCPWriteEntry 3-86
epochSDRAMInit 3-62
ExtractPind 3-41

files 1-1

FindMask 3-5
L4CreateChild 3-42
L4CreateParent 3-44
L4FindSibling 3-46
overview 1-1

PAtoA 3-72
SetBackPressure 3-14
SortDown 3-16

SortUp 3-18

I

initialization
API functions 3-57
epoch_t member 2-6
init_ok 2-9
IP unicast conditions 3-4
packet and queue pointers 3-58
packet pointers 3-57
RCPs 3-60
SDRAM 3-62

initialization API 3-57

IP multicast API 3-20

IP unicast API 3-4

IPX API 3-30

L
L4CreateChild 3-42
L4CreateParent 3-44
L4FindSibling 3-46
layer 3 port bitmap data 2-4
layer 4

API 3-38

port bitmap data 2-4
lower-level API 3-67
low-level functions

API 3-67

overview 1-2

M

MIAN
database data 2-5
epochIPMSearchMian 3-28
IP multicast values 2-5

microflow_t 2-12

@)
op-code
epochRCPWrite32 3-87

Index-2

Rev. 1

Index

Epoch API Software Users Manual

page address element array 2-9
RCP chip select storage 2-8
RCP function file 1-1

P

packets
pointer initialization 3-58
pointer link de-bug 3-90
parent entries 2-11
PAtoA 3-72
pointers
check leaked packet pointers 3-90
IPv4 CIDR pointers 2-10
queue pointers 3-90

R
RCP
address space 1-2
blocks 2-5
database 2-2
database restriction 2-5
device size tracking 2-3
entries 2-5
Epoch routing table 2-4
epoch_t 2-15
epochRCPInit 1-2
memory space 2-3
page and virtual address example 2-2
physical address translation 2-2
rep_t 2-13
rcpResultStatus_t 2-14
rcp_t 2-13
rcpResultStatus_t 2-14
registers

function calls 1-2
lower-level space access 1-2
mask search 3-74
mask values 3-60
op-code value 3-87
sync pulse 3-62
routing co-processor, see RCP
routing table
BAC table flow handles 2-5
contiguous virtual block 2-2
default flow table flow handles 2-5
device size tracking 2-3
epoch_t member 2-6
illustration 2-4
IP multicast MIAN values 2-5
low-level operations 3-67
overview 2-4
physical address translation 2-2
port bitmap data 2-4
RCP blocks 2-5

RCP database 2-2
RCP entries 2-5

S

SDRAM
epochSDRAMInit 3-62
initialization 3-62

SetBackPressure 3-14

SortDown 3-16

sorting
algorithm 3-4
blockPtr_t 2-10
epoch]PURemoveEntry 3-10
SetBackPressure 3-14
SortDown 3-16
SortUp 3-18

SortUp 3-18

SRAM
BAC table flow handles 2-5
bitmap data 2-4
Default Flow Table Flow Handles 2-5
Epoch routing table 2-4
epochRCPSRAMRead 3-82
epochRCPSRAMReadDir 3-83
epochRCPSRAMWrite 3-84
epochRCPSRAMWriteDir 3-85
IP Multicast MIAN values 2-5
RCP database 2-2

structures
blockPtr_t 2-10
blockSort_t 2-7
epoch_t 2-15
flowBlock_t 2-11
microflow_t 2-12
rep_t 2-13
rcpResultStatus_t 2-14

Rev. 1

Index-3

Epoch API Software Users Manual Index

Index-4 Rev. 1

MUSIC Semiconductors reserves the right to make changes to its products and specifications at any time in order to improve on performance, manufacturability or reliability.
Information furnished by MUSIC is believed to be accurate, but no responsibility is assumed by MUSIC Semiconductors for the use of said information, nor for any infringements of
patents or of other third-party rights which may result from said use. No license is granted by implication or otherwise under any patent or patent rights of any MUSIC company.

© Copyright 2000, MUSIC Semiconductors

Worldwide Headquarters
MUSIC Semiconductors
2290 N. First St., Suite 201
San Jose, CA 95131

SEMICONDUCTORS
USA

Tel: 408 232-9060

Fax: 408 232-9201
http://www.music-ic.com USA Only: 800 933-1550 Tech Support
email: info@music-ic.com 888 226-6874 Product Info

Asian Headquarters

MUSIC Semiconductors

Special Export Processing Zone
Carmelray Industrial Park
Canlubang, Calamba, Laguna
Philippines

Tel: +63 49 549-1480

Fax: +63 49 549-1024

Sales Tel/Fax: +632 723-6215

European Headquarters
MUSIC Semiconductors
P. O. Box 184

6470 ED Eygelshoven
The Netherlands

Tel: +31 43 455-2675
Fax: +31 43 455-1573

	Epoch API Software Users Manual
	Contents
	Overview
	Introduction
	Applications
	Features and Benefits

	API Functions
	RCP Address Space
	Physical Address
	Page Address
	Virtual Address or Contiguous Virtual Address
	epochRCPInit
	Low-Level Functions
	Function Calls

	Document Structure and Conventions
	Structure
	Conventions

	Structures
	Introduction
	RCP Database
	RCP Physical Address Translation
	Contiguous Virtual Block Formation
	Non-8K Devices
	RCP Memory Space
	Device Size Tracking

	Epoch Routing Table
	Layer 3 and Layer 4 Port Bitmap Data
	BAC Table Flow Handles
	IP Multicast MIAN Values
	Default Flow Table Flow Handles
	RCP Entries
	RCP Blocks
	epoch_t Member Initialization
	Layer 4 Microflow Block
	IPv4 CIDR Block
	IP Multicast Block
	IPX Block

	Structures
	blockSort_t
	Purpose
	Members

	blockPtr_t
	Purpose
	Members

	flowBlock_t
	Purpose
	Members

	microflow_t
	Purpose
	Members

	rcp_t
	Purpose
	Members

	rcpResultStatus_t
	Purpose
	Members

	epoch_t
	Purpose
	Members

	Epoch API
	Introduction
	IP Unicast API
	FindMask
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPUAddEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPUCreateEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPUDumpBlockPointers
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPURemoveEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPUSearch
	Syntax
	Description
	Input Parameters
	Return Value:
	Pre-requisites
	Usage

	SetBackPressure
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	SortDown
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	SortUp
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	IP Multicast API
	epochIPMAddEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPMCreateEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPMRemoveEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPMSearch
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPMSearchMian
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	IPX API
	epochIPXAddEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPXCreate Entry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPXRemoveEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochIPXSearch
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	Layer 4 API
	DecodeMicroflow
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	ExtractPind
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	L4CreateChild
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	L4CreateParent
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	L4FindSibling
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochL4FlowAddEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochL4FlowAge
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochL4FlowRemoveEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochL4FlowSearch
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochBACReadTableEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochBACWriteTableEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	Initialization API
	epochPKMInit
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPInit
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochSDRAMInit
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochQueuePtrMemInit
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochPacketPtrInit
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochPacketPtrClear
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	Lower-Level API
	AtoCS
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	AtoPA
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	PAtoA
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPBinarySearch
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPDeletebyAddr
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPInitAddrTrans
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPMoveEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPNextFree
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPReadEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPSRAMRead
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPSRAMReadDir
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPSRAMWrite
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPSRAMWriteDir
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPWriteEntry
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	epochRCPWrite32
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	Debug API
	epochCheckLeakedPacketPointers
	Syntax
	Description
	Input Parameters
	Return Value
	Pre-requisites
	Usage

	Index

