SFF documents are available at http://www.snia.org/sff/specifications.

INF-TA-1003

Information Document for

400 Gb/s (16 x 25 Gb/s) Pluggable Transceiver

Rev 1.1 August 3, 2018

SECRETARIAT: SFF TA TWG

The content contained in this information document was created by an external group. The content was provided to the SFF TA TWG so that it can continue to be publicly available. The content has not been changed by the SFF TA TWG.

The description of a connector in this specification does not assure that the specific component is available from connector suppliers. If such a connector is supplied, it must comply with the specification to achieve interoperability between suppliers.

ABSTRACT: This specification defines the characteristics of the pluggable 16 x 25 Gb/s CDFP module/ direct attach cable plug and connector.

POINTS OF CONTACT:

Jay Neer Chairman SFF TA TWG Technical Editor Email: <u>SFF-Chair@snia.org</u> Molex LLC 2222 Wellington Court Lisle, IL 60532 Ph: 561-251-8016 Email: jay_dot_neer_at_molex_dot_com

	CDFP MSA					
For						
400 Gb	o/s (16 X 25 Gb/s) PLUGG.	ABLE TRANSCEIVER				
		0015				
	Rev 3.0 March 20,	2015				
Abstract: This specification CDFP Module/direct attach cal		stics of the pluggable 16 x 25 Gb/				
This document provides a community integrators, and suppliers of		ystems manufacturers, system				
POINTS OF CONTACT:						
Tom Palkert	Nathan Tracy Chairman	Scott Kipp				
Technical Editor Molex	TE Connectivity	Secretary Brocade				
2222 Wellington Court	3101 Fulling Mill Rd	130 Holger Way				
Lisle, IL 60532-1682	Middletown, PA 17057	San Jose, CA 95134				
Ph: 952-200-8542	Ph: 717-986-7546	Ph: 408-333-4000				
tpalkert at molex.com	ntracy at te.com	skipp at brocade.com				
Limitation on use of Informat						
		ANTIES whatsoever and therefore th				
		y warranty of merchantability,				
		or any other warranty otherwise e. The authors further disclaim a				
		any proprietary rights, relating t				
		se, express or implied, by estoppe				
otherwise, to any intellectua						
Permissions:						
		ibute this document. All other ri				
		d not be construed as the granting op products that are based on the				
		cument and the designs disclosed				
accumente. mig and all le LL	5					
within, except for the rights	s expressly mentioned at	Jove, are reserved by the respect t				
within, except for the rights owners of those IP rights.	s expressly mentioned at	bove, are reserved by the respecti				

1			
2 3	EXPRESS	ION OF SUPPORT BY MANUFACTURI	≤RS
4	The following are Promote	er member companies of the CI	TED MGA
5	The following are flomote	er mender companies of the cr	DII MOA.
6			
7	Avago Technologies		
8	Brocade Communications Sy	stems. Inc.	
9	IBM		
10	JDS Uniphase Corporation		
11	Juniper Networks		
12	Molex Incorporated		
13	TE Connectivity		
14			
15			
16			
17	The following are contrik	outing member companies of t	he CDFP MSA.
18			
19	FCI		
20	Finisar		
21	Huawei		
22	Inphi Ixia		
23 24	Mellanox		
24	Merranox MoSys		
26	Nextron		
27	Oclaro, Inc.		
28	Semtech		
29	Sumitomo Electric		
30	Xilinx		
31	Yamaichi		
32			
33			
34	Change History:		
35			1
	Revision	Date	Changes
	1 0	Manah 0 2014	Education and

Revision	Date	Changes
1.0	March 8 2014	First public release
2.0	September 18, 2014	2nd public release
3.0	March 20, 2015	Added Style 3

36 37

38 Foreword

39

40 The development work on this specification was done by the CDFP MSA, an industry group. 41 The membership of the committee since its formation in May 2013 has included a mix of 42 companies which are leaders across the industry.

43 44

45

46

1	TABLE OF CONTENTS	
2		
3	1 Scope	
4	1.1 Description of Clauses	
5	2 References	
6	2.1 Industry Documents	
7	2.2 SFF Specifications	
8	2.3 Sources	
9	3 Introduction	
10	4 Electrical Specification	
11	4.1 Module Pin Definitions	
12	4.1.1 Low Speed Electrical Hardware Pins	
13	4.1.1.1Rst1L and Rst2L	
14	4.1.2 Low Speed Electrical Specification	
15	4.1.3 High Speed Electrical Specification	
16	4.1.3.1 Rx(n) (p/n)	
17	4.1.3.2 Tx(n)(p/n)	
18	4.2 CDFP Power Requirements	
19	4.2.1 CDFP Power Classes and Maximum Power Consumption	
20	4.2.2 CDFP Module Power Supply Requirements	
21	4.2.3 CDFP Host Board Power Supply Noise Output	. 30
22	4.2.4 CDFP Module Power Supply Noise Output	. 30
23	4.2.5 CDFP Module Power Supply Noise Tolerance	
24	4.3 ESD	
25	5 Mechanical and Board Definition	
26	5.1 Introduction	
27	5.2 CDFP Datum's and Component Alignment	
28	5.3 CDFP Module Mechanical Package Dimensions	
29	5.4 Host PCB Layout	
30	5.4.1 Insertion, Extraction and Retention Forces for CDFP Modules	
31	5.5 Bezel for Systems Using CDFP Modules	
32	5.5.1 Cage Assembly	
33	5.6 CDFP Host Electrical Connector and Cage	
34	5.7 CDFP Host Electrical Connector	
35	5.8 Individual CDFP Cage Assembly Versions	
36	5.8.1 CDFP Heat Sink Clip Dimensions	
37	5.8.2 Light Pipes	
38	5.9 Thermal interface	
39	5.10 Dust / EMI Cover	
40	5.11 Optical Interface	
41	6 Environmental and Thermal	
42	6.1 Thermal Requirements	
43	7 CDFP Style 1/Style 2 Management Interface	
44	7.1 Introduction	
45	7.2 Timing Specification	
46	7.2.1 Introduction	
47	7.2.2 Management Interface Timing Specification	
48	7.2.3 Serial Interface Protocol	
49	7.2.3.1 Management Timing Parameters	
50	7.3 Memory Interaction Specifications	
51	7.3.1 Timing for Soft Control and Status Functions	
52	7.4 Device Addressing and Operation	
53	7.5 Read/Write Functionality	
54	7.5.1 CDFP Memory Address Counter (Read AND Write Operations)	
55	7.5.2 Read Operations	
56	7.5.2.1 Current Address Read	
57	7.5.2.2 Random Read	
58	7.5.2.3 Sequential Read	
59	7.5.2.4 Sequential Read from Random Start Address	
60	7.5.3 Write Operations	. 80

1	7.5.3.1 BYTE Write	
2	7.5.3.2 Sequential Write	
3	7.5.3.3 Acknowledge Polling	
4	8 CDFP MSA Management Interface Memory Map-Styles 1 and 2	
5	8.1 Overview	
6	8.2 Management Interface	84
7		86
8	8.3.1 ID and Status	86
9	8.3.2 Interrupt Flags	
10	8.3.3 Module Card Monitors	
11	8.3.4 Channel Monitors	
12	8.3.5 Control Fields	
13	8.3.6 Interrupt Masks	
14	8.3.7 Alarm Flags Persistence Control	
15	8.3.8 Password Entry and Change	
16	8.3.9 Page Select Byte	
17	8.4 Upper Page 00h	
18	8.4.1 Base ID	
19	8.4.2 Identifier and Extended Identifier	
20	8.4.3 Connector Type (Address 130)	
21	8.4.4 Specification Compliance	
22	8.4.5 Encoding (Address 139)	
23	8.4.6 BR, nominal (Address 140)	
24	8.4.7 Extended Rate Select and Global Options	
25	8.4.8 Link Length	
26	8.4.9 Device Technology (Address 147)	
27	8.4.10 Vendor Name (Addresses 148-163)	
28	8.4.11 Extended Module Code	
29	8.4.12 Vendor Organizationally Unique Identifier (OUI, Address 165-167)	
30	8.4.13 Vendor Part Number (Address 168-183)	
31	8.4.14 Vendor Revision Number (Address 184-185)	106
32	8.4.15 Wavelength (Address 186-187)	106
33	8.4.16 Wavelength Tolerance (Address 188-189)	106
34	8.4.17 Maximum Case Temperature (Address 190)	106
35	8.4.18 CC-BASE (Address 191)	107
36	8.4.19 Options	
37	8.4.20 Vendor Serial Number	
38	8.4.21 Date Code	
39	8.4.22 Diagnostic Monitoring Type	
40	8.4.23 Enhanced Options	
41	8.4.24 CC-EXT (Byte 223)	
42	8.4.25 Vendor-Specific ID	
43	8.5 Upper Page 03h	
44	8.5.1 Module card Thresholds	
45	8.5.2 Channel Thresholds	
45 46	8.5.3 Extended Channel Controls	
47	8.5.4 Extended ID	
48	8.6 Upper Page 01h	
49	8.7 Upper Page 02h	
50	9 CDFP MSA Management Interface Memory Map-Style 3	
51	9.1 Overview	
52	9.2 Management Interface	
53	9.3 Lower Page	
54	9.3.1 ID and Status	
55	9.3.2 Interrupt Flags	118
56	9.3.3 Module Card Monitors	118
57	9.3.4 Channel Monitors	118
58	9.3.5 Control Fields	119
59	9.3.6 Interrupt Masks	119
60	9.3.7 Alarm Persistence Control	

1	9.3.8 Password Entry and Change	
2	9.3.9 Page Select Byte	
3	9.4 Lower Page Summary	
4	9.5 Lower Page Overview	
5	9.6 Lower Page Rx	
6	9.7 Lower Page Tx	
7	9.8 Upper Page 00	
8	9.8.1 Identifier and Extended Identifier	
9	9.8.2 Connector Type	
10	9.8.3 Specification Compliance	
11	9.8.4 Encoding	
12	9.8.5 BR, nominal	
13	9.8.6 Extended Rate Select and Global Options	
14	9.8.7 Link Length	
15	9.8.8 Device technology	
16	9.8.9 Vendor Name	
17	9.8.10 Extended Module Code	
18	9.8.11 Vendor OUI	
19	9.8.12 Vendor Part Number	144
20	9.8.13 Vendor Revision Number	144
21	9.8.14 Wavelength	144
22	9.8.15 Wavelength Tolerance	
23	9.8.16 Maximum Case Temperature	144
24	9.8.17 CC_BASE	144
25	9.8.18 Options	144
26	9.8.19 Vendor Serial Number	145
27	9.8.20 Date Code	
28	9.8.21 Diagnostic Monitoring Type	146
29	9.8.22 Enhanced Options	146
30	9.8.23 CC_EXT	146
31	9.8.24 Vendor Specific	146
32	9.9 Upper Page 01	146
33	9.10 Upper Page 02	
34	9.11 Upper Page 03	146
35	9.11.1 Module Card Thresholds	146
36	9.11.2 Channel Thresholds	146
37	9.11.3 Extended Channel Controls	146
38	9.11.4 Extended ID	
39	9.12 Upper Page 03 Summary	147
40	9.13 Upper Page 03 Overview	147
41	9.14 Upper Page 03 Rx	147
42	9.15 Upper Page 03 Tx	
43	10 CDFP Firmware Upgrade	151
44	10.1 Human-readable Header Section	151
45	10.2 Firmware Data Section	152
46	10.3 Implementation Notes	153
47	10.4 Example File	153
48	10.5 Host Upgrade Procedure	
49		
50		
51	List of Figures	
52	-	
53	Figure 1: Style 1/Style 2CDFP Reference Architecture	10

JJ LTG	gure i:	Style 1/Style ZCDFP Reference Afchitecture
54 Fig	gure 2:	CDFP Style 3 Reference Architecture10
55 Fig	gure 3:	Lower Card (Card 1) Pin outs Style 1/Style 212
56 Fig	gure 4:	Upper Card (Card 2) Pin outs Style 1/Style 213
57 Fig	gure 5:	Lower Card (Card 1) Pin outs Style 314
58 Fig	gure 6:	Upper Card (Card 2) Pin outs Style 315
59 Fig	gure 7:	CDFP Host Card Style 1/Style 2
60 Fig	gure 8:	CDFP Host Card Style 323

1	Figure 9: Schematic of multiple CDFP power supply arrangement (example)
2	Figure 10: CDFP Power Mode State transition diagram
3	Figure 11: Timing of CDFP inrush currents
4	Figure 12: CDFP Style 1 direct attach module rendering
5	Figure 13: CDFP Style 2 and Style 3 direct attach module rendering
-	
6	Figure 14: CDFP Style 1 Datum Alignment, Depth
7	Figure 15: CDFP Style 2 and Style 3 Datum Alignment, Depth
8	Figure 16: Drawing of CDFP Style 1 Module 37
9	Figure 17: View of module plug Style 1 38
10	Figure 18: Plug pin assignments Style 1 Module
11	Figure 19: Drawing of CDFP Style 2 Module
12	Figure 20: View of module plug Style 2 40
13	Figure 21: Plug pin assignments Style 2 Module
14	Figure 22: Latch Definition Style 1/Style 2/Style 3
15	Figure 23: Drawing of CDFP Style 3 Module
-	
16	Figure 24: View of module plug Style 3 42
17	Figure 25: Plug pin assignments Style 3 Module
18	Figure 26: Pattern Layout for CDFP Style 1/Style 2/Style 3 Printed Circuit Board 43
19	Figure 27: CDFP Style 1 Host PCB Mechanical Layout
20	Figure 28: CDFP Style 2 and Style 3 Host PCB Mechanical Layout
21	Figure 29: CDFP Style 1 Recommended Bezel Design
22	Figure 30: CDFP Style 2 and Style 3 Recommended Bezel Design
23	Figure 31: CDFP Style 1 Host Electrical Connector and Cage Illustration
24	Figure 32: CDFP Style 2 Host Electrical Connector and Cage Illustration
25	Figure 33: CDFP Style 3 Host Electrical Connector and Cage Illustration 50
26	Figure 34: CDFP Host Electrical Connector Specification
27	Figure 35: Style 1 Cage and Optional Heat Sink Design (exploded view)
28	Figure 36: Style 2 Cage and Optional Heat Sink Design (exploded view)
29	Figure 37: Style 3 Cage and Optional Heat Sink Design (exploded view)
30	Figure 38: Style 1 1-by-1 Cage Design 55
31	Figure 39: Style 2 1-by-1 Cage Design 56
32	Figure 40: Style 3 1-by-1 Cage Design
33	Figure 41: CDFP Style 1 Latch dimensions for heat sink clip
34	Figure 42: CDFP Style 2 and Style 3 Latch dimensions for heat sink clip
-	
35	Figure 43: CDFP Style 1 heat sink clip
36	Figure 44: CDFP Style 2 and Style 3 heat sink clip
37	Figure 45: CDFP Style 1 heat sink thermal interface
38	Figure 46: CDFP Style 2 and Style 3 heat sink thermal interface
39	Figure 47: CDFP Style 1 surface flatness and roughness areas
40	Figure 48: CDFP Style 2and Style 3 surface flatness and roughness areas
41	Figure 49: CDFP Style 1/Style 2 Optical Receptacle and Channel Orientation for MPO16 and
42	MXC connector
43	Figure 50: CDFP Style 3 Optical Receptacle and Channel Orientation for MPO16 and MXC
44	connector
45	Figure 51: CDFP MP016 Cable Plug
-	
46	Figure 52: CDFP Timing Diagram
47	Figure 53: CDFP Device Address
48	Figure 54: CDFP Current Address Read Operation
49	Figure 55: CDFP Random Read
50	Figure 56: Sequential Address Read Starting at CDFP Current Address
51	Figure 57: Sequential Address Read Starting with Random CDFP Read
52	Figure 58: CDFP Write Byte Operation 80
53	Figure 59: CDFP Sequential Write Operation
54	Figure 60: Example CDFP Style 1/Style 2 optical transceiver implementation
-	
55	Figure 61: CDFP Style 1/Style 2 Memory Map
56	Figure 62: Example CDFP Style 3 optical transceiver implementation
57	Figure 63: CDFP Style 3 memory map structure 117
58	Figure 64: Standard Firmware Upgrade Procedure
59	Figure 65: Alternate Firmware Upgrade Procedure
60	

List of Tables

7			
8	Table 1:	Style 1/Style 2 Pin Function Definition	16
9	Table 2:	Pin Function Definition Style 3	19
10		Low Speed Control and Sense Signals	
11		CDFP Maximum Power Class	
12	Table 5:	CDFP Module Power Supply Specification	30
13		Definition of Datum's	
14	Table 7:	Insertion, Extraction and Retention Forces	47
15	Table 8:	Temperature Range Class of operation	69
16	Table 9:	Management Interface timing parameters	71
17	Table 10	: CDFP Memory Specification	71
18	Table 11	: Single Byte Writable Memory Block	71
19	Table 12	: Multiple Byte Writable Memory Block	72
20	Table 13	: Timing for CDFP soft control and status functions	73
21	Table 14	: I/O Timing for Squelch & Disable	74
22	Table 15	: Lower Page Overview (Page OL)	86
23	Table 16	: Identifier and Status Summary (Page OL)	86
24	Table 17	: Alarm Flags (Page OL)	87
25	Table 18	: Module Monitors (Page OL)	90
26	Table 19	: Channel Monitors (Page OL)	91
27	Table 20	: Control Fields (Page OL)	93
28		: Interrupt Masks (Page OL)	
29		: Alarm Persistence Control (Page OL)	
30		: Upper Page 0 Overview (Page 0h)	
31		: Identifiers (Page Oh)	
32		: Connector Types	
33		: Specification compliance (Page Oh)	
34		: Encoding values	
35		: Extended rate-select compliance (Page Oh)	
36		: Link Length (Page Oh)	
37		: Device technology	
38		: Technology values	
39		: Extended module code (Page Oh)	
40	Table 33	: Options (Page 0h)	107
41		: Diagnostic Monitoring Type (Page Oh)	
42		: Enhanced Options (Page Oh)	
43 44		: Upper Page 3 Overview (Page 3h) : Module card Thresholds (Page 3h)	
44 45		: Channel Thresholds (Page 3h)	
45 46		: Extended Channel Controls (Page 3h)	
40		: Extended ID Fields (Page 3h)	
48		: Lower Memory Page Summary	
49		: Lower Memory Page Overview	
50		: Lower Memory Page Rx	
51		: Lower Memory Page Tx	
52		: POO Page Summary	
53		: Options	
54		: Upper Memory Page 03 Summary	
55		: Upper Memory Page 03 Overview	
56		: Upper Memory Page 03 Rx	
57		: Upper memory Page 03 Tx	
58		· ····································	

3 **1 Scope**

1 2

7

10

12

14

16

18

20

22

29

In an effort to broaden the applications for a 400G interface, a multisource agreement group (MSA) was formed. Members include companies representing system integrators and suppliers with an interest in a common form factor solution.

8 1.1 Description of Clauses

9 Clause 1 contains the Scope and Purpose

11 Clause 2 contains Referenced and Related Standards and Specifications

13 Clause 3 contains the Introduction

15 Clause 4 contains Electrical Specifications

17 Clause 5 contains Mechanical Specifications and Printed Circuit Board Recommendations

19 Clause 6 contains Environmental and Thermal Considerations

21 Clause 7 is a description of the Management Interface and Management Register contents.

23 Appendix A contains management register contents and firmware upgrade methodology

24 2 References

The CDFP MSA supports the requirements of the data center industry, and the MSA is expected to implement several standards.

27 2.1 Industry Documents

28 The following interface standards and specifications are relevant to this Specification.

30	- GR-253-CORE
31	- OIF CEI 3.1 clause 13
32	- IEEE Std 802.3bm annex 83E
33	- IEEE Std 802.3bs
34	- InfiniBand Architecture Specifications
35	- INCITS T11.2 FC-PI-6
36	- SAS 4.0
37	- SFF-8679 QSFP (Quad SFP) 25 Gbs 4X Transceiver
38	- SFF-8636 Cables Common Management Interface
39	- SFF-8472 Diagnostic Monitoring Interface for Optical Transceivers
40	- SFF-8431 Enhanced Small Form Factor Pluggable Module SFP+
41	- JESD22A114-B ESD specifications

42

43 2.2 SFF Specifications

44 It is the intention of the MSA to create appropriate SFF specifications based on this 45 MSA. 46

47 2.3 Sources

48 This document can be obtained via the CDFP-MSA.org web site.

1

4

15

21

30

39

45

2 3 Introduction

3 This Specification covers the following items:

5 a) Electrical interfaces (including pinouts for data control, status, configuration and 6 test signals) and the electrical connector and recommended host PCB layout requirements. 7

b) Management interfaces encompassing features from the current SFF 8636 and SFF 8472
specifications. Features include support for multiple physical media (copper, optics etc), specific multi-data rate and multi-protocol implementations.

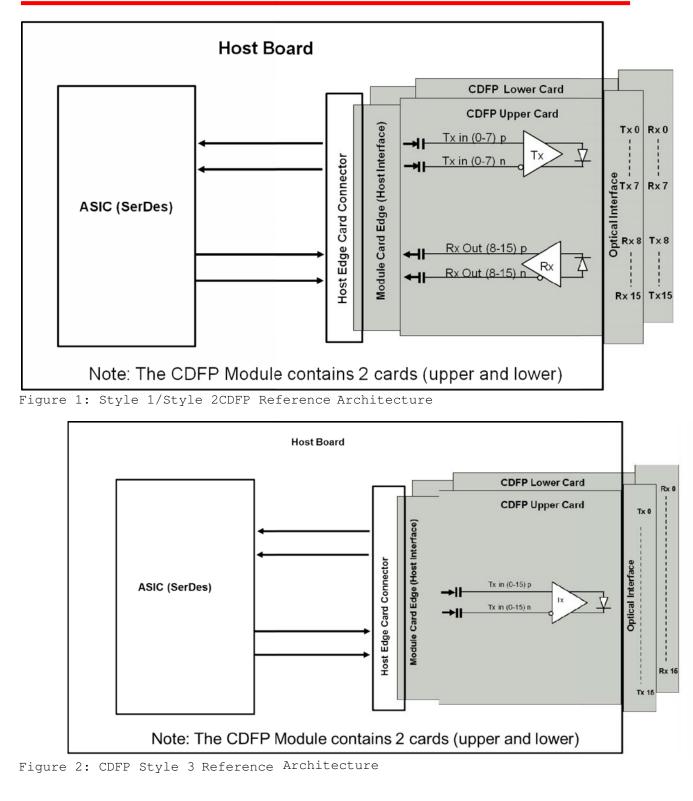
c) Optical interfaces (including the optical connector receptacle and mating fiber optic
 connector plug and recommended breakout cable assembly.) The optical specifications are
 left to the applicable standards for each protocol.

16 d) Mechanical including package outline with latching detail and optical connector 17 receptacle detail, electrical connector mechanical details for both the module and host 18 PCB halves, front panel cut-out recommended dimensions. 19

20 e) Thermal requirements

f) Electromagnetic interference (EMI) recommendations(including necessary shielding features to seal the OEM chassis front panel output with and without the CDFP module installed in the cage.)

g) Electrostatic discharge (ESD) requirements solely to the extent disclosed in the Specification where the sole purpose of such disclosure is to enable products to operate, connect or communicate as defined within the Specifications.


31 The overall package dimensions shall conform to the indicated dimensions and tolerances indicated in clause 5. The mounting features shall be located such that the products are 32 mechanically interchangeable with the cage and connector system. In addition, the overall 33 34 dimensions and mounting requirements for the cage and connector system on a circuit board shall be configured such that the products are mechanically and electrically 35 interchangeable and the overall dimensions and insertion requirements for the optical 36 37 connector and corresponding fiber optic cable plug shall be such that the products are 38 mechanically and optically interchangeable.

This Specification is intended to support applications defined by Ethernet IEEE 802.3 (400Gigabit, 100Gigabit and 25Gigabit Ethernet), Infiniband Architecture Specifications (FDR and EDR), Fibre Channel-PI-6 (32GFC) and FC-PI-6p (128GFC). Electrical and optical specifications are defined by the appropriate standard and as such are beyond the scope of this document.

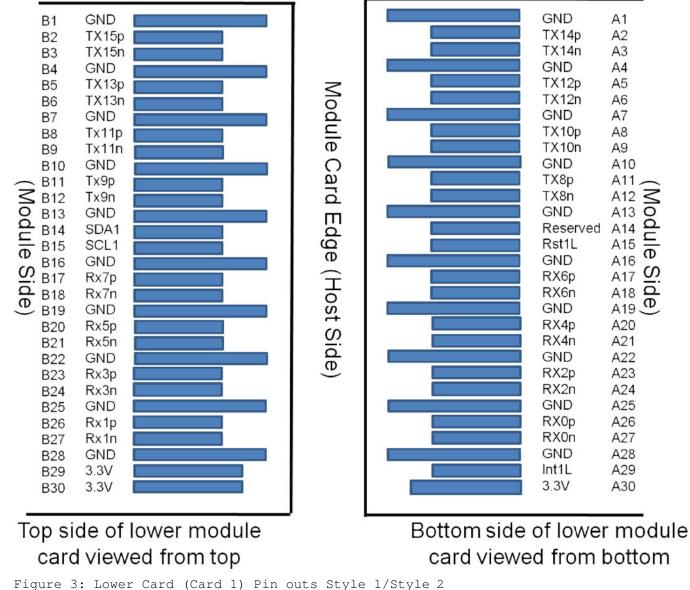
46 The Specifications will provide a common solution for combined 16-channel ports that 47 support OTN, Ethernet and/or InfiniBand and/or Fibre Channel specifications. The CDFP 48 interface can support pluggable modules or direct attach cables based on multimode fiber, 49 single mode fiber or copper cables.

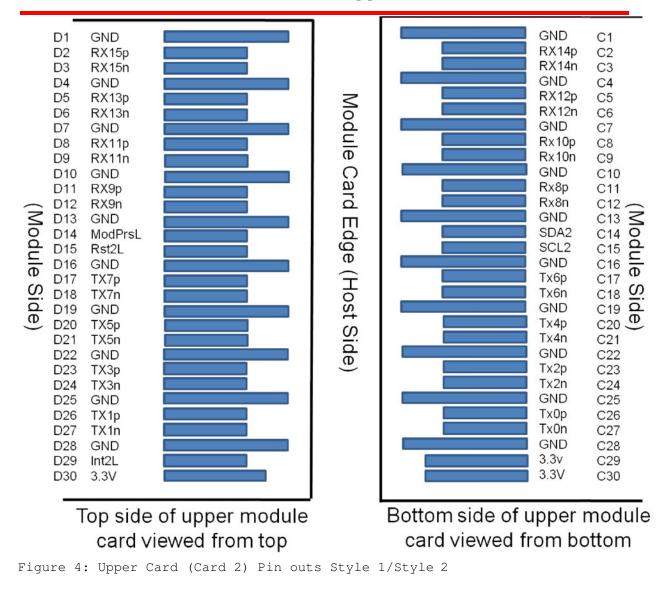
50 An application reference Model, See Figure 1 for Style 1/Style 2 and Figure 2 for Style 51 3, shows the high-speed data interface between an ASIC (SerDes) and the CDFP module. 52 Parallel MPO16 fiber connectors can be used for the optical interface. 53

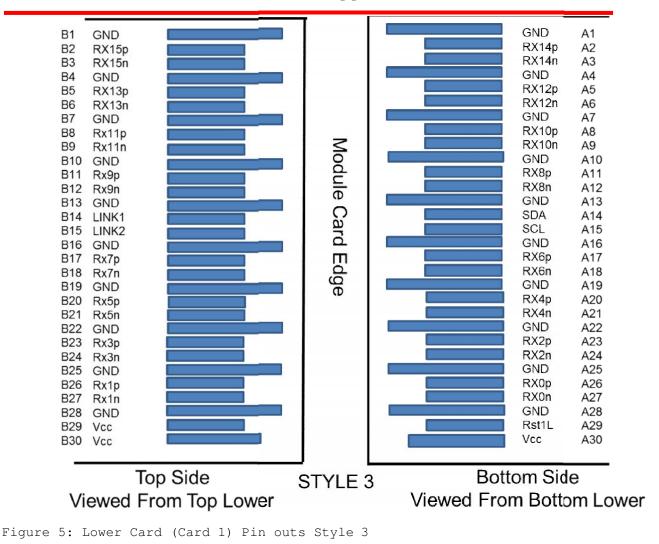
Revision 3.0

9 Note: For high speed electrical signals the compliance board methodology of IEEE802.3bm, 10 OIF CEI-28G-VSR should be used. Measurements taken with CDFP compliance boards should be 11 corrected for any difference between the loss of these compliance boards and the loss of 12 the compliance boards specified in the standard.

2 3 4


1 4 Electrical Specification


This clause contains pin definition data for the CDFP Module. The pin definition data is generic for applications such as Fibre Channel, InfiniBand, Ethernet and OTN. Compliance Points for high-speed signal electrical measurements are defined with the inclusion of compliance boards. Compliance Points for all other electrical signals are at comparable points at the host edge card connector.


7 4.1 Module Pin Definitions

The CDFP Pluggable Module Edge Connector consists of two parallel paddle cards with 30 8 contacts on the top and bottom of each paddle card for a total of 120 circuits. 9 10 Figures 3 and 4 show the signal symbols and contact numbering for the CDFP Module edge connector used for Style 1 and Style 2. Figures 5 and 6 show the signal symbols and 11 contact numbering for the CDFP Module edge connector used for Style 3. The diagrams show 12 the module PCB edge as a top and bottom view. There are 120 contacts intended for high 13 speed, low speed signals, power and ground connections. Table 1and Table 2 provide more 14 15 information about each of the 120 contacts. 16

For EMI protection the signals to the connector should be shut off when the CDFP Module is removed. Standard board layout practices such as connections to Vcc and GND with Vias, use of short and equal-length differential signal lines, use of microstrip-lines and 50 Ohm terminations are recommended. The chassis ground (case common) of the CDFP module should be isolated from the module's circuit ground, GND, to provide the equipment designer flexibility regarding connections between external electromagnetic interference shields and circuit ground, GND, of the module.

1 2

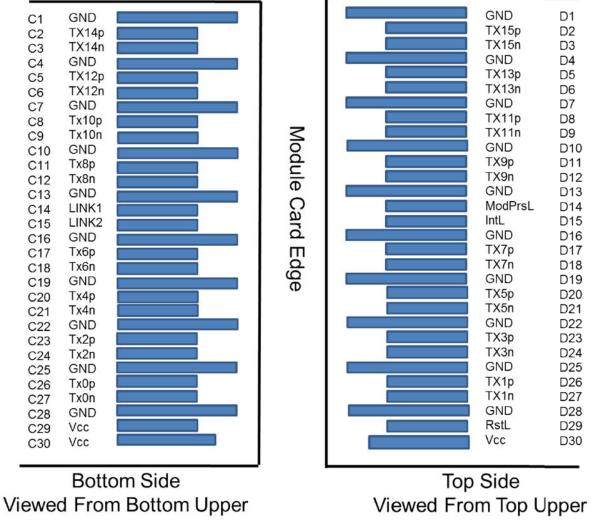


Figure 6: Upper Card (Card 2) Pin outs Style 3

Module Pad	Host pin	Logic	Symbol	Description	Plug Sequence	Note
	-		CNID	Concernent l	_	1
A1	G1		GND	Ground	1	1
A2	A1X	CML-I	Tx14p	Transmitter Inverted Data Input	3	
A3	A1Y	CML-I	Tx14n	Transmitter Non-Inverted Data Input	3	
A4	G2		GND	Ground	1	1
A5	A2X	CML-I	Tx12p	Transmitter Inverted Data Input	3	
A6	A2Y	CML-I	Tx12n	Transmitter Non-Inverted Data Input	3	
A7	G3		GND	Ground	1	1
A8	A3X	CML-I	Tx10p	Transmitter Inverted Data Input	3	
A9	A3Y	CML-I	Tx10n	Transmitter Non-Inverted Data Input	3	
A10	G4		GND	Ground	1	1
A11	A4X	CML-I	Tx8p	Transmitter Inverted Data Input	3	-
A11 A12	A4Y	CML-I	Tx8n	Transmitter Non-Inverted Data Input	3	
		CMT-1	-	=		1
A13	G5		GND	Ground	1	1
A14	A5X		Reserved			
A15	A5Y	LVTTL-I	Rst1L	Module Reset for lower card	3	
A16	G6		GND	Ground	1	1
A17	A6X	CML-O	Rхбр	Receiver Non-Inverted Data Output	3	
A18	A6Y	CML-O	Rx6n	Receiver Inverted Data Output	3	
A19	G7		GND	Ground	1	1
A20	A7X	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
A21	A7Y	CML-O	Rx4n	Receiver Inverted Data Output	3	
A22	G8	OTHE O	GND	Ground	1	1
A23	A8X	CML-0	Rx2p	Receiver Non-Inverted Data Output	3	1
	-				-	
A24	A8Y	CML-O	Rx2n	Receiver Inverted Data Output	3	-
A25	G9		GND	Ground	1	1
A26	A9X	CML-O	Rx0p	Receiver Non-Inverted Data Output	3	
A27	A9Y	CML-O	Rx0n	Receiver Inverted Data Output	3	
A28	G10		GND	Ground	1	1
A29	AlOX	LVTTL-O	Int1L	Interrupt for lower card	3	
A30	A10Y		Vcc	+3.3V Power supply	2	2
B1	G11		GND	Ground	1	1
В2	B1X	CML-I	Tx15p	Transmitter Inverted Data Input	3	
B3	B1Y	CML-I	Tx15n	Transmitter Non-Inverted Data Input	3	
B3 B4	G12		GND	Ground	1	1
		CMT T	-			1
B5	B2X	CML-I	Tx13p	Transmitter Inverted Data Input	3	
B6	B2Y	CML-I	Tx13n	Transmitter Non-Inverted Data Input	3	-
B7	G13		GND	Ground	1	1
В8	B3X	CML-I	Tx11p	Transmitter Inverted Data Input	3	
В9	B3Y	CML-I	Tx11n	Transmitter Non-Inverted Data Input	3	
В10	G14		GND	Ground	1	1
B11	B4X	CML-I	Tx9p	Transmitter Inverted Data Input	3	
B12	B4Y	CML-I	Tx9n	Transmitter Non-Inverted Data Input	3	
B13	G15		GND	Ground	1	1
B14	B5X	LVCMOS-	SDA1	two-wire serial interface data for lower	3	-
	2011	I/O	S 2 1 1 1	card		
B15	B5Y	LVCMOS-	SCL1	two-wire serial interface clock for	3	
UT J	1001	I/O	JCTT		5	
D1C	010	1/0	CNID	lower card	1	1
B16	G16		GND	Ground	1	1
B17	B6X	CML-O	Rx7p	Receiver Non-Inverted Data Output	3	
B18	B6Y	CML-O	Rx7n	Receiver Inverted Data Output	3	
B19	G17		GND	Ground	1	1
B20	B7X	CML-O	Rx5p	Receiver Non-Inverted Data Output	3	
B21	B7Y	CML-O	Rx5n	Receiver Inverted Data Output	3	1
B22	G18	-	GND	Ground	1	1

B23	B8X	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	
B24	B8Y	CML-O	Rx3n	Receiver Inverted Data Output	3	
B25	G19		GND	Ground	1	1
B26	B9X	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
В27	B9Y	CML-O	Rx1n	Receiver Inverted Data Output	3	
B28	G20		GND	Ground	1	1
B29	B10X		Vcc	+3.3V Power supply	2	2
В30	B10Y		Vcc	+3.3V Power supply	2	2
C1	G31		GND	Ground	1	1
C2	C1X	CML-O	Rx14p	Receiver Non-Inverted Data Output	3	
С3	C1Y	CML-O	Rx14n	Receiver Inverted Data Output	3	
C4	G32		GND	Ground	1	1
C5	C2X	CML-O	Rx12p	Receiver Non-Inverted Data Output	3	
C6	C2Y	CML-O	Rx12n	Receiver Inverted Data Output	3	
C7	G33		GND	Ground	1	1
C8	C3X	CML-O	Rx10p	Receiver Non-Inverted Data Output	3	
C9	C3Y	CML-O	Rx10n	Receiver Inverted Data Output	3	
C10	G34		GND	Ground	1	1
C11	C4X	CML-0	Rx8p	Receiver Non-Inverted Data Output	3	
C12	C4Y	CML-O	Rx8n	Receiver Inverted Data Output	3	
C13	G35		GND	Ground	1	1
C14	C5X	LVCMOS-	SDA2	two-wire serial interface data for upper	3	
	_	I/0		card		
C15	C5Y	LVCMOS-	SCL2	two-wire serial interface clock for	3	
		I/0		upper card	-	_
C16	G36		GND	Ground	1	1
C17	C6X	CML-I	Тхбр	Transmitter Inverted Data Input	3	
C18	CGY	CML-I	Tx6n	Transmitter Non-Inverted Data Input	3	
C19	G37		GND	Ground	1	1
C20	C7X	CML-I	Tx4p	Transmitter Inverted Data Input	3	
C21	C7Y	CML-I	Tx4n	Transmitter Non-Inverted Data Input	3	
C22	G38		GND	Ground	1	1
C23	C8X	CML-I	Tx2p	Transmitter Inverted Data Input	3	
C24	C8Y	CML-I	Tx2n	Transmitter Non-Inverted Data Input	3	
C25	G39		GND	Ground	1	1
C26	C9X	CML-I	Tx0p	Transmitter Inverted Data Input	3	
C27	C9Y	CML-I	Tx0n	Transmitter Non-Inverted Data Input	3	
C28	G40		GND	Ground	1	1
C29	C10X		Vcc	+3.3V Power supply	2	2
C30	C10Y		Vcc	+3.3V Power supply	2	2
D1	G41		GND	Ground	1	1
D2	D1X	CML-O	Rx15p	Receiver Non-Inverted Data Output	3	
D3	D1Y	CML-O	Rx15n	Receiver Inverted Data Output	3	
D4	G42		GND	Ground	1	1
D5	D2X	CML-O	Rx13p	Receiver Non-Inverted Data Output	3	
D6	D2Y	CML-O	Rx13n	Receiver Inverted Data Output	3	
D7	G43		GND	Ground	1	1
D8	D3X	CML-O	Rx11p	Receiver Non-Inverted Data Output	3	
D9	D3Y	CML-O	Rx11n	Receiver Inverted Data Output	3	
D10	G44		GND	Ground	1	1
D11	D4X	CML-O	Rx9p	Receiver Non-Inverted Data Output	3	
D12	D4Y	CML-O	Rx9n	Receiver Inverted Data Output	3	
D13	G45		GND	Ground	1	1
D14	D5X	LVTTL-O	ModPrsL	Module Present	3	
D15	D5Y	LVTTL-I	Rst2L	Module Reset for upper card	3	
D16	G46		GND	Ground	1	1
D17	D6X	CML-I	Tx7p	Transmitter Inverted Data Input	3	

D18	DGY	CML-I	Tx7n	Transmitter Non-Inverted Data Input	3			
D19	G47		GND	Ground 1				
D20	D7X	CML-I	Tx5p	Transmitter Inverted Data Input	3			
D21	D7Y	CML-I	Tx5n	Transmitter Non-Inverted Data Input	3			
D22	G48		GND	Ground	1	1		
D23	D8X	CML-I	Тх3р	Transmitter Inverted Data Input	3			
D24	D8Y	CML-I	Tx3n	Transmitter Non-Inverted Data Input	3			
D25	G49		GND	Ground	1	1		
D26	D9X	CML-I	Tx1p	Transmitter Inverted Data Input	3			
D27	D9Y	CML-I	Tx1n	Transmitter Non-Inverted Data Input	3			
D28	G50		GND	Ground	1	1		
D29	D10X	LVTTL-O	Int2L	Interrupt for upper card	3			
D30	D10Y		Vcc	+3.3V Power supply 2 2				
	Note 1: GND is the symbol for signal and supply (power) common for the CDFP							
	modul	.e. All ar	e common w	ithin the CDFP module and all module volta	lges are			
	refer	enced to	this poten	tial unless otherwise noted. Connect these	directly	to the		
	host board signal-common ground plane.							
	Note	2: Vcc ar	e the rece	iver and transmitter power supplies and sh	all be app	olied		
	concu	concurrently. Requirements defined for the host side of the Host Edge Card						
	Conne	ctor are	listed in	Table 5. Recommended host board power supp	ly filteri	ng is		
	shown	ı in Figur	e 7. Vcc m	ay be internally connected within the CDFP	Module in	n any		
	combi	combination. The Vcc connector pins are each rated for a maximum current of 1 A.						

Figure 7 (Style 1/Style 2) and Figure 8 (Style 3) show examples of complete CDFP host PCB schematics with connections to SerDes and control ICs.

Module	Host	Logic	Definition Symbol	Description	Pluq	Note
Pad	pin	10910		200011201011	Sequence	noce
A1	G1		GND	Ground	1	1
		CMT O	-			1
A2	A1X	CML-O	Rx14p	Receiver Non-Inverted Data Output	3	
A3	A1Y	CML-O	Rx14n	Receiver Inverted Data Output	3	
A4	G2		GND	Ground	1	1
A5	A2X	CML-O	Rx12p	Receiver Non-Inverted Data Output	3	
A6	A2Y	CML-O	Rx12n	Receiver Inverted Data Output	3	
A7	G3		GND	Ground	1	1
A8	A3X	CML-O	Rx10p	Receiver Non-Inverted Data Output	3	
A9	A3Y	CML-O	Rx10n	Receiver Inverted Data Output	3	
A10	G4	0 1110	GND	Ground	1	1
A10 A11	A4X	CMT O				1
		CML-O	Rx8p	Receiver Non-Inverted Data Output	3	
A12	A4Y	CML-O	Rx8n	Receiver Inverted Data Output	3	
A13	G5		GND	Ground	1	1
A14	A5X	LVCMOS-	SDA1	two-wire serial interface data for lower	3	
		I/O		card		
A15	A5Y	LVCMOS-	SCL1	two-wire serial interface clock for	3	
		I/O		lower card		
A16	G6		GND	Ground	1	1
A17	A6X	CML-O	Rx6p	Receiver Non-Inverted Data Output	3	
A18	A6Y	CML-O	Rx6n	Receiver Inverted Data Output	3	
A19	G7	CHIL O	GND	Ground	1	1
	-	OMT O	-			1
A20	A7X	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
A21	A7Y	CML-O	Rx4n	Receiver Inverted Data Output	3	
A22	G8		GND	Ground	1	1
A23	A8X	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
A24	A8Y	CML-O	Rx2n	Receiver Inverted Data Output	3	
A25	G9		GND	Ground	1	1
A26	A9X	CML-O	Rx0p	Receiver Non-Inverted Data Output	3	
A27	A9Y	CML-O	Rx0n	Receiver Inverted Data Output	3	
A28	G10		GND	Ground	1	1
A29	A10X	LVTTL-I	Rst1L		3	±
		TAITT-T		Module Reset for lower card	-	0
A30	A10Y		Vcc	+3.3V Power supply	2	2
B1	G11		GND	Ground	1	1
B2	B1X	CML-O	Rx15p	Receiver Non-Inverted Data Output	3	
B3	B1Y	CML-O	Rx15n	Receiver Inverted Data Output	3	
B4	G12		GND	Ground	1	1
B5	B2X	CML-O	Rx13p	Receiver Non-Inverted Data Output	3	
B6	B2Y	CML-O	Rx13n	Receiver Inverted Data Output	3	
B7	G13		GND	Ground	1	1
B7 B8	B3X	CML-0	Rx11p	Receiver Non-Inverted Data Output	3	-
			1			
B9	B3Y	CML-0	Rx11n	Receiver Inverted Data Output	3	1
B10	G14		GND	Ground	1	1
B11	B4X	CML-O	Rx9p	Receiver Non-Inverted Data Output 3		
B12	B4Y	CML-O	Rx9n	Receiver Inverted Data Output 3		
B13	G15		GND	Ground	1	1
B14	B5X	LVTTL-O	Int1L	Interrupt for lower card	3	
B15	B5Y		Reserved	-		
B16	G16		GND	Ground 1		1
B10 B17		CMT O		Receiver Non-Inverted Data Output 3		-
	B6X	CML-O	Rx7p		-	
B18	B6Y	CML-O	Rx7n	Receiver Inverted Data Output	3	-
В19	G17		GND	Ground	1	1
B20	B7X	CML-O	Rx5p	Receiver Non-Inverted Data Output	3	
B21	B7Y	CML-O	Rx5n	Receiver Inverted Data Output	3	
B22	G18		GND	Ground	1	1

В23	B8X	CML-0	Rx3p	Receiver Non-Inverted Data Output	3	
B23 B24	B8Y	CML-0	Rx3p Rx3n	Receiver Inverted Data Output	3	
B24 B25	G19		GND	Ground	1	1
B25 B26	B9X	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	1
B20 B27	B9Y	CML-O	Rx1n	Receiver Inverted Data Output	3	
B2 7 B2 8	G20		GND	Ground	1	1
B29	B10X		Vcc	+3.3V Power supply	2	2
B30	B10X		Vcc	+3.3V Power supply	2	2
C1	G31		GND	Ground	1	1
C2	C1X	CML-I	Tx14p	Transmitter Inverted Data Input	3	<u> </u>
C3	C1Y	CML-I	Tx14n	Transmitter Non-Inverted Data Input	3	
C4	G32		GND	Ground	1	1
C5	C2X	CML-I	Tx12p	Transmitter Inverted Data Input	3	±
C6	C2X C2Y	CML-I	Tx12p Tx12n	Transmitter Non-Inverted Data Input	3	
C7	G33		GND	Ground	1	1
C8	C3X	CML-I	Tx10p	Transmitter Inverted Data Input	3	
C9	C3Y	CML-I	Tx10p Tx10n	Transmitter Non-Inverted Data Input	3	
C10	G34	CLITT T	GND	Ground	1	1
C10 C11	C4X	CML-I	Tx8p	Transmitter Inverted Data Input	3	±
C11 C12	C4X C4Y	CML-I CML-I	Tx8n	Transmitter Non-Inverted Data Input	3	
C12 C13	G35	CLITT T	GND	Ground	1	1
C13 C14	C5X	LVCMOS-	SDA2	two-wire serial interface data for upper	3	±
017	CJA	I/O	JUAL	card	5	
C15	C5Y	LVCMOS-	SCL2	two-wire serial interface clock for	3	
010	0.51	I/O	DCHZ	upper card	5	
C16	G36	1/0	GND	Ground	1	1
C10 C17	C6X	CML-I	Тхбр	Transmitter Inverted Data Input	3	1
C18	C6Y	CML-I	Tx6p Tx6n	Transmitter Non-Inverted Data Input	3	
C10	G37		GND	Ground	1	1
C20	C7X	CML-I	Tx4p	Transmitter Inverted Data Input	3	±
C20	C7X C7Y	CML-I	Tx4n	Transmitter Non-Inverted Data Input	3	
C22	G38		GND	Ground	1	1
C22	C8X	CML-I	Tx2p	Transmitter Inverted Data Input	3	1
C24	C8Y	CML-I	Tx2n	Transmitter Non-Inverted Data Input	3	
C25	G39		GND	Ground	1	1
C26	C9X	CML-I	Tx0p	Transmitter Inverted Data Input	3	±
C27	C9Y	CML-I	Tx0n	Transmitter Non-Inverted Data Input	3	
C28	G40		GND	Ground	1	1
C28	C10X		Vcc	+3.3V Power supply	2	2
C30	C10X		VCC	+3.3V Power supply	2	2
D1	G41		GND	Ground	1	1
D1 D2	D1X	CML-I	Tx15p	Transmitter Inverted Data Input	3	-
D2 D3	DIX	CML-I	Tx15p Tx15n	Transmitter Non-Inverted Data Input	3	
D4	G42	J.111 T	GND	Ground	1	1
D5	D2X	CML-I	Tx13p	Transmitter Inverted Data Input	3	-
D5 D6	D2X D2Y	CML-I	Tx13p Tx13n	Transmitter Non-Inverted Data Input	3	
D0 D7	G43		GND	Ground	1	1
D8	D3X	CML-I	Tx11p	Transmitter Inverted Data Input	3	-
D9	D3Y	CML-I	Tx11p Tx11n	Transmitter Non-Inverted Data Input	3	
D10	G44	- JIII T	GND	Ground	1	1
D10 D11	D4X	CML-I	Tx9p	Transmitter Inverted Data Input	3	-
D11 D12	D4X D4Y	CML-I	Tx9n	Transmitter Non-Inverted Data Input	3	
D12 D13	G45	L	GND	Ground	1	1
D14	D5X	LVTTL-0	ModPrsL	Module Present	3	-
	D5X D5Y	LVTTL-0	Int2L	Interrupt for upper card	3	
D15					~	1
D15 D16	G46		GND	Ground	1	1

D18	D6Y	CML-I	Tx7n	Transmitter Non-Inverted Data Input 3			
D19	G47		GND	Ground 1		1	
D20	D7X	CML-I	Tx5p	Transmitter Inverted Data Input	3		
D21	D7Y	CML-I	Tx5n	Transmitter Non-Inverted Data Input	3		
D22	G48		GND	Ground	1	1	
D23	D8X	CML-I	Тх3р	Transmitter Inverted Data Input	3		
D24	D8Y	CML-I	Tx3n	Transmitter Non-Inverted Data Input	3		
D25	G49		GND	Ground	1	1	
D26	D9X	CML-I	Tx1p	Transmitter Inverted Data Input	3		
D27	D9Y	CML-I	Tx1n	Transmitter Non-Inverted Data Input	3		
D28	G50		GND	Ground 1		1	
D29	D10X	LVTTL-I	Rst2L	Module Reset for upper card 3			
D30	D10Y		Vcc	+3.3V Power supply 2 2			
	Note 1: GND is the symbol for signal and supply (power) common for the CDFP module. All are common within the CDFP module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.						
	Note 2: Vcc are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in Table 5. Recommended host board power supply filtering is shown in Figure 8. Vcc may be internally connected within the CDFP Module in any combination. The Vcc connector pins are each rated for a maximum current of 1 A.						

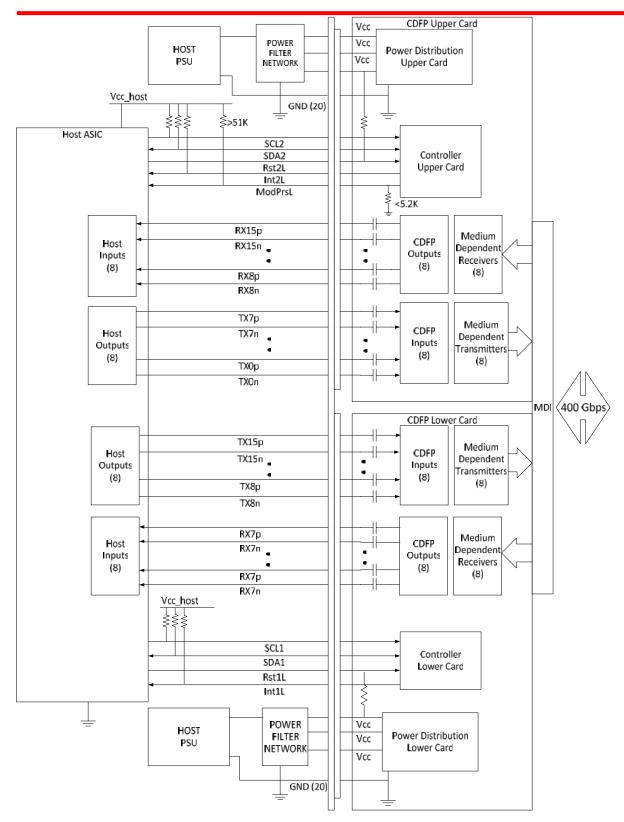
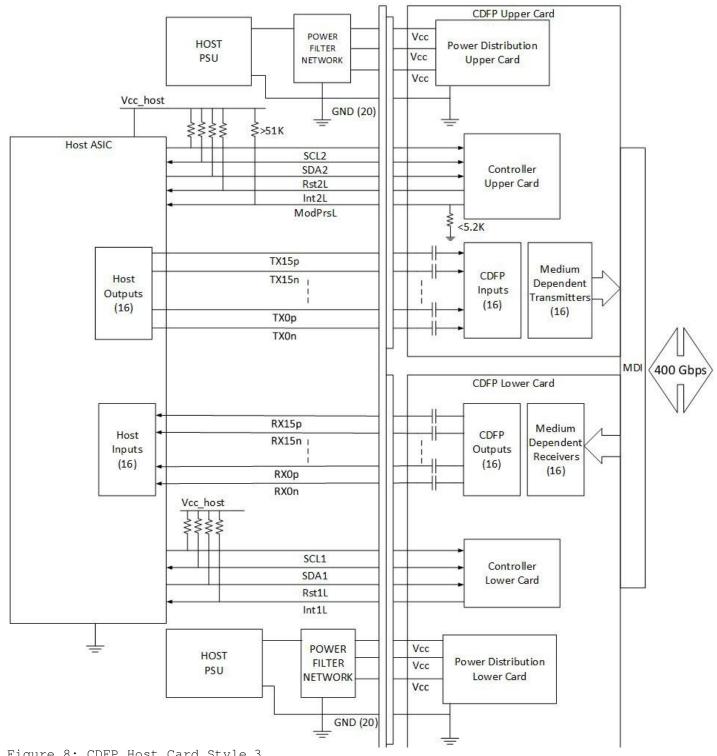



Figure 7: CDFP Host Card Style 1/Style 2

1 2

9

Figure 8: CDFP Host Card Style 3

4.1.1 Low Speed Electrical Hardware Pins 3

4 In addition to the two-wire serial interface the module has the following low speed pins 5 for control and status: 6

```
7
          Rst1L and Rst2L
8
          ModPrsL
```

```
IntlL and Int2L
```

1 4.1.1.1Rst1L and Rst2L

The RstL pins must be pulled to Vcc in the CDFP module. A low level on anRstL pin for 2 longer than the minimum pulse length (t_Reset_init) initiates a complete module card 3 4 reset, returning all user module card settings to their default state. Module Reset 5 Assert Time (t_init) starts on the rising edge after the low level on the RstL pin is released. During the execution of a reset (t_init) the host shall disregard all status 6 7 bits until the module card indicates a completion of the reset interrupt. The module card indicates this by asserting "low" an IntL signal with the DataNotReady bit negated. Note 8 that on power up (including hot insertion) the module card should post this completion of 9 reset interrupt without requiring a reset. 10

12 4.1.1.2 ModPrsL

ModPrsL is pulled up to Vcc_Host on the host board and pulled down in the module. The ModPrsL is asserted "Low" when inserted and deasserted "High" when the module is physically absent from the host connector.

17 4.1.1.3Int1L and Int2L

18 IntL is an output pin. When "Low", it indicates a possible module card operational fault 19 or a status critical to the host system. The host identifies the source of the interrupt 20 using the two-wire serial interface. The IntL pin is an open collector output and must be 21 pulled to host supply voltage on the host board. The IntL pin is deasserted "High" after 22 completion of reset, when byte 2 bit 0 (DataNotReady) is read with a value of '0' and the 23 flag field is read (see Table 13 Section 7.3.3).

24 4.1.2 Low Speed Electrical Specification

Low speed signaling other than SCL and SDA is based on Low Voltage TTL (LVTTL) operating at Vcc. Vcc refers to the 3.3V supply pins of the module or to a separate host Vcc voltage. Hosts shall use a pull-up resistor connected to Vcc_host on each of the two-wire interface SCL (clock), SDA (data), and all low speed status outputs. The SCL and SDA is a hot plug interface.

31 Note 1-Timing diagrams for SCL and SDA are included in Sub clause7.2.2.

33 The CDFP low speed electrical specifications are given in Table 3. This specification 34 ensures compatibility between host bus masters and the two-wire interface.

35 36

32

11

- 37
- 37
- 38
- 39
- 40 41
- 42

1 2

Table 3: Low Speed Control and Sense Signals

J. Dow Speed Control	ana benbe	Signais			
Parameter	Symbol	Min	Max	Unit	Condition
SCL and SDA	VOL	0	0.4	V	IOL(max)=3.0mA
	VOH	Vcc-0.5	Vcc+0.3	V	
SCL and SDA	VIL	-0.3	Vcc*0.3	V	
	VIH	VCC*0.7	Vcc + 0.5	V	
Capacitance for SCL	Ci		14	pF	
and SDA I/O pin					
Total bus	Cb		100	pF	3.0 k Ohms Pullup
capacitive load for					resistor, max
SCL and SDA			200	pF	1.6 k Ohms pullup
					resistor max
Rst1L and Rst2L	VIL	-0.3	0.8	V	Iin <=125 uA for
					0V <vin,vcc< td=""></vin,vcc<>
	VIH	2	VCC+0.3	V	
ModPrsL, Int1L and	VOL	0	0.4	V	IOL=2.0mA
Int2L	VOH	VCC-0.5	VCC+0.3	V	

3

18

4 4.1.3 High Speed Electrical Specification

5 4.1.3.1 Rx(n) (p/n)

6 Rx(n) (p/n) are CDFP module receiver data outputs. Rx(n) (p/n) are AC-coupled 100 Ohm 7 differential lines that should be terminated with 100 Ohm differentially at the Host 8 ASIC(SerDes). The AC coupling is inside the CDFP module and not required on the Host 9 board. When properly terminated, the differential voltage swing shall be less than or 10 equal to the limit in the relevant standard. 11

Output squelch for loss of optical input signal, hereafter Rx Squelch, is required and shall function as follows. In the event of the optical signal on any channel becoming equal to or less than the level required to assert LOS, then the receiver data output for that channel shall be squelched or disabled. In the squelched or disabled state output impedance levels are maintained while the differential voltage swing shall be less than 50 mVpp.

In normal operation the default case has Rx Squelch active. Rx Squelch can be deactivated using Rx Squelch Disable through the two-wire serial interface. Rx Squelch Disable is an optional function. For specific details refer to Sub clause8.3.5 Control Fields.

23 4.1.3.2 Tx(n) (p/n)

Tx (n) (p/n) are CDFP module transmitter data inputs. They are AC-coupled 100 Ohm differential lines with 100 Ohm differential terminations inside the CDFP module. The AC coupling is inside the CDFP module and not required on the Host board. The input signal complies with the relevant standard at the module input.

Output squelch, hereafter Tx Squelch, for loss of input signal, hereafter Tx LOS, is an optional function. Where implemented it shall function as follows. In the event of the differential, peak-to-peak electrical signal on any channel becomes less than 50 mVpp, then the transmitter optical output for that channel shall be squelched or disabled and the associated TxLOS flag set.

Where squelched, the transmitter OMA shall be less than or equal to -26 dBm and when disabled the transmitter power shall be less than or equal to -30 dBm. For applications, e.g. Ethernet, where the transmitter off condition is defined in terms of average power, disabling the transmitter is recommended and for applications, e.g. InfiniBand, where the

1 transmitter off condition is defined in terms of OMA, squelching the transmitter is 2 recommended.

3

~

In module operation, where Tx Squelch is implemented, the default case has Tx Squelch active. Tx Squelch can be deactivated using Tx Squelch Disable through the two-wire serial interface. Tx Squelch Disable is an optional function. For specific details refer to Subclause8.3.5 Control Fields.

8 4.2 CDFP Power Requirements

9 The two circuit cards in a CDFP module each have three designated power pins, labeled 10 Vcc. When the CDFP module is "hot plugged" into a connector with power already present, 11 the three pins have power applied concurrently. The module is responsible for limiting 12 the inrush current surge during a hot plug event. The host power supply is responsible 13 for supplying up to the maximum inrush current limits during a hot plug event without 14 causing disturbance to other modules and components on the same power supply.

15

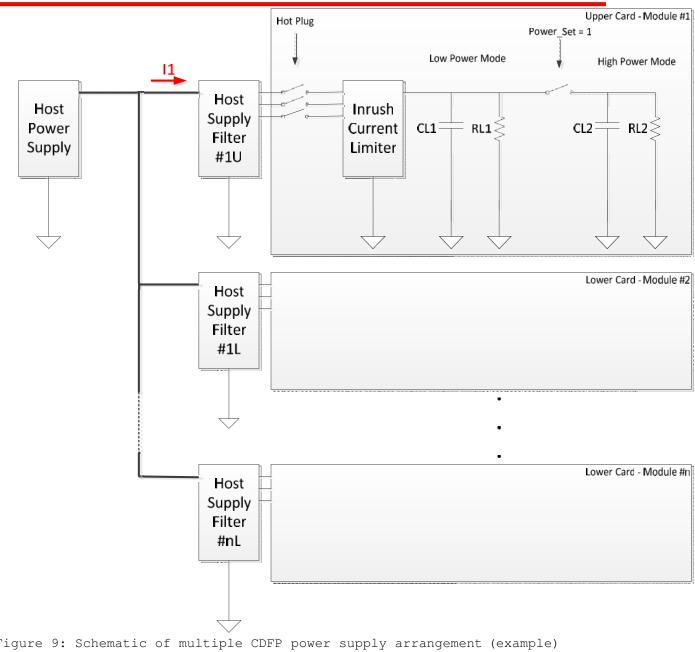
16 4.2.1 CDFP Power Classes and Maximum Power Consumption

17 CDFP modules are categorized into several power classes as listed in Table 4. Power 18 classes apply to each of the two module circuit cards and are advertised in upper page 19 00h of the management interface, byte 129 (81h).

- 20
- 21
- 22 23

Table 4: CDFP Maximum Power Class

=	4. CDFF Maximum FOWEL Class						
	Power Class	Maximum power dissipation per	Maximum total power				
		module card (W)	dissipation per module (W)				
	1	3.0	6.0				
	2	4.0	8.0				
	3	5.0	10.0				
	4	6.0	12.0				
	5	>6.0 as defined in page 00, byte	>12.0 as defined in page				
		145	00, byte 145				


24 25

The specification of the host power supply filtering network is beyond the scope of this MSA, particularly because of the wide range of CDFP module power classes. An example power configuration is shown in Figure 9. Each module card power supply has a supply filter for the purpose of filtering out high frequency noise and ripple from host-tomodule. During a hot-plug event, the filter network limits any voltage drop on the host supply so that neighboring modules sharing the same supply stay within their specified supply voltage limits.

33

42

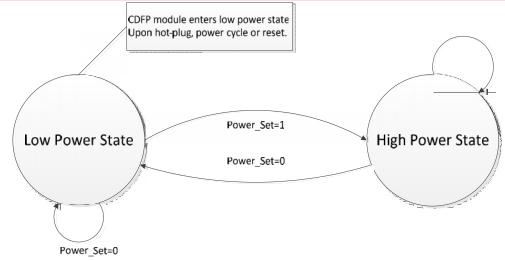
34 A host board together with the CDFP module(s) forms an integrated power system. The host supplies stable power to the modules. Each module limits electrical noise coupled back 35 36 into the host system and limits inrush charge/current during hot plug insertion. All 37 specifications shall be met at the maximum power supply current. No power sequencing of the power supply is required of the host system since the module sequences the contacts 38 39 in the order of ground, supply and signals during insertion. Any voltage drop across a filter network on the host is counted against the host DC set point accuracy 40 41 specification.

1 2 3

Figure 9: Schematic of multiple CDFP power supply arrangement (example)

4 4.2.2 CDFP Module Power Supply Requirements

5 In order to avoid exceeding the host system power capacity, upon hot-plug, power cycle or 6 reset, all CDFP modules shall power up in power class 1, designated as "Low Power Mode". 7 CDFP modules that are class 1 will be fully functional after initialization and remain in low power mode during system operation. All other CDFP modules will only reach fully 8 9 functional operation after the host system enables "High Power Mode". High power mode is 10 defined as the maximum power class as advertised in page 00, byte 129 and will only be enabled by the host if the host can supply sufficient power to the module. A host system 11 enables high power mode by writing a 1 to the Power Set control bit in byte 93 (5Dh), bit 12 13 1. A state transition diagram showing the two power states is shown in 10. 14



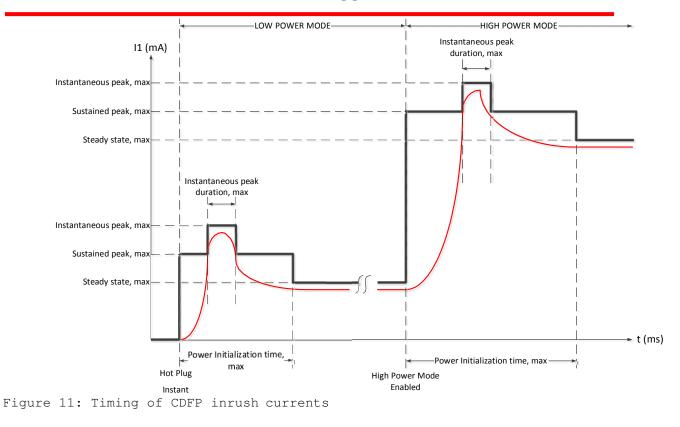


Figure 10: CDFP Power Mode State transition diagram

5 CDFP modules operate from the host supplied voltage at the three power pins per module 6 card. To protect the host and system operation, each CDFP module during hot plug and 7 normal operation shall follow the requirements listed in Table 5and illustrated in Figure 8 11. The test configuration for measuring the supply current is a module compliance board 9 (MCB) with reference power supply filters, similar to the circuit shown in SFF-8431, 10 Appendix D and Figure 56. The CDFP MCB can have a single filter per module card or 11 separate filters for each power pin on each module card, depending on the power class and 12 module design. The current limits in Table 5 refer to the current supplied to each module 13 card.

An example current waveform into a host filter, labeled I1 in Figure 9 is plotted in Figure 11. This figure also shows the timing of the initial module turn-on in low power mode, and the later transition to high power mode after the host system has enabled it via the two-wire interface.

20

below 100 kHzImage: Constraint of the second s	Table 5: CDFP Module Power Supply Specification	on																																																																																																																																									
below 100 kHznnHost RMS noise output 10 Hz-10 MHz $e_{N, Mod}$ 25mVModule RMS noise output 10 Hz-10 MHz $e_{N, Mod}$ 66mV (p-p)Module power supply noise tolerance 10 Hz-10 MHzPSNR Mod66mV (p-p)Module inrush - instantaneous peak durationT_ip50µsModule inrush - Power class 1 module card and low power mode for other modulesPower consumptionP_13.0WPower consumptionP_11200mASustained peak current at hot pluglcc_ip_1990mASteady state currentIcc_isp_14.0WWInstantaneous peak current at hot pluglcc_ip_24.0WInstantaneous peak current at hot pluglcc_isp_2-1600mASteady state currentIcc_2-1154.4mAPower consumptionP_31200mASteady state currentIcc_2-1154.4mAPower consumptionP_31400mASustained peak current at hot pluglcc_isp_3-1650mASteady state currentIcc_sp_31443.0mASustained peak current at hot pluglcc_isp_4-2400mASustained peak current at hot pluglcc_isp_4-1443.0mASteady state current at hot pluglcc_isp_4-1443.0 <th>Parameter</th> <th>Symbol</th> <th>Min</th> <th>Nom</th> <th>Мах</th> <th>Unit</th>	Parameter	Symbol	Min	Nom	Мах	Unit																																																																																																																																					
Host RMS noise output 10 Hz-10 MHz $e_{N,Hest}$ 25mVModule RMS noise output 10 Hz-10 MHz $e_{N,Mod}$ 15mVModule power supply noise tolerance 10 Hz-10 MHzPSNR Medd66mV (p-p)Module inrush - instantaneous peak durationT_ip500µsModule inrush - Power initialization timePT_init500mAPower class 1 module card and low power mode for other modulesPower class 1 module card and low power mode for other modulesPower consumptionP_13.0WInstantaneous peak current at hot pluglcc_ip_1990mASteady state currentlcc_ip865.8mAPower consumptionP_24.0WInstantaneous peak current at hot pluglcc_ip_21150.mASteady state currentlcc_ip_211600mASustained peak current at hot pluglcc_ip_21154.4mASteady state currentlcc_sp_31200mASteady state current at hot pluglcc_sp_31154.4mASustained peak current at hot pluglcc_sp_31443.0mASteady state currentlcc_sg_31260.mASustained peak current at hot pluglcc_sg_41443.0mASustained peak current at hot pluglcc_sg_4 </td <td>Host power supply voltages including ripple, droop and noise</td> <td>Vcc_Host</td> <td>3.135</td> <td>3.3</td> <td>3.465</td> <td>V</td>	Host power supply voltages including ripple, droop and noise	Vcc_Host	3.135	3.3	3.465	V																																																																																																																																					
Module RMS noise output 10 Hz - 10 MHz $e_{N,Mod}$ 15mVModule power supply noise tolerance 10 Hz-10 MHzPSNR Mod66mV (p-p)Module inrush - instantaneous peak durationT_ip50 μ_S Module inrush - Power initialization timePT_init50mXPower class 1 module card and low power mode for other modulesPower consumptionP_13.0WInstantaneous peak current at hot pluglcc_ip_11200mASustained peak current at hot pluglcc_ip_1990mASteady state currentlcc_ip_2-4.0WMistantaneous peak current at hot pluglcc_ip_2-1600mASustained peak current at hot pluglcc_ip_2-1154.4mAPower consumptionP_35.0WInstantaneous peak current at hot pluglcc_ip_3-1154.4mASustained peak current at hot pluglcc_ip_3-1443.0mASteady state currentlcc_sp_3-1443.0mAPower consumptionP_42400mASteady state current at hot pluglcc_ip_4-1980mASteady state current at hot pluglcc_sp_3-1443.0mASteady state current at hot pluglcc_isp_4-2400mASteady state current at hot pluglcc_isp_4-1980mA <t< td=""><td>below 100 kHz</td><td></td><td></td><td></td><td></td><td></td></t<>	below 100 kHz																																																																																																																																										
Module power supply noise tolerance 10 Hz-10 MHzPSRR Mod66mV (p-p)Module inrush - instantaneous peak durationT_ip50µsModule inrush - Power initialization timePT_init500msPower class 1 module card and low power mode for other modulesPower consumptionP_13.0WInstantaneous peak current at hot pluglcc_ip_11200mASustained peak current at hot pluglcc_sp_1865.8mAPower class 2 module cardPower class 3 module cardPower class 4 module card <tr< td=""><td>Host RMS noise output 10 Hz-10 MHz</td><td>$e_{N_{Host}}$</td><td></td><td></td><td>25</td><td>mV</td></tr<>	Host RMS noise output 10 Hz-10 MHz	$e_{N_{Host}}$			25	mV																																																																																																																																					
Module inrush - instantaneous peak durationT_ip50 μs Module inrush - Power initialization timePT_init500msPower class 1 module card and low power mode for other modulesPower consumptionP_13.0WInstantaneous peak current at hot pluglcc_ip_11200mASustained peak current at hot pluglcc_sp_1990mASteady state currentlcc_ip_24.0WPower consumptionP_24.0WInstantaneous peak current at hot pluglcc_ip_211600mASustained peak current at hot pluglcc_ip_21320mASustained peak current at hot pluglcc_ip_211600mASustained peak current at hot pluglcc_ip_31320mASustained peak current at hot pluglcc_ip_31154.4mAPower consumptionP_35.0WInstantaneous peak current at hot pluglcc_ip_31650mASustained peak current at hot pluglcc_ip_41650mASustained peak current at hot pluglcc_ip_4-1043.0mASustained peak current at hot pluglcc_ip_4-1043.0mASustained peak current at hot pluglcc_ip_4-1980mA <td>Module RMS noise output 10 Hz - 10 MHz</td> <td>e_{N_Mod}</td> <td></td> <td></td> <td>15</td> <td>mV</td>	Module RMS noise output 10 Hz - 10 MHz	e_{N_Mod}			15	mV																																																																																																																																					
Module inrush - Power initialization time PT_init 500msPower class 1 module card and low power mode for other modulesPower consumptionP_13.0WInstantaneous peak current at hot pluglcc_ip_11200mASustained peak current at hot pluglcc_sp_1990mASteady state currentlcc_1865.8mAPower class 2 module cardPower class 2 module cardPower class 2 module cardPower class 2 module cardPower class 3 module cardPower class 4 module cardPower class 4 m	Module power supply noise tolerance 10 Hz-10 MHz	PSNR Mod			66	mV (p-p)																																																																																																																																					
Power class 1 module card and low power mode for other modulesPower consumption P_1 3.0WInstantaneous peak current at hot plug $ cc_ip_1 $ 1200mASustained peak current at hot plug $ cc_sp_1 $ 990mASteady state current $ cc_sp_1 $ 990mASteady state current $ cc_sp_1 $ 990mAPower class 2 module cardIcc_ip_24.0WInstantaneous peak current at hot plug $ cc_sp_2 $ 1500mASustained peak current at hot plug $ cc_sp_2 $ 1320mASteady state current $ cc_sp_2 $ 1154.4mASustained peak current at hot plug $ cc_sp_3 $ 1320mASteady state current $ cc_sp_3 $ 155.0WPower consumptionP_31443.0mASustained peak current at hot plug $ cc_sp_3 $ -1443.0mASustained peak current at hot plug $ cc_sp_4 $ -1443.0mASustained peak current at hot plug $ cc_sp_4 $ -1980mASustained peak current at hot plug $ cc_sp_4 $ -1731.6mASustained peak current at hot plug $ cc_sp_4 $ -1731.6mASustained peak current at hot plug $ cc_sp_4 $ -1731.6mASustained	Module inrush - instantaneous peak duration	T_ip	-	-	50	μs																																																																																																																																					
Power consumption P_11 3.0WInstantaneous peak current at hot plug $ cc_ip_11$ -1200mASustained peak current at hot plug $ cc_sp_11$ -990mASteady state current $ cc_11$ 990mAPower class 2 module cardPower class 2 module cardPPower consumption P_22 4.0WInstantaneous peak current at hot plug $ cc_ip_22$ -1600mASustained peak current at hot plug $ cc_sp_22$ -1320mASteady state current $ cc_22$ -1154.4mAPower consumption P_33 5.0WInstantaneous peak current at hot plug $ cc_sp_33$ 1650mASustained peak current at hot plug $ cc_sg_3$ -1650mASustained peak current at hot plug $ cc_sp_33$ -1650mASustained peak current at hot plug $ cc_sg_3$ -11650mASustained peak current at hot plug $ cc_sg_4$ -1080mASustained peak current at hot plug $ cc_ip_44$ -2400mASustained peak current at hot plug $ cc_sg_44$ -1731.6mASustained peak current at hot plug $ cc_sg_54$ -1731.6mASustained peak current at hot plug $ cc_sg_54$ -1731.6mASustained peak current at hot plug $ cc_sg_55$ -2	Module inrush - Power initialization time	PT_init	-	-	500	ms																																																																																																																																					
Instantaneous peak current at hot plug $ cc_ip_1 $ 1200mASustained peak current at hot plug $ cc_sp_1 $ 990mASteady state current $ cc_1 $ 865.8mAPower class 2 module cardPower consumptionP_24.0WInstantaneous peak current at hot plug $ cc_ip_2 $ -11600mASustained peak current at hot plug $ cc_sp_2 $ -1132.0mAPower class 3 module cardPower consumptionP_3-154.4mAPower consumptionP_3-5.0WInstantaneous peak current at hot plug $ cc_ip_3 $ -2000mASustained peak current at hot plug $ cc_sp_3 $ -1650mASustained peak current at hot plug $ cc_sp_3 $ -1650mASustained peak current at hot plug $ cc_sp_3 $ -1650mASustained peak current at hot plug $ cc_sp_4 $ -1650mASustained peak current at hot plug $ cc_ip_4 $ -2400mASustained peak current at hot plug $ cc_ip_4 $ -1731.6mASustained peak current at hot plug $ cc_sp_4 $ 1731.6mASustained peak current at hot plug $ cc_sp_5 $ <	Power class 1 module card and lo	ow power mode	e for other n	nodules																																																																																																																																							
Sustained peak current at hot plug lcc_sp_1 990mASteady state current lcc_1 865.8mAPower class 2 module cardPower consumptionP_24.0WInstantaneous peak current at hot plug lcc_ip_2 1600mASustained peak current at hot plug lcc_sp_2 1320mASteady state current lcc_2 1154.4mAPower class 3 module cardPower consumptionP_35.0WSustained peak current at hot plug lcc_ip_3 2000mASustained peak current at hot plug lcc_sp_3 1650mAPower class 3 module cardPower consumptionP_41650mASteady state current at hot plug lcc_sp_3 1650mASteady state current at hot plug lcc_sp_4 1650mASustained peak current at hot plug lcc_sp_4 1650mASustained peak current at hot plug lcc_sp_4 1650mASustained peak current at hot plug lcc_sp_4 1731.6mASteady state current lcc_sp_4 <	Power consumption	P_1	-	-	3.0	W																																																																																																																																					
Steady state currentIcc_1865.8mAPower class 2 module cardPower consumptionP_24.0WInstantaneous peak current at hot plugIcc_ip_21600mASustained peak current at hot plugIcc_sp_21320mASteady state currentIcc_21154.4mAPower class 3 module card-5.0WPower consumptionP_32000mASustained peak current at hot plugIcc_ip_31650mASustained peak current at hot plugIcc_sp_31650mASustained peak current at hot plugIcc_sp_31650mASustained peak current at hot plugIcc_ip_41443.0mASustained peak current at hot plugIcc_ip_41980mASustained peak current at hot plugIcc_sp_41731.6mASustained peak current at hot plugIcc_41731.6mASustained peak current at hot plugIcc_41731.6mASustained peak current at hot plugIcc_ip_5>6.0WSustained peak current at hot plugIcc_sp_51731.6mASustained peak current at hot plugIcc_sp_5>2400mASustained peak current at hot plugIcc_	Instantaneous peak current at hot plug	lcc_ip_1	-	-	1200	mA																																																																																																																																					
Power class 2 module cardPower consumption P_2 -4.0WInstantaneous peak current at hot plug lcc_ip_2 1600mASustained peak current at hot plug lcc_sp_2 1320mASteady state current lcc_2 1154.4mAPower class 3 module cardPower consumption P_3 5.0WInstantaneous peak current at hot plug lcc_ip_3 2000mASustained peak current at hot plug lcc_sp_3 1650mASustained peak current at hot plug lcc_sp_3 1650mASteady state current lcc_sp_4 6.0WInstantaneous peak current at hot plug lcc_sp_4 1980mASteady state current lcc_sp_4 1980mASustained peak current at hot plug lcc_sp_4 -1731.6mASustained peak current at hot plug lcc_sp_5 ->6.0WInstantaneous peak current at hot plug lcc_sp_5 ->2400mASteady state current lcc_sp_5 ->2400mASustained peak current at hot plug lcc_sp_5 ->2400mASustained peak current at hot plug lcc_sp_5 ->2400mASustained peak current at hot plug lcc_sp_5 ->2400mA <tr <tr="">Sustained</tr>	Sustained peak current at hot plug	lcc_sp_1	-	-	990	mA																																																																																																																																					
Power consumption P_2 -4.0WInstantaneous peak current at hot plug $ cc_ip_2$ 1600mASustained peak current at hot plug $ cc_sp_2$ 1320mASteady state current $ cc_2$ 1154.4mAPower class 3 module cardPower consumption P_3 5.0WInstantaneous peak current at hot plug $ cc_ip_3$ 1650mASustained peak current at hot plug $ cc_sp_3$ 1443.0mAPower class 4 module cardPower class 5 module cardPower class 5 module cardPower class 4 module cardPower class 5 module card <tr <td="">Power class 5 mo</tr>	Steady state current	lcc_1	-	-	865.8	mA																																																																																																																																					
Instantaneous peak current at hot plugIcc_ip_21600mASustained peak current at hot plugIcc_sp_21320mASteady state currentIcc_21154.4mAPower class 3 module cardPower consumptionP_35.0WInstantaneous peak current at hot plugIcc_ip_32000mASustained peak current at hot plugIcc_sp_31650mASustained peak current at hot plugIcc_sp_31650mASustained peak current at hot plugIcc_sp_31443.0mAPower class 4 module cardPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_4-1980mASustained peak current at hot plugIcc_sp_4-1731.6mAPower class 5 module cardPower class 5 module card <tr <td="">-1731.6<td>Power class</td><td>2 module card</td><td></td><td></td><td></td><td></td></tr> <tr><td>Sustained peak current at hot plugIcc_sp_2-1320mASteady state currentIcc_sp_21154.4mAPower class 3 module cardPower consumptionP_35.0WInstantaneous peak current at hot plugIcc_ip_32000mASustained peak current at hot plugIcc_sp_31650mASustained peak currentIcc_sp_31650mASustained peak currentIcc_sp_31443.0mAPower class 4 module cardPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_41980mASustained peak current at hot plugIcc_sp_41731.6mASustained peak current at hot plugIcc_sp_41731.6mASustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_51980mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>2400mASustained peak current at hot plugIcc_sp_5>2400mA</td><td>Power consumption</td><td>P_2</td><td>-</td><td>-</td><td>4.0</td><td>W</td></tr> <tr><td>Steady state currentIcc_2-1154.4mAPower class 3 module cardPower consumptionP_35.0WInstantaneous peak current at hot plugIcc_ip_32000mASustained peak current at hot plugIcc_sp_31650mASteady state currentIcc_31443.0mAPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASustained peak current at hot plugIcc_sp_41731.6mASustained peak current at hot plugIcc_ip_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WMulticolspan="2">Power class 5 module cardPower class 5 module cardSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp</td><td>Instantaneous peak current at hot plug</td><td>lcc_ip_2</td><td>-</td><td>-</td><td>1600</td><td>mA</td></tr> <tr><td>Power class 3 module cardPower consumption$P_3$5.0WInstantaneous peak current at hot plug$lcc_ip_3$2000mASustained peak current at hot plug$lcc_sp_3$1650mASteady state current$lcc_3$1443.0mAPower class 4 module cardPower consumption$P_4$6.0WInstantaneous peak current at hot plug$lcc_ip_4$2400mASustained peak current at hot plug$lcc_sp_4$1980mASustained peak current at hot plug$lcc_sp_4$1731.6mAPower class 5 module cardPower consumptionP_5>6.0WPower consumptionP_5>6.0WPower class 5 module cardPower consumptionP_5>6.0WSustained peak current at hot pluglcc_ip_5>6.0WSustained peak current at hot pluglcc_ip_5>6.0WPower consumptionP_5>6.0WSustainad peak current at hot pluglcc_ip_5>6.0WSustained peak current at hot pluglcc_ip_5>1980mA<td>Sustained peak current at hot plug</td><td>lcc_sp_2</td><td>-</td><td>-</td><td>1320</td><td>mA</td></td></tr> <tr><td>Power consumptionP_35.0WInstantaneous peak current at hot plug$lcc_ip_3$2000mASustained peak current at hot plug$lcc_sp_3$1650mASteady state current$lcc_3$1443.0mAPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plug$lcc_ip_4$2400mASustained peak current at hot plug$lcc_sp_4$1980mASustained peak current at hot plug$lcc_4$1731.6mASustained peak current at hot pluglcc_ip_5>6.0WInstantaneous peak current at hot plug$lcc_sp_4$1980mASustained peak current at hot pluglcc_sp_5>6.0WInstantaneous peak current at hot pluglcc_sp_5>6.0WSustained peak current at hot pluglcc_sp_5>6.0WSustained peak current at hot pluglcc_sp_5>6.0W</td><td>Steady state current</td><td>Icc_2</td><td>-</td><td>-</td><td>1154.4</td><td>mA</td></tr> <tr><td>Instantaneous peak current at hot plugIcc_ip_32000mASustained peak current at hot plugIcc_sp_31650mASteady state currentIcc_31443.0mAPower class 4 module cardPower class 4 module cardPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower class 5 module cardPower class 5 module cardPower class 5 module cardPower class 5 module cardSteady state currentIcc_sp_5>6.0WSteady state current at hot plugIcc_sp_51731.6mAPower class 5 module cardPower class 5 module cardSteady state current at hot plugIcc_ip_5>6.0WPower consumptionP_5>2400mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>1980mA</td><td>Power class 2</td><td>3 module card</td><td></td><td></td><td></td><td></td></tr> <tr><td>Sustained peak current at hot plugIcc_sp_31650mASteady state currentIcc_sp_31443.0mAPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower consumptionP_5>6.0WSteady state currentIcc_ip_51980mASteady state currentIcc_ip_5>6.0WSteady state currentIcc_sp_41731.6mASteady state currentIcc_sp_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>6.0WSustained peak current at hot plugIcc_ip_5>1980mA</td><td>Power consumption</td><td>P_3</td><td>-</td><td>-</td><td>5.0</td><td>W</td></tr> <tr><td>Steady state current Icc_3 - 1443.0 mA Power class 4 module card Power consumption P_4 - - 6.0 W Instantaneous peak current at hot plug Icc_ip_4 - - 2400 mA Sustained peak current at hot plug Icc_sp_4 - - 1980 mA Steady state current Icc_sp_4 - - 1980 mA Power class 5 module card Pc_4 - - 1980 mA Steady state current Icc_sp_4 - - 1731.6 mA Power consumption P_5 - - >6.0 W Instantaneous peak current at hot plug Icc_ip_5 - - >2400 mA Sustained peak current at hot plug Icc_sp_5 - - >2400 mA</td><td>Instantaneous peak current at hot plug</td><td>Icc_ip_3</td><td>-</td><td>-</td><td>2000</td><td>mA</td></tr> <tr><td>Power class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>2400mA</td><td>Sustained peak current at hot plug</td><td>lcc_sp_3</td><td>-</td><td>-</td><td>1650</td><td>mA</td></tr> <tr><td>Power consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>6.0WSustained peak current at hot plugIcc_ip_5>2400mA</td><td>Steady state current</td><td>Icc_3</td><td>-</td><td>-</td><td>1443.0</td><td>mA</td></tr> <tr><td>Instantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_ip_5>1731.6MA</td><td>Power class</td><td>4 module card</td><td></td><td></td><td></td><td></td></tr> <tr><td>Sustained peak current at hot plugIcc_sp_4-1980mASteady state currentIcc_sp_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>1980mA</td><td>Power consumption</td><td>P_4</td><td>-</td><td>-</td><td>6.0</td><td>W</td></tr> <tr><td>Steady state current Icc_4 - 1731.6 mA Power class 5 module card Power consumption P_5 - - >6.0 W Instantaneous peak current at hot plug Icc_ip_5 - - >2400 mA Sustained peak current at hot plug Icc_sp_5 - - >1980 mA</td><td>Instantaneous peak current at hot plug</td><td>Icc_ip_4</td><td>-</td><td>-</td><td>2400</td><td>mA</td></tr> <tr><td>Power class 5 module card Power consumption P_5 - >6.0 W Instantaneous peak current at hot plug Icc_ip_5 - >2400 mA Sustained peak current at hot plug Icc_sp_5 - - >1980 mA</td><td>Sustained peak current at hot plug</td><td>Icc_sp_4</td><td>-</td><td>-</td><td>1980</td><td>mA</td></tr> <tr><td>Power consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>1980mA</td><td>Steady state current</td><td>Icc_4</td><td>-</td><td>-</td><td>1731.6</td><td>mA</td></tr> <tr><td>Instantaneous peak current at hot plugIcc_ip_5->2400mASustained peak current at hot plugIcc_sp_5->1980mA</td><td>Power class</td><td>5 module card</td><td></td><td></td><td></td><td></td></tr> <tr><td>Sustained peak current at hot plug Icc_sp_5 >1980 mA</td><td>Power consumption</td><td>P_5</td><td>-</td><td>-</td><td></td><td>W</td></tr> <tr><td></td><td>Instantaneous peak current at hot plug</td><td>lcc_ip_5</td><td>-</td><td>-</td><td>>2400</td><td>mA</td></tr> <tr><td>Steady state current Icc_5 >1731.6 mA</td><td>Sustained peak current at hot plug</td><td>Icc_sp_5</td><td>-</td><td>-</td><td>>1980</td><td>mA</td></tr> <tr><td></td><td>Steady state current</td><td>Icc_5</td><td>-</td><td>-</td><td>>1731.6</td><td>mA</td></tr>	Power class	2 module card					Sustained peak current at hot plugIcc_sp_2-1320mASteady state currentIcc_sp_21154.4mAPower class 3 module cardPower consumptionP_35.0WInstantaneous peak current at hot plugIcc_ip_32000mASustained peak current at hot plugIcc_sp_31650mASustained peak currentIcc_sp_31650mASustained peak currentIcc_sp_31443.0mAPower class 4 module cardPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_41980mASustained peak current at hot plugIcc_sp_41731.6mASustained peak current at hot plugIcc_sp_41731.6mASustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_51980mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>2400mASustained peak current at hot plugIcc_sp_5>2400mA	Power consumption	P_2	-	-	4.0	W	Steady state currentIcc_2-1154.4mAPower class 3 module cardPower consumptionP_35.0WInstantaneous peak current at hot plugIcc_ip_32000mASustained peak current at hot plugIcc_sp_31650mASteady state currentIcc_31443.0mAPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASustained peak current at hot plugIcc_sp_41731.6mASustained peak current at hot plugIcc_ip_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WMulticolspan="2">Power class 5 module cardPower class 5 module cardSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp	Instantaneous peak current at hot plug	lcc_ip_2	-	-	1600	mA	Power class 3 module cardPower consumption P_3 5.0WInstantaneous peak current at hot plug lcc_ip_3 2000mASustained peak current at hot plug lcc_sp_3 1650mASteady state current lcc_3 1443.0mAPower class 4 module cardPower consumption P_4 6.0WInstantaneous peak current at hot plug lcc_ip_4 2400mASustained peak current at hot plug lcc_sp_4 1980mASustained peak current at hot plug lcc_sp_4 1731.6mAPower class 5 module cardPower consumption P_5 >6.0WPower consumption P_5 >6.0WPower class 5 module cardPower consumption P_5 >6.0WSustained peak current at hot plug lcc_ip_5 >6.0WSustained peak current at hot plug lcc_ip_5 >6.0WPower consumption P_5 >6.0WSustainad peak current at hot plug lcc_ip_5 >6.0WSustained peak current at hot plug lcc_ip_5 >1980mA <td>Sustained peak current at hot plug</td> <td>lcc_sp_2</td> <td>-</td> <td>-</td> <td>1320</td> <td>mA</td>	Sustained peak current at hot plug	lcc_sp_2	-	-	1320	mA	Power consumptionP_35.0WInstantaneous peak current at hot plug lcc_ip_3 2000mASustained peak current at hot plug lcc_sp_3 1650mASteady state current lcc_3 1443.0mAPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plug lcc_ip_4 2400mASustained peak current at hot plug lcc_sp_4 1980mASustained peak current at hot plug lcc_4 1731.6mASustained peak current at hot plug lcc_ip_5 >6.0WInstantaneous peak current at hot plug lcc_sp_4 1980mASustained peak current at hot plug lcc_sp_5 >6.0WInstantaneous peak current at hot plug lcc_sp_5 >6.0WSustained peak current at hot plug lcc_sp_5 >6.0WSustained peak current at hot plug lcc_sp_5 >6.0W	Steady state current	Icc_2	-	-	1154.4	mA	Instantaneous peak current at hot plugIcc_ip_32000mASustained peak current at hot plugIcc_sp_31650mASteady state currentIcc_31443.0mAPower class 4 module cardPower class 4 module cardPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower class 5 module cardPower class 5 module cardPower class 5 module cardPower class 5 module cardSteady state currentIcc_sp_5>6.0WSteady state current at hot plugIcc_sp_51731.6mAPower class 5 module cardPower class 5 module cardSteady state current at hot plugIcc_ip_5>6.0WPower consumptionP_5>2400mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>1980mA	Power class 2	3 module card					Sustained peak current at hot plugIcc_sp_31650mASteady state currentIcc_sp_31443.0mAPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower consumptionP_5>6.0WSteady state currentIcc_ip_51980mASteady state currentIcc_ip_5>6.0WSteady state currentIcc_sp_41731.6mASteady state currentIcc_sp_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>6.0WSustained peak current at hot plugIcc_ip_5>1980mA	Power consumption	P_3	-	-	5.0	W	Steady state current Icc_3 - 1443.0 mA Power class 4 module card Power consumption P_4 - - 6.0 W Instantaneous peak current at hot plug Icc_ip_4 - - 2400 mA Sustained peak current at hot plug Icc_sp_4 - - 1980 mA Steady state current Icc_sp_4 - - 1980 mA Power class 5 module card Pc_4 - - 1980 mA Steady state current Icc_sp_4 - - 1731.6 mA Power consumption P_5 - - >6.0 W Instantaneous peak current at hot plug Icc_ip_5 - - >2400 mA Sustained peak current at hot plug Icc_sp_5 - - >2400 mA	Instantaneous peak current at hot plug	Icc_ip_3	-	-	2000	mA	Power class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>2400mA	Sustained peak current at hot plug	lcc_sp_3	-	-	1650	mA	Power consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>6.0WSustained peak current at hot plugIcc_ip_5>2400mA	Steady state current	Icc_3	-	-	1443.0	mA	Instantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_ip_5>1731.6MA	Power class	4 module card					Sustained peak current at hot plugIcc_sp_4-1980mASteady state currentIcc_sp_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>1980mA	Power consumption	P_4	-	-	6.0	W	Steady state current Icc_4 - 1731.6 mA Power class 5 module card Power consumption P_5 - - >6.0 W Instantaneous peak current at hot plug Icc_ip_5 - - >2400 mA Sustained peak current at hot plug Icc_sp_5 - - >1980 mA	Instantaneous peak current at hot plug	Icc_ip_4	-	-	2400	mA	Power class 5 module card Power consumption P_5 - >6.0 W Instantaneous peak current at hot plug Icc_ip_5 - >2400 mA Sustained peak current at hot plug Icc_sp_5 - - >1980 mA	Sustained peak current at hot plug	Icc_sp_4	-	-	1980	mA	Power consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>1980mA	Steady state current	Icc_4	-	-	1731.6	mA	Instantaneous peak current at hot plugIcc_ip_5->2400mASustained peak current at hot plugIcc_sp_5->1980mA	Power class	5 module card					Sustained peak current at hot plug Icc_sp_5 >1980 mA	Power consumption	P_5	-	-		W		Instantaneous peak current at hot plug	lcc_ip_5	-	-	>2400	mA	Steady state current Icc_5 >1731.6 mA	Sustained peak current at hot plug	Icc_sp_5	-	-	>1980	mA		Steady state current	Icc_5	-	-	>1731.6	mA
Power class	2 module card																																																																																																																																										
Sustained peak current at hot plugIcc_sp_2-1320mASteady state currentIcc_sp_21154.4mAPower class 3 module cardPower consumptionP_35.0WInstantaneous peak current at hot plugIcc_ip_32000mASustained peak current at hot plugIcc_sp_31650mASustained peak currentIcc_sp_31650mASustained peak currentIcc_sp_31443.0mAPower class 4 module cardPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_41980mASustained peak current at hot plugIcc_sp_41731.6mASustained peak current at hot plugIcc_sp_41731.6mASustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_51980mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>2400mASustained peak current at hot plugIcc_sp_5>2400mA	Power consumption	P_2	-	-	4.0	W																																																																																																																																					
Steady state currentIcc_2-1154.4mAPower class 3 module cardPower consumptionP_35.0WInstantaneous peak current at hot plugIcc_ip_32000mASustained peak current at hot plugIcc_sp_31650mASteady state currentIcc_31443.0mAPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASustained peak current at hot plugIcc_sp_41731.6mASustained peak current at hot plugIcc_ip_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp_5>6.0WMulticolspan="2">Power class 5 module cardPower class 5 module cardSustained peak current at hot plugIcc_sp_5>6.0WSustained peak current at hot plugIcc_sp	Instantaneous peak current at hot plug	lcc_ip_2	-	-	1600	mA																																																																																																																																					
Power class 3 module cardPower consumption P_3 5.0WInstantaneous peak current at hot plug lcc_ip_3 2000mASustained peak current at hot plug lcc_sp_3 1650mASteady state current lcc_3 1443.0mAPower class 4 module cardPower consumption P_4 6.0WInstantaneous peak current at hot plug lcc_ip_4 2400mASustained peak current at hot plug lcc_sp_4 1980mASustained peak current at hot plug lcc_sp_4 1731.6mAPower class 5 module cardPower consumption P_5 >6.0WPower consumption P_5 >6.0WPower class 5 module cardPower consumption P_5 >6.0WSustained peak current at hot plug lcc_ip_5 >6.0WSustained peak current at hot plug lcc_ip_5 >6.0WPower consumption P_5 >6.0WSustainad peak current at hot plug lcc_ip_5 >6.0WSustained peak current at hot plug lcc_ip_5 >1980mA <td>Sustained peak current at hot plug</td> <td>lcc_sp_2</td> <td>-</td> <td>-</td> <td>1320</td> <td>mA</td>	Sustained peak current at hot plug	lcc_sp_2	-	-	1320	mA																																																																																																																																					
Power consumptionP_35.0WInstantaneous peak current at hot plug lcc_ip_3 2000mASustained peak current at hot plug lcc_sp_3 1650mASteady state current lcc_3 1443.0mAPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plug lcc_ip_4 2400mASustained peak current at hot plug lcc_sp_4 1980mASustained peak current at hot plug lcc_4 1731.6mASustained peak current at hot plug lcc_ip_5 >6.0WInstantaneous peak current at hot plug lcc_sp_4 1980mASustained peak current at hot plug lcc_sp_5 >6.0WInstantaneous peak current at hot plug lcc_sp_5 >6.0WSustained peak current at hot plug lcc_sp_5 >6.0WSustained peak current at hot plug lcc_sp_5 >6.0W	Steady state current	Icc_2	-	-	1154.4	mA																																																																																																																																					
Instantaneous peak current at hot plugIcc_ip_32000mASustained peak current at hot plugIcc_sp_31650mASteady state currentIcc_31443.0mAPower class 4 module cardPower class 4 module cardPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower class 5 module cardPower class 5 module cardPower class 5 module cardPower class 5 module cardSteady state currentIcc_sp_5>6.0WSteady state current at hot plugIcc_sp_51731.6mAPower class 5 module cardPower class 5 module cardSteady state current at hot plugIcc_ip_5>6.0WPower consumptionP_5>2400mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>1980mA	Power class 2	3 module card																																																																																																																																									
Sustained peak current at hot plugIcc_sp_31650mASteady state currentIcc_sp_31443.0mAPower class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower consumptionP_5>6.0WSteady state currentIcc_ip_51980mASteady state currentIcc_ip_5>6.0WSteady state currentIcc_sp_41731.6mASteady state currentIcc_sp_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>6.0WSustained peak current at hot plugIcc_ip_5>1980mA	Power consumption	P_3	-	-	5.0	W																																																																																																																																					
Steady state current Icc_3 - 1443.0 mA Power class 4 module card Power consumption P_4 - - 6.0 W Instantaneous peak current at hot plug Icc_ip_4 - - 2400 mA Sustained peak current at hot plug Icc_sp_4 - - 1980 mA Steady state current Icc_sp_4 - - 1980 mA Power class 5 module card Pc_4 - - 1980 mA Steady state current Icc_sp_4 - - 1731.6 mA Power consumption P_5 - - >6.0 W Instantaneous peak current at hot plug Icc_ip_5 - - >2400 mA Sustained peak current at hot plug Icc_sp_5 - - >2400 mA	Instantaneous peak current at hot plug	Icc_ip_3	-	-	2000	mA																																																																																																																																					
Power class 4 module cardPower consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>2400mA	Sustained peak current at hot plug	lcc_sp_3	-	-	1650	mA																																																																																																																																					
Power consumptionP_46.0WInstantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>6.0WSustained peak current at hot plugIcc_ip_5>2400mA	Steady state current	Icc_3	-	-	1443.0	mA																																																																																																																																					
Instantaneous peak current at hot plugIcc_ip_42400mASustained peak current at hot plugIcc_sp_41980mASteady state currentIcc_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_ip_5>1731.6MA	Power class	4 module card																																																																																																																																									
Sustained peak current at hot plugIcc_sp_4-1980mASteady state currentIcc_sp_41731.6mAPower class 5 module cardPower consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>1980mA	Power consumption	P_4	-	-	6.0	W																																																																																																																																					
Steady state current Icc_4 - 1731.6 mA Power class 5 module card Power consumption P_5 - - >6.0 W Instantaneous peak current at hot plug Icc_ip_5 - - >2400 mA Sustained peak current at hot plug Icc_sp_5 - - >1980 mA	Instantaneous peak current at hot plug	Icc_ip_4	-	-	2400	mA																																																																																																																																					
Power class 5 module card Power consumption P_5 - >6.0 W Instantaneous peak current at hot plug Icc_ip_5 - >2400 mA Sustained peak current at hot plug Icc_sp_5 - - >1980 mA	Sustained peak current at hot plug	Icc_sp_4	-	-	1980	mA																																																																																																																																					
Power consumptionP_5>6.0WInstantaneous peak current at hot plugIcc_ip_5>2400mASustained peak current at hot plugIcc_sp_5>1980mA	Steady state current	Icc_4	-	-	1731.6	mA																																																																																																																																					
Instantaneous peak current at hot plugIcc_ip_5->2400mASustained peak current at hot plugIcc_sp_5->1980mA	Power class	5 module card																																																																																																																																									
Sustained peak current at hot plug Icc_sp_5 >1980 mA	Power consumption	P_5	-	-		W																																																																																																																																					
	Instantaneous peak current at hot plug	lcc_ip_5	-	-	>2400	mA																																																																																																																																					
Steady state current Icc_5 >1731.6 mA	Sustained peak current at hot plug	Icc_sp_5	-	-	>1980	mA																																																																																																																																					
	Steady state current	Icc_5	-	-	>1731.6	mA																																																																																																																																					

²

1

3 4.2.3 CDFP Host Board Power Supply Noise Output

4 The host shall generate an effective weighted integrated spectrum RMS noise less than the 5 value in Table 5 when tested by the methods of SFF-8431, section D.17.1. 6

7 4.2.4 CDFP Module Power Supply Noise Output

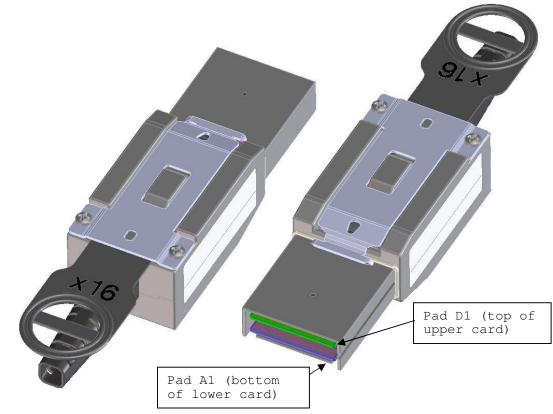
8 The CDFP module shall generate less than the value in Table 5 when tested by the methods 9 of SFF-8431, section D.17.2.

13 4.2.5 CDFP Module Power Supply Noise Tolerance

14 The CDFP module shall meet all requirements and remain fully operational in the presence 1 of a sinusoidal tolerance signal of amplitude given by Table 5, swept from 10 Hz to 10 MHz according to the methods of SFF-8431, section D.17.3. This emulates the worst case 2 noise output of the host.

3 4.3 ESD

Where ESD performance is not otherwise specified, e.g. in the InfiniBand specification, the CDFP module shall meet ESD requirements given in EN61000-4-2, criterion B test specification when installed in a properly grounded cage and chassis. The units are subjected to 15kV air discharges during operation and 8kV direct contact discharges to the case. The CDFP module and host high speed signal contacts shall withstand 1000 V electrostatic discharge based on Human Body Model per JEDEC JESD22-A114-B.


10

11 The CDFP module and all host contacts with exception of the module and host high speed 12 signal contacts shall withstand 2 kV electrostatic discharge based on Human Body Model 13 per JEDEC JESD22-A114-B.

1 5 Mechanical and Board Definition

2 5.1 Introduction

The modules defined in this clause are illustrated in Figures 12 and 13. All pluggable 3 modules and direct attach cable plugs must mate to the connector and cage design defined 4 5 in this specification. There are two module/cage designs defined as 'Style 1' and 'Style 2/Style 3'. Style 1 is a short body module (shown in Figure 12) and Style 2/Style 3 is a 6 longer body module (shown in Figure 13). Style 1, Style 2 and Style 3 modules/cages are 7 mechanically keyed. Therefore style 1, style 2 and style 3 modules/cages are not 8 9 intermateable. The CDFP optical interface shall meet the dimensional specifications of 10 the MPO16 per IEC 61754-7 interface 7-3. Other optical interface solutions such as MXC 11 are left to the discretion of the optical module supplier. The MPO16 adapter shall 12 optically mate with the plug on the optical fiber cabling. Heat sink/clip thermal designs 13 are application specific and not specifically defined by this specification; however a general design is given as an example. 14 15

16

17 Figure 12: CDFP Style 1 direct attach module rendering

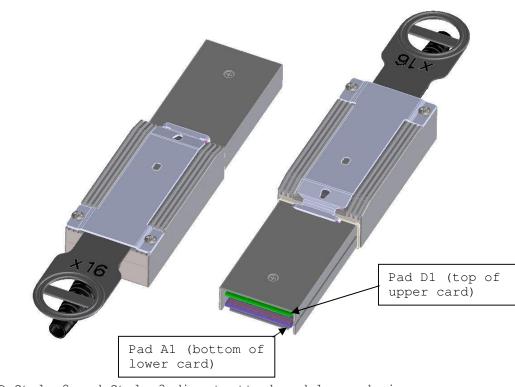


Figure 13: CDFP Style 2 and Style 3 direct attach module rendering

1

2 3

7 5.2 CDFP Datum's and Component Alignment

8 A listing of the datum's for the various components is contained in Table 6. The 9 alignments of some of the datum's are noted. The relationship of the Module, Cage, and 10 Connector relative to the Host Board and Bezel is illustrated in Figures 14 and 15 by the 11 location of the key datum's of each of the components. In order to reduce the complexity 12 of the drawings, all dimensions are considered centered unless otherwise specified.

1 2

Table 6: Definition of Datum's

Datum	Description			
А	Host Board Top Surface			
В	Inside surface of bezel			
С	**Distance between Connector terminal thru holes on host board			
D	*Hard stop on Module			
Е	**Width of Module			
F	Height of Module housing			
G	**Width of Module pc board			
Н	Leading edge of signal contact pads on Module pc board			
J	Top surface of Module pc board			
K	*Host board thru hole #1 to accept connector guide post			
L	*Host board thru hole #2 to accept connector guide post			
М	**Width of bezel cut out			
N	*Connector alignment pin			
Р	**Width of inside of cage at EMI gasket (when fully compressed)			
R	Height of inside of cage at EMI gasket (when fully compressed)			
S	Seating plane of cage on host board			
Т	*Hard stop on cage			
V	Length of heat sink clip			
W	Seating surface of the heat sink on the cage			
Χ & Υ	Host board horizontal and depth datum's			
Z	**Width of heat sink surface that fits into clip			
AA	**Connector slot width			
BB	Seating plane of cage on host board			
CC	Length of boss on heat sink that fits inside of the cage			
DD	Top surface of connector back shell			
	K, L, N and T are aligned when assembled (see figures 14 and 15)			
**Centerlines of datum's AA, C, E, G, M, P and Z are aligned on the same				
vertical axis				

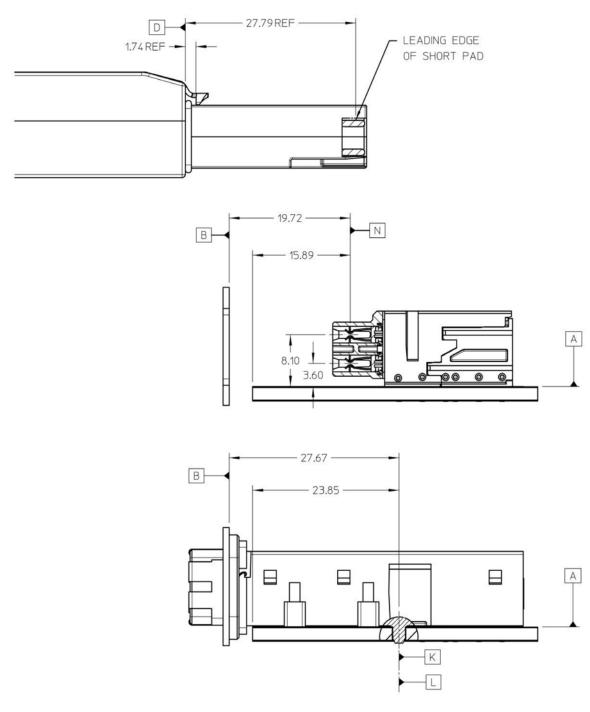
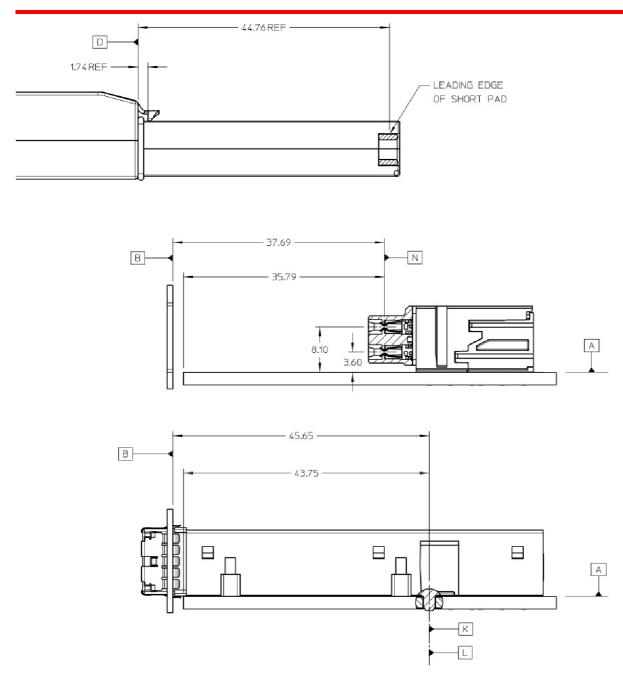
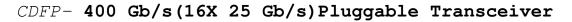



Figure 14: CDFP Style 1 Datum Alignment, Depth



2 Figure 15: CDFP Style 2 and Style 3 Datum Alignment, Depth

3 5.3 CDFP Module Mechanical Package Dimensions

A mechanical outline is used for all CDFP Modules and direct attach cables. The preferred method of removing the module from the cage assembly is by a pull tab type actuation method. The module shall provide a means to self-lock with the cage upon insertion. The package dimensions for the CDFP Module are defined in Figures 16, 19 and 23. The dimensions that control the size of the module that extends outside of the cage are listed as maximum dimensions in Figures 16, 19 and 23. Note: All dimensions are in mm.

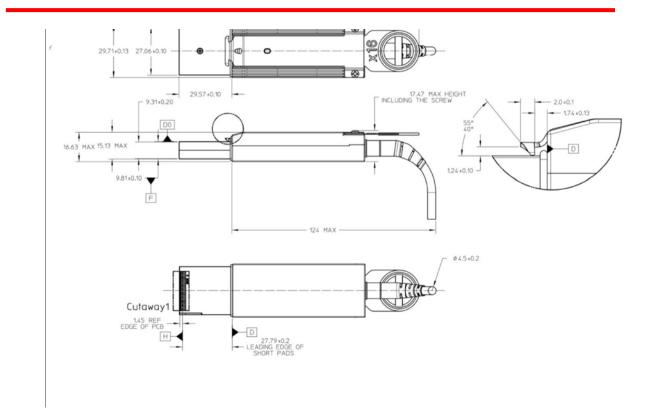
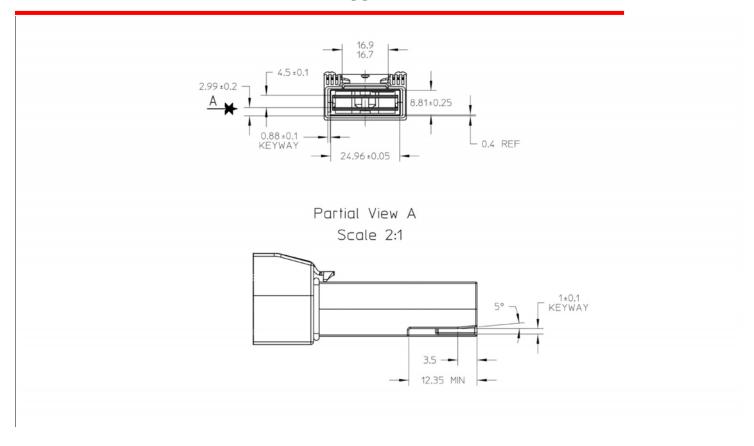
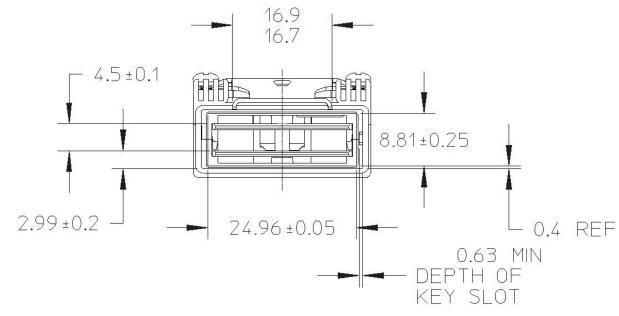




Figure 16: Drawing of CDFP Style 1 Module

1

Figure 17: View of module plug Style 1

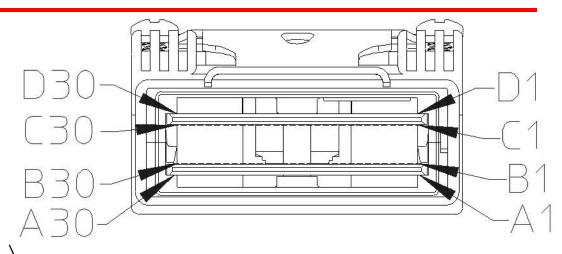
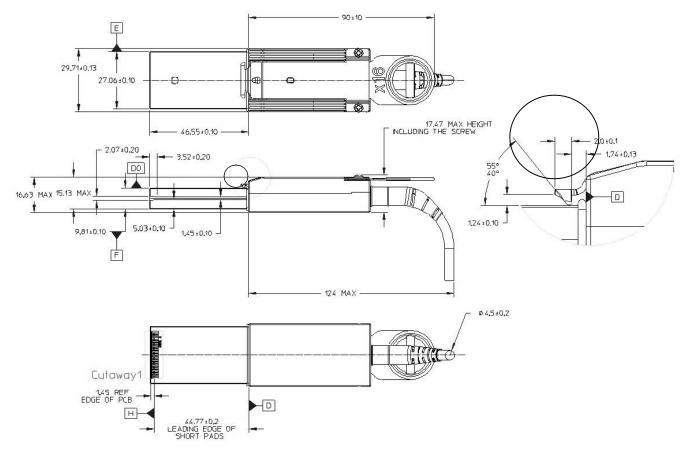
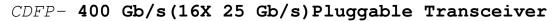
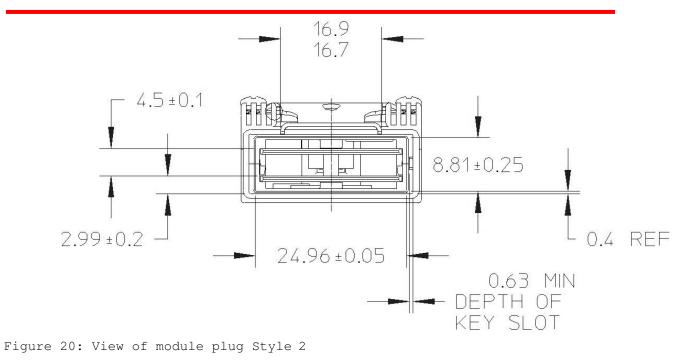
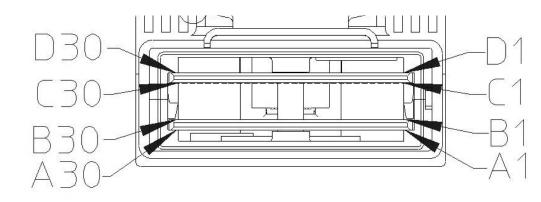
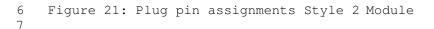
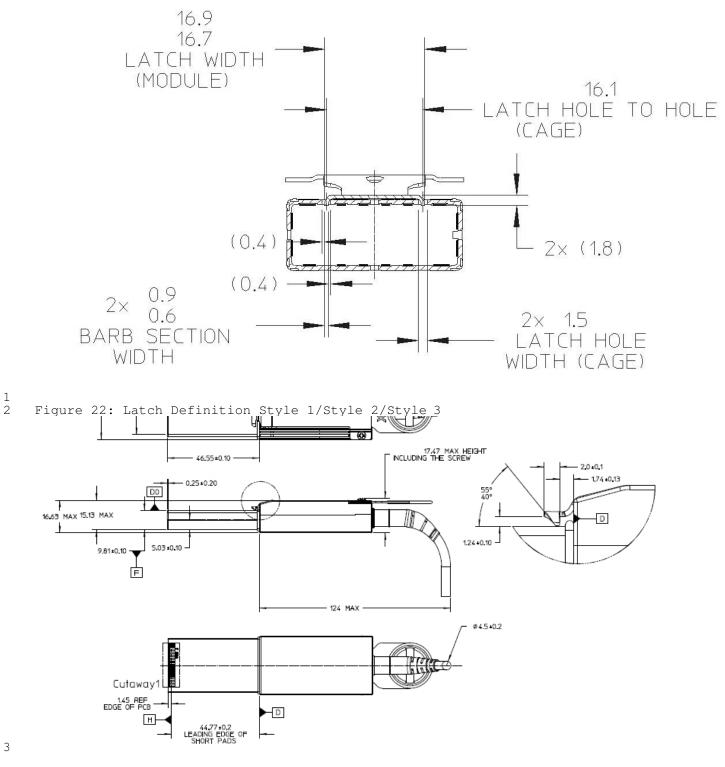
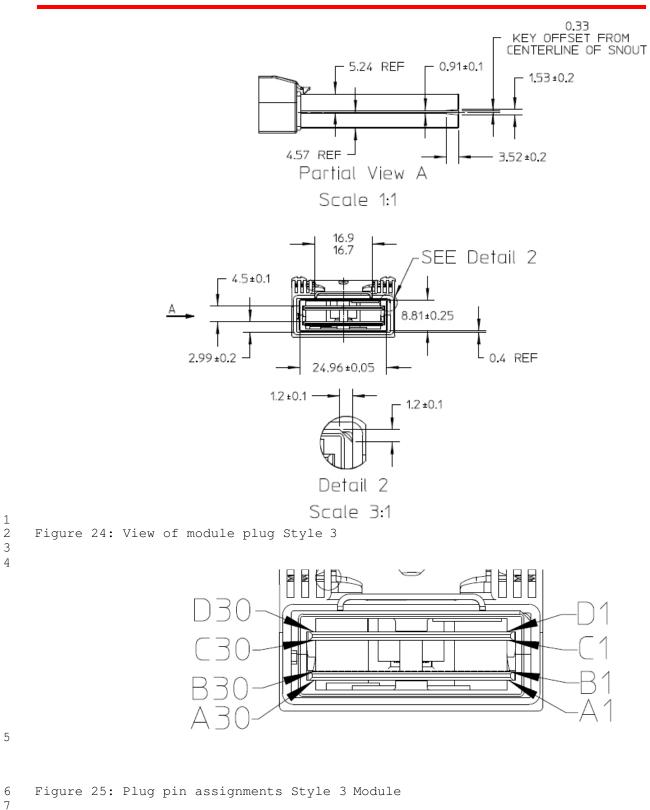


Figure 18: Plug pin assignments Style 1 Module


Figure 19: Drawing of CDFP Style 2 Module



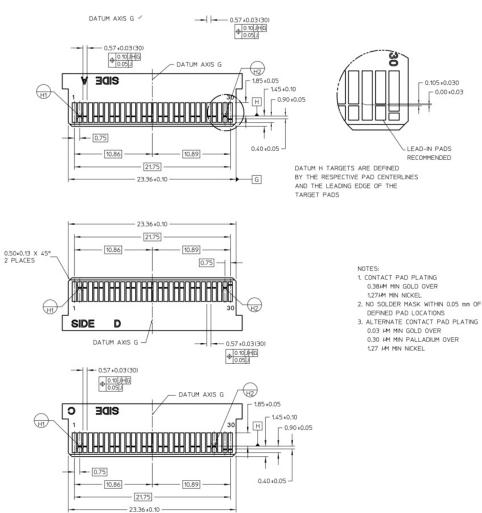
4 Figure 23: Drawing of CDFP Style 3 Module 5

5.3.1 Mating of CDFP Module PCB to CDFP Electrical Connector

The CDFP Module contains a printed circuit board that mates with the CDFP electrical connector. The pads are designed for a sequenced mating:

```
First mate - ground contacts
Second mate - power contacts
Third mate - signal contacts
```

10 The pattern layout for the CDFP Printed Circuit Board is shown in Figure 19.


11

1

2 3

4

5

12

14 Figure 26: Pattern Layout for CDFP Style 1/Style 2/Style 3 Printed Circuit Board 15 16

1 5.4 Host PCB Layout

2 3 A typical host board mechanical layout for attaching the CDFP Host Connector and Cage 4 System is shown in 5 Figure 27 and Figure 28. Location of the pattern on the host board is application specific. See Sub clause 5.6 for details on the location of the pattern relative to the 6 7 bezel. 8 To achieve 25 Gb/s performance pad dimensions and associated tolerances must be adhered 9 to and attention paid to the host board layout. 10

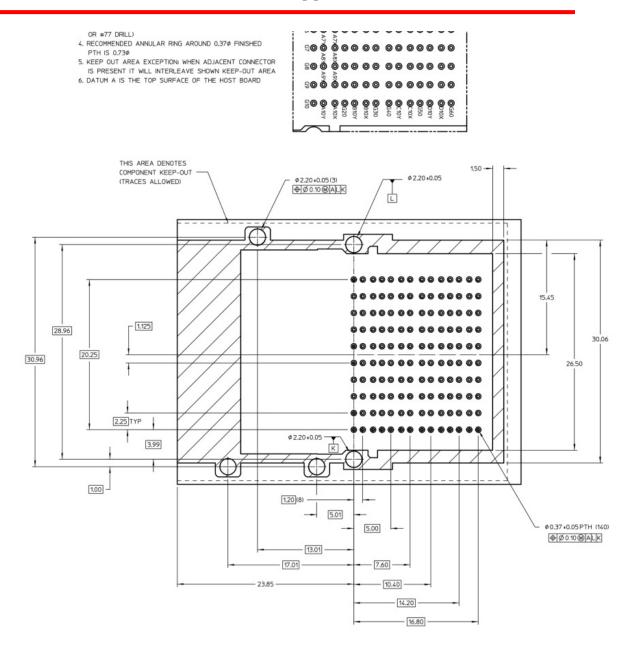
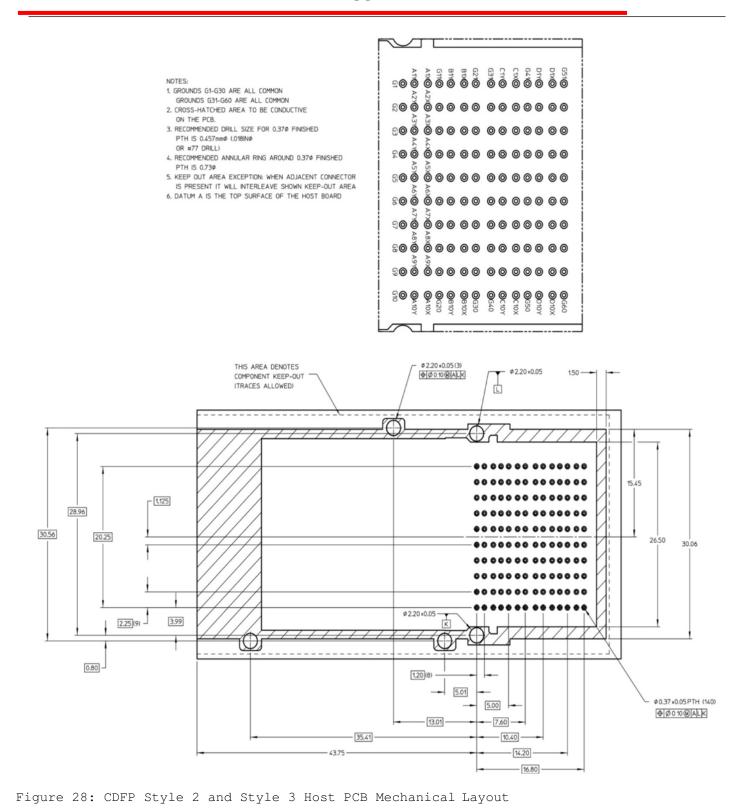



Figure 27: CDFP Style 1 Host PCB Mechanical Layout

Page 45

5.4.1 Insertion, Extraction and Retention Forces for CDFP Modules

2 3 4

5

6

1

The requirements for insertion forces, extraction forces and retention forces are specified in Table 7. The CDFP cage and module design combinations must ensure excessive force applied to a cable does not damage the CDFP cage or host connector. If any part is damaged by excessive force, it should be the cable or media module and not the cage or host connector which is part of the host system.

7 8 9

Table 7: Insertion, Extraction and Retention Forces

Measurement	Min	Max	Units	Comments
CDFP Module insertion	0	40	N	
CDFP Module extraction	0	30	N	
CDFP Module retention	90	N/A	N	No damage to module below 90N
Cage retention (Latch	180	N/A	N	No damage to latch below 180N
strength)				
Cage retention in Host Board	114	N/A	N	Force to be applied in a
				vertical direction, no damage
				to cage
Insertion / removal cycles,	100	N/A	Cycles	Number of cycles for the
connector / cage				connector and cage with
				multiple modules.
Insertion / removal cycles,	50	N/A	Cycles	Number of cycles for an
CDFP Module				individual module.

10

11 5.5 Bezel for Systems Using CDFP Modules

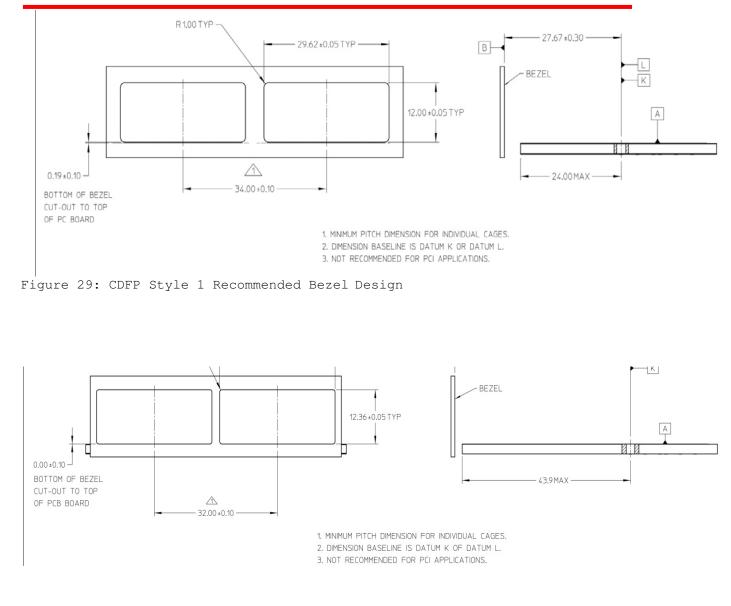
Host enclosures that use CDFP devices should provide appropriate clearances between the CDFP Modules to allow insertion and extraction without the use of special tools and a bezel enclosure with sufficient mechanical strength. The CDFP Module insertion slot should be clear of nearby moldings and covers that might block convenient access to the latching mechanisms, the CDFP Module, or the cables that plug directly into the cage.

18 The minimum recommended host board thickness for belly-to-belly mounting of the 19 assemblies is defined in 5.5.1.

20 21 22

25

27


21 The bezel thickness range shall be 0.8 mm to 2.6 mm.

23 5.5.1 Cage Assembly

24 The front surface of the cage assembly passes through the bezel.

26 The bezel surfaces must be conductive and connected to chassis ground.

The minimum recommended host board thickness for belly to belly mounting of the connector and cage assemblies is 2.2mm minimum.

9 Figure 30: CDFP Style 2 and Style 3 Recommended Bezel Design

10

8

11 12

13 5.6 CDFP Host Electrical Connector and Cage

14 Figure 31 shows the host connector in a Style 1 cage assembly. Figure 32 shows the host 15 connector in a Style 2 cage assembly. Figure 33 shows the host connector in a Style 3 16 cage assembly.

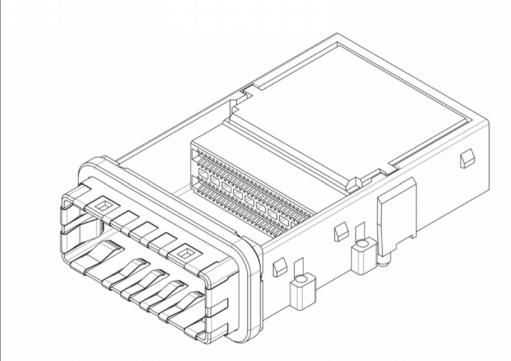
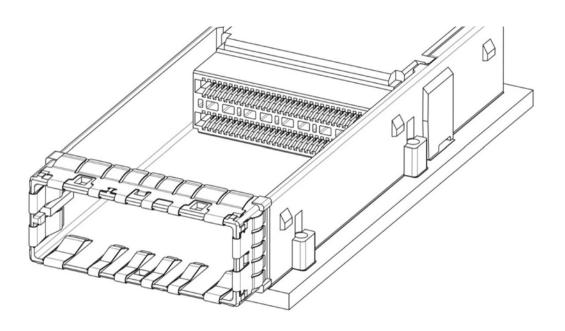
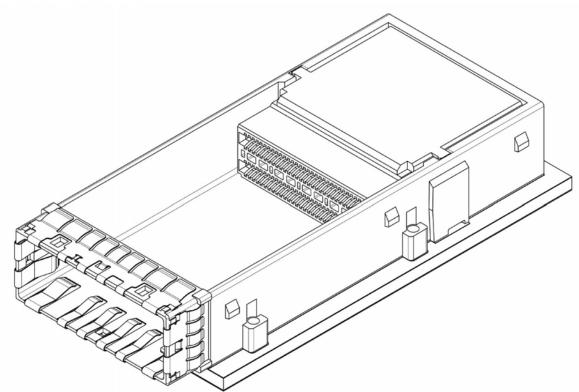
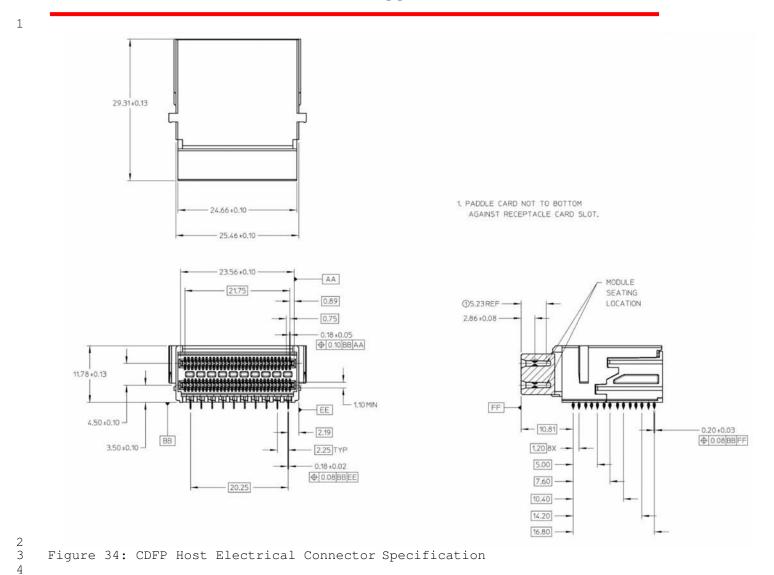




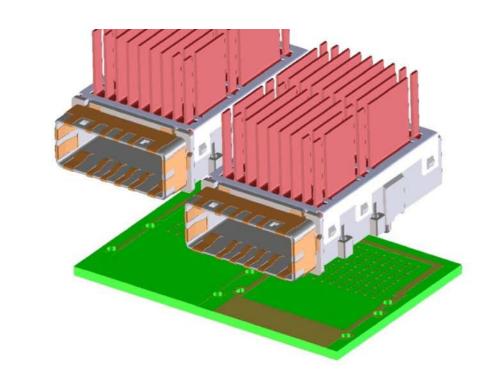
Figure 31: CDFP Style 1 Host Electrical Connector and Cage Illustration

7 Figure 32: CDFP Style 2 Host Electrical Connector and Cage Illustration 8



1

2 Figure 33: CDFP Style 3 Host Electrical Connector and Cage Illustration


3 5.7 CDFP Host Electrical Connector

The CDFP host electrical connector is a 120-contact, right angle press-fit connector. The mechanical specifications for the connector are listed in Table 6 and shown in Figure A. Note: The connector shown is identical for Style 1, Style 2 and Style 3.

6 5.8 Individual CDFP Cage Assembly Versions

7 There are three Styles for cage assemblies: Style 1 uses a gasket ring for EMI 8 suppression. Style 2 and Style 3 use spring fingers for EMI suppression. An exploded view 9 of the Style 1 cage assembly is shown in Figure 35. An exploded view of the Style 2 cage 10 assembly is shown in Figure 36 and an exploded view of the Style 3 cage assembly is shown 11 in Figure 37. Style 1 cages are mechanically keyed to only accept Style 1 modules. Style 12 2 cages are mechanically keyed to only accept Style 2 modules. Style 3 cages are 13 mechanically keyed to only accept Style 3 modules.

1 2

4 Figure 35: Style 1 Cage and Optional Heat Sink Design (exploded view)

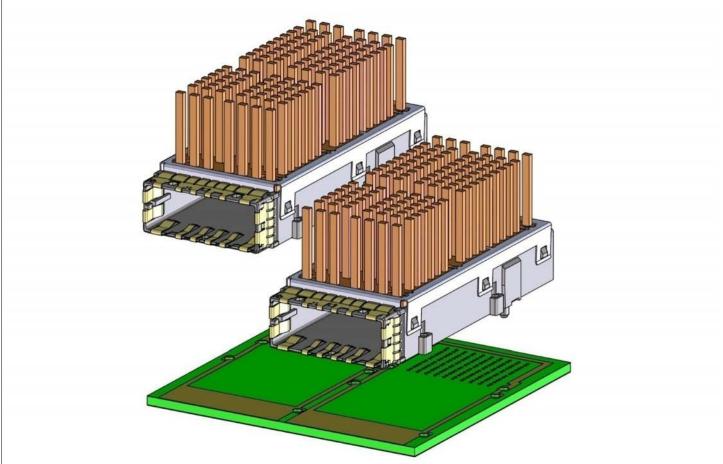


Figure 36: Style 2 Cage and Optional Heat Sink Design (exploded view)

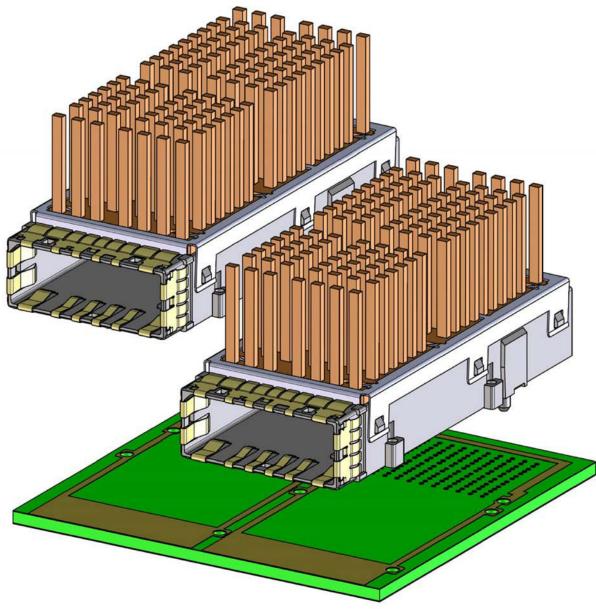
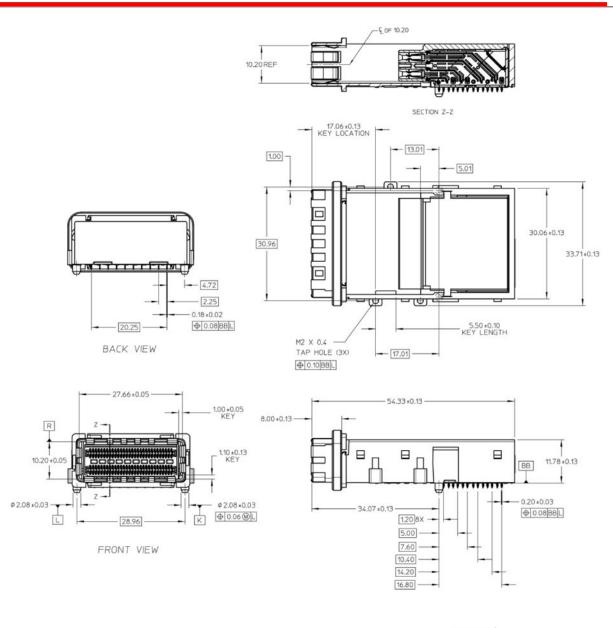
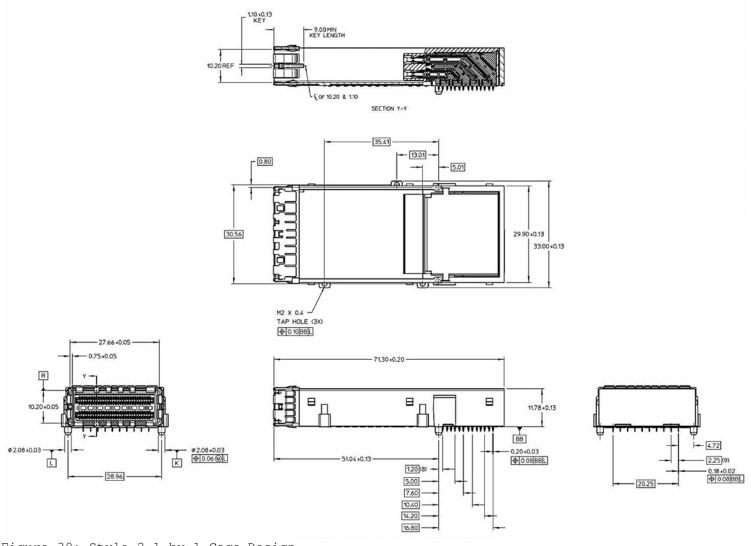
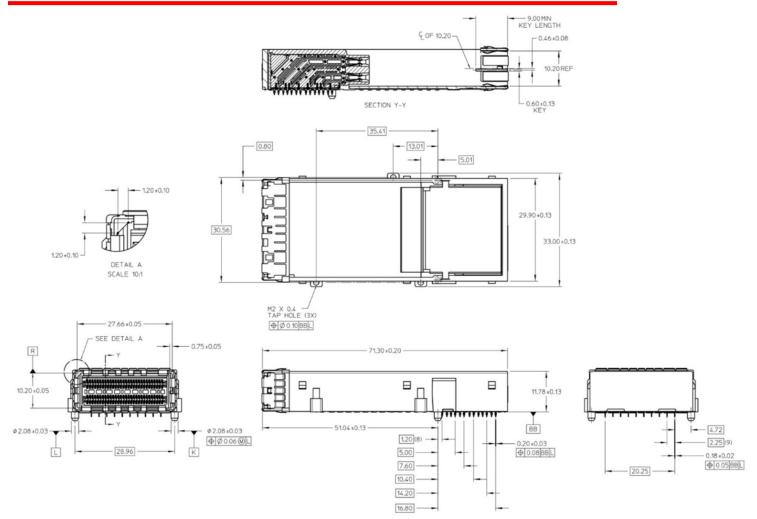



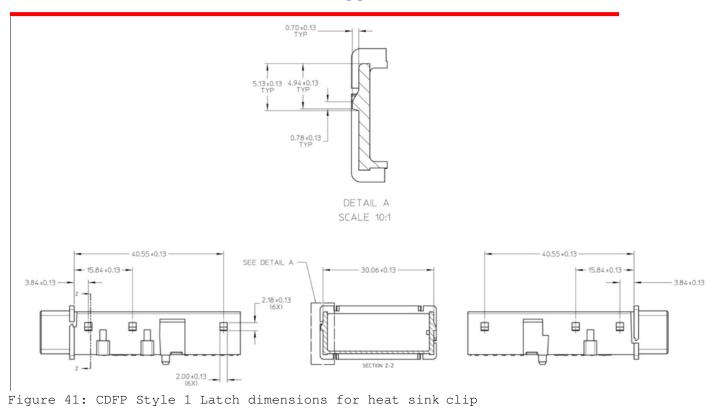
Figure 37: Style 3 Cage and Optional Heat Sink Design (exploded view)

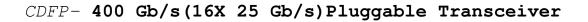
The detailed drawings for the Style 1, Style 2 and Style 3 cage assemblies are shown in Figures 38, 39 and 40.

LUFF CONFIDENTIAL

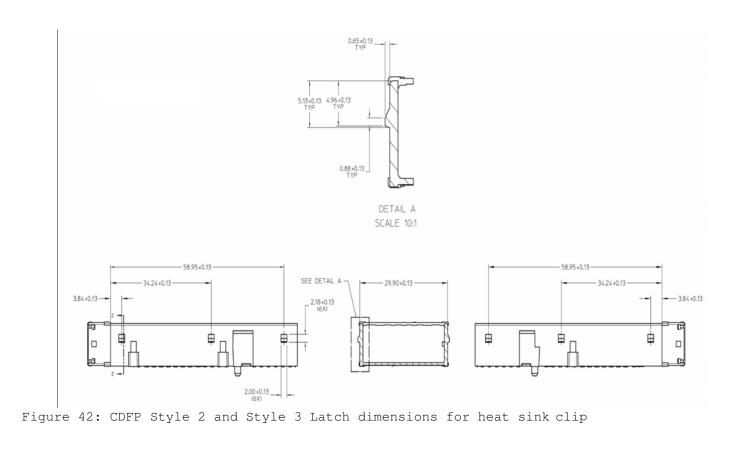
Figure 38: Style 1 1-by-1 Cage Design

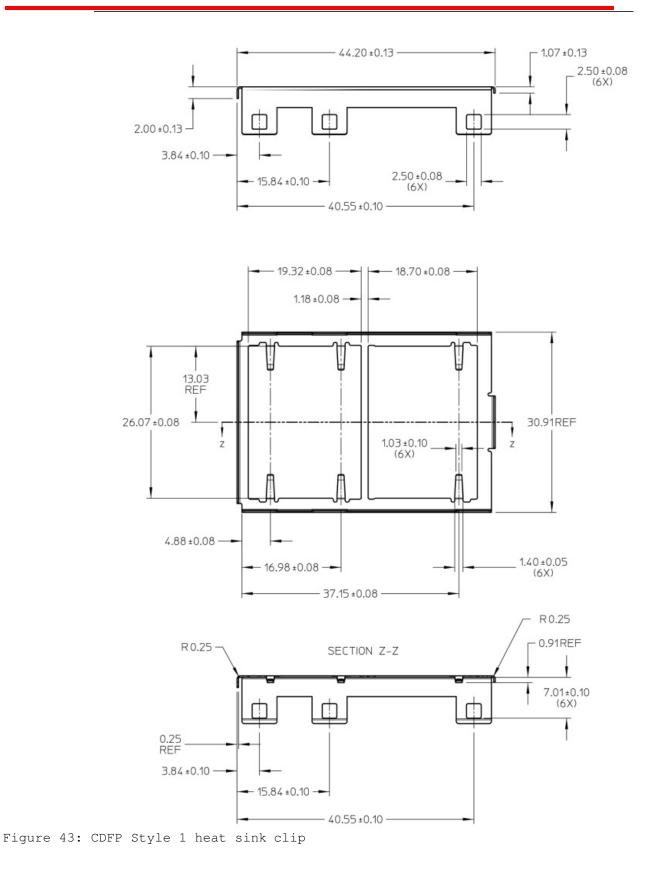

Figure 39: Style 2 1-by-1 Cage Design

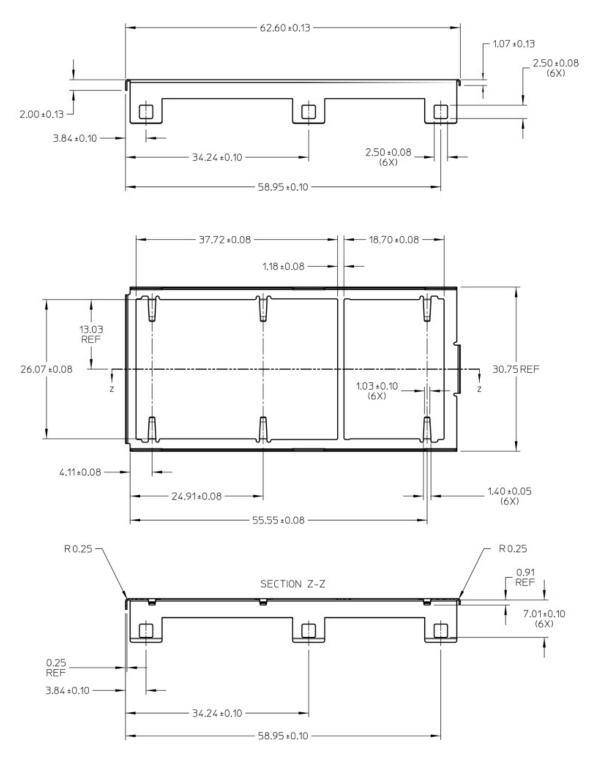


2 Figure 40: Style 3 1-by-1 Cage Design


3 5.8.1 CDFP Heat Sink Clip Dimensions

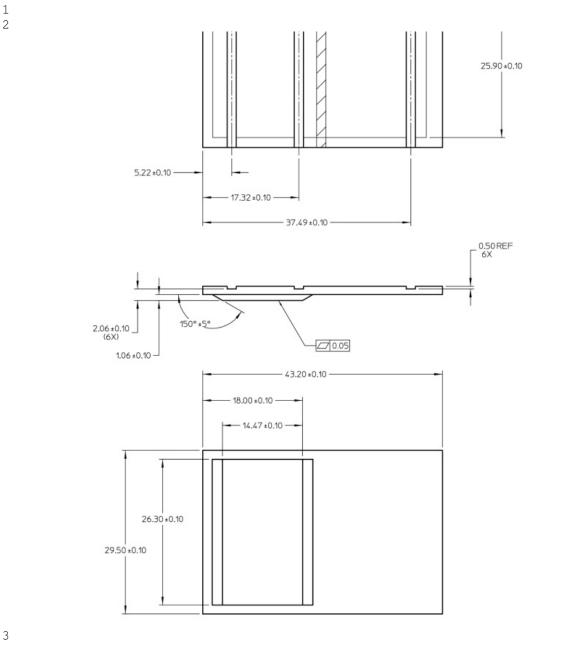
The heat sink clip and attachment points defined in Figures 41-44 are for reference only. The design of the heat sink clip, heat sink and their attachment features on the connector/cage assembly are vendor specific and not defined in this document. When fastened to the cage, the clip will provide a minimum force of 5 Newtons at the interface of the heat sink and CDFP Module. The clip is designed to permit a heat sink to be fastened into the clip then assembled to the cage and to expand slightly during module insertion in order to maintain a contact force between the module and heat sink.



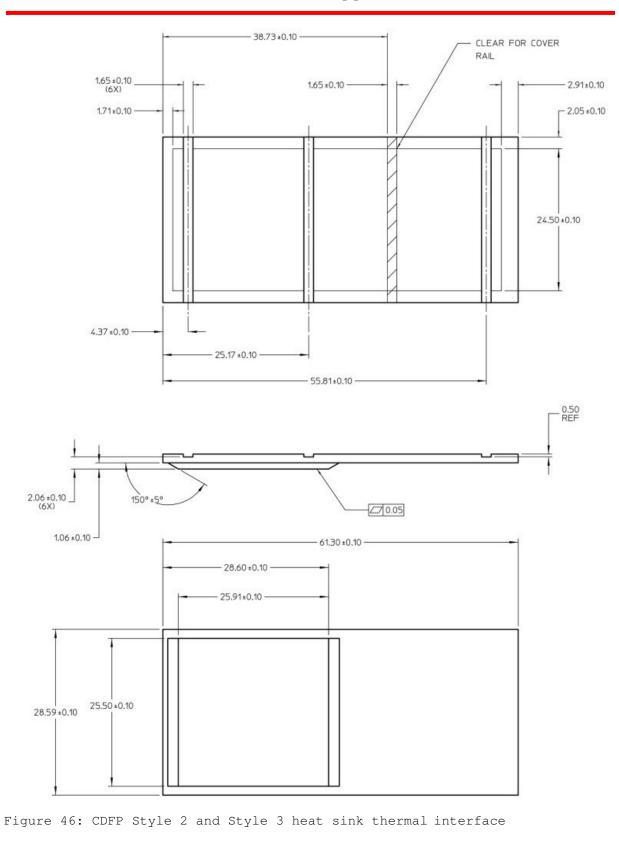


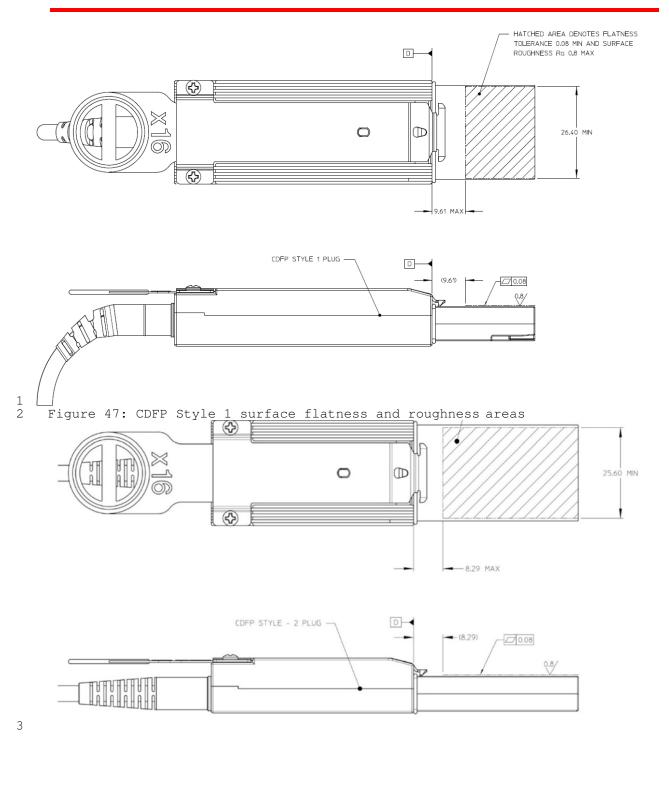
Revision 3.0

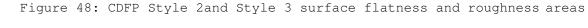
2 Figure 44: CDFP Style 2 and Style 3 heat sink clip


3 5.8.2 Light Pipes

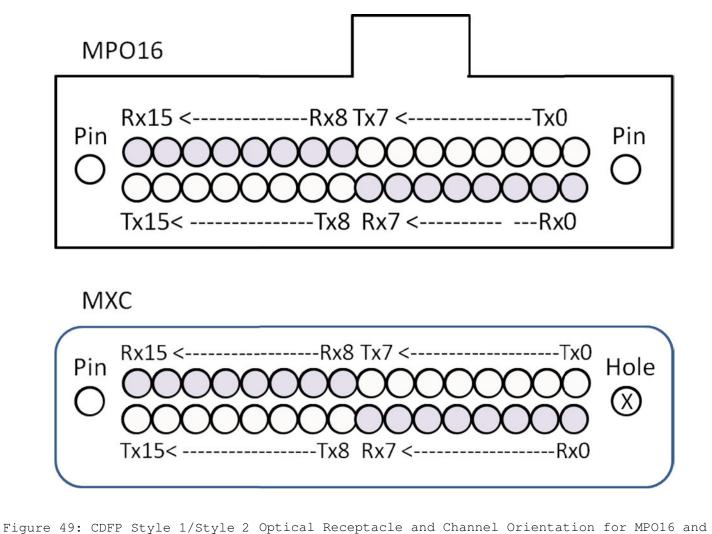
4 The use of light pipes to indicate status of the module is application specific and not 5 defined in this document.


1 5.9 Thermal interface


2 To provide optimal thermal management performance of the CDFP module/AOC, the portion of the module housing that is in contact with the heat sink should have mechanical 3 properties that allow maximum thermal transfer. Figures 45thru 48 provide the mechanical 4 flatness and roughness that is required on the CDFP modules and the specific regions of 5 the module where these mechanical specifications apply. Note that the roughness 6 7 specification applies to new modules since application of the module into the connector 8 and heat sink can cause scratches, which although they are considered cosmetic to 9 performance, could change the roughness measurement.

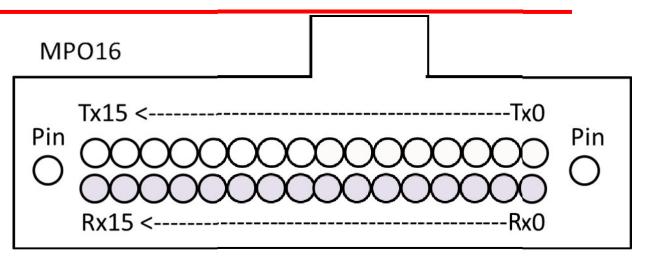


4 5 Figure 45: CDFP Style 1 heat sink thermal interface

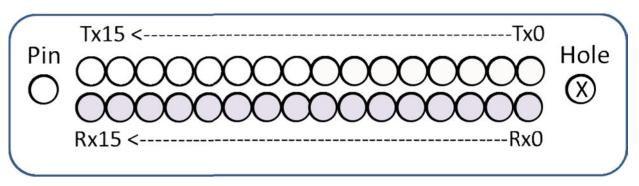

4 5 6

1 5.10 Dust / EMI Cover

In order to prevent contamination of the internal components and to optimize EMI performance, it is recommended that a Dust/EMI Cover be inserted into the cage assembly when no module is present. During installation, the front flange on the cover shall be seated against the front surface of the bezel to prevent dust from entering the equipment. The conductivity of the materials should be chosen for the Dust/EMI Cover to block EMI emissions.


9 5.11 Optical Interface

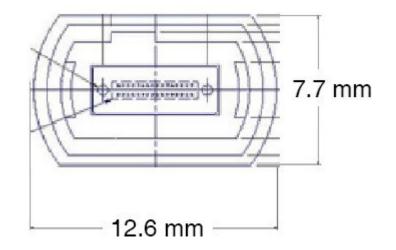
10 The CDFP optical interface port shall be either a male MPO16 connector as specified in IEC 61754-7 (see Figures 49, 50 and 51) or a dual LC as specified in IEC 61754-20. Other 11 12 optical interfaces are left to the discretion of the module vendor. 13 For Style 1 and Style 2 the eight fiber positions on the upper right as shown in Figure 49, with the key up, are used for the optical transmit signals (Channel 0 through 7). The 14 15 fiber positions on the lower right are used for the optical receive signals (Channel 0 through 7). The eight fiber positions on the lower left are used for the optical transmit 16 17 signals (Channel 8 through 15). The fiber positions on the upper left are used for the optical receive signals (Channel 8 through 15). Note: Two alignment pins are present. 18 19 For Style 3 the sixteen fiber positions in the upper row as shown in Figure 50 with the key up are used for the optical transmit signals. (Channel 0 through 15). The fiber 20 positions in the lower row as shown in Figure 50 are used for the optical receive signals 21 22 (Channels 0-15). Note: Two alignment pins are present.



Revision 3.0

MXC connector

MXC



1 2 3 4 5

Figure 50: CDFP Style 3 Optical Receptacle and Channel Orientation for MPO16 and MXC connector

6 MP016 Optical Cable connection

Aligned key (Type B) MPO16 patch cords should be used to ensure alignment of the signals between the modules. The aligned key patch cord is defined in TIA-568 and shown in Figure 51. The optical connector is orientated such that the keying feature of the MPO16 receptacle is on the top.

2 Figure 51: CDFP MPO16 Cable Plug 3

4 Dual LC Optical Cable connection

5 The Dual LC optical cable patch cord is defined in TIA/EIA-604-10A. 7

8 6 Environmental and Thermal

9 6.1 Thermal Requirements

10 The CDFP module shall operate within one or more of the case temperatures ranges defined 11 in Table 8. The temperature ranges are applicable between 60m below sea level and 1800m 12 above sea level, (Ref. NEBS GR-63) utilizing the host systems designed airflow. 13

14 15

1

Table 8: Temperature Range Class of operation

Class	Case Temperature Range
Standard	0 through 70C
Extended	-5 through 85C
Industrial	-40 through 85C

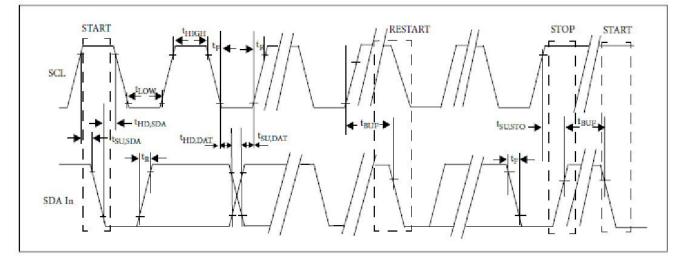
16

17 CDFP is designed to allow for up to 13 adjacent modules, in a standard 19 in. rack, with 18 the appropriate thermal design for cooling/airflow. (Ref. NEBS GR-63)

1 7 CDFP Style 1/Style 2 Management Interface

2 7.1 Introduction

A management interface, as already commonly used in other form factors like GBIC, SFP, and XFP, is specified in order to enable flexible use of the module by the user. The specification has been changed in order to adopt the use of a multi-channel module. Some timing requirements are critical especially for a multi-channel device, so the interface speed has been increased. This CDFP specification is based on the SFF-8636 specification however it is not backward compatible. Address 128 Page00 is used to indicate the use of the CDFP memory map rather than the QSFP memory map.


10 7.2 Timing Specification

11 7.2.1 Introduction

Low speed signaling is based on Low Voltage CMOS (LVCMOS) operating at Vcc. Hosts shall use a pull-up resistor connected to a Vcc_host on the two-wire interface SCL (clock) and SDA (Data) signals. Detailed electrical specification is given in Sub clause 4.1.2. Nomenclature for all registers more than 1 bit long is MSB-LSB.

17 7.2.2 Management Interface Timing Specification

In order to support a multi-channel device a higher clock rate for the serial interface is considered. The timing requirements are shown in Figure 43 and specified in Table 8. CDFP is positioned to leverage two-wire timing (Fast Mode devices) to align the use of related cores on host ASICs. This sub clause closely follows the XFP MSA specification.

22 23

-3 Figure 52: CDFP Timing Diagram

24

25

The two-wire serial interface address of the CDFPlower card is (B2h). The two-wire serial interface address of the CDFP upper card is (BAh).

28

29 7.2.3 Serial Interface Protocol

30 The module card asserts LOW for clock stretch on SCL.

7.2.3.1 Management Timing Parameters

The timing parameters for the two-wire interface to the CDFP module are shown in Table 8.

3 4 5

1 2

Table 9: Management Interface timing parameters

Parameter	Symbol	Min	Max	Unit	Conditions
Clock Frequency	fSCL	0	400	kHz	
Clock Pulse Width Low	tLOW	1.3		us	
Clock Pulse Width High	tHIGH	0.6		us	
Time bus free before new transmission can start	tBUF	20		us	Between STOP and START and between ACK and ReStart
START Hold Time	tHD.SDA	0.6		us	
START Set-up Time	tSU.SDA	0.6		us	
Data In Hold Time	tHD.DAT	0		us	
Data in Set-up Time	tSU.DAT	0.1		us	
Input Rise Time (400kHz)	tR.400		300	ns	From (VIL,MAX-0.15) to (VIH, MIN +0.15)
Input Fall Time (400kHz)	tF.400		300	ns	From (VIH,MIN + 0.15) to (VIL,MAX - 0.15)
STOP Set-up Time	tSU.STO	0.6		us	

6 7

11 12 13

8 7.3 Memory Interaction Specifications

9 CDFP memory transaction timings are given in Table 9. Single byte writable memory blocks 10 are given in Table 10. Multiple byte writable memory blocks are defined in Table 11.

Table 10: CDFP Memory Specification

14		Parameter	Symbol	Min	Max	Unit	Conditions
15		Serial Interface	T_clock_hold		500	us	Maximum time the CDFP
16		Clock Hold off					Module card may hold the
17		"Clock Stretching"					SCL line low before
18		_					continuing with a read or
19							write operation
20		Complete Single	tWR		40	ms	Complete (up to) 4 Byte
21		or Sequential					Write
22		Write					
23		Endurance (Write		50K		cycles	70 ° C
24		Cycles)				_	
25							

25 26 27

Table 11: Single Byte Writable Memory Block

Address	Volatile or	Description
	Nonvolatile	
86	Volatile	Control register
87	Volatile	Rx Rate select
		register
88	Volatile	Tx Rate select
		register
127	Volatile	Page Select Byte

1 2

Table 12: Multiple Byte Writable Memory Block

	• HOTCTPT		TICADIC NEMOLY DIOCK	
	Address	#	Volatile/NonVolatile	Description
		Bytes		
	89-92	4	Volatile	Application select per channel
ĺ	100-106	7	Volatile	Module Mask
ĺ	119-122	4	Volatile	Password Change Entry Area
				(Optional)
	123-126	4	Volatile	Password Entry Area (Optional)
ĺ	128-255	128	Non-Volatile	User Writable memory - Page 02h
Ī	225-241	16	Volatile	Vendor Specific Channel Controls-
				Page 03h
	242-253	12	Volatile	Channel Monitor Masks - Page 03h

3

4 7.3.1 Timing for Soft Control and Status Functions

5 Timing for CDFP soft control and status functions are described in Table 13.

1 2

Table 13: Timing for CDFP soft control and status functions

	IOI CDII SOIC		1	
Parameter	Symbol	Max	Unit	Conditions
	t_init	2000	ms	Time from power on ² , hot plug or rising edge
Initialization				of reset until the module card is fully
time				functional ³ This time does not apply to non-
				Power level 0 modules in Low Power State
Reset Init	t_reset_init	2	us	A Reset is generated by a low level longer
Assert Time	L_TESEC_THIC	2	us	
Assert lime				than the minimum reset pulse time present on
			L	the ResetL pin
Serial Bus	t_serial	2000	ms	Time from power on ² until module card
Hardware Ready				responds to data transmission over the two-
Time				wire serial bus
Monitor Data	t_data	2000	ms	Time from power on ² to DataNotReady, (bit 0
Ready Time				of Byte 2), deasserted and IntL asserted
Reset Assert	t_reset	2000	ms	Time from rising edge on the RstL pin until
Time	C_10000	2000	1110	the module card is fully functional ³
IntL Assert	ton Thet	200		Time from occurrence of condition triggering
	ton_IntL	200	ms	
Time		500	<u> </u>	IntL until Vout:IntL=Vol
IntL Deassert	toff_IntL	500	us	Time from clear on read ⁴ operation of
Time				associated flag until Vout:IntL=Voh. This
				includes deassert times for Rx LOS, Tx Fault
				and other flag bits.
Rx LOS Assert	ton_los	100	ms	Time from Rx LOS state to Rx LOS bit set
Time				(value = 1b) and IntL asserted.
Tx Fault Assert	ton_Txfault	200	ms	Time from Tx Fault state to Tx Fault bit set
Time	con_inidaic	200	1115	(value=1b) and IntL asserted.
	top flog	200		Time from occurrence of condition triggering
Flag Assert	ton_flag	200	ms	
Time				flag to associated flag bit set (value=1b)
				and IntL asserted.
Mask Assert	ton_mask	100	ms	Time from mask bit set (value=1b) ¹ until
Time				associated IntL assertion is inhibited
Mask Deassert	toff_mask	100	ms	Time from mask bit cleared (value=0b) ¹ until
Time				associated IntL operation resumes
Application or	t ratesel	100	ms	Time from change of state of Application or
Application or Rate Select	t_ratesel	100	ms	Time from change of state of Application or Rate Select bit ¹ until transmitter or
Rate Select	t_ratesel	100	ms	Rate Select bit ¹ until transmitter or
	t_ratesel	100	ms	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with
Rate Select Change Time				Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification
Rate Select Change Time Power_override	t_ratesel ton_Pdown	100	ms ms	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until
Rate Select Change Time Power_override or Power_set				Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power
Rate Select Change Time Power_override or Power_set Assert Time	ton_Pdown	100		Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1
Rate Select Change Time Power_override or Power_set Assert Time Power_override				Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1 Time from P_Down bit cleared (value = 0b) ¹
Rate Select Change Time Power_override or Power_set Assert Time	ton_Pdown	100	ms	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1
Rate Select Change Time Power_override or Power_set Assert Time Power_override or Power_set	ton_Pdown	100	ms	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1 Time from P_Down bit cleared (value = 0b) ¹
Rate Select Change Time Power_override or Power_set Assert Time Power_override or Power_set Deassert Time	ton_Pdown toff_Pdown	100	ms ms	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1 Time from P_Down bit cleared (value = 0b) ¹ until the module card is fully functional ³
Rate Select Change Time Power_override or Power_set Assert Time Power_override or Power_set Deassert Time Note 1. Measure	ton_Pdown toff_Pdown ed from falling	100 300 g cloc	ms ms k edge	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1 Time from P_Down bit cleared (value = 0b) ¹ until the module card is fully functional ³ after stop bit of write transaction
Rate Select Change Time Power_override or Power_set Assert Time Power_override or Power_set Deassert Time Note 1. Measure Note 2. Power of	ton_Pdown toff_Pdown ed from falling on is defined	100 300 g cloc as the	ms ms k edge insta	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1 Time from P_Down bit cleared (value = 0b) ¹ until the module card is fully functional ³ after stop bit of write transaction nt when supply voltages reach and remain at or
Rate Select Change Time Power_override or Power_set Assert Time Power_override or Power_set Deassert Time Note 1. Measure Note 2. Power of above the minimum	ton_Pdown toff_Pdown ed from falling on is defined m level specif.	100 300 g cloc as the ied in	ms ms k edge insta Table	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1 Time from P_Down bit cleared (value = 0b) ¹ until the module card is fully functional ³ after stop bit of write transaction nt when supply voltages reach and remain at or 4
Rate Select Change Time Power_override or Power_set Assert Time Power_override or Power_set Deassert Time Note 1. Measure Note 2. Power of above the minimum Note 3. Fully for	ton_Pdown toff_Pdown ed from falling on is defined of m level specifion	100 300 g cloc as the ied in efined	ms ms k edge insta Table as In	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1 Time from P_Down bit cleared (value = 0b) ¹ until the module card is fully functional ³ after stop bit of write transaction nt when supply voltages reach and remain at or
Rate Select Change Time Power_override or Power_set Assert Time Power_override or Power_set Deassert Time Note 1. Measure Note 2. Power of above the minimum Note 3. Fully for byte 2, deasserte	ton_Pdown toff_Pdown ed from falling on is defined m level specif unctional is de ed. The module	100 300 g cloc as the ied in efined e shou	ms ms k edge insta Table as In ld als	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1 Time from P_Down bit cleared (value = 0b) ¹ until the module card is fully functional ³ after stop bit of write transaction nt when supply voltages reach and remain at or 4 tL asserted due to DataNotReady bit, bit 0 o meet optical and electrical specifications.
Rate Select Change Time Power_override or Power_set Assert Time Power_override or Power_set Deassert Time Note 1. Measure Note 2. Power of above the minimum Note 3. Fully for byte 2, deasserte	ton_Pdown toff_Pdown ed from falling on is defined m level specif unctional is de ed. The modulo	100 300 g cloc as the ied in efined e shou clock	ms ms k edge insta Table as In ld als edge	Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification Time from P_Down bit set (value = 1b) ¹ until module card power consumption reaches Power Level 1 Time from P_Down bit cleared (value = 0b) ¹ until the module card is fully functional ³ after stop bit of write transaction nt when supply voltages reach and remain at or 4 tL asserted due to DataNotReady bit, bit 0 o meet optical and electrical specifications. after stop bit of read transaction

Squelch and disable timings are defined in Table 14.

Table 14: I/O Timing for Squelch & Disable

Parameter	Symbol	Max	Unit	Conditions
Rx Squelch	ton_Rxsq	80	us	Time from loss of Rx input signal
Assert Time	1			until the squelched output condition
				is reached. See Subclause 4.1.3.1.
Rx Squelch	toff_Rxsq	80	us	Time from resumption of Rx input
Deassert Time	i			signals until normal Rx output
				condition is reached. See sub
				clause 4.1.3.1.
Tx Squelch	ton_Txsq	400	ms	Time from loss of Tx input signal
Assert Time				until the squelched output condition
				is reached. See sub clause 4.1.3.2.
Tx Squelch	toff_Txsq	400	ms	Time from resumption of Tx input
Deassert Time	_			signals until normal Tx output
				condition is reached. See sub
				clause 4.1.3.2.
Tx Disable	ton_txdis	100	ms	Time from Tx Disable bit set (value
Assert Time				= 1b) ¹ until optical output falls
				below 10% of nominal
Tx Disable	toff_txdis	400	ms	Time from Tx Disable bit cleared
Deassert Time				(value = 0b) ¹ until optical output
				rises above 90% of nominal
Rx Output	ton_rxdis	100	ms	Time from Rx Output Disable bit set
Disable Assert				(value = 1b) ¹ until Rx output falls
Time				below 10% of nominal
Rx Output	toff_rxdis	100	ms	Time from Rx Output Disable bit
Disable				cleared (value = $0b$) ¹ until Rx
Deassert Time				output rises above 90% of nominal
Squelch Disable	ton_sqdis	100	ms	This applies to Rx and Tx Squelch
Assert Time				and is the time from bit set (value
				= 0b) ¹ until squelch functionality is
				disabled.
Squelch Disable	toff_sqdis	100	ms	This applies to Rx and Tx Squelch
Deassert Time				and is the time from bit cleared
				$(value = 0b)^{1}$ until squelch
				functionality is enabled
Note 1: Measured	l from fallir	ng cloo	ck edg	e after stop bit of write transaction

4

13

16

20

1 2 3

5 7.4 Device Addressing and Operation

6 Serial Clock (SCL): The host supplied SCL input to CDFP Modules is used to positive-edge 7 clock data into each CDFP device and negative-edge clock data out of each device. The SCL 8 line may be pulled low by a CDFP module during clock stretching. 9

Serial Data (SDA): The SDA pin is bi-directional for serial data transfer. This pin is open-drain or open-collector driven and may be wire-ORed with any number of open-drain or open collector devices.

Master/Slave: CDFP Modules operate only as slave devices. The host must provide a bus master for SCL and initiate all read/write communication.

17 Device Address: Each CDFP card is hard wired at the device address B2h for the lower card 18 and BAh for upper card. See Clause 8 for memory structure within each Module for Style 1 19 and Style 2. See Clause 9 for memory structure with each Module for Style 3.

Multiple Devices per SCL/SDA: CDFP Module cards are compatible with point-to-point SCL/SDA, they cannot share a single SCL/SDA bus through the use of a ModSelL line.

1 2 Clock and Data Transitions: The SDA pin is normally pulled high with an external device. 3 Data on the SDA pin may change only during SCL low time periods. Data changes during SCL high periods indicate a START or STOP condition. All addresses and data words are 4 5 serially transmitted to and from the CDFP in 8-bit words. Every byte on the SDA line must 6 be 8-bits long. Data is transferred with the most significant bit (MSB) first. 7 8 START Condition: A high-to-low transition of SDA with SCL high is a START condition, 9 which must precede any other command. 10 STOP Condition: A low-to-high transition of SDA with SCL high is a STOP condition. 11 12 Acknowledge: After sending each 8-bit word, the transmitter releases the SDA line for one 13 14 bit time, during which the receiver is allowed to pull SDA low (zero) to acknowledge (ACK) that it has received each word. Device address bytes and write data bytes initiated 15 by the host shall be acknowledged by CDFP Module card. Read data bytes transmitted by 16 17 CDFP Module card shall be acknowledged by the host for all but the final byte read, for 18 which the host shall respond with a STOP instead of an ACK. 19 20 Memory (Management Interface) Reset: After an interruption in protocol, power loss or 21 system reset the CDFP management interface can be reset. Memory reset is intended only to 22 reset the CDFP Module management interface (to correct a hung bus). No other module 23 functionality is implied. 24 25 1) Clock up to 9 cycles. 26 2) Look for SDA high in each cycle while SCL is high. 27 3) Create a START condition as SDA is high 28 29 Device Addressing: CDFP devices require an 8-bit device address word following a start condition to enable a read or write operation. The device address word consists of a 30 mandatory sequence for the first seven most significant bits in Figure 53. This is common 31 32 to all CDFP devices. 33 34 1 R/W 0 1 1 х 0 1 MSB LSB 35 Figure 53: CDFP Device Address 36 37 38 39 The eighth bit of the device address is the read/write operating select bit. A read operation is initiated if this bit is set high and a write operation is initiated if this 40 bit is set low. Upon compare of the device address the CDFP Module card shall output a 41 zero (ACK) on the SDA line to acknowledge the address. 42 43

1 7.5 Read/Write Functionality

2 7.5.1 CDFP Memory Address Counter (Read AND Write Operations)

3 CDFP devices maintain an internal data word address counter containing the last address 4 accessed during the latest read or write operation, incremented by one. The address 5 counter is incremented whenever a data word is received or sent by the module card. This 6 address stays valid between operations as long as CDFP power is maintained. The address 7 "roll over" during read and writes operations is from the last byte of the 128-byte 8 memory page to the first byte of the same page.

9 7.5.2 Read Operations

10 7.5.2.1 Current Address Read

A current address read operation requires only the device address read word (1011X011) be sent, see Figure 54.

> <-- CDFP ADDRESS ---> Η s т Ν S Ο М L R S т S Е Α S Α С 0 Т R в в Α т D Κ Ρ 0 1 0 1 1 0 1 1 х 1 х х х х х х х х С D Α Μ L F С S S Ρ к в в <---- DATA WORD ---->

14 Figure 54: CDFP Current Address Read Operation

15 16

17 Once acknowledged by the CDFP, the current address data word is serially clocked out. The 18 host does not respond with an acknowledge, but does generate a STOP condition once the 19 data word is read.

7.5.2.2 Random Read 1

A random read operation requires a "dummy" write operation to load in the target byte 3 address as shown in Figure 55. This is accomplished by the following sequence.

		<-	- CI	OFP	ADI	DRES	ss ·	->			<-	M	EMO	RY	ADD	RES	s	->	
Н	S								W										
0	т	М						L	R		М							L	
S	Α	S						S	I		S							S	
Т	R	в						в	т		в							в	
	т								Е										
		1	0	1	1	х	0	1	0	0	х	х	х	х	х	х	х	х	0
С																			
D										Α									Α
F										С									С
Р										к									к
Be	gin	Fi	gur	e 5	5														

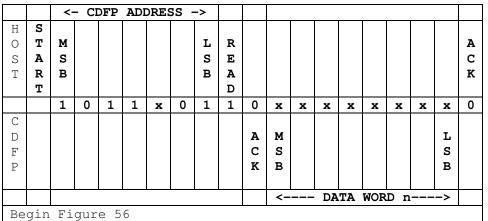
5

2

4

	<-	- CI	DFP	ADI	DRES	ss -	->												
S																			
т	М						L	R										N	S
A	S						S	Е										Α	т
R	в						в	Α										С	0
Т								D										K	Р
	1	0	1	1	x	0	1	1	0	х	x	х	х	х	х	x	x	1	
									Α	М							L		
									С	S							S		
									К	в							В		
										<-		DA	TA	WOR	Dn		->		
															Fi	.gur	e 5	5 E	nd

6 Figure 55: CDFP Random Read


7

The target 8-bit data word address is sent following the device address write word 8 (1011X010) and acknowledged by the CDFP. The host then generates another START condition 9 10 (aborting the dummy write without incrementing the counter) and a current address read by 11 sending a device read address (1011X011). The CDFP acknowledges the device address and 12 serially clocks out the requested data word. The host does not respond with an acknowledge, but does generate a STOP condition once the data word is read. 13

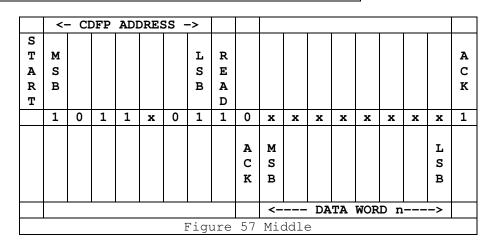
14

1 7.5.2.3 Sequential Read

Sequential reads are initiated by either a current address read (Figure 56) or a random address read (Figure 57). To specify a sequential read, the host responds with an acknowledge (instead of a STOP) after each data word. As long as the CDFP receives an acknowledge, it shall serially clock out sequential data words. The sequence is terminated when the host responds with a NACK and a STOP instead of an acknowledge.

								A									N	s
								С									A	т
								к									С	0
																	к	Р
х	х	х	х	x	х	x	х	0	x	x	х	х	х	x	x	х	1	
м							L		М							L		
S							S		S							S		
в							в		в							в		
<-	– D	ATA	WO	RD	n+1		->		<-	- D	ATA	WO	RD	n+x		->		
								-	-					Fi	gur	e 5	6 E	nd

9 Figure 56: Sequential Address Read Starting at CDFP Current Address


7.5.2.4 Sequential Read from Random Start Address

		<-	- CI	DFP	ADI	DRES	SS -	->			<-	M	EMO	RY	ADD	RES	S	->	
Η	S								W										
0	т	М						L	R		М							L	
S	A	S						S	I		S							S	
Т	R	в						в	т		в							в	
	т								Е										
		1	0	1	1	х	0	1	0	0	х	х	х	х	х	х	х	х	0
С																			
D										Α									Α
F										С									С
Р										к									к
															•			•	
Be	gin	Fi	gur	e 5	7														

3

4

								A C K									N A C K	S T O P
х	х	x	х	х	х	x	x	0	x	х	х	х	x	х	х	х	1	
M S B							L S B		M S B							L S B		
<-	– D	ATA	WO	RD	n+1		->		<-	– D	ATA	WO	RD	n+x		->		
								•						Fi	gur	e 5	7 E	Ind

Figure 57: Sequential Address Read Starting with Random CDFP Read

1 7.5.3 Write Operations

2 7.5.3.1 BYTE Write

A write operation requires an 8-bit data word address following the device address write word (1011X010) and acknowledgement, see Figure 58.

		<-	- CI	OFP	ADI	DRES	SS -	->			<-	M	EMO	RY	ADD	RES	S	->		<-		D	ATA	WO	RD		->		
Η	S								W																				
0	т	М						L	R		М							L											S
S	Α	S						S	I		S							S											т
Т	R	в						в	т		в							в											0
	т								Е																				Р
		1	0	1	1	х	0	1	0	0	х	х	х	х	х	х	х	х	0	х	х	х	х	х	х	х	х	0	
С																												A	
D										Α									Α	М							L	С	
F										С									С	S							S	к	
Ρ										к									к	в							в		

6 Figure 58: CDFP Write Byte Operation

7 8

9 Upon receipt of this address, the CDFP shall again respond with a zero (ACK) to 10 acknowledge and then clock in the first 8-bit data word. Following the receipt of the 8-11 bit data word, the CDFP shall output a zero (ACK) and the host master must terminate the 12 write sequence with a STOP condition for the write cycle to begin. If a START condition 13 is sent in place of a STOP condition (i.e. a repeated START per the two-wire interface 14 specification) the write is aborted and the data received during that operation is 15 discarded. Upon receipt of the proper STOP condition, the CDFP enters an internally timed write cycle, tWR, to internal memory. The CDFP disables its management interface input 16 17 during this write cycle and shall not respond or acknowledge subsequent commands until the write is complete. Note that two-wire interface "Combined Format" using repeated 18 19 START conditions is not supported on CDFP write commands.

1 7.5.3.2 Sequential Write

2

3 4

5

6

CDFP's shall support up to a 4 sequential byte write without repeatedly sending CDFP address and memory address information as shown in Figure 59.

		<-	- CI	OFP	ADI	DRES	ss ·	->			<-	M	EMO	RY	ADD	RES	S	->	
Η	S								W										
0	т	М						L	R		М							L	
S	Α	S						S	I		S							S	
Т	R	в						в	т		в							в	
	т								Е										
		1	0	1	1	x	0	1	0	0	х	х	x	х	х	х	х	х	0
С																			
D										Α									Α
F										С									С
Ρ										к									к
			-	-	-	-	•	•	•				-	-		-			
Be	gin	Fi	gur	e 5	9														

DATA WORD 2 ----> <--- DATA WORD 1 ---> <---L М L М S S S S в в в в х х 0 х х 0 х х х х х х х х х х х х Α Α С С к ĸ Figure 59 Middle

<-		DA:	CA V	VORI	D 3		->		<-		DAT	AW	ORD	4		->		
							L									L		
М							S		М							S		S
S							в		S							в		т
в									в									0
																		Р
х	х	х	х	х	х	х	х	0	х	х	х	х	х	х	х	х	0	
								Α									Α	
								С									С	
								к									к	
														Fi	gur	e 5	9 E	Ind

7 Figure 59: CDFP Sequential Write Operation

8

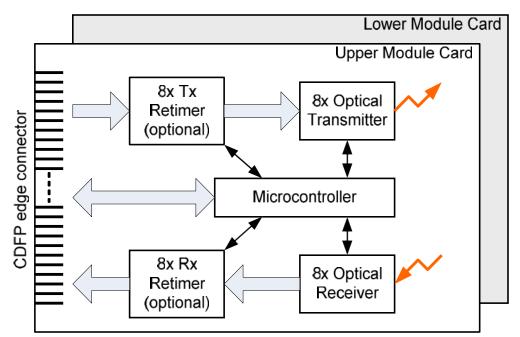
9 A "sequential" write is initiated the same way as a single byte write, but the host 10 master does not send a stop condition after the first word is clocked in. Instead, after 11 the CDFP acknowledges receipt of the first data word, the host can transmit up to three 12 more data words. The CDFP shall send an acknowledge after each data word received. The 13 host must terminate the sequential write sequence with a STOP condition or the write 14 operation shall be aborted and data discarded. Note that two-wire interface "combined 15 format" using repeated START conditions is not supported on CDFP write commands.

1 7.5.3.3 Acknowledge Polling

Once the CDFP internally timed write cycle has begun (and inputs are being ignored on the bus) acknowledge polling can be used to determine when the write operation is complete. This involves sending a START condition followed by the device address word. Only if the internal write cycle is complete shall the CDFP respond with an acknowledge to subsequent commands, indicating read or write operations can continue.

- 7 8
- g
- 9
- 10
- 11
- -

1 8 CDFP MSA Management Interface Memory Map-Styles 1 and 2


3 8.1 Overview

4 5 6

2

Each end of the CDFP features two module cards, each of which contains a microcontroller, an 8-channel transmitter and an 8-channel receiver. These transmitters and receivers may contain retimers as shown in the example below. The connectivity between these components on each module card is illustrated as follows:

10

11 12 13

2 Figure 60: Example CDFP Style 1/Style 2 optical transceiver implementation

14 The microcontroller manages the operation of both the optical transceivers and the 15 retimers and presents a standard management interface to the host computer system. The 16 management interface provided is the industry standard QSFP specification extended to 17 eight channels. Each circuit board reports its own measurements of temperature, voltage, 18 etc. Similarly, "global" control mechanisms are local to the circuit board being 19 addressed.

The upper module card handles CDFP Tx channels 0 through 7 and Rx channels 8 through 15; the lower module card handles CDFP Tx channels 8 through 15 and Rx channels 0 through 7. The terms Tx and Rx represent the host's viewpoint - the host transmits data through the Tx channels and receives data through the Rx channels.

25 26

20

27

28 29

30

31 32

8.2 Management Interface

1 2 3

10

18

24

30 31

At power-on or module insertion into the CDFP connector, the host computer system detects the presence of the module by the change of state of the ModPrsL (Module Present, active Low) signal from the module card. The module card will then initialize itself and signal that it is ready to communicate with the host computer system by asserting a low level on the IntL signal. The host computer system should then interrogate the module card via the two-wire serial interface to determine the module card status.

11 The two-wire serial interface (SCL and SDA) deviates from the QSFP specification in that 12 the two wire serial address for the lower circuit board is B2h/B3h (1011001x) (for 7 bit 13 addressing it would be 0x59) and the two wire serial address for the upper circuit board 14 is BAh/BBh (1011101x) (for 7 bit addressing it would be 0x5D). The 2 two wire serial 15 interfaces (one on each circuit board) operate independently from each other. Note: The 16 CDFP modules have no Modsel signal input and module selection must be made via alternate 17 means not defined in this document.

19 Like the QSFP specification, the CDFP provides a memory map with a lower page (addresses 20 00h to 7Fh) and multiple upper pages (addresses 80h to FFh). The lower page is always 21 accessible and contains critical monitoring information and control fields. The last byte 22 of the lower page, address 7Fh, can be written with a value indicating which upper page 23 is to be accessed using the upper page addresses. The CDFP module card has 3 upper pages.

All pages in the memory map are readable at all times. Some areas in the QSFP-like pages are writable by the host system; these are listed below. To prevent inadvertent changes to other areas in the memory map, some areas are protected by passwords; write access to these areas is enabled by writing the appropriate password into the password field at the top of the lower page (addresses 7Bh to 7Eh).

32 The structure of the lower page of the memory map is illustrated in the diagram below: 33

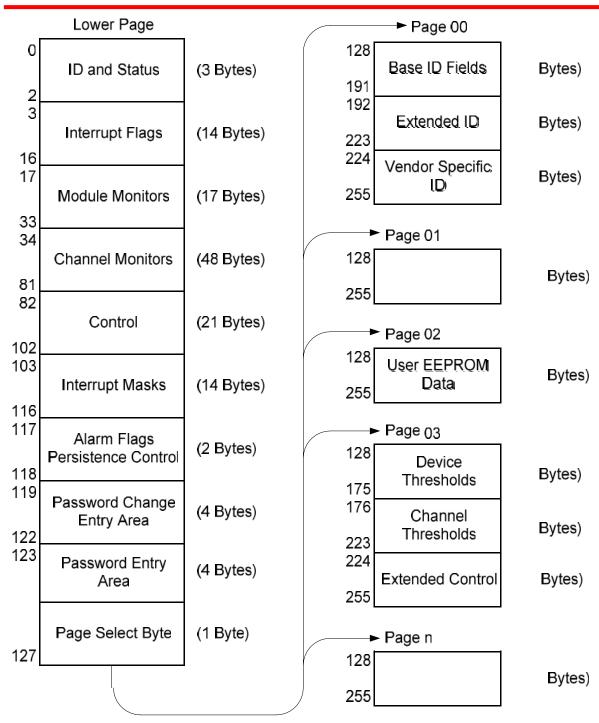


Figure 61: CDFP Style 1/Style 2 Memory Map

8.3 Lower Page 00L

2 3

1

The lower 128 bytes of the two-wire serial bus address space is used to access a variety of measurements and diagnostic functions, a set of control functions, and a means to select which of the various upper memory map pages are accessed on subsequent accesses. This portion of the address space is always directly addressable and thus is chosen for monitoring and control functions that may need to be repeatedly accessed.

9 10 11

The lower page is subdivided into several areas as illustrated in the following table:

12 Table 15: Lower Page Overview (Page 0L)

Address	Description	Туре
0 - 2	Id and Status (3 bytes)	Read-only
3 - 16	Interrupt Flags (14 bytes)	Read-only
17 - 33	Module card Monitors (17 bytes)	Read-only
34 - 81	Channel Monitors (48 bytes)	Read-only
82 - 102	Control Fields (21 bytes)	Read/Write
103 - 116	Interrupt Flag Masks (14 bytes)	Read/Write
117 - 118	Interrupt Flag Persistence Control (2 bytes)	Read/Write
119 - 122	Password Change Area (4 bytes)	Read/Write
123 - 126	Password Entry Area (4 bytes)	Read/Write
127	Page Select Byte	Read/Write

13

14 8.3.1 ID and Status

16 Table 16: Identifier and Status Summary (Page OL)

Table	e 16: .	Identifier and Status	Summary (Page OL)	
Byte	Bits	Name	Description	Туре
0	All	Identifier	Identifier - Type of Serial Module	RO
00h			(same value as page 0 byte 128)	Rqrd.
1	All	Version Id	Identifier - Version of Serial Module	RO
01h			Specification (coded 1, this document)	Rqrd.
2	7	Flat_mem	Upper memory flat or paged.	RO
02h			0= paged, 1=Page 00h only	Rqrd.
	6	Tx Bias and Tx Power Alarm Summary	Set to 1 whenever any Tx Bias Alarm bit (bytes 11 and 12) or any Tx Power Alarm bit (bytes 13 and 14) is set to 1 and not masked.	
	5	Rx Power Alarm/Warning Summary	Set to 1 whenever any Rx Power Alarm or Warning bit (bytes 8, 9 and 10) is set to 1 and not masked.	
	4	Tx LOS, Tx Fault and Tx LOL Alarm Summary	Set to 1 whenever any Tx LOS Alarm bit (byte 4), Tx Fault Alarm bit (byte 5) or Tx CDR LOL Alarm bit (byte 16) is set to 1 and not masked.	
	3	Rx LOS and Rx LOL Alarm Summary	Set to 1 whenever any Rx LOS Alarm bit (byte 3) or Rx CDR LOL Alarm bit (byte 15) is set to 1 and not masked.	
	2	Temperature and Voltage Alarm/Warning Summary	Set to 1 whenever any Temperature Alarm or Warning bit (byte 6) or Voltage Alarm bit (byte 7) is set to 1 and not masked	
	1	Interrupt	Set to 1 whenever the IntL pin is asserted low	
	0	DataNotReady	Indicates Module card has not yet achieved power up and memory data is not ready. Bit remains high until data is ready to be read at which time the device sets the bit low.	

The identifier value (byte 0) specifies the type of the physical device described by the serial information. The identifier value is the same value as page 0 byte 128.

5 The DataNotReady bit is high during module power up and prior to a valid suite of monitor 6 readings. Once all monitor readings are valid, the bit is set low until the device is 7 powered down or reset.

9 All summary bits 2-6 are nonlatched, reflecting real-time values in the specific 10 registers. This is to avoid multiple levels of latching and clearing of faults. 11

12 8.3.2 Interrupt Flags

13

1 2

3

4

8

14 A portion of the memory map (bytes 3 through 16), form a flags field. Within this field, the status of LOS and Tx Fault as well as alarms and warnings for the various monitored 15 items is reported. If a monitor is implemented the associated flags must also be 16 17 implemented. For normal operation and default state, the bits in this field have the value of Ob. For the defined conditions of LOS, Tx Fault, module and channel alarms and 18 19 warnings, the appropriate bit or bits are set, value = 1b. Once asserted, the bits remained set (latched) until cleared by a read operation that includes the affected bit 20 or reset by the ResetL pin. After being read and cleared, the bit may be set again if the 21 22 condition persists and the appropriate persistence control bit is set (see below). The Interrupt Flags are defined in the following table: 23

Table 17: Alarm Flags (Page OL)

Byte	Bit	Name	Description	Туре
З	7	L-Rx15 LOS	Latched Rx LOS indicator, channel 7	RO
03h	6	L-Rx14 LOS	Latched Rx LOS indicator, channel 6	Opt.
	5	L-Rx13 LOS	Latched Rx LOS indicator, channel 5	
	4	L-Rx12 LOS	Latched Rx LOS indicator, channel 4	
	3	L-Rx11 LOS	Latched Rx LOS indicator, channel 3	
	2	L-Rx10 LOS	Latched Rx LOS indicator, channel 2	
	1	L-Rx9 LOS	Latched Rx LOS indicator, channel 1	
	0	L-Rx8 LOS	Latched Rx LOS indicator, channel 0	
4	7	L-Tx7 LOS	Latched Tx LOS indicator, channel 7	RO
04h	6	L-Tx6 LOS	Latched Tx LOS indicator, channel 6	Opt.
	5	L-Tx5 LOS	Latched Tx LOS indicator, channel 5	
	4	L-Tx4 LOS	Latched Tx LOS indicator, channel 4	
	3	L-Tx3 LOS	Latched Tx LOS indicator, channel 3	
	2	L-Tx2 LOS	Latched Tx LOS indicator, channel 2	
	1	L-Tx1 LOS	Latched Tx LOS indicator, channel 1	
	0	L-Tx0 LOS	Latched Tx LOS indicator, channel 0	
5	7	L-Tx7 Fault	Latched Tx fault indicator, channel 7	RO
05h	6	L-Tx6 Fault	Latched Tx fault indicator, channel 6	Opt.
	5	L-Tx5 Fault	Latched Tx fault indicator, channel 5	
	4	L-Tx4 Fault	Latched Tx fault indicator, channel 4	
	3	L-Tx3 Fault	Latched Tx fault indicator, channel 3	
	2	L-Tx2 Fault	Latched Tx fault indicator, channel 2	
	1	L-Tx1 Fault	Latched Tx fault indicator, channel 1	
	0	L-Tx0 Fault	Latched Tx fault indicator, channel 0	
6	7	L-Temp High Alarm	Latched high temperature alarm	RO
06h	6	L-Temp Low Alarm	Latched low temperature alarm	Opt.
	5	L-Temp High Warning	Latched high temperature warning	
	4	L-Temp Low Warning	Latched low temperature warning	
	3	L-Temp2 High Alarm	Latched high second temperature alarm	
	2	L-Temp2 Low Alarm	Latched low second temperature alarm	

	1	L-Temp2 High Warning	Latched high second temperature warning	
	0	L-Temp2 Low Warning	Latched low second temperature warning	-
7	7	L-Vcc3.3v High Alarm	Latched high 3.3 volts supply voltage	RO
07h	,		alarm	Opt.
0 / 11	6	L-Vcc3.3v Low Alarm	Latched low 3.3 volts supply voltage alarm	ope
	0-5	Reserved	Lacenca for 5.5 voice supply voicage afaim	-
8	7	L-Rx15 Power Low Warning	Latched low Rx power warning, channel 7	RO
08h	6	L-Rx14 Power Low Warning	Latched low Rx power warning, channel 6	Opt
0011	5	L-Rx13 Power Low Warning	Latched low Rx power warning, channel 5	opt
	4	L-Rx12 Power Low Warning	Latched low Rx power warning, channel 4	_
	3	1		_
		L-Rx11 Power Low Warning	Latched low Rx power warning, channel 3	_
	2	L-Rx10 Power Low Warning	Latched low Rx power warning, channel 2	_
	1	L-Rx9 Power Low Warning	Latched low Rx power warning, channel 1	_
	0	L-Rx8 Power Low Warning	Latched low Rx power warning, channel 0	
9	7	L-Rx15 Power Low Alarm	Latched low Rx power alarm, channel 7	RO
09h	6	L-Rx14 Power Low Alarm	Latched low Rx power alarm, channel 6	Opt
	5	L-Rx13 Power Low Alarm	Latched low Rx power alarm, channel 5	_
	4	L-Rx12 Power Low Alarm	Latched low Rx power alarm, channel 4	
	3	L-Rx11 Power Low Alarm	Latched low Rx power alarm, channel 3	
	2	L-Rx10 Power Low Alarm	Latched low Rx power alarm, channel 2	
	1	L-Rx9 Power Low Alarm	Latched low Rx power alarm, channel 1	
	0	L-Rx8 Power Low Alarm	Latched low Rx power alarm, channel 0	
10	7	L-Rx15 Power High Alarm	Latched high Rx power alarm, channel 7	RO
0Ah	6	L-Rx14 Power High Alarm	Latched high Rx power alarm, channel 6	Opt
	5	L-Rx13 Power High Alarm	Latched high Rx power alarm, channel 5	
	4	L-Rx12 Power High Alarm	Latched high Rx power alarm, channel 4	
	3	L-Rx11 Power High Alarm	Latched high Rx power alarm, channel 3	
	2	L-Rx10 Power High Alarm	Latched high Rx power alarm, channel 2	
	1	L-Rx9 Power High Alarm	Latched high Rx power alarm, channel 1	_
	0	L-Rx8 Power High Alarm	Latched high Rx power alarm, channel 0	
11	7	L-Tx7 Bias Low Alarm	Latched low Tx bias alarm, channel 7	RO
0Bh	6	L-Tx6 Bias Low Alarm	Latched low Tx bias alarm, channel 6	Opt
-	5	L-Tx5 Bias Low Alarm	Latched low Tx bias alarm, channel 5	
	4	L-Tx4 Bias Low Alarm	Latched low Tx bias alarm, channel 4	_
	3	L-Tx3 Bias Low Alarm	Latched low Tx bias alarm, channel 3	_
	2	L-Tx2 Bias Low Alarm	Latched low Tx bias alarm, channel 2	
	1	L-Tx1 Bias Low Alarm	Latched low Tx bias alarm, channel 1	-
	0	L-Tx0 Bias Low Alarm	Latched low Tx bias alarm, channel 0	-
12	7	L-Tx7 Bias High Alarm	Latched high Tx bias alarm, channel 7	RO
0Ch	6	L-Tx6 Bias High Alarm	Latched high Tx bias alarm, channel 6	Opt
0.011	5	L-Tx5 Bias High Alarm	Latched high Tx bias alarm, channel 5	
	4	L-Tx4 Bias High Alarm	Latched high Tx bias alarm, channel 4	-
	3	L-IX4 BIAS HIGH ALARM L-TX3 Bias High Alarm	Latched high Tx bias alarm, channel 3	-
				-
	2	L-Tx2 Bias High Alarm	Latched high Tx bias alarm, channel 2	-
	1	L-Tx1 Bias High Alarm	Latched high Tx bias alarm, channel 1	-
1 0	0	L-Tx0 Bias High Alarm	Latched high Tx bias alarm, channel 0	
13	7	L-Tx7 Power LowAlarm	Latched low Tx power alarm, channel 7	RO
0Dh	6	L-Tx6 Power LowAlarm	Latched low Tx power alarm, channel 6	Opt
	5	L-Tx5 Power LowAlarm	Latched low Tx power alarm, channel 5	_
	4	L-Tx4 Power LowAlarm	Latched low Tx power alarm, channel 4	_
	3	L-Tx3 Power LowAlarm	Latched low Tx power alarm, channel 3	
	2	L-Tx2 Power LowAlarm	Latched low Tx power alarm, channel 2	
	1	L-Tx1 Power LowAlarm	Latched low Tx power alarm, channel 1	
	0	L-Tx0 Power LowAlarm	Latched low Tx power alarm, channel 0	
14	7	L-Tx7 Power HighAlarm	Latched high Tx power alarm, channel 7	RO
0Eh	6	L-Tx6 Power HighAlarm	Latched high Tx power alarm, channel 6	Opt
	5	L-Tx5 Power HighAlarm	Latched high Tx power alarm, channel 5	7

	4	L-Tx4 Power HighAlarm	Latched high Tx power alarm, channel 4	
	3	L-Tx3 Power HighAlarm	Latched high Tx power alarm, channel 3	
	2	L-Tx2 Power HighAlarm	Latched high Tx power alarm, channel 2	
	1	L-Tx1 Power HighAlarm	Latched high Tx power alarm, channel 1	
	0	L-Tx0 Power HighAlarm	Latched high Tx power alarm, channel 0	
15	7	L_Rx15 CDR _LOL	Latched Rx CDR LOL indicator, channel 7	RO
OFh	6	L_Rx14 CDR _LOL	Latched Rx CDR LOL indicator, channel 6	Opt.
-	5	L_Rx13 CDR _LOL	Latched Rx CDR LOL indicator, channel 5	
	4	L_Rx12 CDR _LOL	Latched Rx CDR LOL indicator, channel 4	
-	3	L_Rx11 CDR _LOL	Latched Rx CDR LOL indicator, channel 3	
	2	L_Rx10 CDR _LOL	Latched Rx CDR LOL indicator, channel 2	
	1	L_Rx9 CDR _LOL	Latched Rx CDR LOL indicator, channel 1	
	0	L_Rx8 CDR _LOL	Latched Rx CDR LOL indicator, channel 0	
16	7	L_Tx7 CDR _LOL	Latched Tx CDR LOL indicator, channel 7	RO
10h	6	L_Tx6 CDR _LOL	Latched Tx CDR LOL indicator, channel 6	Opt.
	5	L_Tx5 CDR _LOL	Latched Tx CDR LOL indicator, channel 5	
	4	L_Tx4 CDR _LOL	Latched Tx CDR LOL indicator, channel 4	
	3	L_Tx3 CDR _LOL	Latched Tx CDR LOL indicator, channel 3	
	2	L_Tx2 CDR _LOL	Latched Tx CDR LOL indicator, channel 2	
	1	L_Tx1 CDR _LOL	Latched Tx CDR LOL indicator, channel 1	
	0	L_Tx0 CDR _LOL	Latched Tx CDR LOL indicator, channel 0	

1

2 8.3.3 Module Card Monitors

3

23

Optional real time monitoring for the module includes Module Card temperature, supply voltage, supply current and monitoring for each transmit and receive channel. Channel monitoring functions are described in section 3.4 below. Measured parameters are reported in 16-bit data fields, i.e. two concatenated bytes, most-significant byte (MSB) first. To guarantee coherency of the diagnostic monitoring data, the host should retrieve any multi-byte fields from the diagnostic monitoring data structure by the use of a single multi-byte read sequence across the two-wire serial interface.

Internally measured device temperatures are represented as a 16-bit signed twos complement value in increments of 1/256 degrees Celsius, yielding a total range of -128 C to +128 C that is considered valid in the range specified in the device datasheet. Temperature accuracy is vendor specific but must be better than ±3 degrees Celsius over the specified operating temperature and voltage.

Internally measured Module 3.3 volts supply voltage is represented as a 16-bit unsigned integer with the voltage defined as the full 16-bit value (0 - 65535) with LSB equal to 100 uVolt, yielding a total measurement range of 0 to +6.55 Volts. Accuracy is vendor specific but must be better than ±3% of the manufacturer's nominal value over specified operating temperature and voltage.

Internally measured supply current is represented as a 16-bit unsigned integer with the current defined as the full 16-bit value (0 - 65535) with LSB equal to 1 mA, yielding a total measurement range of 0 to 65.5 A. Accuracy is vendor specific but must be better than ±10% of the maximum current of the vendor's specified power class over operating temperature and voltage.

Elapsed operating time is represented as a 16-bit unsigned integer with the time since power-on or reset defined as the full 16-bit value (0 - 65535) with LSB equal to 2 hours, yielding a total measurement range of 0 to +14.96 years.

The Raw LOS, Fault and CDR LOL indicators show the real-time unlatched state of the respective channel monitors. Whereas the latched alarm flags (bytes 3 through 16) show

the onset of a particular condition, the negation of the corresponding raw flag shows the cessation of the condition, implying that the channel may now be used for data transfer.

Table	18:	Module	Monitors	(Page	$(0T_{1})$
TUDIC	тO.	TIOUUIC	TIONITCOLD	Lage	υш

		Module Monitors (Page		
Byte	Bit	Name	Description	Туре
17	7	Raw -Rx15 LOS	Unlatched Rx LOS indicator, channel 7	RO
11h	6	Raw -Rx14 LOS	Unlatched Rx LOS indicator, channel 6	Opt.
	5	Raw -Rx13 LOS	Unlatched Rx LOS indicator, channel 5	_
	4	Raw -Rx12 LOS	Unlatched Rx LOS indicator, channel 4	_
	3	Raw -Rx11 LOS	Unlatched Rx LOS indicator, channel 3	_
	2	Raw -Rx10 LOS	Unlatched Rx LOS indicator, channel 2	_
	1	Raw -Rx9 LOS	Unlatched Rx LOS indicator, channel 1	_
	0	Raw -Rx8 LOS	Unlatched Rx LOS indicator, channel 0	
18	7	Raw -Tx7 LOS	Unlatched Tx LOS indicator, channel 7	RO
12h	6	Raw -Tx6 LOS	Unlatched Tx LOS indicator, channel 6	Opt.
	5	Raw -Tx5 LOS	Unlatched Tx LOS indicator, channel 5	
	4	Raw -Tx4 LOS	Unlatched Tx LOS indicator, channel 4	
	3	Raw -Tx3 LOS	Unlatched Tx LOS indicator, channel 3	
	2	Raw -Tx2 LOS	Unlatched Tx LOS indicator, channel 2	
	1	Raw -Tx1 LOS	Unlatched Tx LOS indicator, channel 1	
	0	Raw -Tx0 LOS	Unlatched Tx LOS indicator, channel 0	
19	7	Raw -Tx7 Fault	Unlatched Tx fault indicator, channel 7	RO
13h	6	Raw -Tx6 Fault	Unlatched Tx fault indicator, channel 6	Opt.
	5	Raw -Tx5 Fault	Unlatched Tx fault indicator, channel 5	
	4	Raw -Tx4 Fault	Unlatched Tx fault indicator, channel 4	
	3	Raw -Tx3 Fault	Unlatched Tx fault indicator, channel 3	
	2	Raw -Tx2 Fault	Unlatched Tx fault indicator, channel 2	
	1	Raw -Tx1 Fault	Unlatched Tx fault indicator, channel 1	
	0	Raw -Tx0 Fault	Unlatched Tx fault indicator, channel 0	
20	7	Raw _Rx15 CDR _LOL	Unlatched Rx CDR LOL indicator, channel 7	RO
14h	6	Raw _Rx14 CDR _LOL	Unlatched Rx CDR LOL indicator, channel 6	Opt.
	5	Raw _Rx13 CDR _LOL	Unlatched Rx CDR LOL indicator, channel 5	
	4	Raw _Rx12 CDR _LOL	Unlatched Rx CDR LOL indicator, channel 4	
	3	Raw _Rx11 CDR _LOL	Unlatched Rx CDR LOL indicator, channel 3	
	2	Raw _Rx10 CDR _LOL	Unlatched Rx CDR LOL indicator, channel 2	
	1	Raw _Rx9 CDR _LOL	Unlatched Rx CDR LOL indicator, channel 1	
	0	Raw _Rx8 CDR _LOL	Unlatched Rx CDR LOL indicator, channel 0	
21	7	Raw Tx7 CDR LOL	Unlatched Tx CDR LOLindicator, channel 7	RO
15h	6	Raw _Tx6 CDR _LOL	Unlatched Tx CDR LOL indicator, channel 6	Opt.
	5	Raw Tx5 CDR LOL	Unlatched Tx CDR LOL indicator, channel 5	1
	4	Raw _Tx4 CDR _LOL	Unlatched Tx CDR LOL indicator, channel 4	
	3	Raw _Tx3 CDR _LOL	Unlatched Tx CDR LOL indicator, channel 3	1
	2	Raw _Tx2 CDR _LOL	Unlatched Tx CDR LOL indicator, channel 2	1
	1	Raw _Tx1 CDR _LOL	Unlatched Tx CDR LOL indicator, channel 1	1
	0	Raw _Tx0 CDR _LOL	Unlatched Tx CDR LOL indicator, channel 0	1
22	All	Temperature1 MSB	First internally measured temperature	RO
16h		-		Rqrd.
23	All	Temperature1 LSB		-
17h		-		
24	All	Temperature2 MSB	Second internally measured temperature	RO
18h		÷ -	4 1	Opt.
25	All	Temperature2 LSB		-
19h		÷		
26	All	Supply 3.3-volt MSB	Internally measured supply voltage, 3.3	RO
1Ah			volt input voltage in 100uV units	Opt.
27	All	Supply 3.3-volt LSB		

1Bh				
28	All	Reserved		RO
1Ch				Opt.
29	All	Reserved		
1Dh				
30	All	Supply Current MSB	Internally measured supply current in 1 mA	RO
1Eh			units.	Opt.
31	All	Supply Current LSB		
1Fh				
32	All	Elapsed Operating	Elapsed (Power-on) Operating Time: Elapsed	RO
20h		Time MSB	time in 2 hour units coded as 16-bit	Opt.
33	All	Elapsed Operating	unsigned integer	
21h		Time LSB		

1

2 8.3.4 Channel Monitors

3 4 Real time channel monitoring is performed for each transmit and receive channel and 5 includes Rx optical input power and Tx bias current. Alarm and warning threshold values 5 Alarm and Warning threshold values

includes Rx optical input power and Tx bias current. Alarm and warning threshold values
 should be interpreted in the same manner as real time 16-bit data.

8 Measured RX received optical power is in mW and can represent either average received 9 power or OMA depending upon how bit 3 of byte 220 (upper memory page 00h) is set. 10 Represented as a 16-bit unsigned integer with the power defined as the full 16-bit value 11 (0 - 65535) with LSB equal to 0.1 uW, yielding a total measurement range of 0 to 6.5535 12 mW (approx. -40 to +8.2 dBm). 13

Measured Tx bias current is in mA and are represented as a 16-bit unsigned integer with the current defined as the full 16-bit value (0 - 65535) with LSB equal to 2 uA, yielding a total measurement range of 0 to 131 mA.

17

18 Table 19: Channel Monitors (Page 0L)

lable 1		annel Monitors (Pag		
Byte	Bit	Name	Description	Туре
34,	All	Rx8 Power MSB	Rx Light Input Monitor in 0.1µW	RO
22h			units, channel O	Opt.
35,	All	Rx8 Power LSB		
23h				
36,	All	Rx9 Power MSB	Rx Light Input Monitor in 0.1µW	RO
24h			units, channel 1	Opt.
37,	All	Rx9 Power LSB		
25h				
38,	All	Rx10 Power MSB	Rx Light Input Monitor in 0.1µW	RO
26h			units, channel 2	Opt.
39,	All	Rx10 Power LSB		
27h				
40,	All	Rx11 Power MSB	Rx Light Input Monitor in 0.1µW	RO
28h			units, channel 3	Opt.
41,	All	Rx11 Power LSB		
29h				
42,	All	Rx12 Power MSB	Rx Light Input Monitor in 0.1µW	RO
2Ah			units, channel 44	Opt.
43,	All	Rx12 Power LSB		
2Bh				
44,	All	Rx13 Power MSB	Rx Light Input Monitor in 0.1µW	RO
2Ch			units, channel 5	Opt.
45,	All	Rx13 Power LSB		
2Dh				
46,	All	Rx14 Power MSB	Rx Light Input Monitor in 0.1µW	RO

2Eh			units, channel 6	Opt.
47,	All	Rx14 Power LSB		
2Fh				
48,	All	Rx15 Power MSB	Rx Light Input Monitor in 0.1µW	RO
30h	1111	IKIS I OWCI HDD	units, channel 7	
				Opt.
49,	All	Rx15 Power LSB		
31h				
50,	All	Tx0 Bias MSB	Internally measured Tx bias	RO
32h			current, channel 0	Opt.
51,	All	Tx0 Bias LSB		
33h				
52,	All	Tx1 Bias MSB	Internally measured Tx bias	RO
34h			current, channel 1	Opt.
53,	All	Tx1 Bias LSB		0 <u>1</u> 00.
35h	1111	INI DIGS LOD		
	7 1 1	Tx2 Bias MSB	Internally measured Ty bias	
54,	All	IXZ BIAS MSB	Internally measured Tx bias	RO
36h			current, channel 2	Opt.
55,	All	Tx2 Bias LSB		
37h				
56,	All	Tx3 Bias MSB	Internally measured Tx bias	RO
38h			current, channel 3	Opt.
57,	All	Tx3 Bias LSB		
39h				
58,	A11	Tx4 Bias MSB	Internally measured Tx bias	RO
3Ah			current, channel 4	Opt.
59,	All	Tx4 Bias LSB		ope.
	ATT	INT DIAS LOD		
3Bh				
60,	All	Tx5 Bias MSB	Internally measured Tx bias	RO
3Ch			current, channel 5	Opt.
61,	All	Tx5 Bias LSB		
3Dh				
62,	All	Tx6 Bias MSB	Internally measured Tx bias	RO
3Eh			current, channel 6	Opt.
63,	All	Tx6 Bias LSB		
3Fh				
64,	All	Tx7 Bias MSB	Internally measured Tx bias	RO
40h			current, channel 7	Opt.
65,	All	Tx7 Bias LSB		ope.
41h	רות	TYO DOMON MCD	Internally measured Ty never	- DO
66,	All	Tx0 Power MSB	Internally measured Tx power,	RO
42h	ר ר ת	T -0 D - T - T	channel 0	Opt.
67,	All	Tx0 Power LSB		
43h				
68,	All	Tx1 Power MSB	Internally measured Tx power,	RO
44h			channel 1	Opt.
69,	All	Tx1 Power LSB		
45h				
70,	All	Tx2 Power MSB	Internally measured Tx power,	RO
46h			channel 2	Opt.
71,	All	Tx2 Power LSB		-1
47h				
72,	All	Tx3 Power MSB	Internally measured Tx power,	RO
	~~~	TY2 LOWET LUDD	channel 3	
48h	ררג			Opt.
73,	All	Tx3 Power LSB		
49h				
74,	All	Tx4 Power MSB	Internally measured Tx power,	RO
4Ah			_ channel 4	Opt.
75,	All	Tx4 Power LSB		

4Bh				
76,	All	Tx5 Power MSB	Internally measured Tx power,	RO
4Ch			channel 5	Opt.
77,	All	Tx5 Power LSB		
4Dh				
78,	All	Tx6 Power MSB	Internally measured Tx power,	RO
4Eh			channel 6	Opt.
79,	All	Tx6 Power LSB		
4Fh				
80,	All	Tx7 Power MSB	Internally measured Tx power,	RO
50h			channel 7	Opt.
81,	All	Tx7 Power LSB		
51h				

1

#### 2 8.3.5 Control Fields

3

The control fields allow the host to dynamically change the behavior of the device. The changeable parameters include Tx input equalization, Rx pre-emphasis and output amplitude in addition to disabling channels or squelching and setting the channel polarities.

8 Tx Input Equalization Control has a four bit code block (bits 7-4 or 3-0) assigned to 9 each channel. Codes 1xxxb are reserved. Code 0111b calls for the maximum equalization 10 supported. Code 0000b calls for no equalization. Intermediate code values call for 11 intermediate levels of equalization. The exact Tx Equalization parameters are presented 12 in the device datasheet.

14 Rx Output Pre-emphasis Control has a four bit code block (bits 7-4 or 3-0) assigned to 15 each channel. Codes 1xxxb are reserved. Code 0111b calls for the maximum output pre-16 emphasis supported. Code 0000b calls for no output pre-emphasis. Intermediate code values 17 call for intermediate levels of output pre-emphasis. The exact Rx Pre-emphasis parameters 18 are presented in the device datasheet.

19

13

Rx Output Amplitude Control has a four bit code block (bits 7-4 or 3-0) assigned to each channel. Codes 1xxxb are reserved. Code 0111b calls for the maximum output amplitude supported. Code 0000b calls for the minimum output amplitude supported. Intermediate code values call for intermediate levels of output amplitude. The exact Rx Amplitude parameters are presented in the device datasheet.

25 26

#### Table 20: Control Fields (Page OL)

Byte	Bits	Name	Description	Туре
82	7-4	Tx1 Equalization	Tx input equalization, channel 1	RW
52h	3-0	Tx0 Equalization	Tx input equalization, channel 0	Opt.
83	7-4	Tx3 Equalization	Tx input equalization, channel 3	RW
53h	3-0	Tx2 Equalization	Tx input equalization, channel 2	Opt.
84	7 - 4	Tx5 Equalization	Tx input equalization, channel 5	RW
54h	3-0	Tx4 Equalization	Tx input equalization, channel 4	Opt.
85	7-4	Tx7 Equalization	Tx input equalization, channel 7	RW
55h	3-0	Tx6 Equalization	Tx input equalization, channel 6	Opt.
86	7	Tx7 Disable	Tx channel disable, channel 7	RW
56h	6	Tx6 Disable	Tx channel disable, channel 6	Opt.
	5	Tx5 Disable	Tx channel disable, channel 5	
	4	Tx4 Disable	Tx channel disable, channel 4	
	3	Tx3 Disable	Tx channel disable, channel 3	
	2	Tx2 Disable	Tx channel disable, channel 2	
	1	Tx1 Disable	Tx channel disable, channel 1	
	0	Tx0 Disable	Tx channel disable, channel 0	

	_			
87	7	Tx7 Squelch Disable	Tx squelch disable, channel 7	RW
57h	6	Tx6 Squelch Disable	Tx squelch disable, channel 6	Opt.
	5	Tx5 Squelch Disable	Tx squelch disable, channel 5	_
	4	Tx4 Squelch Disable	Tx squelch disable, channel 4	
	3	Tx3 Squelch Disable	Tx squelch disable, channel 3	
	2	Tx2 Squelch Disable	Tx squelch disable, channel 2	_
	1	Tx1 Squelch Disable	Tx squelch disable, channel 1	_
	0	Tx0 Squelch Disable	Tx squelch disable, channel 0	
88	7	Tx7 Polarity	Tx polarity flip, channel 7	RW
58h	6	Tx6 Polarity	Tx polarity flip, channel 6	Opt.
	5	Tx5 Polarity	Tx polarity flip, channel 5	
	4	Tx4 Polarity	Tx polarity flip, channel 4	
	3	Tx3 Polarity	Tx polarity flip, channel 3	
	2	Tx2 Polarity	Tx polarity flip, channel 2	
	1	Tx1 Polarity	Tx polarity flip, channel 1	
	0	Tx0 Polarity	Tx polarity flip, channel 0	
89	7 - 4	Rx9 Pre-emphasis	Rx output equalization, channel 1	RW
59h	3-0	Rx8 Pre-emphasis	Rx output pre-emphasis, channel 0	Opt.
90	7-4	Rx11 Pre-emphasis	Rx output equalization channel 3	RW
5Ah	3-0	Rx10 Pre-emphasis	Rx output equalization, channel 2	Opt.
91	7-4	Rx13 Pre-emphasis	Rx output equalization, channel 5	RW
5Bh	3-0	Rx12 Pre-emphasis	Rx output equalization, channel 4	Opt.
92	7-4	Rx15 Pre-emphasis	Rx output equalization, channel 7	RŴ
5Ch	3-0	Rx14 Pre-emphasis	Rx output equalization, channel 6	Opt.
93	7-3	Reserved		RW
5Dh				Opt.
0.2.11	2	Soft Reset	Software reset, same effect as RST pin	RW
				Rqrd.
	1	Power Set	Power override: codes x0 = no	RW
	0	Power Override	override,	Opt.
			code 11 = low power, code 01 = high	-
			power	
94	7-4	Rx9 Amplitude	Rx output amplitude, channel 1	RW
5Eh	3-0	Rx8 Amplitude	Rx output amplitude, channel 0	Opt.
95	7-4	Rx11 Amplitude	Rx output amplitude, channel 3	RW
5Fh	3-0	Rx10 Amplitude	Rx output amplitude, channel 2	Opt.
96	7-4	Rx13 Amplitude	Rx output amplitude, channel 5	RŴ
60h	3-0	Rx12 Amplitude	Rx output amplitude, channel 4	Opt.
97	7-4	Rx15 Amplitude	Rx output amplitude, channel 7	RW
61h	3-0	Rx14 Amplitude	Rx output amplitude, channel 6	Opt.
98	7	-		
201	/	KXIS UUTDUT DISADIE	I KX OUTPUT GISADIE, Channel /	RW
I F		Rx15 Output Disable Rx14 Output Disable	Rx output disable, channel 7 Rx output disable, channel 6	RW Opt.
62h	6	Rx14 Output Disable	Rx output disable, channel 6	RW Opt.
I F	6 5	Rx14 Output Disable Rx13 Output Disable	Rx output disable, channel 6 Rx output disable, channel 5	
I F	6 5 4	Rx14 Output Disable Rx13 Output Disable Rx12 Output Disable	Rx output disable, channel 6 Rx output disable, channel 5 Rx output disable, channel 4	
I F	6 5 4 3	Rx14 Output Disable Rx13 Output Disable Rx12 Output Disable Rx11 Output Disable	<pre>Rx output disable, channel 6 Rx output disable, channel 5 Rx output disable, channel 4 Rx output disable, channel 3</pre>	
I F	6 5 4 3 2	Rx14 Output DisableRx13 Output DisableRx12 Output DisableRx11 Output DisableRx10 Output Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2	
I F	6 5 4 3 2 1	Rx14 Output DisableRx13 Output DisableRx12 Output DisableRx11 Output DisableRx10 Output DisableRx9 Output Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2Rx output disable, channel 1	
62h	6 5 4 3 2 1 0	Rx14 Output DisableRx13 Output DisableRx12 Output DisableRx11 Output DisableRx10 Output DisableRx9 Output DisableRx8 Output Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2Rx output disable, channel 1Rx output disable, channel 0	Opt.
62h 99	6 5 4 3 2 1 0 7	Rx14 Output Disable Rx13 Output Disable Rx12 Output Disable Rx11 Output Disable Rx10 Output Disable Rx9 Output Disable Rx8 Output Disable Rx15 Squelch Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2Rx output disable, channel 1Rx output disable, channel 0Rx squelch disable, channel 7	Opt.
62h	6 5 4 3 2 1 0 7 6	Rx14 Output DisableRx13 Output DisableRx12 Output DisableRx11 Output DisableRx10 Output DisableRx9 Output DisableRx8 Output DisableRx15 Squelch DisableRx14 Squelch Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2Rx output disable, channel 1Rx output disable, channel 1Rx output disable, channel 7Rx squelch disable, channel 6	Opt.
62h 99	6 5 4 3 2 1 0 7 6 5	Rx14 Output DisableRx13 Output DisableRx12 Output DisableRx11 Output DisableRx10 Output DisableRx9 Output DisableRx8 Output DisableRx15 Squelch DisableRx14 Squelch DisableRx13 Squelch Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2Rx output disable, channel 1Rx output disable, channel 1Rx output disable, channel 7Rx squelch disable, channel 6Rx squelch disable, channel 5	Opt.
62h 99	6 5 4 3 2 1 0 7 6 5 4	Rx14 Output DisableRx13 Output DisableRx12 Output DisableRx11 Output DisableRx10 Output DisableRx9 Output DisableRx8 Output DisableRx15 Squelch DisableRx14 Squelch DisableRx13 Squelch DisableRx12 Squelch DisableRx12 Squelch Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2Rx output disable, channel 1Rx output disable, channel 1Rx output disable, channel 7Rx squelch disable, channel 6Rx squelch disable, channel 5Rx squelch disable, channel 4	Opt.
62h 99	6 5 4 3 2 1 0 7 6 5 4 3	Rx14 Output DisableRx13 Output DisableRx12 Output DisableRx11 Output DisableRx10 Output DisableRx9 Output DisableRx8 Output DisableRx15 Squelch DisableRx13 Squelch DisableRx12 Squelch DisableRx12 Squelch DisableRx12 Squelch DisableRx11 Squelch DisableRx11 Squelch Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2Rx output disable, channel 1Rx output disable, channel 1Rx output disable, channel 7Rx squelch disable, channel 6Rx squelch disable, channel 5Rx squelch disable, channel 4Rx squelch disable, channel 3	Opt.
62h 99	6 5 4 3 2 1 0 7 6 5 4 3 2	Rx14 Output DisableRx13 Output DisableRx12 Output DisableRx11 Output DisableRx10 Output DisableRx9 Output DisableRx8 Output DisableRx15 Squelch DisableRx13 Squelch DisableRx12 Squelch DisableRx11 Squelch DisableRx12 Squelch DisableRx11 Squelch DisableRx11 Squelch DisableRx11 Squelch DisableRx11 Squelch DisableRx10 Squelch Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2Rx output disable, channel 1Rx output disable, channel 1Rx output disable, channel 7Rx squelch disable, channel 6Rx squelch disable, channel 5Rx squelch disable, channel 4Rx squelch disable, channel 3Rx squelch disable, channel 4	Opt.
62h	6 5 4 3 2 1 0 7 6 5 4 3 2 1	Rx14 Output DisableRx13 Output DisableRx12 Output DisableRx11 Output DisableRx10 Output DisableRx9 Output DisableRx8 Output DisableRx15 Squelch DisableRx13 Squelch DisableRx12 Squelch DisableRx11 Squelch DisableRx11 Squelch DisableRx11 Squelch DisableRx10 Squelch DisableRx11 Squelch DisableRx10 Squelch DisableRx10 Squelch DisableRx9 Squelch Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2Rx output disable, channel 1Rx output disable, channel 1Rx output disable, channel 0Rx squelch disable, channel 7Rx squelch disable, channel 6Rx squelch disable, channel 4Rx squelch disable, channel 5Rx squelch disable, channel 4Rx squelch disable, channel 3Rx squelch disable, channel 3Rx squelch disable, channel 1	Opt.
62h	6 5 4 3 2 1 0 7 6 5 4 3 2	Rx14 Output DisableRx13 Output DisableRx12 Output DisableRx11 Output DisableRx10 Output DisableRx9 Output DisableRx8 Output DisableRx15 Squelch DisableRx13 Squelch DisableRx12 Squelch DisableRx11 Squelch DisableRx12 Squelch DisableRx11 Squelch DisableRx11 Squelch DisableRx11 Squelch DisableRx11 Squelch DisableRx10 Squelch Disable	Rx output disable, channel 6Rx output disable, channel 5Rx output disable, channel 4Rx output disable, channel 3Rx output disable, channel 2Rx output disable, channel 1Rx output disable, channel 1Rx output disable, channel 7Rx squelch disable, channel 6Rx squelch disable, channel 5Rx squelch disable, channel 4Rx squelch disable, channel 3Rx squelch disable, channel 4	Opt.

64h	6	Rx14 Polarity	Rx polarity flip, channel 6	Opt.
	5	Rx13 Polarity	Rx polarity flip, channel 5	
	4	Rx12 Polarity	Rx polarity flip, channel 4	
	3	Rx11 Polarity	Rx polarity flip, channel 3	
	2	Rx10 Polarity	Rx polarity flip, channel 2	
	1	Rx9 Polarity	Rx polarity flip, channel 1	
	0	Rx8 Polarity	Rx polarity flip, channel 0	
101	7	Tx7 CDR Bypass	Tx CDR bypass, channel 7	RW
65h	6	Tx6 CDR Bypass	Tx CDR bypass, channel 6	Opt.
	5	Tx5 CDR Bypass	Tx CDR bypass, channel 5	
	4	Tx4 CDR Bypass	Tx CDR bypass, channel 4	
	3	Tx3 CDR Bypass	Tx CDR bypass, channel 3	
	2	Tx2 CDR Bypass	Tx CDR bypass, channel 2	
	1	Tx1 CDR Bypass	Tx CDR bypass, channel 1	
	0	Tx0 CDR Bypass	Tx CDR bypass, channel 0	
102	7	Rx15 CDR Bypass	Rx CDR bypass, channel 7	RW
66h	6	Rx14 CDR Bypass	Rx CDR bypass, channel 6	Opt.
	5	Rx13 CDR Bypass	Rx CDR bypass, channel 5	
	4	Rx12 CDR Bypass	Rx CDR bypass, channel 4	
	3	Rx11 CDR Bypass	Rx CDR bypass, channel 3	
	2	Rx10 CDR Bypass	Rx CDR bypass, channel 2	
	1	Rx9 CDR Bypass	Rx CDR bypass, channel 1	
	0	Rx8 CDR Bypass	Rx CDR bypass, channel 0	

1 2

#### 3 8.3.6 Interrupt Masks

4

5 The host system may control which flags result in an interrupt (IntL) by setting high 6 individual bits from a set of masking bits in bytes 103-116. There is one masking bit per 7 alarm flag. A 1 value in a masking bit prevents the assertion of the hardware IntL pin by 8 the corresponding latched flag bit. Masking bits are volatile and startup with all 9 unmasked (masking bits 0). The mask bits may be used to prevent continued interruption 10 from recurring conditions, which would otherwise continually reassert the hardware IntL 11 pin (such as a monitor value hovering around an alarm threshold value). 12

13 The clearing of an interrupt mask bit will cause an interrupt to be generated only if the 14 corresponding alarm flag became set while masked and has not been read (and cleared) by 15 the host computer system. There is a maximum of one interrupt generated per occurrence of 16 an alarm condition.

17 18 19

### Table 21: Interrupt Masks (Page 0L)

		Interrupt Masks (Page	·	
Byte	Bits	Name	Description	Туре
103	7	M-Rx15 LOS	Masking bit for Rx LOS indicator, channel 7	RW
67h	6	M-Rx14 LOS	Masking bit for Rx LOS indicator, channel 6	Opt.
	5	M-Rx13 LOS	Masking bit for Rx LOS indicator, channel 5	
	4	M-Rx12 LOS	Masking bit for Rx LOS indicator, channel 4	
	3	M-Rx11 LOS	Masking bit for Rx LOS indicator, channel 3	
	2	M-Rx10 LOS	Masking bit for Rx LOS indicator, channel 2	
	1	M-Rx9 LOS	Masking bit for Rx LOS indicator, channel 1	
	0	M-Rx8 LOS	Masking bit for Rx LOS indicator, channel 0	
104	7	M-Tx7 LOS	Masking bit for Tx LOS indicator, channel 7	RW
68h	6	M-Tx6 LOS	Masking bit for Tx LOS indicator, channel 6	Opt.
	5	M-Tx5 LOS	Masking bit for Tx LOS indicator, channel 5	
	4	M-Tx4 LOS	Masking bit for Tx LOS indicator, channel 4	
	З	M-Tx3 LOS	Masking bit for Tx LOS indicator, channel 3	
	2	M-Tx2 LOS	Masking bit for Tx LOS indicator, channel 2	

	1	M-Tx1 LOS	Masking bit for Tx LOS indicator, channel 1	
	0	M-Tx0 LOS	Masking bit for Tx LOS indicator, channel 0	-
105	7			DLI
105		M-Tx7Fault	Masking bit for TxFault indicator, channel 7	RW
69h	6	M-Tx6Fault	Masking bit for TxFault indicator, channel 6	Opt.
	5	M-Tx5Fault	Masking bit for TxFault indicator, channel 5	_
	4	M-Tx4Fault	Masking bit for TxFault indicator, channel 4	_
	3	M-Tx3Fault	Masking bit for TxFault indicator, channel 3	
	2	M-Tx2Fault	Masking bit for TxFault indicator, channel 2	
	1	M-Tx1Fault	Masking bit for TxFault indicator, channel 1	
	0	M-Tx0Fault	Masking bit for TxFault indicator, channel 0	
106	7	M-Temp High	Masking bit for first temperature monitor high	RO
6Ah			alarm indicator	Rqrd.
	6	M-Temp Low	Masking bit for first temperature monitor low	
		1	alarm indicator	
	5	M-Temp High	Masking bit for first temperature monitor high	_
	5	Warning	warning indicator	
	4	M-Temp Low Warning	Masking bit for first temperature monitor low	-
	г	M Temp Dow Warning	warning indicator	
	3	M. Toma Q. Hi ah	Masking bit for second temperature monitor high	_
	3	M-Temp2 High		
	0	N	alarm indicator	_
	2	M-Temp2 Low	Masking bit for second temperature monitor low	
			alarm indicator	_
	1	M-Temp2 High	Masking bit for second temperature monitor high	
		Warning	warning indicator	_
	0	M-Temp2 Low	Masking bit for second temperature monitor low	
		Warning	warning indicator	
107	7	M-Vcc3.3 High	Masking bit for 3.3 volts power supply monitor	RW
6Bh			high alarm	Opt.
	6	M-Vcc3.3 Low	Masking bit for 3.3 volts power supply monitor	
			low alarm	
	5-0	Reserved		
108	7	M-Rx15 Power Low	Masking bit for Rx input power low warning	RW
6Ch		Warning	indicator, channel 7	Opt.
	6	M-Rx14 Power Low	Masking bit for Rx input power low warning	-
		Warning	indicator, channel 6	
	5	M-Rx13 Power Low	Masking bit for Rx input power low warning	
		Warning	indicator, channel 5	
	4	M-Rx12 Power Low	Masking bit for Rx input power low warning	
	_	Warning	indicator, channel 4	
	3	M-Rx11 Power Low	Masking bit for Rx input power low warning	
	Ŭ	Warning	indicator, channel 3	
	2	M-Rx10 Power Low	Masking bit for Rx input power low warning	
	<u>ک</u>	Warning	indicator, channel 2	
	1	M-Rx9 Power Low	Masking bit for Rx input power low warning	
	L _	Warning	indicator, channel 1	
	0	M-Rx8 Power Low		
	U		Masking bit for Rx input power low warning	
1.0.0		Warning	indicator, channel 0	DT-7
109	7	M-Rx15 Power Low	Masking bit for Rx input power low alarm	RW
6Dh		Alarm	indicator, channel 7	Opt.
	6	M-Rx14 Power Low	Masking bit for Rx input power low alarm	
	_	Alarm	indicator, channel 6	_
	5	M-Rx13 Power Low	Masking bit for Rx input power low alarm	
		Alarm	indicator, channel 5	
	4	M-Rx12 Power Low	Masking bit for Rx input power low alarm	
		Alarm	indicator, channel 4	
	3	M-Rx11Power Low	Masking bit for Rx input power low alarm	
		Alarm	indicator, channel 3	
	2	M-Rx10Power Low	Masking bit for Rx input power low alarm	
L	1	-		1

		Alarm	indicator, channel 2	
-	1			
	T	M-Rx9Power Low	Masking bit for Rx input power low alarm	
		Alarm	indicator, channel 1	
	0	M-Rx8Power Low	Masking bit for Rx input power low alarm	
		Alarm	indicator, channel 0	
110	7	M-Rx15Power High	Masking bit for Rx input power high alarm	RW
6Eh		Alarm	indicator, channel 7	Opt.
	6	M-Rx14 Power High	Masking bit for Rx input power high alarm	
		Alarm	indicator, channel 6	
	5	M-Rx13 Power High	Masking bit for Rx input power high alarm	
		Alarm	indicator, channel 5	
	4	M-Rx12 Power High	Masking bit for Rx input power high alarm	
		Alarm	indicator, channel 4	
	3	M-Rx11 Power High	Masking bit for Rx input power high alarm	
		Alarm	indicator, channel 3	
	2	M-Rx10 Power High	Masking bit for Rx input power high alarm	
		Alarm	indicator, channel 2	
	1	M-Rx9 Power High	Masking bit for Rx input power high alarm	
	_	Alarm	indicator, channel 1	
	0	M-Rx8 Power High	Masking bit for Rx input power high alarm	_
	0	Alarm	indicator, channel 0	
111	7	M-Tx7 Bias Low	Masking bit for Tx bias current low alarm	RW
6Fh	/	Alarm	indicator, channel 7	
0110	6	M-Tx6 Bias Low	Masking bit for Tx bias current low alarm	Opt.
	0	Alarm	indicator, channel 6	
	5			
	5	M-Tx5 Bias Low	Masking bit for Tx bias current low alarm	
-		Alarm	indicator, channel 5	_
	4	M-Tx4 Bias Low	Masking bit for Tx bias current low alarm	
-	2	Alarm	indicator, channel 4	
	3	M-Tx3 Bias Low	Masking bit for Tx bias current low alarm	
_		Alarm	indicator, channel 3	
	2	M-Tx2 Bias Low	Masking bit for Tx bias current low alarm	
_		Alarm	indicator, channel 2	
	1	M-Tx1 Bias Low	Masking bit for Tx bias current low alarm	
		Alarm	indicator, channel 1	
	0	M-TxOBias Low	Masking bit for Tx bias current low alarm	
		Alarm	indicator, channel 0	
112	7	M-Tx7Bias High	Masking bit for Tx bias current high alarm	RW
70h			indicator, channel 7	Opt.
	6	M-Tx6 Bias High	Masking bit for Tx bias current high alarm	
		Alarm	indicator, channel 6	
	5	M-Tx5 Bias High	Masking bit for Tx bias current high alarm	
		Alarm	indicator, channel 5	
	4	M-Tx4 Bias High	Masking bit for Tx bias current high alarm	
		Alarm	indicator, channel 4	
F	3	M-Tx3 Bias High	Masking bit for Tx bias current high alarm	_
		Alarm	indicator, channel 3	
F	2	M-Tx2 Bias High	Masking bit for Tx bias current high alarm	
	_	Alarm	indicator, channel 2	
F	1	M-Tx1 Bias High	Masking bit for Tx bias current high alarm	-
	-	Alarm	indicator, channel 1	
F	0	M-Tx0 Bias High	Masking bit for Tx bias current high alarm	_
	0	Alarm	indicator, channel 0	
113	7	M-Tx7 Power Low		RW
	/		Masking bit for Tx output power low alarm	
71h	~	Alarm	indicator, channel 7	Opt.
	6	M-Tx6 Power Low	Masking bit for Tx output power low alarm	
		Alarm	indicator, channel 6	
F	5	M-Tx5 Power Low	Masking bit for Tx output power low alarm	

		Alarm	indicator, channel 5	_
	4	M-Tx4 Power Low	Masking bit for Tx output power low alarm	
		Alarm	indicator, channel 4	
	3	M-Tx3 Power Low	Masking bit for Tx output power low alarm	
		Alarm	indicator, channel 3	
	2	M-Tx2 Power Low	Masking bit for Tx output power low alarm	
		Alarm	indicator, channel 2	
	1	M-Tx1 Power Low	Masking bit for Tx output power low alarm	
		Alarm	indicator, channel 1	
	0	M-Tx0Power Low	Masking bit for TX output power low alarm	
			indicator, channel 0	
114	7	M-Tx7Power High	Masking bit for TX output power high alarm	RW
72h			indicator, channel 7	Opt.
	6	M-Tx6 Power High	Masking bit for Tx output power high alarm	
		Alarm	indicator, channel 6	
	5	M-Tx5 Power High	Masking bit for Tx output power high alarm	
		Alarm	indicator, channel 5	
	4	M-Tx4 Power High	Masking bit for Tx output power high alarm	
		Alarm	indicator, channel 4	
	3	M-Tx3 Power High	Masking bit for Tx output power high alarm	
		Alarm	indicator, channel 3	
	2	M-Tx2 Power High	Masking bit for Tx output power high alarm	
		Alarm	indicator, channel 2	
	1	M-Tx1 Power High	Masking bit for Tx output power high alarm	
		Alarm	indicator, channel 1	
	0	M-Tx0 Power High	Masking bit for Tx output power high alarm	
		Alarm	indicator, channel 0	
115	7	M-Rx15CDR LOL	Masking bit for RxCDR LOL indicator, channel 7	RW
73h	6	M-Rx14CDR LOL	Masking bit for RxCDR LOL indicator, channel 6	Opt.
	5	M-Rx13CDR LOL	Masking bit for RxCDR LOL indicator, channel 5	
	4	M-Rx12CDR LOL	Masking bit for RxCDR LOL indicator, channel 4	
	3	M-Rx11CDR LOL	Masking bit for RxCDR LOL indicator, channel 3	1
	2	M-Rx10CDR LOL	Masking bit for RxCDR LOL indicator, channel 2	1
	1	M-Rx9CDR LOL	Masking bit for RxCDR LOL indicator, channel 1	1
	0	M-Rx8CDR LOL	Masking bit for RxCDR LOL indicator, channel 0	1
116	7	M-Tx7CDR LOL	Masking bit for TxCDR LOL indicator, channel 7	RW
74h	6	M-Tx6CDR LOL	Masking bit for TxCDR LOL indicator, channel 6	Opt.
	5	M-Tx5CDR LOL	Masking bit for TxCDR LOL indicator, channel 5	1 -
	4	M-Tx4CDR LOL	Masking bit for TxCDR LOL indicator, channel 4	1
-	3	M-Tx3CDR LOL	Masking bit for TxCDR LOL indicator, channel 3	1
_	2	M-Tx2CDR LOL	Masking bit for TxCDR LOL indicator, channel 2	-
			Masking bit for TxCDR LOL indicator, channel 1	-1
F	1	M-Tx1CDR LOL	IMASKING DIE TOF IXUUR LUL INGICATOF. CHANNEL I	

1

### 2 8.3.7 Alarm Flags Persistence Control

3 The Alarm Flags Persistence controls determine the behavior of the Interrupt Flag bits in 4 5 bytes 3 to 16. Normally, the interrupt flag bytes are cleared when they are read by the 6 host system and not reasserted unless the alarm condition goes away and then comes back 7 again. However, if the persistence control bit appropriate to an alarm flag is set, the 8 bit in the Interrupt Flags field is immediately reasserted after the clear-on-read; note that this reassertion does not cause an interrupt to be generated (implicit masking); 9 10 there is a maximum of one interrupt generated per occurrence of an alarm condition. The alarm persistence control bytes may be loaded from non-volatile memory at power on or 11 12 reset.

2
3
4
5

1

Table	22:	Alarm	Persistence	Control	(Page 0	L)

Byte		Name	Description	Туре
117	7-2	Reserved		RW
75h	1	Persistent CDR LOL Tx alarm	Writing 1b causes CDR LOL Tx alarms in byte 16 to be reasserted after clear-on-read if the CDR LOL condition persists.	Opt.
	0	Persistent CDR LOL Rx alarm	Writing 1b causes CDR LOL Rx alarms in byte 15 to be reasserted after clear-on-read if the CDR LOL condition persists.	
118 76h	7	Persistent LOS Tx alarm	Writing 1b causes Tx LOS alarms in byte 4 to be reasserted after clear-on-read if the LOS condition persists.	RW Opt.
	6	Persistent LOS Rx alarm	Writing 1b causes Rx LOS alarms in byte 3 to be reasserted after clear-on-read if the LOS condition persists.	
	5	Persistent Fault Tx alarm	Writing 1b causes Fault Tx alarms in byte 5 to be reasserted after clear-on-read if the Fault condition persists.	
	4	Persistent Bias Tx alarm	Writing 1b causes Tx Bias alarms in bytes 11 and 12 to be reasserted after clear-on-read if the alarm condition persists.	
	3	Persistent Power Tx alarm	Writing 1b causes Tx Power alarms in bytes 13 and 14 to be reasserted after clear-on-read if the alarm condition persists.	
	2	Persistent Power Rx alarm	Writing 1b causes Rx Power alarms in bytes 9 and 10 to be reasserted after clear-on-read if the alarm condition persists.	
	1	Persistent Temperature Tx alarm	Writing 1b causes Temperature alarms in byte 6 to be reasserted after clear-on-read if the alarm condition persists.	
	0	Persistent Voltage Tx alarm	Writing 1b causes Voltage alarms in byte 7 to be reasserted after clear-on-read if the alarm condition persists.	

6

#### 7 8.3.8 Password Entry and Change

8

9 Bytes 119-126 are reserved for the password entry function. The Password entry bytes are 10 write only and will be retained until power down, reset, or rewritten by host. This 11 function is used to control write access to vendor specific page 02h (eeprom) and other 12 upper pages. Additionally, module vendors may use this function to implement write 13 protection of Serial ID and other read only information. Note that multiple module 14 manufacturer passwords may be defined to allow selective access to write to various 15 sections of memory as allowed above.

16

#### 17 8.3.9 Page Select Byte

18 19

19 The value written to the page select determines which upper page is accessed at addresses 20 128 to 255 (80h to FFh). Attempting to access non-existent upper pages will cause writes 21 to be ignored and reads to return all zeros, all ones, or some other preset value. 22

1	8.4	Upper	Page	00h
-	• • •	0000		••••

3 Upper Page 00h consists of the Serial ID and is used for read only identification 4 information. The Serial ID is divided into the Base ID Fields, Extended ID Fields and 5 Vendor Specific ID Fields.

### 6 8.4.1 Base ID

7

2

8 The Base ID area provides basic information about the device.9 The format of the Serial ID Memory Map is illustrated as follows:

10

11 Table 23: Upper Page 0 Overview (Page 0h)

		Overview (Page Oh)	1
Serial ID	Size	Name	Description
Fields	(bytes)		
(Page			
0h)Address			
Base ID Fi	elds		
128	1	Identifier	Identifier Type of Module
129	1	Ext. Identifier	Extended Identifier
130	1	Connector	Code for connector type
131-138	8	Specification	Code for electronic compatibility or
		compliance	optical compatibility
139	1	Encoding	Code for serial encoding algorithm
140	1	BR, nominal	Nominal bit rate, units of 100 MBits/s
141	1	Extended rate	Tags for extended rate select compliance
		select	
		compliance	
142-146	5	Link length	Link length / transmission media
147	1	Device tech	Device technology
148-163	16	Vendor name	Vendor name (ASCII)
164	1	Extended Module	Extended Module codes for InfiniBand
165-167	3	Vendor OUI	Vendor IEEE company ID
168-183	16	Vendor PN	Part number provided by vendor (ASCII)
184-185	2	Vendor rev	Revision level for part number provided by
			vendor (ASCII)
186-187	2	Wavelength or	Nominal laser wavelength
		Copper cable	(wavelength=value/20 in nm) or copper cable
		Attenuation	attenuation in dB at 2.5GHz (Adrs 186) and
			5.0GHz (Adrs 187)
188-189	2	Wavelength	Guaranteed range of laser wavelength(+/-
		tolerance	value) from nominal wavelength.(wavelength
			Tolerance=value/200 in nm)
190	1	Max case temp.	Maximum case temperature in degrees C
191	1	CC_BASE	Check code for base ID fields (addresses
			128-190 inclusive)
Extended I	D Fields		
192-195	4	Options	Indicates which optional capabilities are
		_	implemented in the Module
196-211	16	Vendor S/N	Vendor product serial number
212-219	8	Date Code	Vendor's manufacturing date code
220	1	Diagnostic	Indicates which types of diagnostic
		Monitoring Type	monitoring are implemented in the Module
001 000	2	Enhanced Options	Indicates which optional enhanced features
221-222		-	
221-222			are implemented in the Module.
221-222	1	CC_EXT	are implemented in the Module. Check code for the Extended ID Fields

	224-255	32	Vendor-Specific	Vendor-specific ID information
1				
2	8.4.2 Ider	ntifier and	d Extended Identifier	
3				
4	The identi	fier valu	e specifies the physic	cal device described by the serial information.
5	This field	d should c	ontain the same value	as byte 0 in the lower page. These values are
6	maintained	l in the T	ransceiver Management	section of SFF-8024.
7				
8			1	ower consumption class that the device belongs to
9	-			as whether the Module card contains a CDR
10	function.	The power	classes indicate the	power consumed per circuit board.
11				

12 13

Table 24: Identifiers (Page 0h)

Table 24. Idencifiers (rage on)							
Byte	Bits	Name	Description	Туре			
128	All	Identifier	Identifier - Type of Serial Module	RO			
80h			CDFP style 1 or style $2 = 13h$	Rqrd.			
129	7-5	Module Card Power	000: Power class 1 (3.0 W maximum)	RO			
81h		Class	001: Power class 2 (4.0 W maximum)	Rqrd.			
			010: Power class 3 (5.0 W maximum)				
			011: Power class 4 (6.0 W maximum)				
			100: Power class 5 - maximum				
			specified in byte 145				
			101-111: reserved				
	4	CLEI code presence	Coded 1 if CLEI code present in				
			page 02h, otherwise coded 0				
	3	CDR present in TX	Coded 1 if Tx channels include CDRs				
	2	CDR present in RX	Coded 1 if Rx channels include CDRs				
	1-0	CDR Power Class	00: Less than 50 mW per CDR channel				
			01: 50 to 100 mW per CDR channel				
			10: 100 to 200 mW per CDR channel				
			11: More than 200 mW per CDR				
			channel				

14 15

### 16 8.4.3 Connector Type (Address 130)

17

18 The Connector value indicates the external connector provided on the interface. This 19 value shall be included in the serial data. The defined connector type values are shown 20 in the following table:

21 22 23

### Table 25: Connector Types

zo: conneccor rypes		
Value	Description of Connector	
00h	Unknown or unspecified	
01h	SC (Subscriber Connector)	
02h	FC Style 1 copper connector	
03h	FC Style 2 copper connector	
04h	BNC/TNC	
05h	Fibre Channel coax headers	
06h	Fiber jack	
07h	Dual LC (Lucent Connector)	
08h	MT-RJ (Mechanical Transfer-Registered Jack	
09h	MU (Multiple Optical)	
0Ah	SG	

0Bh	Optical Pigtail		
0Ch	MPO 1x12 (Multifiber Parallel Optic)		
0Dh	MPO 2x16		
0E-1Fh	Reserved		
20h	HSSDC II (High Speed Serial Data Connector)		
21h	Copper pigtail		
22h	RJ45 (Registered Jack)		
23h	No separable connector		
24h	MXC 2x16		
25h-7Fh	Reserved		
80-FFh	Vendor specific		
Note: 01h to	Note: 01h to 05h are not SFP-compatible, and are included		
for compatib	ility with GBIC standards.		

1

#### 8.4.4 Specification Compliance

2 3

> The Specification Compliance fields are bit-significant indicators defining the electronic or optical interfaces that are supported by the device. For Fibre Channel support, the Fibre Channel speed, transmission media, transmitter technology, and distance capability shall all be indicated.

9

#### 10 Table 26: Specification compliance (Page Oh)

Table	= 20. L	specification comp		
Byte	Bits	Name	Description	Туре
131	All		10/40G Ethernet Compliance Code	RO
83h				Rqrd.
132	All		SONET Compliance codes	RO
84h				Rqrd.
133	All		SAS/SATA compliance codes	RO
85h				Rqrd.
134	All		Gigabit Ethernet Compliant codes	RO
86h				Rqrd.
135	All		Fibre Channel link length	RO
87h				Rqrd.
136	All		Fibre Channel Transmitter Technology	RO
88h				Rqrd.
137	All		Fibre Channel transmission media	RO
89h				Rqrd.
138	All		Fibre Channel Speed	RO
8Ah				Rqrd.

11

#### 12 8.4.5 Encoding (Address 139)

13

14 The encoding value indicates the serial encoding mechanism that is the nominal design 15 target of the particular device. This value shall be contained in the serial data. The 16 defined encoding values shown in the following table:

1 2 3

#### Table 27: Encoding values

$\sim$	Z/. Directuring	Varues
	Code	Description of encoding mechanism
	00h	Unspecified
Ī	01h	8B10B
	02h	4B5B
	03h	NRZ
	04h	SONET Scrambled
ſ	05h	64B66B
	06h	Manchester
	07h	256B/257B (transcoded FEC-enabled data)
Ī	08h-FFh	Reserved

#### 4

#### 5 8.4.6 BR, nominal (Address 140)

6

7 The nominal bit rate (BR, nominal) is specified in units of 100 Megabits per second, 8 rounded off to the nearest 100 Megabits per second. The bit rate includes those bits 9 necessary to encode and delimit the signal as well as those bits carrying data 10 information. A value of 0 indicates that the bit rate is not specified and must be 11 determined from the device technology. The actual information transfer rate may depend on 12 the encoding of the data, as defined by the encoding value. For BR > 25.4Gb/s, set this 13 to FFh and use Address 222.

#### 15 8.4.7 Extended Rate Select and Global Options

17 The Extended RateSelect Compliance field is used to allow a single device the flexibility 18 to comply with single or multiple Extended RateSelect definitions. A supported definition 19 is indicated by presence of a "1" in the specified bit position.

20 21 22

Table 28: Extended rate-select compliance (Page 0h)

Byte	Bits	Name	Description	Туре
141	7	Global Tx Disable	Coded 1 if any Tx Disable control bit being	RO
8Dh			set disables all Tx channels	Rqrd.
	6	Global Tx Squelch	Coded 1 if any Tx Squelch Disable control bit	
		Disable	being set disables squelching for all Tx	
			channels	_
	5	Global Tx	Coded 1 if writing to any Tx Equalization	
		Equalization	control field writes the same value to all Tx	
			Equalization control fields	
	4	Global Rx Output	Coded 1 if any Rx Output Disable control bit	
		Disable	being set disables the output on all Rx	
			channels	
	3	Global Rx Squelch	Coded 1 if any Rx Squelch Disable control bit	
		Disable	being set disables squelching for all Rx	
			channels	
	2	Global Rx Pre-	Coded 1 if writing to any Rx Pre-Emphasis	
		Emphasis	control field writes the same value to all Rx	
			Pre-Emphasis control fields	
	1	Global Rx Output	Coded 1 if writing to any Rx Output Amplitude	
		Amplitude	control field writes the same value to all Rx	
			Output Amplitude control fields	
	0	Rate Select Version	Coded 1 if QSFP+ Rate Select Version 1	
			implemented. This functionalityis different	
			from SFF-8472 and SFF-8431.	

### 8.4.8 Link Length

 The link length fields specify the data link length in various transmission media. In each case, a value of zero means that the device does not support the transmission media or that the length information must be determined from the device technology.

			Description	<b>m</b>
Address	Bits	Name	Description	Туре
142	7	New length format	Indicates 16-bit link length and use	RO
8Eh			of variable cable length scale method	Rqrd.
	6-5	Cable length scale	0= length is in meters	RO
			1= length is in kilometers	Rqrd.
			2= length is in multiples of 32 meters	
			3= length is in multiples of 1/256	
			meters	
	4-0	Transmission Media	1= 62.5/125 um MMF (OM1)	RO
			2= 50/125um MMF (OM2)	Rqrd.
			3= EBW 50/125 um MMF (OM3)	
			4= EBW 50/125um MMF (OM4)	
			5= SMF	
			6= Copper	
143	All	Link Length MSB	Link length in the units identified by	RO
8Fh			the Cable Length Scale	Rqrd.
144	All	Link Length LSB		
90h				
145	All	Maximum Power	Module card maximum power in tenth-	RO
91h			watt units, rounded to the nearest	Rqrd.
			unit. A byte value of 255 indicates a	_
			maximum power greater than 25.4 Watts.	
146	All	Reserved		RO
92h				Rqrd.

Table 29: Link Length (Page 0h)

#### 11 8.4.9 Device Technology (Address 147)

13 The device technology byte specifies the technology used in the device. Four bits are 14 used to identify the technology type and the remaining four bits are used to indicate 15 options implemented.

### Table 30: Device technology

Byte	Bits	Name	Description	Туре
147	7-4	Technology	Transmitter technology code	RO
93h	3	Wavelength control	0: No wavelength control	Rqrd.
			1: Active wavelength control	
	2	Cooling	0: Uncooled transmitter device	
			1: Cooled transmitter	
	1	Detector type	0: Pin detector	
			1: APD detector	
	0	Tunable	0: Transmitter not tunable	
l			1: Transmitter tunable	

1	
Τ	

Table	Table 31: Technology values		
	Code	Description of physical device	
	00h	850 nm VCSEL	
	01h	1310 nm VCSEL	
	02h	1550 nm VCSEL	
	03h 1310 nm FP		
	04h	1310 nm DFB	
	05h	1550 nm DFB	
	06h	1310 nm EML	
	07h	1550 nm EML	
	08h	Others	
	09h	1490 nm DFB	
	0Ah	Copper cable unequalized	
	0Bh	Copper cable passive equalized	
	OCh	Copper cable, near and far end limiting active equalizers	
	0Dh	Copper cable, far end limiting active equalizers	
	OEh	Copper cable, near end limiting active equalizers	
	OFh	Copper cable, linear active equalizers	

2 3

#### 4 8.4.10 Vendor Name (Addresses 148-163)

5

6 The vendor name is a 16 character field that contains ASCII characters, left aligned and 7 padded on the right with ASCII spaces (20h). The vendor name shall be the full name of 8 the corporation, a commonly accepted abbreviation of the name of the corporation, the 9 SCSI company code for the corporation, or the stock exchange code for the corporation. At 10 least one of the vendor name or the vendor OUI fields shall contain valid serial data. 11

#### 12 8.4.11 Extended Module Code

13

### 14 The Extended Module Code defines the electronic or optical interfaces for InfiniBand that 15 are supported by the device.

16 17 18

Byte	Bits	Name	Description	Туре
164	7-5	Reserved		RO
A4h	4	EDR Speed	Coded 1 for EDR Speed support	Rqrd.
	3	FDR Speed	Coded 1 for FDR Speed support	
	2	QDR Speed	Coded 1 for QDR Speed support	
	1	DDR Speed	Coded 1 for DDR Speed support	
	0	SDR Speed	Coded 1 for SDR Speed support	

Table 32: Extended module code (Page Oh)

19

### 20 8.4.12 Vendor Organizationally Unique Identifier (OUI, Address 165-167)

21

The vendor organizationally unique identifier field (vendor OUI) is a 3-byte field that contains the IEEE Company Identifier for the vendor. A value of all zero in the 3-byte field indicates that the Vendor OUI is unspecified.

#### 26 8.4.13 Vendor Part Number (Address 168-183)

27

28 The vendor part number (vendor PN) is a 16-byte field that contains ASCII characters, 29 left aligned and padded on the right with ASCII spaces (20h), defining the vendor part

number or product name. A value of all zero in the 16-byte field indicates that the 1 vendor part number is unspecified. 2

#### 3 8.4.14 Vendor Revision Number (Address 184-185)

4

5 The vendor revision number (vendor rev) is a 2-byte field that contains ASCII characters, left aligned and padded on the right with ASCII spaces (20h), defining the vendor's 6 7 product revision number. A value of all zero in the field indicates that the vendor Rev 8 is unspecified.

#### 9 8.4.15 Wavelength (Address 186-187)

10

2.6

The wavelength field specifies the nominal transmitter output wavelength at room 11 temperature; this is al6-bit value with byte 186 as the high order byte and byte 187 as 12 the low order byte. The laser wavelength value is equal to the 16-bit integer value of 13 14 the wavelength in nm divided by 20 (units of 0.05nm). This resolution should be adequate 15 to cover all relevant wavelengths yet provide enough resolution for all expected applications. For accurate representation of controlled wavelength applications, this 16 value should represent the center of the guaranteed wavelength range. 17 18

19 If the cable is identified as a copper cable, these addresses will be used to define the 20 cable attenuation. Address 186 (00-FFh) holds an 8 bit value indicating the copper cable attenuation at 2.5GHz in units of 1 dB. Address 187 (00-FFh) holds an 8 bit value 21 indicating the copper cable attenuation at 5.0GHz in units of 1 dB. An indication of 0 dB 22 23 attenuation refers to the case where the attenuation is not known or is unavailable. 24

#### 25 8.4.16 Wavelength Tolerance (Address 188-189)

27 The wavelength tolerance is the guaranteed +/- range of the transmitter output wavelength 28 under all normal operating conditions; this is al6-bit value with byte 188 as the high 29 order byte and byte 189 as the low order byte. The laser wavelength tolerance is equal to 30 the 16-bit integer value in nm divided by 200 (units of 0.005nm). Thus, the following two 31 examples: 32

33	Example 1:
34	10GBASE-LR Wavelength Range = 1260 to 1355 nm
35	Nominal Wavelength in bytes 186 - 187 = 1307.5 nm.
36	Represented as INT (1307.5 nm * 20) = 26150 = 6626h
37	Wavelength Tolerance in bytes 188 - 189 = 47.5nm.
38	Represented as INT (47.5 nm * 200) = 9500 = 251Ch

40 Example 2: ITU-T Grid Wavelength = 1534.25 nm with 0.236 nm Tolerance 41 42 Nominal Wavelength in bytes 186 - 187 = 1534.25 nm. Represented as INT (1534.25nm * 20) = 30685 = 77DDh 43 Wavelength Tolerance in bytes 188 - 189 = 0.236 nm. 44 Represented as INT (0.236 nm * 200) = 47 = 002Fh 45 46

47

49

39

#### 8.4.17 Maximum Case Temperature (Address 190) 48

The maximum case temperature field allows specification of a maximum case temperature 50 51 other than the standard default of 70C. The maximum case temperature is an 8-bit value in 52 degrees C. 53

### 8.4.18 CC-BASE (Address 191)

2 3 The check code is a one byte code that can be used to verify that the first 63 bytes of serial information in the device is valid. The check code shall be the low order 8 bits 4 5 of the sum of the contents of all the bytes from byte 128 to byte 190, inclusive. 6

The bits in the options field shall specify the options implemented in the Module.

7 8.4.19 Options

9

8

1

Table 33: Options (Page 0h)

Table 33: Options (Page Oh)				
Byte	Bit	Name	Description	Туре
192	All	Extended Ethernet	00h Unspecified	RO
COh		Compliance Codes	01h 100G AOC (Active optical cable)	Rqrd.
			02h 100GBASE-SR4	
			03h 100GBASE-LR4	
			04h 100GBASE-ER4	
			05h 100GBASE-SR10	
			06h 100G CWDM4 Coarse WDM SMF	
			07h 100G PSM4 Parallel SMF	
			08h 40GBASE-ER4	
			09-FFh Reserved	
193	7	Reserved		RO
Clh	6	Reserved		Rqrd.
	5	Rx polarity flip	Coded 1 if Rx polarity flip control	
		implemented	provided	
	4	Tx polarity flip	Coded 1 if Tx polarity flip control	
		implemented	provided	
	3	TX input	Coded 1 if Tx equalization control	
		Equalization	provided	
		implemented		
	2	Rx Loss of Signal	Coded 1 if Rx LOS alarm flags	
		implemented	provided	
	1	Rx preemphasis	Coded 1 if Rx pre-emphasis control	
		implemented	provided	
	0	Rx output amplitude	Coded 1 if Rx output amplitude	
		implemented	control provided	
194	7	Tx CDR Bypass	Coded 1 if Tx CDR bypass control	RO
C2h		implemented	provided	Rqrd.
	6	Rx CDR Bypass	Coded 1 if Rx CDR bypass control	
		implemented	provided	
	5	Tx CDR Loss of Lock	Coded 1 if Tx CDR LOL alarm flag	
		(LOL) Flag	provided	
		implemented		
	4	Rx CDR Loss of Lock	Coded 1 if Rx CDR LOL alarm flag	
		(LOL) Flag	provided	
		implemented		
	3	Rx Squelch Disable	Coded 1 if Rx Squelch Disable	
		implemented	control provided	
	2	Rx Output Disable	Coded 1 if Rx Output Disable	
		implemented	control provided	
	1	Tx Squelch Disable	Coded 1 if Tx Squelch Disable	
		implemented	control provided	
	0	Tx Squelch present	Coded 1 if Tx Squelch provided	
195	7	Memory page 02	Coded 1 if memory page 02h provided	RO
C3h		present		Rqrd.

6	Memory page 01	Coded 1 if memory page 01h provided	
	present		
5	Tx Rate Select	Coded 1 if Tx Rate Select control	
	implemented	provided	
4	Tx Disable	Coded 1 if Tx Disable control	
	implemented	provided	
3	Tx Fault Flag	Coded 1 if Tx Fault supported	
	implemented		
2	Tx Squelch Pave	Coded 1 if Tx Squelch implemented	
		to reduce Pave; coded 0 if Tx	
		Squelch implemented to reduce OMA	
1	Tx LOS Flag	Coded 1 if Tx LOS alarm flag	
	implemented	provided	
0	Rx Squelch present	Coded 1 if Rx Squelch provided	

## 1 2 3

4

13

15

#### 8.4.20 Vendor Serial Number

5 The vendor serial number (vendor SN) is a 16-character field that contains ASCII 6 characters, left aligned and padded on the right with ASCII spaces (20h), defining the 7 vendor's serial number for the Product. Note that some products may use two or more 8 modules connected by optical fiber; individual module serial numbers are stored in the 9 vendor-specific area. Direct attach cables are defined to have common serial numbers on 10 both sides with -A, -B to identify the different ends. Both CDFP boards in a single 11 module on one side have the same letter. Octopus cables use the additional letters -C,-D 12 etc. A module with a separable connector uses -T (transceiver).

#### 14 8.4.21 Date Code

16 The date code is an 8-byte field that contains the vendor's date code in ASCII 17 characters. The date code is mandatory. The date code shall be in the following format: 18

19	Bytes 212-213:	ASCII code, two low order digits of year (00=2000)
20	Bytes 214-215:	ASCII code digits of month (01=Jan through 12=Dec)
21	Bytes 216-217:	ASCII code day of month (01-31)
22	Bytes 218-219:	ASCII code, vendor specific lot code, may be blank
23		

24 The date code and vendor serial number fields are the same as specified for QSFP.

#### 26 8.4.22 Diagnostic Monitoring Type

```
27
28 Diagnostic Monitoring Type is a 1-byte field with 8 single bit indicators describing how
29 diagnostic monitoring is implemented in the particular Module. Bit indicators are as
30 follows:
31
```

32

#### 

### Table 34: Diagnostic Monitoring Type (Page Oh) Byt

Table 31. Diagnobele nonicoling type (rage on)				
Byte	Bit	Name	Description	Туре
220	7	Reserved		RO
DCh	6	Internal	Coded 1 if Temperature2 provided	Rqrd.
		Temperature2	as an additional internal real-time	
		Monitor implemented	monitor	
-	5	Peak Temperature2	Coded 1 if Temperature2 provided	
		Monitor implemented	as peak of Temperaturel monitor	
4 Rx Optical Power Coded 1 if individual Rx		Coded 1 if individual Rx Power		
Monitor implemented Monitors provided		Monitors provided		
	3	Rx Optical Power	Rx Power measurement type, 0=OMA,	
		Measurement Type	1=average power	
-	2	Tx Optical Power	Coded 1 if individual Tx Optical	
		Channel Monitoring	Power Monitors provided	
		implemented		
	1	Tx Bias Monitor	Coded 1 if individual Tx Bias	
implemented Monitors provided		Monitors provided		
0 Current Monitor Coded 1 if module card curr		Coded 1 if module card current		
		Implemented	monitor provided	

### 8.4.23 Enhanced Options

The bits in the enhanced options field specify the enhanced options implemented in the Module.

Table	35 <b>:</b>	Enhanced	Optior
Byte	Bit	Name	-

Table	935 <b>:</b>	Enhanced Options (Page	e Oh)	
Byte	Byte Bit Name		Description	
221	7	7 Internal 3.3 volts Coded 1 if Internal 3.3 volts Vcc Monitor		RO
DDh		Monitor implemented	provided	Rqrd.
	6	Reserved		
	5 Elapsed Operating Coded 1 if Elapsed Operating Time provided Time implemented			
	4 Alarm Persistence Coded 1 if Alarm Flag persistence control Control implemented provided			
	3 Rx Rate Select implemented Coded 1 if Rx Rate Select control provided			
2 Application Select Coded 1 if Application Select control pro implemented		Coded 1 if Application Select control provided		
	1-0	Extended Bit Rate Scale	00: Extended Bit rate is in multiples of 250 Mb/s rounded to the nearest 250 Mb/s 01: Extended Bit rate is in multiples of 500 Mb/s rounded to the nearest 500 Mb/s	
			10: Extended Bit rate is in multiples of 1000 Mb/s rounded to the nearest 1000 Mbps 11: Extended Bit rate is in multiples of 2 Gb/s rounded to the nearest 2 Gb/s	
222 DEh	All	Extended Bit Rate	Nominal bit rate per channel in the units specified in the bit rate scale	RO Rqrd.
223	All	CC-EXT	Checksum on Extended IB bytes 192-224	

### 8.4.24 CC-EXT (Byte 223)

The check code is a one-byte code that can be used to verify that the first 33 bytes of extended serial information in the Module is valid. The check code shall be the low order bits of the sum of the contents of all the bytes from byte 192 to byte 224, inclusive.

#### 7 8.4.25 Vendor-Specific ID

8 9

1 2

The vendor-specific ID area may contain vendor specific read-only information.

#### 10 8.5 Upper Page 03h

11 12

13 The upper memory map page 03h contains module thresholds, channel thresholds, and 14 optional channel controls. Upper page 03h is subdivided into several areas as illustrated 15 in the following table:

#### 16 17

18 Table 36: Upper Page 3 Overview (Page 3h)

Address	Description	Туре
128 - 175	Module Thresholds (48 Bytes)	Read-only
176 - 215	Channel Thresholds (40 Bytes)	Read-only
216 - 241	Extended Channel Controls (26 bytes)	Read/Write
242 - 251	Reserved (10 bytes)	Read/Write
252 - 255	Extended ID (4 bytes)	Read-only

19

#### 20 8.5.1 Module card Thresholds

Each quantitative module card monitor has a corresponding high alarm and low alarm threshold. Some monitors may also have high warning and low warning thresholds. For each monitor that is implemented, high and low alarm thresholds are required. These factorypreset values allow the user to determine when a particular value is outside of normal limits as determined by the device manufacturer. The values are stored in the same format as the corresponding monitor value reported in lower page 00L. The threshold values are stored in read-only memory in upper memory page 03h as shown below:

29 30

#### Table 37: Module card Thresholds (Page 3h)

Address	Description
128 - 129	High alarm threshold for first temperature monitor
130 - 131	Low alarm threshold for first temperature monitor
132 - 133	High warning threshold for first temperature monitor
134 - 135	Low warning threshold for first temperature monitor
136 - 137	High alarm threshold for second temperature monitor (if
	any)
138 - 139	Low alarm threshold for second temperature monitor (if
	any)
140 - 141	High warning threshold for second temperature monitor
	(if any)
142 - 143	Low warning threshold for second temperature monitor
	(if any)
144 - 145	High alarm threshold for 3.3 volt power supply monitor
146 - 147	Low alarm threshold for 3.3 volt power supply monitor
148 - 175	Reserved

### 8.5.2 Channel Thresholds

2 3

1

Each quantitative channel monitor also has a corresponding high alarm and low alarm threshold. Some monitors may also have high warning and low warning thresholds. These threshold values are stored in read-only memory in upper memory page 03h as shown below:

6 7 8

4

5

#### Table 38: Channel Thresholds (Page 3h)

Address	Description
176 - 177	High alarm threshold for Rx optical power monitor
178 - 179	Low alarm threshold for Rx optical power monitor
180 - 181	Reserved
182 - 183	Low warning threshold for Rx optical power monitor
184 - 185	High alarm threshold for Tx bias current monitor
186 - 187	Low alarm threshold for Tx bias current monitor
188 - 189	Reserved
190 - 191	Reserved
192 - 193	High alarm threshold for Tx optical power monitor (if any)
194 - 195	Low alarm threshold for Tx optical power monitor (if any)
196 - 197	Reserved
198 - 199	Reserved
200 - 215	Reserved

9

11

15

19

20

21

22

28

#### 10 8.5.3 Extended Channel Controls

12 The extended channel control fields allow the host computer system to change the gross 13 behavior of the device. The changeable parameters include data rate and application 14 supported by the channel.

16 Rate Select is an optional control used to limit the receiver bandwidth for compatibility 17 with multiple data rates and allows the transmitter to be fine-tuned for specific data 18 rates. The Module may:

- a) Provide no support for rate selection
- b) Rate selection using extended rate select
- c) Rate selection with application select tables

The Extended Rate Select Controls have a four bit code block (bits 7-4 or 3-0) assigned to each channel. Codes 1xxxb are reserved. Code 0000b calls for no rate selection. Code 0111b calls for the highest data rate supported. Code 0001b calls for the lowest data rate supported. Intermediate code values call for intermediate data rates if any. The exact Rate Select parameters are presented in the device datasheet.

29 When the Extended Rate Select bits for a particular channel are all zeros, the Application Select method defined in Page 01h may be used. The host reads the entire 30 31 Application Select Table (AST) on page 01h to determine the capabilities of the Module 32 card. The host controls each channel separately by writing a Control Mode and Table 33 Select (TS) byte to the Application Select bytes. The two-bit Control Mode value occupies 34 the most-significant bits of the control byte and defines the application control mode. 35 The six-bit Table Select value occupies the least-significant bits of the control byte 36 and selects module card behavior from the Application Select Table among the 63 37 possibilities described there (values 000000b to 111110b). Note that value 111111b is invalid. 38 39

40 The extended channel controls in upper page 03h are as follows:

Table	e 39: 1	Extended Channel Control	ls (Page 3h)	
Byte	Bits	Name	Description	Туре
216	7-4	Tx1 Rate Select	Tx data rate select, channel 1	RW
D8h	3-0	Tx0 Rate Select	Tx data rate select, channel 0	Opt.
217	7-4	Tx3 Rate Select	Tx data rate select, channel 3	RW
D9h	3-0	Tx2 Rate Select	Tx data rate select, channel 2	Opt.
218	7-4	Tx5 Rate Select	Tx data rate select, channel 5	RW
DAh	3-0	Tx4 Rate Select	Tx data rate select, channel 4	Opt.
219	7-4	Tx7 Rate Select	Tx data rate select, channel 7	RW
DBh	3-0	Tx6 Rate Select	Tx data rate select, channel 6	Opt.
220	7-4	Rx9 Rate Select	Rx data rate select, channel 1	RW
DCh	3-0			_
		Rx8 Rate Select	Rx data rate select, channel 0	Opt.
221	7-4	Rx11 Rate Select	Rx data rate select, channel 3	RW
DDh	3-0	Rx10 Rate Select	Rx data rate select, channel 2	Opt.
222	7-4	Rx13 Rate Select	Rx data rate select, channel 5	RW
DEh	3-0	Rx12 Rate Select	Rx data rate select, channel 4	Opt.
223	7-4	Rx15 Rate Select	Rx data rate select, channel 7	RW
DFh	3-0	Rx14 Rate Select	Rx data rate select, channel 6	Opt.
224	7-6	Tx0 AST Control Mode	Tx application select, channel 0	RW
EOh	5-0	Tx0 AST Select Index		Opt.
225	7-6	Tx1 AST Control Mode	Tx application select, channel 1	RW
Elh	5-0	Tx1 AST Select Index		Opt.
226	7-6	Tx2 AST Control Mode	Tx application select, channel 2	RW
E2h	5-0	Tx2 AST Select Index		Opt.
227	7-6	Tx3 AST Control Mode	Tx application select, channel 3	RW
E3h	5-0	Tx3 AST Select Index		Opt.
228	7-6	Tx4 AST Control Mode	Tx application select, channel 4	RW
E4h	5-0	Tx4 AST Select Index		Opt.
229	7-6	Tx5 AST Control Mode	Tx application select, channel 5	RW
E5h	5-0	Tx5 AST Select Index		Opt.
230	7-6	Tx6 AST Control Mode	Tx application select, channel 6	RW
E6h	5-0	Tx6 AST Select Index		Opt.
231	7-6	Tx7 AST Control Mode	Tx application select, channel 7	RW
E7h	5-0	Tx7 AST Select Index		Opt.
232	7-6	Rx8 AST Control Mode	Rx application select, channel 0	RW
E8h	5-0	Rx8 AST Select Index	in appread of bereder, channel o	Opt.
233	7-6	Rx9 AST Control Mode	Rx application select, channel 1	RW
235 E9h	5-0	Rx9 AST Select Index	Kx appricación serecc, channer i	Opt.
234	7-6	Rx10 AST Control Mode	Rx application select, channel 2	RW
EAh		Rx10 AST Concrol Mode Rx10 AST Select Index	KX apprication select, channel z	
235	5-0 7-6	Rx10 ASI Select Index Rx11 AST Control Mode	Rx application select, channel 3	Opt. RW
		Rx11 AST Control Mode Rx11 AST Select Index	TA apprication Serect, Channel S	
EBh	5-0		Dy application coloct sharpel (	Opt.
236 ECh	7-6	Rx12 AST Control Mode	Rx application select, channel 4	RW
ECh	5-0	Rx12 AST Select Index		Opt.
237	7-6	Rx13 AST Control Mode	Rx application select, channel 5	RW
EDh	5-0	Rx13 AST Select Index		Opt.
238	7-6	Rx14 AST Control Mode	Rx application select, channel 6	RW
EEh	5-0	Rx14 AST Select Index		Opt.
239	7-6	Rx15 AST Control Mode	Rx application select, channel 7	RW
EFh	5-0	Rx15 AST Select Index		Opt.
240	7	RX15 Channel Fault	Disable all FAWS reports from RX bit 7	RW
FOh		Squelch		Opt.
	6	RX14 Channel Fault	Disable all FAWS reports from RX bit 6	
1	1	Squelch		
	5	RX13 Channel Fault	Disable all FAWS reports from RX bit 5	
	5	_	Disable all FAWS reports from RX bit 5	

		Squelch		
	3	RX11 Channel Fault	Disable all FAWS reports from RX bit 3	
		Squelch	-	
	2	RX10 Channel Fault	Disable all FAWS reports from RX bit 2	
		Squelch		
	1	RX9 Channel Fault	Disable all FAWS reports from RX bit 1	
		Squelch		_
	0	RX8 Channel Fault	Disable all FAWS reports from RX bit 0	
		Squelch		
241	7	TX7 Channel Fault	Disable all FAWS reports from TX bit 7	RW
Flh		Squelch		Opt.
	6	TX6 Channel Fault	Disable all FAWS reports from TX bit 6	
		Squelch		-
	5	TX5 Channel Fault	Disable all FAWS reports from TX bit 5	
		Squelch		
	4	TX4 Channel Fault	Disable all FAWS reports from TX bit 4	
		Squelch		_
	3	TX3 Channel Fault	Disable all FAWS reports from TX bit 3	
	2	Squelch	Dischland I DIMO was subs from TV hit O	-
	2	TX2 Channel Fault	Disable all FAWS reports from TX bit 2	
	1	Squelch TX1 Channel Fault	Dischla all ENVC warents from TV hit 1	_
	1		Disable all FAWS reports from TX bit 1	
	0	Squelch	Dischle all FAMC moments from TV bit 0	-
	0	TX0 Channel Fault	Disable all FAWS reports from TX bit 0	
		Squelch		

1 2 3 Note: FAWS = Fault, Alarm, Warning, Status

The setting of any bit in upper page 3 byte 240 inhibits the setting of the corresponding bit in lower page bytes 3 (Rx LOS), 8 (Rx Low Power Warning), 9 (Rx Low Power Alarm), 10 (Rx High Power Alarm), 15 (Rx CDR LOL), 17 (Raw Rx LOS) and 20 (Raw Rx CDR LOL).

7 The setting of any bit in upper page 3 byte 241 inhibits the setting of the corresponding 8 bit in lower page bytes 4 (Tx LOS), 5 (Tx Fault), 11 (Tx Bias Low Alarm), 12 (Tx Bias 9 High Alarm), 13 (Tx Low Power Alarm), 14 (Tx High Power Alarm), 16 (Tx CDR LOL), 18 (Raw 10 Tx LOS), 19 (Raw Tx Fault) and 21 (Raw Tx CDR LOL).

### 11 8.5.4 Extended ID

12 The Extended ID fields provide vendor-specific information about the construction of the 13 module. This information is necessary for determining the suitability of doing embedded 14 firmware upgrades in the field. The extended ID information is as follows: 15

TUDIC	Table 40. Excended ib Fields (Tage 51)						
Byte	Bits	Name	Description	Туре			
252	All	H/W rev	Hardware revision number (if any)	RO			
FCh				Opt.			
253	All	H/W type code	Identifier for the hardware	RO			
FDh			platform within the module	Opt.			
254	All	F/W major rev	Major revision number of the	RO			
FEh			embedded firmware	Opt.			
255	All	F/W minor rev	Minor revision number of the	RO			
FFh			embedded firmware	Opt.			

17 Table 40: Extended ID Fields (Page 3h)

18 19

### 1 8.6 Upper Page 01h

4 The format of upper page 01h is identical to that specified for QSFP. For the CDFP 5 products upper page 01h is not used. 6

### 7 8.7 Upper Page 02h

10 Upper Page 02h is optionally provided as user writable EEPROM. The host system may read 11 or write this memory for any purpose.

12

8 9

1

2

4 5

6

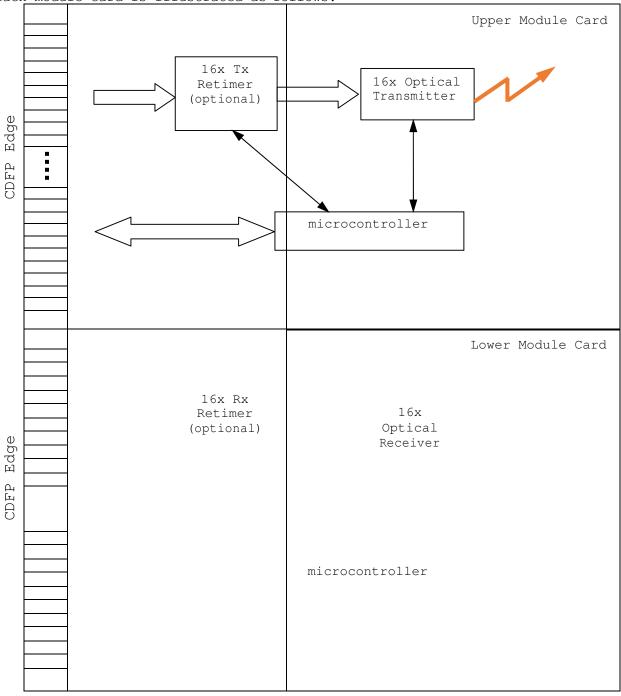
7

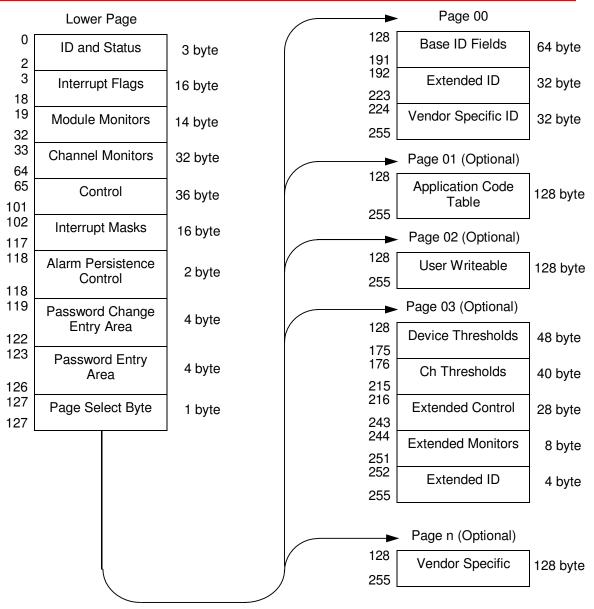
8

## 9 CDFP MSA Management Interface Memory Map-Style 3

#### 3 9.1 Overview

Each end of the CDFP Style 3 AOC or Style 3 transceiver features two module cards, each of which contains a microcontroller. One of them is a 16-channel transmitter and the other one is a 16-channel receiver. These transmitters and receivers may contain retimers as shown in the example below. The connectivity between these components on each module card is illustrated as follows:





Figure 62: Example CDFP Style 3 optical transceiver implementation

11 12

- The microcontroller manages the operation of both the optical transmitters/receivers and the retimers and presents a standard management interface to the host computer system. The management interface provided is the industry standard QSFP specification (SFF-8636) extended to sixteen channels. Each circuit board reports its own measurements of temperature, voltage, etc. Similarly, "global" control mechanisms are local to the circuit board being addressed.
- 7 The upper module card handles CDFP Tx channels 0 through 15; the lower module card 8 handles CDFP Rx channels 0 through 15. The terms Tx and Rx represent the host's 9 viewpoint - the host transmits data through the Tx channels and receives data through 10 the Rx channels.

#### 11 9.2 Management Interface

- At power-on or module insertion into the CDFP connector, the host computer system detects the presence of the module by the change of state of the ModPrsL (Module Present, active Low) signal from the module card. The module card will then initialize itself and signal that it is ready to communicate with the host computer system by asserting a low level on the IntL signal. The host computer system should then interrogate the module card via the two-wire serial interface to determine the module card status.
- The two-wire serial interface (SCL and SDA) deviates from the QSFP specification in that the two-wire serial address for the lower circuit board is B2h/B3h (1011001x) (for 7 bit addressing it would be 0x59) and the two-wire serial address for the upper circuit board is BAh/BBh (1011101x) (for 7 bit addressing it would be 0x5D). The 2 two-wire serial interfaces (one on each circuit board) operate independently from each other. Note: The CDFP modules have no ModSelL signal input and module selection must be made via alternate means not defined in this document.
- Like the QSFP specification, the CDFP provides a memory map with a lower page (addresses 00h to 7Fh) and multiple upper pages (addresses 80h to FFh). The lower page is always accessible and contains critical monitoring information and control fields. The last byte of the lower page, address 7Fh, can be written with a value indicating which upper page is to be accessed using the upper page addresses. The CDFP module card has 3 upper pages.
- All pages in the memory map are readable at all times. Some areas in the QSFP-like pages are writable by the host system; these are listed below. To prevent inadvertent changes to other areas in the memory map, some areas are protected by passwords; write access to these areas is enabled by writing the appropriate password into the password field at the top of the lower page (addresses 7Bh to 7Eh).
- The lower 128 byte of the two-wire serial bus address space is used to access a variety of measurement and diagnostic functions, a set of control functions, and a means to select which of the upper memory map pages are accessed on subsequent accesses. This portion of the address space is always directly addressable and thus, is chosen for monitoring and control functions that may need to be repeatedly accessed.



1 2

3

Figure 63: CDFP Style 3 memory map structure

#### 9.3 Lower Page

The lower 128 byte of the two-wire serial bus address space is used to access a variety of measurements and diagnostic functions, a set of control functions, and a means to select which of the various upper memory pages are accessed on subsequent accesses. This portion of the address space is always directly addressable and thus is chosen for monitoring and control functions that may need to be repeatedly accessed.

#### 10 9.3.1 ID and Status

The identifier value (byte 0) specifies the type of the physical device described by the serial information. The identifier value is the same value as page 0 byte 128. The DataNotReady bit is high during module power up and prior to a valid suite of monitor readings. Once all monitor readings are valid, the bit is set low until the device is powered down or reset.

All summary bits 2-6 are non-latched, reflecting real-time values in the specific registers. This is to avoid multiple levels of latching and clearing faults.

#### 1 9.3.2 Interrupt Flags

2 A portion of the memory map (bytes 3 through 18), form a flags field. Within this 3 field, the status of LOS and Tx Fault as well as alarms and warnings for the various monitored items is reported. If a monitor is implemented the associated flag must 4 5 also be implemented. For normal operation and default state, the bits in this field 6 have the value of 0b. For the defined conditions of LOS, Fault, module and channel 7 alarms and warnings, the appropriate bit or bits are set, value = 1b. Once asserted, 8 the bits remain set (latched) until cleared by a read operation that includes the 9 affected bit or reset by the ResetL pin. After being read and cleared, the bit may be set again if the condition persists and the appropriate persistence control bit is 10 11 set (see below).

#### 12 9.3.3 Module Card Monitors

- Optional real time monitoring for the module includes Module Card temperature, supply voltage, supply current and monitoring for each transmit and receive channel. Channel monitoring functions are described in section 0 below. Measured temperature is reported in an 8-bit data field, supply voltage, supply current and elapsed operating time in 16-bit data fields.
- Internal measured device temperatures are represented in 8-bit signed values in increments of 1°C, yielding a total range of -128 °C to 127 °C that is considered valid in the range specified in the device datasheet. Temperature accuracy is vendor specific but must be better than ±3 °C over the specified operating temperature and voltage.
- Internally measured Module 3.3 V supply voltage is represented as a 16-bit unsigned integer with the voltage defined as the full 16-bit value (0 - 65535) with LSb equal to 100  $\mu$ V, yielding a total measurement range of 0 to +6.55 Volts. Accuracy is vendor specific but must be better than ±3 % of the manufacturer's nominal value over specified operating temperature and voltage.
- Internally measured supply current is represented as a 16-bit unsigned integer with the current defined as the full 16-bit value (0 - 65535) with LSb equal to 1 mA, yielding a total measurement range of 0 to 65.5 A. Accuracy is vendor specific but must be better than ±10 % of the maximum current of the vendor's specified power class over operating temperature and voltage.
- Elapsed operating time is represented as a 16-bit unsigned integer with the time since power-on or reset defined as the full 16-bit value (0 - 65535) with LSb equal to 2 hours, yielding a total measurement range of 0 to +14.96 years.
- The Raw LOS, Fault and CDR LOL indicators show the real-time unlatched state of the respective channel monitors. Whereas the latched alarm flags (bytes 3 through 16) show the onset of a particular condition, the negation of the corresponding raw flag shows the cessation of the condition, implying that the channel may now be used for data transfer.

### 41 9.3.4 Channel Monitors

42 Real time channel monitoring is performed for each transmit and receive channel and includes Rx optical input power and Tx bias current. Alarm and warning threshold 43 44 values should be interpreted in the same manner as real time 8-bit data. 45 Measured Rx received optical power is in mW and can represent either average received power or OMA depending upon how bit 3 of byte 220 (upper memory page 00) is set. 46 47 Represented as an 8-bit unsigned integer with the power defined as the full 8-bit 48 value (0 - 255), with LSb equal to  $20\mu$ W, yielding a total measurement range of 0 to 49 5.1 mW (approx. -17 to +7 dBm). 50 Measured Tx bias current is in mA and is represented as an 8-bit unsigned integer with the current defined as the full 8-bit value (0 - 255) with LSb equal to 0.1 mA, 51 52 yielding a total measurement range of 0 to 25.5 mA.

- 53
- 54

### 1 9.3.5 Control Fields

- The control fields allow the host to dynamically change the behavior of the device. The changeable parameters include Tx input equalization, Rx pre-emphasis and output amplitude in addition to disabling channels or squelching and setting the channel polarities.
- 6 Tx Input Equalization Control has a four bit code block (bits 7-4 or 3-0) assigned to 7 each channel- Codes 1xxxb a reserved. Code 0111b calls for the maximum equalization 8 supported. Code 0000b calls for no equalization. Intermediate code values call for 9 intermediate levels of equalization. The exact Tx Equalization parameters are 10 presented in the device datasheet.
- 11 Rx Output Pre-emphasis Control has a four bit code block (bits 7-4 or 3-0) assigned 12 to each channel. Codes 1xxxb are reserved. Code 0111b calls for the maximum output 13 pre-emphasis supported. Code 0000b calls for no output pre-emphasis. Intermediate 14 code values call for intermediate levels of output pre-emphasis. The exact Rx Pre-15 emphasis parameters are presented in the device datasheet.
- 16 Rx Output Amplitude Control has a four bit code block (bits 7-4 or 3-0) assigned to 17 each channel. Codes 1xxxb are reserved. Code 0111b calls for the maximum output 18 amplitude supported. Code 0000b calls for no output amplitude. Intermediate code 19 values call for intermediate levels of output amplitude. The exact Rx Amplitude 20 parameters are presented in the device datasheet.
- The setting of any bit in byte 98-99 inhibits the setting of the corresponding bit in lower page bytes 3 (LOS), 8 (Low Power Warning), 9 (Low Power Alarm), 10 (High Power Alarm), 15 (CDR LOL), 17 (Raw LOS) and 20 (Raw CDR LOL).

#### 24 9.3.6 Interrupt Masks

- 25 The host system may control which flags result in an interrupt (IntL) by setting the individual bits from a set of masking bits in bytes 102-117. There is one masking bit 26 27 per alarm flag. A 1 value in a masking bit prevents the assertion of the hardware IntL pin by the corresponding latched flag bit. Masking bits are volatile and start 2.8 29 up with all unmasked (masking bits 0). The mask bits may be used to prevent continued interruption from recurring conditions, which would otherwise continually reassert 30 31 the hardware IntL pin (such as a monitor value hovering around an alarm threshold 32 value).
- The clearing of an interrupt mask bit will cause an interrupt to be generated only if the corresponding alarm flag became set while masked and has not been read (and cleared) by the host computer system. There is a maximum of one interrupt generated per occurrence of an alarm condition.

#### 37 9.3.7 Alarm Persistence Control

38 The Alarm Flags Persistence controls determine the behavior of the Interrupt Flag 39 bits in bytes 3 to 18. Normally, the interrupt flag bytes are cleared when they are 40 read by the host system and not reasserted unless the alarm condition goes away and 41 then comes back again. However, if the persistence control bit appropriate to an 42 alarm flag is set, the bit in the Interrupt Flags field is immediately reasserted 43 after the clear-on-read; note that this reassertion does not cause an interrupt to be 44 generated (implicit masking); there is a maximum of one interrupt generated per 45 occurrence of an alarm condition. The alarm persistence control bytes may be loaded 46 from non-volatile memory at power on or reset. Non-volatile persistence control is configured by setting bit 7 in byte 118 to 1. 47

### 48 9.3.8 Password Entry and Change

Bytes 119-126 are served for the password entry function. The password entry bytes are write only and will be retained until power down, reset, or rewritten by host. This function is used to control write access to vendor specific page 02 (EEPROM) and other upper pages. Additionally, module vendors may use this function to implement write protection of Serial ID and other read only information. Note that multiple module manufacturer passwords may be defined to allow selective access to write to various sections of the memory as allowed above.

## 1 9.3.9 Page Select Byte

The value written to the page select determines which upper page is accessed at addresses 128 to 255 (80h to FFh). Attempting to access non-existent upper pages will cause writes to be ignored and reads to return all zeroes, all ones, or some other preset value.

### 7 9.4 Lower Page Summary

8 The lower page is subdivided into several areas as illustrated in the following 9 table:

10 11

6

Table	41:	Lower	Memory	Page	Summary
-------	-----	-------	--------	------	---------

Address	Description	Туре
0-2	ID and Status	Read-Only
3-18	Status Interrupt Flags (SIF)	Read-Only
19-32	Module Monitors	Read-Only
33-64	Channel Monitors	Read-Only
65-101	Control Fields	Read/Write
102-117	Interrupt Flag Masks	Read/Write
118	Interrupt Flag Persistence Control	Read/Write
119122	Password Change Entry Area	Write-Only
123-126	Password Entry Area	Write-Only
127	Page Select byte	Read/Write

### 1 9.5 Lower Page Overview

## 2 Table 42: Lower Memory Page Overview

Byte	Rx, Lower Card	Tx, Upper Card	Туре	Option
0	Identifier	Identifier	RO	Required
1	Version ID	Version ID	RO	Required
2	Summary	Summary	RO	Required
3-4	L-Rx LOS	L-Tx LOS	RO	Optional
5-6	L-Rx CDR LOL	L-Tx CDR LOL	RO	Optional
7-8	Reserved	L-Tx Fault	RO	Optional
9-10	Reserved	Tx High Bias Alarm	RO	Optional
11-12	Rx Low Power Warning	Tx Low High Bias Alarm	RO	Optional
13-14	Rx High Power Alarm	Tx High Power Alarm	RO	Optional
15-16	Rx Low Power Alarm	Tx Low Power Alarm	RO	Optional
17	Temp H/L A/W	Temp H/L A/W	RO	Optional
18	Vcc H/L A/W	Vcc H/L A/W	RO	Optional
19-20	Raw Rx LOS	Raw Tx LOS	RO	Optional
21-22	Raw Rx CDR LOL	Raw Tx CDR LOL	RO	Optional
23-24	Reserved	Raw Tx Fault	RO	Optional
25	Temperature 1	Temperature 1	RO	Optional
26	Temperature 2	Temperature 2	RO	Optional
27-28	Vcc	Vcc	RO	Optional
29-30	Icc	Icc	RO	Optional
31-32	TiO	TiO	RO	Optional
33-48	Rx Optical Power	Tx Optical Power	RO	Optional
49-64	Reserved Channel Mon	Tx Bias Current	RO	Optional
65-66	Rx Disable	Tx Disable	RW	Optional
67-68	Rx Squelch Disable	Tx Squelch Disable	RW	Optional
69-70	Rx Polarity Flip	Tx Polarity Flip	RW	Optional
71-72	Rx CDR Bypass	Tx CDR Bypass	RW	Optional
73-80	Rx OA	Tx Adaptive Equalization Enable	RW	Optional
81-88	Rx PE	Tx Equalization	RW	Optional
89-96	Rx Rate Select	Tx Rate Select	RW	Optional
97-98	Rx Channel FAWS disable	Tx Channel FAWS disable	RW	Optional
99	Rx SIF disable	Tx SIF disable	RW	Optional
100	Reset, Pwr Down, Pwr	Reset, Pwr Down, Pwr	RW	Optional
100	Override	Override	1///	operonar
101	Reserved	Reserved	RW	Optional
101	Mask for 3-18	Mask for 3-18	RW	Optional
117	Mask 101 5 10	HASK IOL 5 IO	1///	
118	Alarm Persistence Control	Alarm Persistence Control	RW	Optional
119- 122	Password Change Entry Area	Password Change Entry Area	WO	Optional
123- 126	Password Entry Area	Password Entry Area	WO	Required
127	Page Select byte	Page Select byte	RW	Required

### 1 9.6 Lower Page Rx

2 Table 43: Lower Memory Page Rx

Byte	Bit	Name	Description	Туре	Option
0	All	Identifier	Identifier - Type of Serial Module(same	RO	Required
			value as page 0 byte 128)		
1	All	Version ID	Identifier - Version of Serial Module	RO	Required
			Specification		
2	7	Flat_mem	Upper memory flat or paged.	RO	Required
			0= paged, 1= Page 00h only		
	6	Reserved			
	5	Rx Power	Set, when any bit in #11-16 is set		
		Alarm/Warning			
		Summary			
	4	Reserved			
	3	Rx LOS and LOL	Set, when any bit in $#3-8$ is set		
		Alarm Summary			
	2	Temperature and	Set, when any bit in #17-18 is set		
		Vcc Alarm Summary			
	1	Interrupt	Set, when IntL pin is asserted low		
	0	DataNotReady	Set while memory data is not ready		
3	7	L-Rx15 LOS	Latched Rx LOS indicator, channel 15	RO	Optional
	6	L-Rx14 LOS	Latched Rx LOS indicator, channel 14		
	5	L-Rx13 LOS	Latched Rx LOS indicator, channel 13		
	4	L-Rx12 LOS	Latched Rx LOS indicator, channel 12		
	3	L-Rx11 LOS	Latched Rx LOS indicator, channel 11		
	2	L-Rx10 LOS	Latched Rx LOS indicator, channel 10		
	1	L-Rx9 LOS	Latched Rx LOS indicator, channel 9		
	0	L-Rx8 LOS	Latched Rx LOS indicator, channel 8		
4	7	L-Rx7 LOS	Latched Rx LOS indicator, channel 7		
	6	L-Rx6 LOS	Latched Rx LOS indicator, channel 6		
	5	L-Rx5 LOS	Latched Rx LOS indicator, channel 5		
	4	L-Rx4 LOS	Latched Rx LOS indicator, channel 4		
	3	L-Rx3 LOS	Latched Rx LOS indicator, channel 3		
	2	L-Rx2 LOS	Latched Rx LOS indicator, channel 2		
	1	L-Rx1 LOS	Latched Rx LOS indicator, channel 1		
	0	L-Rx0 LOS	Latched Rx LOS indicator, channel 0		
5	7	L-Rx15 CDR LOL	Latched Rx CDR LOL indicator, channel 15	RO	Optional
0	6	L-Rx14 CDR LOL	Latched Rx CDR LOL indicator, channel 14	1.0	oporonar
	5	L-Rx13 CDR LOL	Latched Rx CDR LOL indicator, channel 13		
	4	L-Rx12 CDR LOL	Latched Rx CDR LOL indicator, channel 12		
	3	L-Rx11 CDR LOL	Latched Rx CDR LOL indicator, channel 11		
	2	L-Rx10 CDR LOL	Latched Rx CDR LOL indicator, channel 10		
	1	L-Rx9 CDR LOL	Latched Rx CDR LOL indicator, channel 9		
	0	L-Rx8 CDR LOL	Latched Rx CDR LOL indicator, channel 8		
6	7	L-Rx7 CDR LOL	Latched Rx CDR LOL indicator, channel 7		
0	6	L-Rx6 CDR LOL	Latched Rx CDR LOL indicator, channel 6		
	5	L-Rx5 CDR LOL	Latched Rx CDR LOL indicator, channel 5	-	
	4	L-Rx4 CDR LOL	Latched Rx CDR LOL indicator, channel 4	-	
	3	L-Rx3 CDR LOL	Latched Rx CDR LOL indicator, channel 3	-	
	2	L-Rx2 CDR LOL	Latched Rx CDR LOL indicator, channel 2	-	
	1	L-Rx1 CDR LOL	Latched Rx CDR LOL indicator, channel 1	-	
	0	L-RX1 CDR LOL L-RX0 CDR LOL	Latched Rx CDR LOL indicator, channel 0	-	
7	All	Reserved	nacenea is on non inarcacor, channer o	DO	
				RO	
8		Reserved		RO	
9	All	Reserved		RO	
10	All	Reserved		RO	

Byte	Bit	Name	Description	Туре	Option
11	7	L-Rx15 LPW	Latched Rx Low Power Warning, channel 15	RO	Optional
	6	L-Rx14 LPW	Latched Rx Low Power Warning, channel 14	-	-
	5	L-Rx13 LPW	Latched Rx Low Power Warning, channel 13	-	
	4	L-Rx12 LPW	Latched Rx Low Power Warning, channel 12	-	
	3	L-Rx11 LPW	Latched Rx Low Power Warning, channel 11	-	
	2	L-Rx10 LPW	Latched Rx Low Power Warning, channel 10	-	
	1	L-Rx9 LPW	Latched Rx Low Power Warning, channel 9	-	
	0	L-Rx8 LPW	Latched Rx Low Power Warning, channel 8	-	
12	7	L-Rx7 LPW	Latched Rx Low Power Warning, channel 7	-	
	6	L-Rx6 LPW	Latched Rx Low Power Warning, channel 6	-	
	5	L-Rx5 LPW	Latched Rx Low Power Warning, channel 4	-	
	4	L-Rx4 LPW	Latched Rx Low Power Warning, channel 4	-	
	3	L-Rx3 LPW	Latched Rx Low Power Warning, channel 3	_	
	2	L-Rx2 LPW	Latched Rx Low Power Warning, channel 2	_	
	1	L-Rx1 LPW	Latched Rx Low Power Warning, channel 1	_	
	0	L-Rx0 LPW	Latched Rx Low Power Warning, channel 0	_	
13	7	L-Rx15 HPA	Latched Rx High Power Alarm, channel 15	RO	Optional
	6	L-Rx14 HPA	Latched Rx High Power Alarm, channel 14		SPOLOMAL
	5	L-Rx13 HPA	Latched Rx High Power Alarm, channel 13	-	
	4	L-Rx12 HPA	Latched Rx High Power Alarm, channel 12	1	
	3	L-Rx11 HPA	Latched Rx High Power Alarm, channel 11	-	
	2	L-Rx10 HPA	Latched Rx High Power Alarm, channel 10	_	
	1	L-Rx9 HPA	Latched Rx High Power Alarm, channel 9	_	
	0	L-Rx8 HPA	Latched Rx High Power Alarm, channel 8	_	
14	7	L-Rx7 HPA	Latched Rx High Power Alarm, channel 7	_	
11	6	L-Rx6 HPA	Latched Rx High Power Alarm, channel 6	_	
	5	L-Rx5 HPA	Latched Rx High Power Alarm, channel 5	_	
	4	L-Rx4 HPA	Latched Rx High Power Alarm, channel 4	_	
	3	L-Rx3 HPA	Latched Rx High Power Alarm, channel 3	_	
	2	L-Rx2 HPA	Latched Rx High Power Alarm, channel 2	_	
	1	L-Rx1 HPA	Latched Rx High Power Alarm, channel 1	_	
	0	L-Rx0 HPA	Latched Rx High Power Alarm, channel 0	_	
15	7	L-Rx15 LPA	Latched Rx Low Power Alarm, channel 15	RO	Optional
10	6	L-Rx14 LPA	Latched Rx Low Power Alarm, channel 14	KU	optional
	5	L-Rx14 LPA	Latched Rx Low Power Alarm, channel 14	_	
	4	L-RX13 LPA	Latched Rx Low Power Alarm, channel 12	_	
				_	
	3	L-Rx11 LPA L-Rx10 LPA	Latched Rx Low Power Alarm, channel 11	-	
			Latched Rx Low Power Alarm, channel 10	-	
	1	L-Rx9 LPA	Latched Rx Low Power Alarm, channel 9	-	
16	7	L-Rx8 LPA L-Rx7 LPA	Latched Rx Low Power Alarm, channel 8 Latched Rx Low Power Alarm, channel 7		
ΤO	6	L-Rx6 LPA	Latched Rx Low Power Alarm, channel 7 Latched Rx Low Power Alarm, channel 6	-	
	5			-	
		L-Rx5 LPA	Latched Rx Low Power Alarm, channel 5	-	
	4	L-Rx4 LPA	Latched Rx Low Power Alarm, channel 4	-	
	3	L-Rx3 LPA	Latched Rx Low Power Alarm, channel 3	-	
	2	L-Rx2 LPA	Latched Rx Low Power Alarm, channel 2	-	
	1	L-Rx1 LPA	Latched Rx Low Power Alarm, channel 1	-	
1 7	0	L-Rx0 LPA	Latched Rx Low Power Alarm, channel 0		Optional
17	7		Latched High 1 st Temperature Alarm	RO	Optional
	6	L-Temp Low Alarm	Latched Low 1 st Temperature Alarm	_	
	5	L-Temp High	Latched High 1 st Temperature Warning		
	л	Warning	Tabahad Tar 1 st Tarat	-	
	4	L-Temp Low	Latched Low 1 st Temperature Warning		
	2	Warning	Tatabad High Ond Tomorows to a 2	-	
	3	L-Temp 2 High Alarm	Latched High 2 nd Temperature Alarm		
		AIdIII			

Byte	Bit	Name	Description	Туре	Option
	2	L-Temp 2 Low Alarm	Latched Low 2 nd Temperature 2 Alarm		
	1	L-Temp 2 High Warning	Latched High 2 nd Temperature Warning		
	0	L-Temp 2 Low Warning	Latched Low 2 nd Temperature Warning		
18	7	L-Vcc 3.3V High Alarm	Latched 3.3V Supply High Alarm	RO	Optional
	6	L-Vcc 3.3V Low Alarm	Latched 3.3V Supply Low Alarm		
	5	L-Vcc 3.3V High Warning	Latched 3.3V Supply High Warning		
	4	L-Vcc 3.3V Low Warning	Latched 3.3V Supply Low Warning		
	3-0	-		-	
19	7	Raw Rx15 LOS State	Unlatched Rx LOS indicator, channel 15	RO	Optional
	6	Raw Rx14 LOS State	Unlatched Rx LOS indicator, channel 14		
	5	Raw Rx13 LOS State	Unlatched Rx LOS indicator, channel 13		
	4	Raw Rx12 LOS State	Unlatched Rx LOS indicator, channel 12		
	3	Raw Rx11 LOS State	Unlatched Rx LOS indicator, channel 11		
	2	Raw Rx10 LOS State	Unlatched Rx LOS indicator, channel 10		
	1		Unlatched Rx LOS indicator, channel 9	-	
	0		Unlatched Rx LOS indicator, channel 8		
20	7	Raw Rx7 LOS State	Unlatched Rx LOS indicator, channel 7		
	6	Raw Rx6 LOS State	Unlatched Rx LOS indicator, channel 6		
	5		Unlatched Rx LOS indicator, channel 5		
	4		Unlatched Rx LOS indicator, channel 4	_	
	3		Unlatched Rx LOS indicator, channel 3	_	
	2		Unlatched Rx LOS indicator, channel 2	_	
	1		Unlatched Rx LOS indicator, channel 1	_	
21	0 7	Raw Rx15 CDR LOL	Unlatched Rx LOS indicator, channel 0 Unlatched Rx CDR LOL indicator, channel 15	RO	Optional
	6	State Raw Rx14 CDR LOL State	Unlatched Rx CDR LOL indicator, channel 14		
	5	Raw Rx13 CDR LOL State	Unlatched Rx CDR LOL indicator, channel 13	-	
	4	Raw Rx12 CDR LOL State	Unlatched Rx CDR LOL indicator, channel 12	-	
	3	Raw Rx11 CDR LOL State	Unlatched Rx CDR LOL indicator, channel 11		
	2	Raw Rx10 CDR LOL State	Unlatched Rx CDR LOL indicator, channel 10	1	
	1	Raw Rx9 CDR LOL State	Unlatched Rx CDR LOL indicator, channel 9	1	
	0	Raw Rx8 CDR LOL State	Unlatched Rx CDR LOL indicator, channel 8	1	
22	7	Raw Rx7 CDR LOL State	Unlatched Rx CDR LOL indicator, channel 7		
	6	Raw Rx6 CDR LOL State	Unlatched Rx CDR LOL indicator, channel 6	]	

Byte	Bit	Name	Description	Туре	Option
Dyce	5	Raw Rx5 CDR LOL	Unlatched Rx CDR LOL indicator, channel 5	TIPE	SPCTON
	5	State	onfactined KX CDK LOL Indicator, channel 5		
	4	Raw Rx4 CDR LOL	Unlatched Rx CDR LOL indicator, channel 4	-	
	4	State	onfactined KX CDK LOL Indicator, channel 4		
	3	Raw Rx3 CDR LOL	Unlatched Rx CDR LOL indicator, channel 3	-	
	5	State	onfactined KX CDK LOL Indicator, channel 5		
	2	Raw Rx2 CDR LOL	Unlatched Rx CDR LOL indicator, channel 2	-	
	2	State	onracened KX CDK hol indicacor, channel 2		
	1	Raw Rx1 CDR LOL	Unlatched Rx CDR LOL indicator, channel 1	-	
	-	State			
	0	Raw Rx0 CDR LOL	Unlatched Rx CDR LOL indicator, channel 0	-	
	Ŭ	State			
23	All	Reserved		RO	
24	All	Reserved		RO	
25	All	Temperature 1	1 st internally measured tomorrows [1.90]	RO	Optional
26	All	Temperature 2	1 st internally measured temperature [1 °C] 2 nd internally measured temperature [1 °C]	RO	Optional
20	All	Vcc 3.3V MSB	2 nd internally measured temperature [1 °C] Internally measured supply voltage	RO	Optional
28	All	Vcc 3.3V LSB		RO	opcional
			3.3V [100 μV]	DO	
29	All	Icc MSB	Internally measured supply current [1 mA]	RO	Optional
30	All	ICC LSB	Planad Time in Organitian [0, b]	DO	Out i sus 1
31	All	TiO MSB	Elapsed Time in Operation [2 h]	RO	Optional
32	All	TiO LSB		DO	Out i sus 1
33	All	Rx0 Optical Power		RO	Optional
34	All	Rx1 Optical Power			
35	All	Rx2 Optical Power	Rx Light Input Monitor, channel 2 [20 µW]		
36	All	Rx3 Optical Power			
37	All	Rx4 Optical Power	Rx Light Input Monitor, channel 4 [20 $\mu$ W]		
38	A11	Rx5 Optical Power	Rx Light Input Monitor, channel 5 [20 $\mu$ W]	-	
39	A11	Rx6 Optical Power	· · · · · · · · · · · · · ·	-	
40		Rx7 Optical Power		-	
-				_	
41	All	Rx8 Optical Power	Rx Light Input Monitor, channel 8 [20 $\mu$ W]	_	
42	All	Rx9 Optical Power	Rx Light Input Monitor, channel 9 [20 $\mu \text{W}]$		
43	All	Rx10 Optical	Rx Light Input Monitor, channel 10 [20 $\mu$ W]		
		Power		_	
44	All	Rx11 Optical	Rx Light Input Monitor, channel 11 [20 $\mu$ W]		
		Power			
45	All	Rx12 Optical	Rx Light Input Monitor, channel 12 [20 $\mu\text{W}]$		
		Power		_	
46	All	Rx13Optical Power	Rx Light Input Monitor, channel 13 [20 $\mu\text{W}]$		
47	All	Rx14 Optical	Rx Light Input Monitor, channel 14 [20 $\mu \text{W}]$		
		Power		-	
48	All	Rx15 Optical	Rx Light Input Monitor, channel 15 [20 $\mu\text{W}]$		
4.0. 7.0		Power			
49-64	All	Reserved	Reserved Channel Monitor	RO	
65	7	Rx15 Disable	Rx Output Disable, channel 15	RW	Optional
	6	Rx14 Disable	Rx Output Disable, channel 14	-	
	5	Rx13 Disable	Rx Output Disable, channel 13	-	
	4	Rx12 Disable	Rx Output Disable, channel 12	-	
	3	Rx11 Disable	Rx Output Disable, channel 11	-	
	2	Rx10 Disable	Rx Output Disable, channel 10	-	
	1	Rx9 Disable	Rx Output Disable, channel 9	_	
	0	Rx8 Disable	Rx Output Disable, channel 8	-	
66	7	Rx7 Disable	Rx Output Disable, channel 7	-	
	6	Rx6 Disable	Rx Output Disable, channel 6	-	
	5	Rx5 Disable	Rx Output Disable, channel 5		

Byte	Bit	Name	Description	Туре	Option
_	4	Rx4 Disable	Rx Output Disable, channel 4		_
	3	Rx3 Disable	Rx Output Disable, channel 3	1	
	2	Rx2 Disable	Rx Output Disable, channel 2	1	
	1	Rx1 Disable	Rx Output Disable, channel 1	1	
	0	Rx0 Disable	Rx Output Disable, channel 0	_	
67	7	Rx15 Squelch	Rx Squelch Disable, channel 15	RW	Optional
0,		Disable			oporonar
	6	Rx14 Squelch	Rx Squelch Disable, channel 14	_	
	0	Disable			
	5	Rx13 Squelch	Rx Squelch Disable, channel 13	_	
	0	Disable	in equeron proubre, enumer re		
	4	Rx12 Squelch	Rx Squelch Disable, channel 12	_	
	-	Disable	in equeton broabie, enamer 12		
	3	Rx11 Squelch	Rx Squelch Disable, channel 11	_	
	5	Disable	in oqueren bibabie, enamer ir		
	2	Rx10 Squelch	Rx Squelch Disable, channel 10	_	
	-	Disable	in equeron broabre, enamer re		
	1	Rx9 Squelch	Rx Squelch Disable, channel 9	_	
	-	Disable	in oqueren bibabie, enamer y		
	0	Rx8 Squelch	Rx Squelch Disable, channel 8	_	
	0	Disable	in byueren bibubie, enamer o		
68	7	Rx7 Squelch	Rx Squelch Disable, channel 7		
00	,	Disable	in squeren bisabie, enamer /		
	6	Rx6 Squelch	Rx Squelch Disable, channel 6	_	
	0	Disable	in squeren bisabie, enamer o		
	5	Rx5 Squelch	Rx Squelch Disable, channel 5	_	
	5	Disable	in squeren bisabie, enamer s		
	4	Rx4 Squelch	Rx Squelch Disable, channel 4	_	
	г	Disable	in squeren bisabie, enamer 4		
	3	Rx3 Squelch	Rx Squelch Disable, channel 3	_	
	5	Disable	in byueren bibubie, enamer 5		
	2	Rx2 Squelch	Rx Squelch Disable, channel 2	_	
	2	Disable	in squeren bisabie, enamer z		
	1	Rx1 Squelch	Rx Squelch Disable, channel 1	_	
	-	Disable	in oqueren bibabie, enamer i		
	0	Rx0 Squelch	Rx Squelch Disable, channel 0	_	
	0	Disable	in equeron broabre, enamer e		
69	7	Rx15 Polarity	Rx Polarity Flip, channel 15	RW	Optional
0.5	,	Flip	in rotaticy rip, chamer is	100	operonar
	6	Rx14 Polarity	Rx Polarity Flip, channel 14	_	
	0	Flip	in rotarie, rip, chamer in		
	5	Rx13 Polarity	Rx Polarity Flip, channel 13	_	
	0	Flip			
	4	Rx12 Polarity	Rx Polarity Flip, channel 12	1	
	-	Flip			
	3	Rx11 Polarity	Rx Polarity Flip, channel 11	-	
	5	Flip	in relation rity, enamed it		
	2	Rx10 Polarity	Rx Polarity Flip, channel 10	-	
	-	Flip			
	1	-	Rx Polarity Flip, channel 9	-	
	0		Rx Polarity Flip, channel 8	-	
70	7		Rx Polarity Flip, channel 7		
,0	6		Rx Polarity Flip, channel 6	-	
	5		Rx Polarity Flip, channel 5	-	
				-	
	4		Rx Polarity Flip, channel 4	-	
	3		Rx Polarity Flip, channel 3	-	
	2	KXZ POLARITY FIIP	Rx Polarity Flip, channel 2		

Byte	Bit	Name	Description	Туре	Option
	1	Rx1 Polarity Flip	Rx Polarity Flip, channel 1		
	0	Rx0 Polarity Flip	Rx Polarity Flip, channel 0		
71	7	Rx15 CDR Bypass	Rx CDR Bypass, channel 15	RW	Optional
	6	Rx14 CDR Bypass	Rx CDR Bypass, channel 14	7	
	5	Rx13 CDR Bypass	Rx CDR Bypass, channel 13	7	
	4	Rx12 CDR Bypass	Rx CDR Bypass, channel 12	7	
	3	Rx11 CDR Bypass	Rx CDR Bypass, channel 11	1	
	2	Rx10 CDR Bypass	Rx CDR Bypass, channel 10		
	1	Rx9 CDR Bypass	Rx CDR Bypass, channel 9		
	0	Rx8 CDR Bypass	Rx CDR Bypass, channel 8		
72	7	Rx7 CDR Bypass	Rx CDR Bypass, channel 7	-	
	6	Rx6 CDR Bypass	Rx CDR Bypass, channel 6	-	
	5	Rx5 CDR Bypass	Rx CDR Bypass, channel 5	-	
	4	Rx4 CDR Bypass	Rx CDR Bypass, channel 4	-	
	3	Rx3 CDR Bypass	Rx CDR Bypass, channel 3	-	
	2	Rx2 CDR Bypass	Rx CDR Bypass, channel 2	-	
	1	Rx1 CDR Bypass	Rx CDR Bypass, channel 1	-	
	0	Rx1 CDR Bypass Rx0 CDR Bypass	Rx CDR Bypass, channel 0	-	
73	7-4	Rx0 CDR Bypass Rx1 OA	Rx Output Amplitude, channel 1	RW	Optional
15				rw.	Optional
74	3-0 7-4	Rx0 OA	Rx Output Amplitude, channel O Rx Output Amplitude, channel 3		
/4		Rx3 OA		_	
	3-0	Rx2 OA	Rx Output Amplitude, channel 2	_	
75	7-4	Rx5 OA	Rx Output Amplitude, channel 5	_	
		Rx4 OA	Rx Output Amplitude, channel 4	_	
76		Rx7 OA	Rx Output Amplitude, channel 7	_	
		Rx6 OA	Rx Output Amplitude, channel 6	_	
77		Rx9 OA	Rx Output Amplitude, channel 9	_	
		Rx8 OA	Rx Output Amplitude, channel 8		
78		Rx11 OA	Rx Output Amplitude, channel 11	_	
		Rx10 OA	Rx Output Amplitude, channel 10	_	
79	-	Rx13 OA	Rx Output Amplitude, channel 13	_	
		Rx12 OA	Rx Output Amplitude, channel 12		
80	7-4	Rx15 OA	Rx Output Amplitude, channel 15		
	3-0	Rx14 OA	Rx Output Amplitude, channel 14		
81	7 - 4	Rx1 PE	Rx Pre-Emphasis, channel 1	RW	Optional
	3-0	Rx0 PE	Rx Pre-Emphasis, channel 0		
82	7-4	Rx3 PE	Rx Pre-Emphasis, channel 3		
		Rx2 PE	Rx Pre-Emphasis, channel 2		
83	7-4	Rx5 PE	Rx Pre-Emphasis, channel 5	7	
	3-0	Rx4 PE	Rx Pre-Emphasis, channel 4	7	
84		Rx7 PE	Rx Pre-Emphasis, channel 7	1	
		Rx6 PE	Rx Pre-Emphasis, channel 6	7	
85		Rx9 PE	Rx Pre-Emphasis, channel 9	1	
		Rx8 PE	Rx Pre-Emphasis, channel 8	1	
86		Rx11 PE	Rx Pre-Emphasis, channel 11	1	
-		Rx10 PE	Rx Pre-Emphasis, channel 10	1	
87		Rx13 PE	Rx Pre-Emphasis, channel 13	-	
		Rx12 PE	Rx Pre-Emphasis, channel 12	-	
88		Rx15 PE	Rx Pre-Emphasis, channel 15	-	
		Rx14 PE	Rx Pre-Emphasis, channel 14	-	
89		Rx1 PE	Rx Rate Select, channel 1	RW	Optional
U J		RXI PE RX0 PE	Rx Rate Select, channel 0	L/W	operonal
90			Rx Rate Select, channel 3	-	
90		Rx3 PE Rx2 PE	Rx Rate Select, channel 3 Rx Rate Select, channel 2	-	
			INA NALE DETECT. CHANNEL Z	1	1
91	3-0	Rx5 PE	Rx Rate Select, channel 5	_	

92		Name	Description	Туре	Option
	7-4	Rx7 PE	Rx Rate Select, channel 7		
-	3-0	Rx6 PE	Rx Rate Select, channel 6		
93	7-4	Rx9 PE	Rx Rate Select, channel 9		
	3-0	Rx8 PE	Rx Rate Select, channel 8		
94	7-4	Rx11 PE	Rx Rate Select, channel 11		
	3-0	Rx10 PE	Rx Rate Select, channel 10		
95	7-4	Rx13 PE	Rx Rate Select, channel 13		
-	3-0	Rx12 PE	Rx Rate Select, channel 12		
96	7-4	Rx15 PE	Rx Rate Select, channel 15	-	
		Rx14 PE	Rx Rate Select, channel 14	-	
97	7	Reserved		RW	Optional
	6	Rx LOS Disable	Rx LOS SIF disable		.1
-	5	Rx CDR LOL	Rx CDR LOL SIF disable	-	
	5	Disable			
-	4	Reserved			
	3	Reserved		-	
	2	Rx Power A/W	Rx Power Alarm/Warning SIF disable	-	
	Z	Disable	RX Power Alarm/warning SiF disable		
-	1		Rx Temperature Alarm/Warning SIF disable	-	
	1	Rx Temp A/W	RX lemperature Alarm/warning SiF disable		
	0	Disable		-	
	0	Rx Vcc A/W	Rx Vcc Alarm/Warning SIF disable		
0.0	-	Disable		5.17	
98	7	Rx15 Channel	Disable all FAWS reports from Rx channel 15	RW	Optional
		Fault Squelch		-	
	6	Rx14 Channel	Disable all FAWS reports from Rx channel 14		
		Fault Squelch		_	
	5	Rx13 Channel	Disable all FAWS reports from Rx channel 13		
		Fault Squelch		_	
	4	Rx12 Channel	Disable all FAWS reports from Rx channel 12		
		Fault Squelch		_	
	3	Rx11 Channel	Disable all FAWS reports from Rx channel 11		
		Fault Squelch			
	2	Rx10 Channel	Disable all FAWS reports from Rx channel 10		
		Fault Squelch			
	1		Disable all FAWS reports from Rx channel 9		
		Squelch			
	0	Rx8 Channel Fault	Disable all FAWS reports from Rx channel 8		
		Squelch			
99	7	Rx7 Channel Fault	Disable all FAWS reports from Rx channel 7		
		Squelch			
	6	Rx6 Channel Fault	Disable all FAWS reports from Rx channel 6		
		Squelch			
	5	Rx5 Channel Fault	Disable all FAWS reports from Rx channel 5		
		Squelch			
ľ	4	Rx4 Channel Fault	Disable all FAWS reports from Rx channel 4	]	
		Squelch			
	3	Rx3 Channel Fault	Disable all FAWS reports from Rx channel 3	3	
		Squelch	-		
-	2	-	Disable all FAWS reports from Rx channel 2		
		Squelch			
ŀ	1	-	Disable all FAWS reports from Rx channel 1	1	
	-	Squelch			
	0	-	Disable all FAWS reports from Rx channel 0	1	
	0	Squelch	produce are rand reports from its challier o		
	7 0	Reserved		RW	Optional
100	/_ ~			L/ M	operonal
100	2	Rx Power Override			

Byte	Bit	Name	Description	Туре	Option
	0	Soft Reset			
101	All	Reserved		RW	Optional
102	7	M-Rx15 LOS	Mask Rx LOS indicator, channel 15	RW	Optional
	6	M-Rx14 LOS	Mask Rx LOS indicator, channel 14		
	5	M-Rx13 LOS	Mask Rx LOS indicator, channel 13		
	4	M-Rx12 LOS	Mask Rx LOS indicator, channel 12		
	3	M-Rx11 LOS	Mask Rx LOS indicator, channel 11		
	2	M-Rx10 LOS	Mask Rx LOS indicator, channel 10		
	1	M-Rx9 LOS	Mask Rx LOS indicator, channel 9		
	0	M-Rx8 LOS	Mask Rx LOS indicator, channel 8		
103	7	M-Rx7 LOS	Mask Rx LOS indicator, channel 7		
	6	M-Rx6 LOS	Mask Rx LOS indicator, channel 6		
	5	M-Rx5 LOS	Mask Rx LOS indicator, channel 5		
	4	M-Rx4 LOS	Mask Rx LOS indicator, channel 4	_	
	3	M-Rx3 LOS	Mask Rx LOS indicator, channel 3	_	
	2	M-Rx2 LOS	Mask Rx LOS indicator, channel 2	_	
	1	M-Rx1 LOS	Mask Rx LOS indicator, channel 1	-	
	0	M-Rx0 LOS	Mask Rx LOS indicator, channel 0	-	
104	7	M-Rx15 CDR LOL	Mask Rx CDR LOL indicator, channel 15	RW	Optional
_	6	M-Rx14 CDR LOL	Mask Rx CDR LOL indicator, channel 14	-	-1
	5	M-Rx13 CDR LOL	Mask Rx CDR LOL indicator, channel 13	_	
	4	M-Rx12 CDR LOL	Mask Rx CDR LOL indicator, channel 12	_	
	3	M-Rx11 CDR LOL	Mask Rx CDR LOL indicator, channel 11	-	
	2	M-Rx10 CDR LOL	Mask Rx CDR LOL indicator, channel 10	-	
	1	M-Rx9 CDR LOL	Mask Rx CDR LOL indicator, channel 9	_	
	0	M-Rx8 CDR LOL	Mask Rx CDR LOL indicator, channel 8	_	
105	7	M-Rx7 CDR LOL	Mask Rx CDR LOL indicator, channel 7	_	
100	6	M-Rx6 CDR LOL	Mask Rx CDR LOL indicator, channel 6	_	
	5	M-Rx5 CDR LOL	Mask Rx CDR LOL indicator, channel 5	_	
	4	M-Rx4 CDR LOL	Mask Rx CDR LOL indicator, channel 4	-	
	3	M-Rx3 CDR LOL	Mask Rx CDR LOL indicator, channel 3	_	
	2	M-Rx2 CDR LOL	Mask Rx CDR LOL indicator, channel 2	_	
	1	M-Rx1 CDR LOL	Mask Rx CDR LOL indicator, channel 1	_	
	0	M-Rx0 CDR LOL	Mask Rx CDR LOL indicator, channel 0	-	
106	A11	Reserved		RW	
100	All	Reserved			
				RW	Out i un l
108	All	Reserved		RW	Optional
109	All	Reserved		RW	Optional
110	7	M-Rx15 LPW	Mask Rx Low Power Warning, channel 15	RW	Optional
	6	M-Rx14 LPW	Mask Rx Low Power Warning, channel 14	_	
	5	M-Rx13 LPW	Mask Rx Low Power Warning, channel 13	_	
	4	M-Rx12 LPW	Mask Rx Low Power Warning, channel 12	_	
	3	M-Rx11 LPW	Mask Rx Low Power Warning, channel 11	_	
	2	M-Rx10 LPW	Mask Rx Low Power Warning, channel 10	_	
	1	M-Rx9 LPW	Mask Rx Low Power Warning, channel 9	_	
	0	M-Rx8 LPW	Mask Rx Low Power Warning, channel 8	_	
111	7	M-Rx7 LPW	Mask Rx Low Power Warning, channel 7	_	
	6	M-Rx6 LPW	Mask Rx Low Power Warning, channel 6	-	
	5	M-Rx5 LPW	Mask Rx Low Power Warning, channel 4	-	
	4	M-Rx4 LPW	Mask Rx Low Power Warning, channel 4	-	
	3	M-Rx3 LPW	Mask Rx Low Power Warning, channel 3	4	
	2	M-Rx2 LPW	Mask Rx Low Power Warning, channel 2	_	
	1	M-Rx1 LPW	Mask Rx Low Power Warning, channel 1	4	
	0	M-Rx0 LPW	Mask Rx Low Power Warning, channel 0		
112	7	M-Rx15 LPA	Mask Rx Low Power Alarm, channel 15	RW	Optional
1	6	M-Rx14 LPA	Mask Rx Low Power Alarm, channel 14	1	

Bit	Name	Description	Туре	Option
5	M-Rx13 LPA	Mask Rx Low Power Alarm, channel 13		
4	M-Rx12 LPA	Mask Rx Low Power Alarm, channel 12	1	
3	M-Rx11 LPA		_	
2	M-Rx10 LPA		_	
1	M-Rx9 LPA		_	
0				
7				
-			_	
-				
			_	
-			_	
			_	
			_	
-			DM	Optional
			RW	Optional
-			_	
-			_	
		-	_	
-			_	
			_	
			_	
0				
7				
6				
5	M-Rx5 HPA	Mask Rx High Power Alarm, channel 5		
4	M-Rx4 HPA	Mask Rx High Power Alarm, channel 4		
3	M-Rx3 HPA	Mask Rx High Power Alarm, channel 3		
2	M-Rx2 HPA	Mask Rx High Power Alarm, channel 2		
1	M-Rx1 HPA	Mask Rx High Power Alarm, channel 1		
0	M-Rx0 HPA	Mask Rx High Power Alarm, channel 0		
7	M-Temp High Alarm	-	RW	Optional
6				-
5			_	
		habit high i temperatare harning		
4	_	Mask Low 1 st Temperature Warning		
-				
3		Mask High 2 nd Temperature Alarm	_	
J				
2		Mask Iow 2 nd Temperature 2 Alarm	_	
		Mask how 2 Temperature 2 Araim		
1		Mask High 2 nd Temperature Warning	_	
1		Mask migh z remperature warming		
0	_	Mack Low 2 nd Tomporature Warping	_	
0		Mask Low z Temperature Warning		
7	_	Mack 3 3W Supply High Alarm	DM	Optional
/		μασκ σ.σν σαρριγ πιζη Ατατώ	1/1/1	OPLICINAL
6		Mask 3 3V Supply Tow Alarm	-	
0		THASK S.SV SUPPLY DOW ATAIM		
5		Mask 3 3V Supply High Marning	-	
J	2	Mask 5.5V Supply high wathing		
Л		Mack 2 3W Supply Low Marning	-	
4		Luask 2.2% Subbili Tom Maturud		
2 0	_		_	
3-0	Reserved		D17	
	P-Non-Volatile	Persistence treated as non-volatile	RW	Optional
7				1
-7 6 5	P-Rx LOS Alarm P-Rx CDR LOL	Persistent Rx LOS Alarm Persistent Rx CDR LOL Alarm	_	÷
	5         4         3         2         1         0         7         6         5         4         3         2         1         0         7         6         5         4         3         2         1         0         7         6         5         4         3         2         1         0         7         6         5         4         3         2         1         0         7         6         5         4	5         M-Rx13 LPA           4         M-Rx12 LPA           3         M-Rx11 LPA           2         M-Rx10 LPA           1         M-Rx9 LPA           0         M-Rx8 LPA           7         M-Rx7 LPA           6         M-Rx6 LPA           5         M-Rx5 LPA           4         M-Rx1 LPA           3         M-Rx1 LPA           4         M-Rx1 LPA           5         M-Rx1 LPA           6         M-Rx1 LPA           7         M-Rx1 LPA           8         M-Rx1 LPA           9         M-Rx1 LPA           0         M-Rx1 LPA           1         M-Rx1 HPA           2         M-Rx1 HPA           3         M-Rx1 HPA           4         M-Rx6 HPA           5         M-Rx5 HPA           4         M-Rx4 HPA           3         M-Rx1 HPA           2         M-Rx2 HPA           1         M-Rx1 HPA           2         M-Rx2 HPA           1         M-Rx1 HPA           0         M-Rx2 HPA           1         M-Remp Low Alarm           <	5         M-Rx13 LPA         Mask Rx Low Power Alarm, channel 13           4         M-Rx12 LPA         Mask Rx Low Power Alarm, channel 12           3         M-Rx11 LPA         Mask Rx Low Power Alarm, channel 11           2         M-Rx10 LPA         Mask Rx Low Power Alarm, channel 10           1         M-Rx9 LPA         Mask Rx Low Power Alarm, channel 9           0         M-Rx6 LPA         Mask Rx Low Power Alarm, channel 7           6         M-Rx6 LPA         Mask Rx Low Power Alarm, channel 6           5         M-Rx6 LPA         Mask Rx Low Power Alarm, channel 6           6         M-Rx6 LPA         Mask Rx Low Power Alarm, channel 1           6         M-Rx1 LPA         Mask Rx Low Power Alarm, channel 1           7         M-Rx1 LPA         Mask Rx Low Power Alarm, channel 1           8         M-Rx1 LPA         Mask Rx Low Power Alarm, channel 1           9         M-Rx1 LPA         Mask Rx Low Power Alarm, channel 1           9         M-Rx1 LPA         Mask Rx Ligh Power Alarm, channel 1           10         M-Rx2 LPA         Mask Rx High Power Alarm, channel 1           11         M-Rx1 LPA         Mask Rx High Power Alarm, channel 14           12         M-Rx1 HPA         Mask Rx High Power Alarm, channel 12           13         <	5       M-Rx13 LPA       Mask Rx Low Power Alarm, channel 13         4       M-Rx11 LPA       Mask Rx Low Power Alarm, channel 12         3       M-Rx11 LPA       Mask Rx Low Power Alarm, channel 11         2       M-Rx10 LPA       Mask Rx Low Power Alarm, channel 10         1       M-Rx9 LPA       Mask Rx Low Power Alarm, channel 7         0       M-Rx8 LPA       Mask Rx Low Power Alarm, channel 7         0       M-Rx5 LPA       Mask Rx Low Power Alarm, channel 7         0       M-Rx5 LPA       Mask Rx Low Power Alarm, channel 6         5       M-Rx5 LPA       Mask Rx Low Power Alarm, channel 14         3       M-Rx4 LPA       Mask Rx Low Power Alarm, channel 1         0       M-Rx5 LPA       Mask Rx Low Power Alarm, channel 1         0       M-Rx1 LPA       Mask Rx Low Power Alarm, channel 1         0       M-Rx1 LPA       Mask Rx Low Power Alarm, channel 1         0       M-Rx1 LPA       Mask Rx Low Power Alarm, channel 1         0       M-Rx1 LPA       Mask Rx High Power Alarm, channel 1         0       M-Rx1 LPA       Mask Rx High Power Alarm, channel 1         0       M-Rx1 HPA       Mask Rx High Power Alarm, channel 10         1       M-Rx1 HPA       Mask Rx High Power Alarm, channel 10         1<

Byte	Bit	Name	Description	Туре	Option
	4	Reserved			
	3	Reserved			
	2	P-Rx Power Alarm	Persistent Rx Power Alarm		
	1	P-Rx Temperature	Persistent Rx Temperature Alarm		
		Alarm			
	0	P-Rx Vcc Alarm	Persistent Rx Vcc Alarm		
119	All	PWCE MSB	Password Change Entry Area	WO	Optional
120	All	PWCE			
121	All	PWCE			
122	All	PWCE LSB			
123	All	PWE MSB	Password Entry Area	WO	Required
124	All	PWE			
120	All	PWE			
126	All	PWE LSB			
127	All	PSB	Page Select byte	RW	Required

### 1 9.7 Lower Page Tx

## 2 Table 44: Lower Memory Page Tx

Byte			Description	Туре	
0	All	Identifier	Identifier - Type of Serial Module	RO	Required
			(same value as page 0 byte 128)		
1	All	Version ID	Identifier - Version of Serial Module	RO	Required
			Specification		
2	7	Flat_mem	Upper memory flat or paged.	RO	Required
			0= paged, 1= Page 00h only	_	
	6	Tx Bias and Power	Set, when any bit in #11-16 is set		
		Alarm Summary		_	
	5	Reserved		_	
	4	Tx LOS, Fault and	Set, when any bit in $#3-8$ is set		
	0	LOL Alarm Summary		_	
	3	Reserved		_	
	2	Temperature and	Set, when any bit in $#17-18$ is set		
	1	Vcc Alarm Summary		_	
	1	Interrupt	Set, when IntL pin is asserted low	_	
-	0	DataNotReady	Set while memory data is not ready		
3	7	L-Tx15 LOS	Latched Tx LOS indicator, channel 15	RO	Optional
	6	L-Tx14 LOS	Latched Tx LOS indicator, channel 14	_	
	5	L-Tx13 LOS	Latched Tx LOS indicator, channel 13	_	
	4	L-Tx12 LOS	Latched Tx LOS indicator, channel 12	_	
	3	L-Tx11 LOS	Latched Tx LOS indicator, channel 11	_	
	2	L-Tx10 LOS	Latched Tx LOS indicator, channel 10	_	
	1	L-Tx9 LOS	Latched Tx LOS indicator, channel 9	_	
	0	L-Tx8 LOS	Latched Tx LOS indicator, channel 8	_	
4	7	L-Tx7 LOS	Latched Tx LOS indicator, channel 7	_	
	6	L-Tx6 LOS	Latched Tx LOS indicator, channel 6	_	
	5	L-Tx5 LOS	Latched Tx LOS indicator, channel 5	_	
	4	L-Tx4 LOS	Latched Tx LOS indicator, channel 4	_	
	3	L-Tx3 LOS	Latched Tx LOS indicator, channel 3	_	
	2	L-Tx2 LOS	Latched Tx LOS indicator, channel 2	_	
	1	L-Tx1 LOS	Latched Tx LOS indicator, channel 1	_	
	0	L-Tx0 LOS	Latched Tx LOS indicator, channel 0		
5	7	L-Tx15 CDR LOL	Latched Tx CDR LOL indicator, channel 15	RO	Optional
	6	L-Tx14 CDR LOL	Latched Tx CDR LOL indicator, channel 14	_	
	5	L-Tx13 CDR LOL	Latched Tx CDR LOL indicator, channel 13	_	
	4	L-Tx12 CDR LOL	Latched Tx CDR LOL indicator, channel 12	_	
	3	L-Tx11 CDR LOL	Latched Tx CDR LOL indicator, channel 11	_	
	2	L-Tx10 CDR LOL	Latched Tx CDR LOL indicator, channel 10	_	
	1	L-Tx9 CDR LOL	Latched Tx CDR LOL indicator, channel 9	_	
	0	L-Tx8 CDR LOL	Latched Tx CDR LOL indicator, channel 8	_	
6	7	L-Tx7 CDR LOL	Latched Tx CDR LOL indicator, channel 7	_	
	6	L-Tx6 CDR LOL	Latched Tx CDR LOL indicator, channel 6	_	
	5	L-Tx5 CDR LOL	Latched Tx CDR LOL indicator, channel 5	_	
	4	L-Tx4 CDR LOL	Latched Tx CDR LOL indicator, channel 4	_	
	3	L-Tx3 CDR LOL	Latched Tx CDR LOL indicator, channel 3	_	
	2	L-Tx2 CDR LOL	Latched Tx CDR LOL indicator, channel 2	4	
	1	L-Tx1 CDR LOL	Latched Tx CDR LOL indicator, channel 1	4	
	0	L-Tx0 CDR LOL	Latched Tx CDR LOL indicator, channel 0		
7	7	L-Tx15 Fault	Latched Tx Fault indicator, channel 15	RO	Optional
	6	L-Tx14 Fault	Latched Tx Fault indicator, channel 14	_	
	5	L-Tx13 Fault	Latched Tx Fault indicator, channel 13	_	
	4	L-Tx12 Fault	Latched Tx Fault indicator, channel 12		
	3	L-Tx11 Fault	Latched Tx Fault indicator, channel 11		

	-				<u> </u>
	2	L-Tx10 Fault	Latched Tx Fault indicator, channel 10		
	1	L-Tx9 Fault	Latched Tx Fault indicator, channel 9		
	0	L-Tx8 Fault	Latched Tx Fault indicator, channel 8		
8	7	L-Tx7 Fault	Latched Tx Fault indicator, channel 7		
	6	L-Tx6 Fault	Latched Tx Fault indicator, channel 6		
	5	L-Tx5 Fault	Latched Tx Fault indicator, channel 5		
	4	L-Tx4 Fault	Latched Tx Fault indicator, channel 4	1	
	3	L-Tx3 Fault	Latched Tx Fault indicator, channel 3		
	2	L-Tx2 Fault	Latched Tx Fault indicator, channel 2		
	1	L-Tx1 Fault	Latched Tx Fault indicator, channel 1		
	0	L-Tx0 Fault	Latched Tx Fault indicator, channel 0		
9	7	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 15	RO	Optional
-	6	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 14	_	-1
	5	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 13		
	4	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 12		
	3	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 11		
	2	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 10		
	1	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 9		
	0	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 8		
10	7	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 7		
TO	6	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 6		
	5	L-IXIS HBA L-TX15 HBA	Latched Tx High Bias Alarm, channel 5		
	4		Latched Tx High Bias Alarm, channel 5 Latched Tx High Bias Alarm, channel 4		
		L-Tx15 HBA			
	3	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 3		
	2	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 2		
	1	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 1		
	0	L-Tx15 HBA	Latched Tx High Bias Alarm, channel 0	<b>D</b> 0	
11	7	L-Tx15 LBA	Latched Tx Low Bias Alarm, channel 15	RO	Optional
	6	L-Tx14 LBA	Latched Tx Low Bias Alarm, channel 14		
	5	L-Tx13 LBA	Latched Tx Low Bias Alarm, channel 13		
	4	L-Tx12 LBA	Latched Tx Low Bias Alarm, channel 12		
	3	L-Tx11 LBA	Latched Tx Low Bias Alarm, channel 11		
	2	L-Tx10 LBA	Latched Tx Low Bias Alarm, channel 10		
	1	L-Tx9 LBA	Latched Tx Low Bias Alarm, channel 9		
	0	L-Tx8 LBA	Latched Tx Low Bias Alarm, channel 8		
12	7	L-Tx7 LBA	Latched Tx Low Bias Alarm, channel 7		
	6	L-Tx6 LBA	Latched Tx Low Bias Alarm, channel 6		
	5	L-Tx5 LBA	Latched Tx Low Bias Alarm, channel 4		
	4	L-Tx4 LBA	Latched Tx Low Bias Alarm, channel 4		
	3	L-Tx3 LBA	Latched Tx Low Bias Alarm, channel 3		
	2	L-Tx2 LBA	Latched Tx Low Bias Alarm, channel 2		
	1	L-Tx1 LBA	Latched Tx Low Bias Alarm, channel 1		
	0	L-Tx0 LBA	Latched Tx Low Bias Alarm, channel 0		
13	7	L-Tx15 HPA	Latched Tx High Power Alarm, channel 15	RO	Optional
	6	L-Tx14 HPA	Latched Tx High Power Alarm, channel 14		
	5	L-Tx13 HPA	Latched Tx High Power Alarm, channel 13		
	4	L-Tx12 HPA	Latched Tx High Power Alarm, channel 12		
	3	L-Tx11 HPA	Latched Tx High Power Alarm, channel 11		
	2	L-Tx10 HPA	Latched Tx High Power Alarm, channel 10		
	1	L-Tx9 HPA	Latched Tx High Power Alarm, channel 9		
	0	L-Tx8 HPA	Latched Tx High Power Alarm, channel 8		
14	7	L-Tx7 HPA	Latched Tx High Power Alarm, channel 7	]	
	6	L-Tx6 HPA	Latched Tx High Power Alarm, channel 6		
	5	L-Tx5 HPA	Latched Tx High Power Alarm, channel 5		
	4	L-Tx4 HPA	Latched Tx High Power Alarm, channel 4		
	3	L-Tx3 HPA	Latched Tx High Power Alarm, channel 3		
	2	L-Tx2 HPA	Latched Tx High Power Alarm, channel 2		
L	1	1		1	1

	1	L-Tx1 HPA	Latched Tx High Power Alarm, channel 1		
	0	L-Tx0 HPA	Latched Tx High Power Alarm, channel 0		
15	7	L-Tx15 LPA	Latched Tx Low Power Alarm, channel 15	RO	Optional
	6	L-Tx14 LPA	Latched Tx Low Power Alarm, channel 14		
	5	L-Tx13 LPA	Latched Tx Low Power Alarm, channel 13		
	4	L-Tx12 LPA	Latched Tx Low Power Alarm, channel 12		
	3	L-Tx11 LPA	Latched Tx Low Power Alarm, channel 11		
	2	L-Tx10 LPA	Latched Tx Low Power Alarm, channel 10		
	1	L-Tx9 LPA	Latched Tx Low Power Alarm, channel 9		
	0	L-Tx8 LPA	Latched Tx Low Power Alarm, channel 8		
16	7	L-Tx7 LPA	Latched Tx Low Power Alarm, channel 7		
	6	L-Tx6 LPA	Latched Tx Low Power Alarm, channel 6		
	5	L-Tx5 LPA	Latched Tx Low Power Alarm, channel 5		
	4	L-Tx4 LPA	Latched Tx Low Power Alarm, channel 4		
	3	L-Tx3 LPA	Latched Tx Low Power Alarm, channel 3		
	2	L-Tx2 LPA	Latched Tx Low Power Alarm, channel 2		
	1	L-Tx1 LPA	Latched Tx Low Power Alarm, channel 1		
	0	L-Tx0 LPA	Latched Tx Low Power Alarm, channel 0		
17	7	L-Temp High Alarm	Latched High 1 st Temperature Alarm	RO	Optional
	6	L-Temp Low Alarm	Latched Low 1 st Temperature Alarm		
	5	L-Temp High	Latched High 1 st Temperature Warning		
		Warning			
	4	L-Temp Low Warning	Latched Low 1 st Temperature Warning		
	3	L-Temp 2 High	Latched High 2 nd Temperature Alarm		
		Alarm			
	2	L-Temp 2 Low Alarm	Latched Low 2 nd Temperature 2 Alarm		
	1	L-Temp 2 High	Latched High 2 nd Temperature Warning		
		Warning			
	0	L-Temp 2 Low	Latched Low 2 nd Temperature Warning		
		Warning			
18	7	L-Vcc 3.3V High	Latched 3.3V Supply High Alarm	RO	Optional
		Alarm			
	6	L-Vcc 3.3V Low	Latched 3.3V Supply Low Alarm		
		Alarm			
	5	L-Vcc 3.3V High	Latched 3.3V Supply High Warning		
		Warning			
	4	L-Vcc 3.3V Low	Latched 3.3V Supply Low Warning		
		Warning			
	3-0	Reserved			
19	7		Unlatched Tx LOS indicator, channel 15	RO	Optional
	6		Unlatched Tx LOS indicator, channel 14		
	5		Unlatched Tx LOS indicator, channel 13		
	4		Unlatched Tx LOS indicator, channel 12		
	3		Unlatched Tx LOS indicator, channel 11		
	2	Raw Tx10 LOS State			
	1	Raw Tx9 LOS State	Unlatched Tx LOS indicator, channel 9		
	0	Raw Tx8 LOS State	Unlatched Tx LOS indicator, channel 8		
20	7	Raw Tx7 LOS State	Unlatched Tx LOS indicator, channel 7		
	6	Raw Tx6 LOS State	Unlatched Tx LOS indicator, channel 6		
	5	Raw Tx5 LOS State	Unlatched Tx LOS indicator, channel 5		
	4	Raw Tx4 LOS State	Unlatched Tx LOS indicator, channel 4		
	3	Raw Tx3 LOS State	Unlatched Tx LOS indicator, channel 3		
	2	Raw Tx2 LOS State	Unlatched Tx LOS indicator, channel 2		
	1	Raw Tx1 LOS State	Unlatched Tx LOS indicator, channel 1		
	0	Raw Tx0 LOS State	Unlatched Tx LOS indicator, channel 0		
21	7	Raw Tx15 LOL State	Unlatched Tx CDR LOL indicator, channel 15	RO	Optional
	6	Raw Tx14 CDR LOL	Unlatched Tx CDR LOL indicator, channel 14		
L	1	1			1

		State		
	5	Raw Tx13 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 13	
	4	Raw Tx12 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 12	
	3	Raw Tx11 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 11	
	2	Raw Tx10 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 10	
	1	Raw Tx9 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 9	
	0	Raw Tx8 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 8	
22	7	Raw Tx7 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 7	
	6	Raw Tx6 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 6	
	5	Raw Tx5 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 5	
	4	Raw Tx4 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 4	
	3	Raw Tx3 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 3	
	2	Raw Tx2 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 2	
	1	Raw Tx1 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 1	
	0	Raw Tx0 CDR LOL State	Unlatched Tx CDR LOL indicator, channel 0	
23	7	Raw Tx15 Fault State	Unlatched Tx Fault indicator, channel 15 RO Op	otional
	6	Raw Tx14 Fault State	Unlatched Tx Fault indicator, channel 14	
	5	Raw Tx13 Fault State	Unlatched Tx Fault indicator, channel 13	
	4	Raw Tx12 Fault State	Unlatched Tx Fault indicator, channel 12	
	3	Raw Tx11 Fault State	Unlatched Tx Fault indicator, channel 11	
	2	Raw Tx10 Fault State	Unlatched Tx Fault indicator, channel 10	
	1	Raw Tx9 Fault State	Unlatched Tx Fault indicator, channel 9	
	0	Raw Tx8 FaultState	Unlatched Tx Fault indicator, channel 8	
24	7	Raw Tx7 Fault State	Unlatched Tx Fault indicator, channel 7	
	6	Raw Tx6 Fault State	Unlatched Tx Fault indicator, channel 6	
	5	Raw Tx5 Fault State	Unlatched Tx Fault indicator, channel 5	
	4	Raw Tx4 Fault State	Unlatched Tx Fault indicator, channel 4	
	3	Raw Tx3 Fault State	Unlatched Tx Fault indicator, channel 3	
	2	Raw Tx2 Fault State	Unlatched Tx Fault indicator, channel 2	
	1	Raw Tx1 Fault State	Unlatched Tx Fault indicator, channel 1	

26	All	State			
26		Temperature 1	1 st data and 11 and 1	DM	Optional
	All	Temperature 2	1 st internally measured temperature [°C] 2 nd internally measured temperature [°C]	RW RW	Optional
	All	Vcc 3.3V MSB	Internally measured supply voltage	RO	Optional
	All	Vcc 3.3V LSB	3.3V [100 $\mu$ V]	100	operonar
	A11	Icc MSB	Internally measured supply current [1 mA]	RO	Optional
-	All	Icc LSB		110	oporonar
	All	TiO MSB	Elapsed Time in Operation [2 h]	RO	Optional
32	All	TiO LSB			
33	All	Tx0 Optical Power	Tx Light Output Monitor, channel 0 [20µW]	RO	Optional
34	All	Tx1 Optical Power	Tx Light Output Monitor, channel 1 [20µW]		
35	All	Tx2 Optical Power	Tx Light Output Monitor, channel 2 [20µW]		
36	All	Tx3 Optical Power	Tx Light Output Monitor, channel 3 [20µW]		
37	All	Tx4 Optical Power	Tx Light Output Monitor, channel 4 [20µW]		
38	All	Tx5 Optical Power	Tx Light Output Monitor, channel 5 [20µW]		
39	All	Tx6 Optical Power	Tx Light Output Monitor, channel 6 [20µW]		
40	All	Tx7 Optical Power	Tx Light Output Monitor, channel 7 [20µW]		
41	All	Tx8 Optical Power	Tx Light Output Monitor, channel 8 [20µW]		
42	All	Tx9 Optical Power	Tx Light Output Monitor, channel 9 [20µW]		
43	All	Tx10 Optical Power	Tx Light Output Monitor, channel 10 [20µW]		
44	All	Tx11 Optical Power	Tx Light Output Monitor, channel 11 [20µW]		
45	All	Tx12 Optical Power	Tx Light Output Monitor, channel 12 [20µW]		
46	All	Tx130ptical Power	Tx Light Output Monitor, channel 13 [20µW]		
47	All	Tx14 Optical Power	Tx Light Output Monitor, channel 14 $[20\mu W]$		
48	All	Tx15 Optical Power	Tx Light Output Monitor, channel 15 [20µW]		
49	A11	Tx0 Bias Current	Tx Bias Current Monitor, channel 0 [0.1 mA]	RO	Optional
50	All	Tx1 Bias Current	Tx Bias Current Monitor, channel 1 [0.1 mA]		Ť
51	All	Tx2 Bias Current	Tx Bias Current Monitor, channel 2 [0.1 mA]		
	All	Tx3 Bias Current	Tx Bias Current Monitor, channel 3 [0.1 mA]		
	All	Tx4 Bias Current	Tx Bias Current Monitor, channel 4 [0.1 mA]		
	All	Tx5 Bias Current	Tx Bias Current Monitor, channel 5 [0.1 mA]		
	All All	Tx6 Bias Current Tx7 Bias Current	Tx Bias Current Monitor, channel 6 [0.1 mA] Tx Bias Current Monitor, channel 7 [0.1 mA]		
	All	Tx8 Bias Current	Tx Bias Current Monitor, channel 8 [0.1 mA]		
	All	Tx9 Bias Current	Tx Bias Current Monitor, channel 9 [0.1 mA]		
	All	Tx10 Bias Current	Tx Bias Current Monitor, channel 10 [0.1		
60	All	Tx11 Bias Current	mA] Tx Bias Current Monitor, channel 11 [0.1		
00	71±±	INIT DIAD GALLONG	mA]		
61	All	Tx12 Bias Current	Tx Bias Current Monitor, channel 12 [0.1		
			mA]		
62	All	Tx13Bias Current	Tx Bias Current Monitor, channel 13 [0.1 mA]		
63	All	Tx14 Bias Current	Tx Bias Current Monitor, channel 14 [0.1		
		Int Diab ourrent	mA]		
64	All	Tx15 Bias Current	Tx Bias Current Monitor, channel 15 [0.1		
			mA]		
65	7	Tx15 Disable	Tx Output Disable, channel 15	RW	Optional
	6	Tx14 Disable	Tx Output Disable, channel 14		
	5	Tx13 Disable Tx12 Disable	Tx Output Disable, channel 13 Tx Output Disable, channel 12		
	3	Tx11 Disable	Tx Output Disable, channel 12 Tx Output Disable, channel 11		
	2	Tx10 Disable	Tx Output Disable, channel 11 Tx Output Disable, channel 10		
1 1	1	Tx9 Disable	Tx Output Disable, channel 9		

	0	Tx8 Disable	Tx Output Disable, channel 8		
66	7	Tx7 Disable	Tx Output Disable, channel 7		
	6	Tx6 Disable	Tx Output Disable, channel 6		
	5	Tx5 Disable	Tx Output Disable, channel 5	_	
	4	Tx4 Disable	Tx Output Disable, channel 4	_	
	3	Tx3 Disable	Tx Output Disable, channel 3	_	
	2	Tx2 Disable	Tx Output Disable, channel 2	_	
	1	Tx1 Disable	Tx Output Disable, channel 1	_	
6.5	0	Tx0 Disable	Tx Output Disable, channel 0		
67	7	Tx15 Squelch	Tx Squelch Disable, channel 15	RW	Optional
	6	Disable	The Ormalah Désahla shawarl 14	_	
	6	Tx14 Squelch Disable	Tx Squelch Disable, channel 14		
	5	Tx13 Squelch	Tx Squelch Disable, channel 13	_	
	5	Disable	TX Squerch Disable, channel 15		
	4	Tx12 Squelch	Tx Squelch Disable, channel 12	_	
	1	Disable	in oqueren bioabie, enamer iz		
	3	Tx11 Squelch	Tx Squelch Disable, channel 11	_	
	-	Disable			
	2	Tx10 Squelch	Tx Squelch Disable, channel 10	-	
		Disable			
	1	Tx9 Squelch	Tx Squelch Disable, channel 9		
		Disable			
	0	Tx8 Squelch	Tx Squelch Disable, channel 8		
		Disable			
68	7	Tx7 Squelch	Tx Squelch Disable, channel 7		
		Disable			
	6	Tx6 Squelch	Tx Squelch Disable, channel 6		
		Disable		_	
	5	Tx5 Squelch	Tx Squelch Disable, channel 5		
	4	Disable	Tx Squelch Disable, channel 4	_	
	4	Tx4 Squelch Disable	ix squerch Disable, channel 4		
	3	Tx3 Squelch	Tx Squelch Disable, channel 3	_	
	5	Disable	ix oqueten bisable, channel 5		
	2	Tx2 Squelch	Tx Squelch Disable, channel 2	_	
	_	Disable			
	1	Tx1 Squelch	Tx Squelch Disable, channel 1		
		Disable			
	0	Tx0 Squelch	Tx Squelch Disable, channel 0		
		Disable			
69	7	Tx15 Polarity Flip	Tx Polarity Flip, channel 15	RW	Optional
	6		Tx Polarity Flip, channel 14		
	5		Tx Polarity Flip, channel 13	_	
	4		Tx Polarity Flip, channel 12	_	
	3		Tx Polarity Flip, channel 11	_	
	2		Tx Polarity Flip, channel 10	_	
	1	Tx9 Polarity Flip	Tx Polarity Flip, channel 9	_	
	0	Tx8 Polarity Flip	Tx Polarity Flip, channel 8	_	
70	7	Tx7 Polarity Flip	Tx Polarity Flip, channel 7	_	
	6	Tx6 Polarity Flip	Tx Polarity Flip, channel 6	-	
	5	Tx5 Polarity Flip	Tx Polarity Flip, channel 5	4	
	4	Tx4 Polarity Flip	Tx Polarity Flip, channel 4	_	
	3	Tx3 Polarity Flip	Tx Polarity Flip, channel 3	-	
	2	Tx2 Polarity Flip	Tx Polarity Flip, channel 2	-	
	1	Tx1 Polarity FlipTx0 Polarity Flip	Tx Polarity Flip, channel 1 Tx Polarity Flip, channel 0	-	
	U	IND FUTALLUY FILP	ITA LOTALICY LITE, CHANNEL O		

71	7			DU	
71	7	Tx15 CDR Bypass	Tx CDR Bypass, channel 15	RW	Optional
	6	Tx14 CDR Bypass	Tx CDR Bypass, channel 14		
	5	Tx13 CDR Bypass	Tx CDR Bypass, channel 13		
	4	Tx12 CDR Bypass	Tx CDR Bypass, channel 12		
	3	Tx11 CDR Bypass	Tx CDR Bypass, channel 11		
	2	Tx10 CDR Bypass	Tx CDR Bypass, channel 10		
	1	Tx9 CDR Bypass	Tx CDR Bypass, channel 9		
	0	Tx8 CDR Bypass	Tx CDR Bypass, channel 8		
72	7	Tx7 CDR Bypass	Tx CDR Bypass, channel 7		
	6	Tx6 CDR Bypass	Tx CDR Bypass, channel 6		
	5	Tx5 CDR Bypass	Tx CDR Bypass, channel 5		
	4	Tx4 CDR Bypass	Tx CDR Bypass, channel 4		
	3	Tx3 CDR Bypass	Tx CDR Bypass, channel 3		
	2	Tx2 CDR Bypass	Tx CDR Bypass, channel 2		
	1	Tx1 CDR Bypass	Tx CDR Bypass, channel 1		
	0	Tx0 CDR Bypass	Tx CDR Bypass, channel 0		
73	7	Tx15 CTLE Mode	Tx Equalization Mode, channel 15 ¹	RW	Optional
	6	Tx14 CTLE Mode	Tx Equalization Mode, channel 14 ¹		Ť
	5	Tx13 CTLE Mode	Tx Equalization Mode, channel 13 ¹		
	4	Tx12 CTLE Mode	Tx Equalization Mode, channel 12 ¹		
	3	Tx11 CTLE Mode	Tx Equalization Mode, channel 11 ¹		
	2	Tx10 CTLE Mode	Tx Equalization Mode, channel 10 ¹		
	1	Tx9 CTLE Mode	Tx Equalization Mode, channel 9 ¹		
	0	Tx8 CTLE Mode	Tx Equalization Mode, channel 8 ¹		
74	7	Tx7 CTLE Mode	Tx Equalization Mode, channel 7 ¹		
1 1	6	Tx6 CTLE Mode			
	5	Tx5 CTLE Mode	Tx Equalization Mode, channel 6 ¹		
	-		Tx Equalization Mode, channel 5 ¹		
	4	Tx4 CTLE Mode	Tx Equalization Mode, channel 4 ¹		
	3	Tx3 CTLE Mode	Tx Equalization Mode, channel 3 ¹		
	2	Tx2 CTLE Mode	Tx Equalization Mode, channel 2 ¹		
	1	Tx1 CTLE Mode	Tx Equalization Mode, channel 1 ¹		
	0	Tx0 CTLE Mode	Tx Equalization Mode, channel 0 ¹		
75	7	Tx15AEFreeze	Tx Adaptive Equalization Freeze, channel		
			15 ²		
	6	Tx14AE Freeze	Tx Adaptive Equalization Freeze, channel		
			14 ²		
	5	Tx13AE Freeze	Tx Adaptive Equalization Freeze, channel		
			13 ²		
	4	Tx12AE Freeze	Tx Adaptive Equalization Freeze, channel		
			12 ²		
	3	Tx11AE Freeze	Tx Adaptive Equalization Freeze, channel		
			11 ²		
	2	Tx10AE Freeze	Tx Adaptive Equalization Freeze, channel		
			10 ²		
	1	Tx9AE Freeze	Tx Adaptive Equalization Freeze, channel 9 ²		
	0	Tx8AE Freeze	Tx Adaptive Equalization Freeze, channel 8 ²		
76	7	Tx7 AE Freeze	Tx Adaptive Equalization Freeze, channel $7^2$		
	6	Tx6 AE Freeze	Tx Adaptive Equalization Freeze, channel $6^2$		
	5	Tx5 AE Freeze	Tx Adaptive Equalization Freeze, channel 5 ²		
	4	Tx4 AE Freeze	Tx Adaptive Equalization Freeze, channel 4 ²		
	3	Tx3 AE Freeze	Tx Adaptive Equalization Freeze, channel 3 ²		
	2	Tx2 AE Freeze	Tx Adaptive Equalization Freeze, channel 2 ²		
	1	Tx1 AE Freeze	Tx Adaptive Equalization Freeze, channel 1 ²		
	0	Tx0 AE Freeze	Tx Adaptive Equalization Freeze, channel $0^2$		
77	-	Reserved			
78		Reserved			
79		Reserved			
	1			1	1

0.0		De se sur al			
80	7 4	Reserved	Tu Foundiantion shares 1		
81 81	7-4	Tx1 EQ	Tx Equalization, channel 1	DLI	
	3-0	Tx0 EQ	Tx Equalization, channel 0	RW	Optional
82	7-4	Tx3 EQ	Tx Equalization, channel 3		
82	3-0	Tx2 EQ	Tx Equalization, channel 2		
83	7-4	Tx5 EQ	Tx Equalization, channel 5		
83	3-0	Tx4 EQ	Tx Equalization, channel 4		
84	7-4	Tx7 EQ	Tx Equalization, channel 7		
84	3-0	Tx6 EQ	Tx Equalization, channel 6		
85	7-4	Tx9 EQ	Tx Equalization, channel 9		
85 86	3-0	Tx8 EQ	Tx Equalization, channel 8		
	7-4	Tx11 EQ	Tx Equalization, channel 11		
86	3-0	Tx10 EQ	Tx Equalization, channel 10		
87	7-4	Tx13 EQ	Tx Equalization, channel 13		
87	3-0	Tx12 EQ	Tx Equalization, channel 12		
88	7-4	Tx15 EQ	Tx Equalization, channel 15		
88	3-0	Tx14 EQ	Tx Equalization, channel 14		
89	7-4	Tx1 PE	Tx Rate Select, channel 1	7.1 רז	Option 1
89	3-0	Tx0 PE	Tx Rate Select, channel 0	RW	Optional
90		Tx3 PE	Tx Rate Select, channel 3		
90	3-0	Tx2 PE	Tx Rate Select, channel 2		
91	7-4	Tx5 PE	Tx Rate Select, channel 5		
91	3-0	Tx4 PE	Tx Rate Select, channel 4		
92	7-4	Tx7 PE	Tx Rate Select, channel 7		
92	3-0	Tx6 PE	Tx Rate Select, channel 6		
93	7-4	Tx9 PE	Tx Rate Select, channel 9		
93	3-0	Tx8 PE	Tx Rate Select, channel 8		
94	7-4	Tx11 PE	Tx Rate Select, channel 11		
94	3-0	Tx10 PE	Tx Rate Select, channel 10		
95	7-4	Tx13 PE	Tx Rate Select, channel 13		
95	3-0	Tx12 PE	Tx Rate Select, channel 12		
96	7-4	Tx15 PE	Tx Rate Select, channel 15		
96	3-0	Tx14 PE	Tx Rate Select, channel 14		
97 97		Reserved		DLI	
97	6 5	Tx LOS Disable	Tx LOS SIF disable	RW	Optional
	5	Tx CDR LOL Disable			
	-	Tx Fault Disable	Tx Fault SIF disable		
	3	Reserved	Tu Dougon Alarm/Manning CTT dischla		
	۷	Tx Power A/W Disable	Tx Power Alarm/Warning SIF disable		
	1	Tx Temp A/W	Tx Temperature Alarm/Warning SIF disable		
	1	Disable	IN TEMPETATULE ATAIM/WAINING SIF GISADLE		
	0	Tx Vcc A/W Disable	Tx Vcc Alarm/Warning SIF disable		
	7	Tx15 Channel Fault	Disable all FAWS reports from Tx channel 15		
98	, ,	Squelch	bisable all immo reports from in chamler 15		
98	6	Tx14 Channel Fault	Disable all FAWS reports from Tx channel 14	RW	Optional
	Ŭ	Squelch	Leaste all mile reported from in channel 14	T / M A	SPELONAL
	5	Tx13 Channel Fault	Disable all FAWS reports from Tx channel 13		
	Ĭ	Squelch			
	4	Tx12 Channel Fault	Disable all FAWS reports from Tx channel 12		
		Squelch			
	3	Tx11 Channel Fault	Disable all FAWS reports from Tx channel 11		
		Squelch			
	2	Tx10 Channel Fault	Disable all FAWS reports from Tx channel 10		
		Squelch	· · · · · ·		
	1	Tx9 Channel Fault	Disable all FAWS reports from Tx channel 9		
		Squelch			

	0	Tx8 Channel Fault	Disable all FAWS reports from Tx channel 8		
0.0	7	Squelch		-	
99	/	Tx7 Channel Fault Squelch	Disable all FAWS reports from Tx channel 7		
99	6	Tx6 Channel Fault	Disable all FAWS reports from Tx channel 6		
		Squelch			
	5	Tx5 Channel Fault	Disable all FAWS reports from Tx channel 5		
		Squelch		_	
	4	Tx4 Channel Fault	Disable all FAWS reports from Tx channel 4		
	2	Squelch		_	
	3	Tx3 Channel Fault	Disable all FAWS reports from Tx channel 3		
	2	Squelch Tx2 Channel Fault	Disable all FAWS reports from Tx channel 2	-	
	2	Squelch	Disable all FAWS reports from ix channel 2		
	1	Tx1 Channel Fault	Disable all FAWS reports from Tx channel 1	-	
	-	Squelch			
	0	Tx0 Channel Fault	Disable all FAWS reports from Tx channel 0		
		Squelch			
100	7-3	Reserved			
100	2	Tx Power Override		RW	Optional
	1	Tx Power Down			
	0	Soft Reset			
101	All	Reserved			
102	7	M-Tx15 LOS	Mask Tx LOS indicator, channel 15	RW	Optional
	6	M-Tx14 LOS	Mask Tx LOS indicator, channel 14	_	
	5	M-Tx13 LOS	Mask Tx LOS indicator, channel 13	-	
	4	M-Tx12 LOS M-Tx11 LOS	Mask Tx LOS indicator, channel 12	-	
	2	M-Tx10 LOS	Mask Tx LOS indicator, channel 11 Mask Tx LOS indicator, channel 10	-	
	1	M-Tx9 LOS	Mask Tx LOS indicator, channel 9	-	
	0	M-Tx8 LOS	Mask Tx LOS indicator, channel 8	-	
100	_			1	
103	7	M-Tx7 LOS	Mask Tx LOS indicator, channel 7	-	
	6 5	M-Tx6 LOS	Mask Tx LOS indicator, channel 6	-	
	4	M-Tx5 LOS M-Tx4 LOS	Mask Tx LOS indicator, channel 5 Mask Tx LOS indicator, channel 4	-	
	3	M-Tx3 LOS	Mask Tx LOS indicator, channel 3	-	
	2	M-Tx2 LOS	Mask Tx LOS indicator, channel 2	-	
	1	M-Tx1 LOS	Mask Tx LOS indicator, channel 1	-	
	0	M-Tx0 LOS	Mask Tx LOS indicator, channel 0	-	
104	7	M-Tx15 CDR LOL	Mask Tx CDR LOL indicator, channel 15	RW	Optional
	6	M-Tx14 CDR LOL	Mask Tx CDR LOL indicator, channel 14	-	1
	5	M-Tx13 CDR LOL	Mask Tx CDR LOL indicator, channel 13		
	4	M-Tx12 CDR LOL	Mask Tx CDR LOL indicator, channel 12		
	3	M-Tx11 CDR LOL	Mask Tx CDR LOL indicator, channel 11		
	2	M-Tx10 CDR LOL	Mask Tx CDR LOL indicator, channel 10		
	1	M-Tx9 CDR LOL	Mask Tx CDR LOL indicator, channel 9	4	
	0	M-Tx8 CDR LOL	Mask Tx CDR LOL indicator, channel 8	4	
105	7	M-Tx7 CDR LOL	Mask Tx CDR LOL indicator, channel 7	4	
	6	M-Tx6 CDR LOL	Mask Tx CDR LOL indicator, channel 6	_	
	5	M-Tx5 CDR LOL	Mask Tx CDR LOL indicator, channel 5	-	
	4	M-Tx4 CDR LOL	Mask Tx CDR LOL indicator, channel 4	-	
	3	M-Tx3 CDR LOL M-Tx2 CDR LOL	Mask Tx CDR LOL indicator, channel 3 Mask Tx CDR LOL indicator, channel 2	-	
		THETYS ONE TOP	Mask is CDR DOD INGLCALOL, CHAINNEL 2	1	1
			Mask Tx CDR LOL indicator channel 1		
	1 0	M-Tx1 CDR LOL M-Tx0 CDR LOL	Mask Tx CDR LOL indicator, channel 1 Mask Tx CDR LOL indicator, channel 0	_	

		Ι			11
	6	M-Tx14 Fault	Mask Tx Fault indicator, channel 14	_	
	5	M-Tx13 Fault	Mask Tx Fault indicator, channel 13	_	
	4	M-Tx12 Fault	Mask Tx Fault indicator, channel 12	_	
	3	M-Tx11 Fault	Mask Tx Fault indicator, channel 11		
	2	M-Tx10 Fault	Mask Tx Fault indicator, channel 10		
	1	M-Tx9 Fault	Mask Tx Fault indicator, channel 9		
	0	M-Tx8 Fault	Mask Tx Fault indicator, channel 8		
107	7	M-Tx7 Fault	Mask Tx Fault indicator, channel 7		
	6	M-Tx6 Fault	Mask Tx Fault indicator, channel 6		
	5	M-Tx5 Fault	Mask Tx Fault indicator, channel 5		
	4	M-Tx4 Fault	Mask Tx Fault indicator, channel 4		
	3	M-Tx3 Fault	Mask Tx Fault indicator, channel 3		
	2	M-Tx2 Fault	Mask Tx Fault indicator, channel 2		
	1	M-Tx1 Fault	Mask Tx Fault indicator, channel 1		
	0	M-Tx0 Fault	Mask Tx Fault indicator, channel 0		
108	All	Reserved		RW	Optional
109	All	Reserved		RW	Optional
110	7	M-Tx15 LPW	Mask Tx Low Power Warning, channel 15	RW	Optional
	6	M-Tx14 LPW	Mask Tx Low Power Warning, channel 14		
	5	M-Tx13 LPW	Mask Tx Low Power Warning, channel 13		
	4	M-Tx12 LPW	Mask Tx Low Power Warning, channel 12	]	
	3	M-Tx11 LPW	Mask Tx Low Power Warning, channel 11	_	
	2	M-Tx10 LPW	Mask Tx Low Power Warning, channel 10	_	
	1	M-Tx9 LPW	Mask Tx Low Power Warning, channel 9		
	0	M-Tx8 LPW	Mask Tx Low Power Warning, channel 8		
111	7	M-Tx7 LPW	Mask Tx Low Power Warning, channel 7		
	6	M-Tx6 LPW	Mask Tx Low Power Warning, channel 6		
	5	M-Tx5 LPW	Mask Tx Low Power Warning, channel 4		
	4	M-Tx4 LPW	Mask Tx Low Power Warning, channel 4		
	3	M-Tx3 LPW	Mask Tx Low Power Warning, channel 3		
	2	M-Tx2 LPW	Mask Tx Low Power Warning, channel 2		
	1	M-Tx1 LPW	Mask Tx Low Power Warning, channel 1		
	0	M-Tx0 LPW	Mask Tx Low Power Warning, channel 0		
112	7	M-Tx15 LPA	Mask Tx Low Power Alarm, channel 15	RW	Optional
	6	M-Tx14 LPA	Mask Tx Low Power Alarm, channel 14	-	-
	5	M-Tx13 LPA	Mask Tx Low Power Alarm, channel 13		
	4	M-Tx12 LPA	Mask Tx Low Power Alarm, channel 12	-	
	3	M-Tx11 LPA	Mask Tx Low Power Alarm, channel 11	1	
	2	M-Tx10 LPA	Mask Tx Low Power Alarm, channel 10	1	
	1	M-Tx9 LPA	Mask Tx Low Power Alarm, channel 9	1	
	0	M-Tx8 LPA	Mask Tx Low Power Alarm, channel 8	1	
113	7	M-Tx7 LPA	Mask Tx Low Power Alarm, channel 7	1	
-	6	M-Tx6 LPA	Mask Tx Low Power Alarm, channel 6	1	
	5	M-Tx5 LPA	Mask Tx Low Power Alarm, channel 5	1	
	4	M-Tx4 LPA	Mask Tx Low Power Alarm, channel 4	1	
	3	M-Tx3 LPA	Mask Tx Low Power Alarm, channel 3	1	
	2	M-Tx2 LPA	Mask Tx Low Power Alarm, channel 2	1	
	1	M-Tx1 LPA	Mask Tx Low Power Alarm, channel 1	1	
	0	M-Tx0 LPA	Mask Tx Low Power Alarm, channel 0	1	
114	7	M-Tx15 HPA	Mask Tx High Power Alarm, channel 15	RW	Optional
	6	M-Tx14 HPA	Mask Tx High Power Alarm, channel 14		or or other
	5	M-Tx13 HPA	Mask Tx High Power Alarm, channel 13	-	
	4	M-Tx12 HPA	Mask Tx High Power Alarm, channel 12	-	
	3	M-Tx11 HPA	Mask Tx High Power Alarm, channel 11	1	
	2	M-Tx10 HPA	Mask Tx High Power Alarm, channel 10	1	
	1	M-Tx9 HPA	Mask Tx High Power Alarm, channel 9	-	
	0	M-Tx8 HPA	Mask Tx High Power Alarm, Channel 8	-	
	U	TT TAV IILA	THOR IN HIGH LOWEL ALALM, CHAIMEL O	I	

	_				1
115	7	M-Tx7 HPA	Mask Tx High Power Alarm, channel 7	_	
-	6	M-Tx6 HPA	Mask Tx High Power Alarm, channel 6	_	
-	5	M-Tx5 HPA	Mask Tx High Power Alarm, channel 5	_	
-	4	M-Tx4 HPA	Mask Tx High Power Alarm, channel 4	_	
-	3	M-Tx3 HPA	Mask Tx High Power Alarm, channel 3	_	
-	2	M-Tx2 HPA	Mask Tx High Power Alarm, channel 2	_	
-	1	M-Tx1 HPA	Mask Tx High Power Alarm, channel 1	_	
	0	M-Tx0 HPA	Mask Tx High Power Alarm, channel 0		
116	7	M-Temp High Alarm	Mask High 1 st Temperature Alarm	RW	Optional
-	6	M-Temp Low Alarm	Mask Low 1 st Temperature Alarm	_	
	5	M-Temp High	Mask High 1 st Temperature Warning		
		Warning			
	4	M-Temp Low Warning	Mask Low 1 st Temperature Warning		
	3	M-Temp 2 High	Mask High 2 nd Temperature Alarm		
		Alarm			
	2		Mask Low 2 nd Temperature 2 Alarm		
	1	M-Temp 2 High	Mask High 2 nd Temperature Warning		
		Warning			
	0	M-Temp 2 Low	Mask Low 2 nd Temperature Warning		
		Warning			
117	7	M-Vcc 3.3V High	Mask 3.3V Supply High Alarm	RW	Optional
		Alarm			
	6	M-Vcc 3.3V Low	Mask 3.3V Supply Low Alarm		
		Alarm			
	5	M-Vcc 3.3V High	Mask 3.3V Supply High Warning		
		Warning			
	4	M-Vcc 3.3V Low	Mask 3.3V Supply Low Warning		
		Warning			
	3-0	Reserved			
118	7	P-Non-Volatile	Persistence treated as non-volatile	RW	Optional
	6	P-Tx LOS Alarm	Persistent Tx LOS Alarm		
	5	P-Tx CDR LOL Alarm	Persistent Tx CDR LOL Alarm		
	4	P-Tx Fault Alarm	Persistent Tx Fault Alarm		
	3	Reserved			
	2	P-Tx Power Alarm	Persistent Tx Power Alarm		
	1	P-Tx Temperature	Persistent Tx Temperature Alarm		
		Alarm			
	0	P-Tx Vcc Alarm	Persistent Tx Vcc Alarm		
119	All	PWCE MSB	Password Change Entry Area	WO	Optional
120	All	PWCE			
121	All	PWCE			
122	All	PWCE LSB			
123	All	PWE MSB	Password Entry Area	WO	Required
124	All	PWE			
120	All	PWE			
126	All	PWE LSB	1		
127	All	PSB	Page Select byte	RW	Required
-	1: 0 =	- Adaptive equalizat		1	
			n mode (see Bytes 81-88 for manual equalizat:	ion se	ettings)
Note			manual equalization mode		<u> </u>

Upper Page 00 consists of the Serial ID and is used for read only identification

information. The Serial ID is divided into the Base ID Fields, Extended ID Fields and

1 2 3

### 9.8 Upper Page 00

Vendor Specific ID Fields.

4 5

6

1 2

Table	45:	P00	Page	Summary

Byte	Size	Name	Description	Туре	
128	1	Identifier	Identifier Type of Module	RO	Required
			CDFP style 3 = 16h		
129	1	Extended Identifier	Extended Identifier	RO	Required
130	1	Connector	Code for connector type	RO	Required
131-138	8	Specification	Code for electronic or optical	RO	Required
	0	Compliance	compatibility	1(0	Required
139	1	Encoding	Code for serial encoding algorithm	RO	Required
140	1	BR, nominal	Nominal bit rate, units of 100 Mbit/s	RO	Required
141	1	Extended Rate	Tags for Extended Rate Select	RO	Required
	-	Select	Compliance	110	negarrea
142-146	5	Link Length	Link length /Transmission media	RO	Required
147	1	Device Tech	Device technology	RO	Required
148-163	16	Vendor name	Vendor name (ASCII)	RO	Required
164	1	Extended Module	Extended module codes for Infiniband	RO	Required
165-167	3	Vendor OUI	Vendor IEEE company ID	RO	Required
168-183	16	Vendor PN	Part number provided by vendor (ASCII)	RO	Required
184-185	2	Vendor Rev	Revision level for part number provided by vendor (ASCII)	RO	Required
186-187	2	Wavelength or Cu Att	Nominal laser wavelength (1/20 nm) or copper cable attenuation in dB at 2.5 GHz (#186) and 5 GHz (#187)	RO	Required
188-189	2	Wavelength Tolerance	Guaranteed range of laser wavelength from nominal wavelength (1/200 nm)	RO	Required
190	1	Max Case Temp	Maximum case temperature in °C	RO	Required
191	1	CC_BASE	Check code for Base ID fields (#128- 190)	RO	Required
192-195	4	Options	Indicates which optional capabilities are implemented in the module	RO	Required
196-211	16	Vendor S/N	Vendor product serial number (ASCII)	RO	Required
212-219	8	Date Code	Vendor manufacturing date code (ASCII)	RO	Required
220	1	Diagnostic Monitoring	Indicates which type of diagnostic monitoring are implemented in the module	RO	Required
221-222	2	Enhanced Options	Indicates which optional enhanced features are implemented in the module	RO	Required
223	1	CC_EXT	Check code for Extended ID (#192- 222)	RO	Required
224-255	32	Vendor Specific	Vendor-specific ID information	RO	Optional

3

### 4 9.8.1 Identifier and Extended Identifier

5 See Section 8.4.2

### 6 9.8.2 Connector Type

7 See Section 8.4.3

### 8 9.8.3 Specification Compliance

9 See Section 8.4.4

1	9.8.4 Encoding			
2	See Section 8.4.5			
Z	See Section 0.4.5			
3	9.8.5 BR, nominal			
4	See Section 8.4.6			
5	9.8.6 Extended Rate Select and Global Options			
6	See Section 8.4.7			
7	9.8.7 Link Length			
	See Section 8.4.8			
8	See Section 0.4.0			
9	9.8.8 Device technology			
10	See Section 8.4.9			
11	9.8.9 Vendor Name			
12	See Section 8.4.10			
13	0.0.10 Extended Medule Code			
_	9.8.10 Extended Module Code			
14	See Section 8.4.11			
15	9.8.11 Vendor OUI			
16	See Section 8.4.12			
17	9.8.12 Vendor Part Number			
18	See Section 8.4.13			
19	9.8.13 Vendor Revision Number			
20	See Section 8.4.14			
20	See Section 0.4.14			
21	9.8.14 Wavelength			
22	See Section 8.4.15			
23	9.8.15 Wavelength Tolerance			
24	See Section 8.4.16			
25	9.8.16 Maximum Case Temperature			
26	See Section 8.4.17			
27	9.8.17 CC_BASE			
28	See Section 8.4.18			
20				
29	9.8.18 Options			
30 31	See Section 8.4.19			
32	Table 46: Options			

Byte	Bit	Name	Description	Туре	Option
192	All	Extended Ethernet	00h Unspecified	RO	Required
		Compliance Codes	01h 100G AOC (Active Optical		
			Cable)		
			02h 100GBASE-SR4		
			03h 100GBASE-LR4		
			04h 100GBASE-ER4		
			05h 100GBASE-SR10		
			06h 100G CWDM4 Coarse WDM SMF		

			07h 100G PSM4 Parallel SSMF		
			08h 40GBASE-ER4		
			09h-FFh Reserved		
193	7	Tx Adaptive Equalization	Coded 1 if Tx Adaptive	RO	Required
		implemented	Equalization provided		1
	6	Tx Adaptive Equalization	Coded 1 if Tx Adaptive		
	Ũ	Freeze implemented	Equalization Freeze provided		
	5	Rx polarity flip	Coded 1 if Rx polarity flip	-	
	Ŭ	implemented	control provided		
	4	Tx polarity flip	Coded 1 if Tx polarity flip	-	
	-	implemented	control provided		
	3	Tx input Equalization	Coded 1 if Tx equalization	-	
	5	implemented	control provided		
	2	Rx LOS implemented	Coded 1 if Rx LOS alarm flags	-	
	2	KX LOS Impremented	provided		
	1	Rx pre-emphasis	Coded 1 if Rx pre-emphasis	-	
	1				
	0	implemented	control provided	-	
	0	Rx output amplitude	Coded 1 if Rx output amplitude		
104		implemented	control provided	DO	
194	7	Tx CDR Bypass implemented		RO	Required
			control provided	-	
	6	Rx CDR Bypass implemented			
			control provided	-	
	5	Tx CDR LOL implemented	Coded 1 if Tx CDR LOL alarm		
			flag provided	-	
	4	Rx CDR LOL implemented	Coded 1 if Rx CDR LOL alarm		
			flag provided	-	
	3	Rx Squelch Disable	Coded 1 if Rx Squelch Disable		
		implemented	control provided	-	
	2	Rx Output Disable	Coded 1 if Rx Output Disable		
		implemented	control provided		
	1	Tx Squelch Disable	Coded 1 if Tx Squelch Disable		
		implemented	control provided		
	0	Tx Squelch present	Coded 1 if Tx Squelch provided		
195	7	Memory Page 02 present	Coded 1 if memory page 02	RO	Required
			provided		
	6	Memory Page 01 present	Coded 1 if memory page 01		
			provided		
	5	Tx Rate Select	Coded 1 if Tx Rate Select		
		implemented	control provided		
	4	Tx Disable implemented	Coded 1 if Tx Disable control		
		_	provided		
	3	Tx Fault Flag implemented			
	2	Tx Squelch Pave	Coded 1 if Tx Squelch	1	
		-	implemented to reduce Pave;		
			coded 0 if Tx Squelch		
			implemented to reduce OMA		
	1	Tx LOS Flag implemented	Coded 1 if Tx LOS alarm flag	4	
	-		provided		
	0	Rx Squelch implemented	Coded 1 if Rx Squelch provided	4	
	U	Squoron impromoneed	Provided	1	

## 3 9.8.19 Vendor Serial Number

4 See Section 8.4.20

## 5 9.8.20 Date Code

6 See Section 8.4.21

## 1 9.8.21 Diagnostic Monitoring Type

2 See Section 8.4.22

### 3 9.8.22 Enhanced Options

4 See Section 8.4.23

### 5 9.8.23 CC_EXT

6 See Section 8.4.24

## 7 9.8.24 Vendor Specific

8 See Section 8.4.25

### 9 9.9 Upper Page 01

10 The format of upper page 01 is identical to that specified for QSFP. For CDFP 11 products upper page 01 is not used.

## 12 9.10 Upper Page 02

13 Upper Page 02 is optionally provided as user writable EEPROM. The host system may 14 read or write this memory for any purpose.

### 15 9.11 Upper Page 03

16 The upper memory page 03 contains module thresholds, channel thresholds and optional 17 channel controls.

## 18 9.11.1 Module Card Thresholds

Each quantitative module card monitor has a corresponding high alarm and low alarm threshold. Some monitors may also have high warning and low warning thresholds. For each monitor that is implemented, high and low alarm thresholds are required. These factory-preset values allow the user to determine when a particular value is outside of normal limits as determined by the device manufacturer. The values are stored in the same format as the corresponding monitor value reported in the lower page. The threshold values are stored in read-only memory in upper memory page 03.

### 26 9.11.2 Channel Thresholds

Each quantitative channel monitor has also a corresponding high alarm and low alarm threshold. Some monitors may also have high warning and low warning thresholds. These threshold values are stored in read-only memory in upper memory page 03.

### 30 9.11.3 Extended Channel Controls

The extended channel control fields allow the host computer system to change the gross behavior of the device. The changeable parameters include data rate and application support by the channel.

Rate Select is an optional control used to limit the receiver bandwidth for compatibility with multiple data rates and allows the transmitter to be fine-tuned for specific data rates. The module may:

- 37 a) Provide no support for rate selection
- 38 b) Rate selection using extended rate select
- 39 c) Rater selection with application select tables

The Extended Rae Select Controls have a four bit code block (bits 7-4 or 3-0) assigned to each channel. Codes 1xxxb are reserved. Code 0000b calls for no rate selection. Code 0111b calls for the highest data rate supported. Code 0001b calls for the lowest data rate supported. Intermediate code values call for intermediate data rates if any. The exact Rate Select parameters are presented in the device datasheet. When the Extended Rate Select bits for a particular channel are all zeroes, the Application Select method defined in Page 01 may be used. The host reads the entire

Application Select Table (AST) on page 01 to determine the capabilities of the Module 1 2 card. The host controls each channel separately by writing a Control Mode and Table 3 Select (TS) byte to the Application Select bytes. The two-bit Control Mode value occupies the most-significant bits of the control byte and defines the application 4 5 control mode. The six-bit Table Select value occupies the least-significant bits of 6 the control byte and selects the module card behavior from the Application Select 7 table among the 63 possibilities described there (values 000000b to 111110b). Note that the value 111111b is invalid. 8

## 9 9.11.4 Extended ID

10 The Extended ID fields provide vendor-specific information about the construction of 11 the module. This information is necessary for determining the suitability of the 12 embedded firmware upgrades in the field.

### 13 9.12 Upper Page 03 Summary

- 14 Upper page 03 is subdivided into several areas as illustrated in the following table:
- 15 16

Table 47: Upper Memory Page 03 Summary

Byte	Name Rx, Lower Card	Туре	Option
128-175	Module Thresholds	RO	Optional
176-215	Channel Thresholds	RO	Optional
216-243	Extended Channel Controls	RW	Optional
244-251	Extended Channel Monitors	RO	Optional
252-255	Extended ID	RO	Required

## 17 9.13 Upper Page 03 Overview

18

19 Table 48: Upper Memory Page 03 Overview

Byte	Name Rx, Lower Card	Name Tx, Upper Card	Туре	Option
128-131	Temp 1 H/L A/W	Temp 1 H/L A/W Threshold	RO	Optional
	Threshold			
132-135	Temp 2 H/L A/W	Temp 2 H/L A/W Threshold	RO	Optional
	Threshold			
136-143	Reserved	Reserved	RO	
144-147	Vcc 3.3V H/L A/W	Vcc 3.3V H/L A/W Threshold	RO	Optional
	Threshold			
148-175	Reserved	Reserved	RO	
176	Rx Power HA Threshold	Tx Power HA Threshold	RO	Optional
177	Rx Power LA Threshold	Tx Power LA Threshold	RO	Optional
178	Reserved	Tx Bias HA Threshold	RO	Optional
179	Rx Power LW Threshold	Tx Bias LA Threshold	RO	Optional
180-215	Reserved	Reserved	RO	Optional
216-223	Rx Rate Select	Tx Rate Select	RW	Optional
224-239	Rx Application Select	Tx Application Select	RW	Optional
240-243	Reserved	Reserved	RW	Optional
244-251	Reserved	Tx Current Adaptive	RO	Optional
		Equalization		
252-253	HW Rev	HW Rev	RO	Required
254-255	FW Rev	FW Rev	RO	Required

## 20 9.14 Upper Page 03 Rx

## 21

22 Table 49: Upper Memory Page 03 Rx

Byte	Bit	Name	Description
128	All	Temp1 HA Thr	High Alarm threshold for 1 st temperature monitor
129	All	Temp1 LA Thr	Low Alarm threshold for 1 st temperature monitor
130	All	Temp1 HW Thr	High Warning threshold for 1 st temperature monitor

131	All	Temp1 LW Thr	Low Warning threshold for 1 st temperature monitor
132	All	Temp2 HA Thr	High Alarm threshold for 2 nd temperature monitor
133	All	Temp2 LA Thr	Low Alarm threshold for 2 nd temperature monitor
134	All	Temp2 HW Thr	High Warning threshold for 2 nd temperature monitor
135	All	Temp2 LW Thr	Low Warning threshold for 2 nd temperature monitor
136-	All	Reserved	
143			
144	All	Vcc 3.3V HA Thr	High Alarm threshold for Vcc 3.3V monitor
		MSB	
145	All	Vcc 3.3V HA Thr	
		LSB	
146	All	Vcc 3.3V LA Thr	Low Alarm threshold for Vcc 3.3V monitor
		MSB	_
147	All	Vcc 3.3V LA Thr	
		LSB	
144	All	Vcc 3.3V HW Thr	High Warning threshold for Vcc 3.3V monitor
		MSB	
145	All	Vcc 3.3V HW Thr	
		LSB	
146	All	Vcc 3.3V LW Thr	Low Warning threshold for Vcc 3.3V monitor
		MSB	
147	All	Vcc 3.3V LW Thr	
		LSB	
148-	All	Reserved	
175			
176	All	Rx Power HA Thr	Rx Power High Alarm Threshold [20 $\mu$ W]
177	All	Rx Power LA Thr	Rx Power Low Alarm Threshold $[20\mu W]$
178	All	Reserved	
179	All	Rx Power LW Thr	Rx Power Low Warning Threshold [20µW]
180-	All	Reserved	
215			
216	7-4	Rx1 Rate Select	Rx data rate select, channel 1
	3-0	Rx0 Rate Select	Rx data rate select, channel 0
217	7-4	Rx3 Rate Select	Rx data rate select, channel 3
	3-0	Rx2 Rate Select	Rx data rate select, channel 2
218	7-4	Rx5 Rate Select	Rx data rate select, channel 5
	3-0	Rx4 Rate Select	Rx data rate select, channel 4
219		Rx7 Rate Select	Rx data rate select, channel 7
		Rx6 Rate Select	Rx data rate select, channel 6
220	7-4	Rx9 Rate Select	Rx data rate select, channel 9
	3-0	Rx8 Rate Select	Rx data rate select, channel 8
221	7-4	Rx11 Rate Select	Rx data rate select, channel 11
	3-0	Rx10 Rate Select	Rx data rate select, channel 10
222	7-4	Rx13 Rate Select	Rx data rate select, channel 13
	3-0	Rx12 Rate Select	Rx data rate select, channel 12
223	7-4	Rx15 Rate Select	Rx data rate select, channel 15
	3-0	Rx14 Rate Select	Rx data rate select, channel 14
224	7-6	Rx0 AST Control	Rx application select, channel 0
	5-0	Rx0 AST Select	
220	7-6	Rx1 AST Control	Rx application select, channel 1
220	5-0	Rx1 AST Select	
226	7-6	Rx2 AST Control	Rx application select, channel 2
220	5-0	Rx2 AST Select	an appreciation betwee, ondinier 2
227	7-6	Rx3 AST Control	Rx application select, channel 3
	5-0	Rx3 AST Select	an appreciation between enumer of
228	7-6	Rx4 AST Control	Rx application select, channel 4
220	5-0	Rx4 ASI Concroi	in appreciation beteel, channer 4
	5-0	NA4 ADI DETECL	

229	7-6	Rx5 AST Control	Rx application select, channel 5
	5-0	Rx5 AST Select	
230	7-6	Rx6 AST Control	Rx application select, channel 6
	5-0	Rx6 AST Select	
231	7-6	Rx7 AST Control	Rx application select, channel 7
	5-0	Rx7 AST Select	
232	7-6	Rx8 AST Control	Rx application select, channel 8
	5-0	Rx8 AST Select	
233	7-6	Rx9 AST Control	Rx application select, channel 9
	5-0	Rx9 AST Select	
234	7-6	Rx10 AST Control	Rx application select, channel 10
	5-0	Rx10 AST Select	
235	7-6	Rx11 AST Control	Rx application select, channel 11
	5-0	Rx11 AST Select	
236	7-6	Rx12 AST Control	Rx application select, channel 12
	5-0	Rx12 AST Select	
237	7-6	Rx13 AST Control	Rx application select, channel 13
	5-0	Rx13 AST Select	
238	7-6	Rx14 AST Control	Rx application select, channel 14
	5-0	Rx14 AST Select	
239	7-6	Rx15 AST Control	Rx application select, channel 15
	5-0	Rx15 AST Select	
240-	All	Reserved	
251			
252	All	HW Rev	Hardware revision number
253	All	НW Туре	Hardware type code
254	All	FW Rev Maj	Firmware major revision number
255	All	FW Rev Min	Firmware minor revision number

## 1 9.15 Upper Page 03 Tx

## 2 Table 50: Upper memory Page 03 Tx

<u>e 50: 0</u>	pper i	memory Page 03 1x	
Byte	Bit	Name	Description
128	All	Temp1 HA Thr	High Alarm threshold for 1 st temperature monitor
129	All	Temp1 LA Thr	Low Alarm threshold for 1 st temperature monitor
130	All	Temp1 HW Thr	High Warning threshold for 1 st temperature monitor
131	All	Temp1 LW Thr	Low Warning threshold for 1 st temperature monitor
132	All	Temp2 HA Thr	High Alarm threshold for 2 nd temperature monitor
133	All	Temp2 LA Thr	Low Alarm threshold for 2 nd temperature monitor
134	All	Temp2 HW Thr	High Warning threshold for 2 nd temperature monitor
135	All	Temp2 LW Thr	Low Warning threshold for 2 nd temperature monitor
136-	All	Reserved	
143			
144	All	Vcc 3.3V HA Thr	High Alarm threshold for Vcc 3.3V monitor
		MSB	
145	All	Vcc 3.3V HA Thr	
		LSB	
146	All	Vcc 3.3V LA Thr	Low Alarm threshold for Vcc 3.3V monitor
		MSB	
147	All	Vcc 3.3V LA Thr	
		LSB	
144	All	Vcc 3.3V HW Thr	High Warning threshold for Vcc 3.3V monitor
		MSB	
145	All	Vcc 3.3V HW Thr	
		LSB	
146	All	Vcc 3.3V LW Thr	Low Warning threshold for Vcc 3.3V monitor
		MSB	
147	All	Vcc 3.3V LW Thr	

		TOD	
140	7 7 7	LSB	
148-	All	Reserved	
175	7 7 7	The Design IIA The	
176	All	Tx Power HA Thr	Tx Power High Alarm Threshold $[20\mu W]$
177	All	Tx Power LA Thr	Tx Power Low Alarm Threshold [20µW]
178	All	Tx Bias HA Thr	Tx Bias Current High Alarm Threshold [0.1 mA]
179	All	Tx Bias LA Thr	Tx Bias Current Low Alarm Threshold [0.1 mA]
180-	All	Reserved	
215	7 4	Tel Data Calast	Tu data wata calast shawnal 1
216	7-4 3-0	Tx1 Rate Select	Tx data rate select, channel 1
217	7-4	Tx0 Rate Select Tx3 Rate Select	Tx data rate select, channel 0 Tx data rate select, channel 3
21/	3-0		Tx data rate select, channel 2
218	7-4	Tx2 Rate Select Tx5 Rate Select	Tx data rate select, channel 5
210	3-0	Tx4 Rate Select	Tx data rate select, channel 4
219	7-4	Tx7 Rate Select	Tx data rate select, channel 7
219	3-0	Tx6 Rate Select	Tx data rate select, channel 6
220	7-4	Tx9 Rate Select	Tx data rate select, channel 9
220	3-0	Tx8 Rate Select	Tx data rate select, channel 8
221	7-4	Tx11 Rate Select	Tx data rate select, channel 11
~~~	3-0	Tx10 Rate Select	Tx data rate select, channel 10
222	7-4	Tx13 Rate Select	Tx data rate select, channel 13
	3-0	Tx12 Rate Select	Tx data rate select, channel 12
223	7-4	Tx15 Rate Select	Tx data rate select, channel 15
	3-0	Tx14 Rate Select	Tx data rate select, channel 14
224	7-6	Tx0 AST Control	Tx application select, channel 0
	5-0	Tx0 AST Select	
220	7-6	Tx1 AST Control	Tx application select, channel 1
	5-0	Tx1 AST Select	
226	7-6	Tx2 AST Control	Tx application select, channel 2
	5-0	Tx2 AST Select	
227	7-6	Tx3 AST Control	Tx application select, channel 3
	5-0	Tx3 AST Select	
228	7-6	Tx4 AST Control	Tx application select, channel 4
	5-0	Tx4 AST Select	
229	7-6	Tx5 AST Control	Tx application select, channel 5
	5-0	Tx5 AST Select	
230	7-6	Tx6 AST Control	Tx application select, channel 6
	5-0	Tx6 AST Select	
231	7-6	Tx7 AST Control	Tx application select, channel 7
	5-0	Tx7 AST Select	
232	7-6	Tx8 AST Control	Tx application select, channel 8
0.00	5-0	Tx8 AST Select	
233	7-6	Tx9 AST Control	Tx application select, channel 9
0.2.4	5-0	Tx9 AST Select	The englished colors, shows 1.10
234	7-6	Tx10 AST Control	Tx application select, channel 10
235	5-0	Tx10 AST Select	Ty application colect channel 11
233	7-6	Tx11 AST Control	Tx application select, channel 11
236	7-6	Tx11 AST Select Tx12 AST Control	Tx application select, channel 12
230	5-0	Tx12 AST Control Tx12 AST Select	is apprication serect, channel 12
237	7-6	Tx13 AST Control	Tx application select, channel 13
201	5-0	Tx13 AST Select	in appreciation beteel, channet 15
238	7-6	Tx14 AST Control	Tx application select, channel 14
200	5-0	Tx14 AST Concror	in appreciation betwee, channel 17
239	7-6	Tx15 AST Control	Tx application select, channel 15
235	5-0	Tx15 AST Select	
L			

240-		Reserved	
243			
244	7-4	Tx1 Current AE	Tx Current Adaptive Equalization, channel 1
	3-0	Tx0 Current AE	Tx Current Adaptive Equalization, channel 0
245	7-4	Tx3 Current AE	Tx Current Adaptive Equalization, channel 3
	3-0	Tx2 Current AE	Tx Current Adaptive Equalization, channel 2
246	7-4	Tx5 Current AE	Tx Current Adaptive Equalization, channel 5
	3-0	Tx4 Current AE	Tx Current Adaptive Equalization, channel 4
247	7-4	Tx7 Current AE	Tx Current Adaptive Equalization, channel 7
	3-0	Tx6 Current AE	Tx Current Adaptive Equalization, channel 6
248	7-4	Tx9 Current AE	Tx Current Adaptive Equalization, channel 9
	3-0	Tx8 Current AE	Tx Current Adaptive Equalization, channel 8
249	7-4	Tx11 Current AE	Tx Current Adaptive Equalization, channel 11
	3-0	Tx10 Current AE	Tx Current Adaptive Equalization, channel 10
250	7 - 4	Tx13 Current AE	Tx Current Adaptive Equalization, channel 13
	3-0	Tx12 Current AE	Tx Current Adaptive Equalization, channel 12
251	7-4	Tx15 Current AE	Tx Current Adaptive Equalization, channel 15
	3-0	Tx14 Current AE	Tx Current Adaptive Equalization, channel 14
252		HW Rev	Hardware revision number
253		НW Туре	Hardware type code
254		FW Rev Maj	Firmware major revision number
255		FW Rev Min	Firmware minor revision number

1

3

8

9

10 11

12

13

14

21

2 10 CDFP Firmware Upgrade

4 This section addresses the method of upgrading of firmware in CDFP modules after the 5 modules have been installed in a communications network. The requirements of the method 6 are 7 1) The upgrade must be done without removing the modules from the system where they

- 1) The upgrade must be done without removing the modules from the system where they are installed,
- 2) The method should be common across multiple vendors modules,
- 3) The host system should not have to know the internal details of any particular module, and
- 4) The firmware data files must be able to be sent over the internet without being corrupted or blocked by corporate firewalls and anti-virus filters.

The first requirement dictates that the host system must communicate with the module over the existing two-wire serial interface; this in turn indicates that the data file should contain a sequence of "packets" to be sent over the two-wire serial interface. The last requirement indicates that the data files should be ASCII text with the binary bytes to be sent over the two-wire serial interface being represented by pairs of hexadecimal digit characters.

The data file has a human-readable header section describing the firmware in the file and a firmware data section containing the packets of data to be sent over the two-wire serial interface. The first part of the data section is a prelude which configures the module for firmware loading.

27 10.1 Human-readable Header Section

28

The header section consists of a number of lines which all start with a semicolon to distinguish them from the firmware data section. The first line describes the firmware in human terms and should be ignored by the host system; this line should include the module manufacturer's name. The remaining lines in the header section are all tag/value pairs which can be evaluated by the host system to determine the various parameters of the firmware. Each of the tag/value pairs is described in detail below.

Revision 3.0

;FMTVer=1.02

1 2

3 4

5

6 7

8

14 15

16

22 23

24

28

33

37

This should be the second line of the header. It defines the format of the rest of the file. Format version 1.02 is the format described in this document.

;Version=5.17

9 This line identifies the version number of the firmware in the data file, a major version 10 number and a minor version number separated by a decimal point. After the firmware has 11 been loaded the host can read the firmware version from the module memory map (PO3 #254 12 FW major and PO3 #255 FW minor revision) to determine if the firmware was loaded 13 correctly.

;H/Wcomp=9

17 This line identifies the type of hardware in the module that the firmware is designed 18 for. The host system should read the module hardware type from the memory map (PO3 #252) 19 and check for compatibility before attempting to load the firmware. If the module has a 20 different hardware version number, the host system should not continue with the firmware 21 upgrade for that module.

;F/Wcomp=5.*

This line identifies the firmware version in the module that the firmware in the data file is intended to replace or modify; an asterisk indicates a wildcard which matches any value in the corresponding field.

29 ; CRC16=1234 30 ; CRC32=12345678 31 ; MD5=1234567890123456

32 ; SHA1=12345678901234567890

These lines define the checksum of all the binary bytes to be sent over the two-wire serial interface by the corresponding algorithm. The lines in the header section (including these checksums) are excluded from the checksum calculations.

38 Additional tag/value pairs may be added to cater for any special requirements of the 39 modules.

40

41 10.2 Firmware Data Section

42 43

53

55

The firmware data section is a list of "packets" to be sent over the two-wire serial 44 interface, one packet per line in the file. If a packet is too large to fit reasonably in 45 a single line, it may be split across multiple lines by putting a backslash character (') at the end of each line of the packet except the last; there is no limit to the 46 size of the packet except that the module must be able to receive and process an entire 47 packet. The packet data is represented by a sequence of hexadecimal digit character pairs 48 with no embedded spaces or punctuation other than a possible parameter sentinel (see 49 50 below). The host system is expected to convert the sequence of hexadecimal digit 51 character pairs into a sequence of binary bytes and then send the binary bytes over the 52 two-wire serial interface along with the appropriate start and stop conditions.

54 Write packets

56 Packets of data to be sent to the module start with the two-wire serial address of the 57 module receiver and the read/write bit set to zero to indicate a write. The rest of the 58 packet may contain a buffer address, a wrapper round the data, the data itself, and one

or more checksums so that the module can verify that the packet was transmitted correctly. The host system does no checksum verification - such checking is delegated to the module.

Status Read Packets

Packets requesting data from the module start with the two-wire serial address of the module receiver and the read/write bit set to one to indicate a read. A Status Read requests a single byte from the module. The value read can then be compared with the remaining bytes in the packet - a match with any byte indicates that the previous write packet was received and processed correctly. For modules that provide the status response at a particular register address, the read request must be preceded by a write packet that sets the register address but sends no data.

15 Parameter Read Packets

17 Some microcontrollers have a loader built into the hardware; that loader may have a write-protect feature that requires a "password" to be read from the hardware and then 18 re-written to permit firmware upgrade. Packets requesting such data from the module have 19 the device address byte followed by a parameter sentinel, '%', a one-digit parameter 20 number, and the number of bytes to be read. For example, the packet "B3%120" means read 21 22 hex 20 (32 decimal) bytes from the device at address hex B3 and store them in parameter 23 1. A subsequent write packet may have one of its data bytes replaced by the parameter sentinel and accompanying digit; the host system is expected to replace the parameter 24 25 indicator with the contents of the stored parameter before transmitting the packet to the module. At the time of writing, the only requirement identified is for one parameter of 26 27 length 32 bytes. When calculating the file checksums, the parameter sentinel characters 28 should be replaced by zero characters ('0').

30 10.3 Implementation Notes

31

37

45

49

29

1 2

3

4 5

6

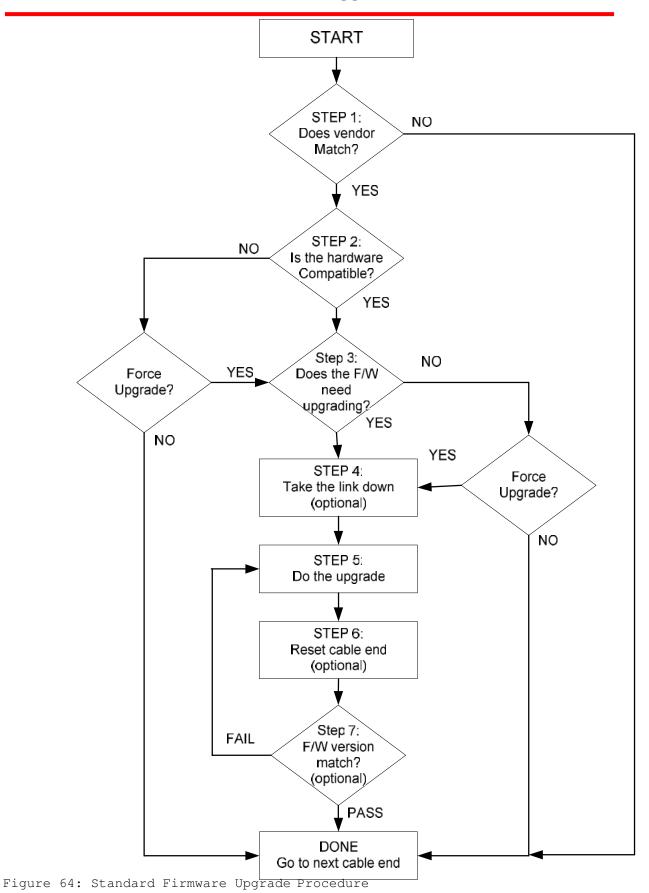
14

16

32 When the host system gets an unexpected response to a status read, it should first read 33 the status byte again to check for transmission errors. If the response is still not one 34 of the expected values, the host system should re-write the last block written to the 35 module card. The allowable number of retries before declaring a failure should be set by 36 the system administrator.

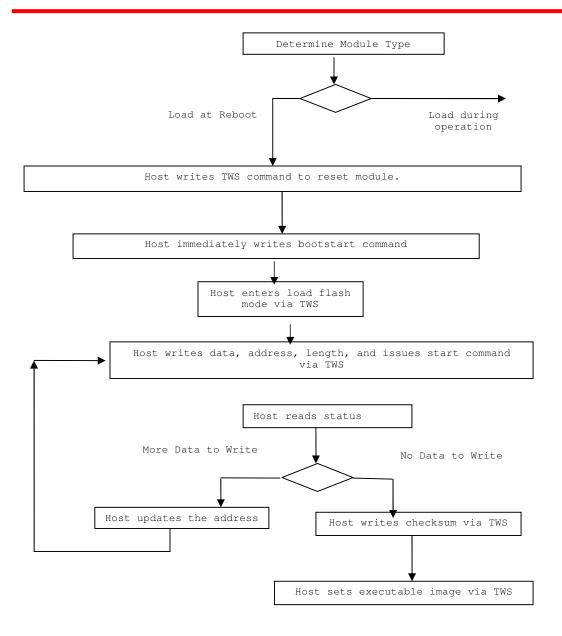
A CDFP module contains two module cards, each with its own two-wire serial address. The host system may have one controller for both module cards or one controller for each card. In the first case the firmware for the two module cards can be combined in a single file, either serially or interleaved depending on the module capabilities. In the second case, the firmware for each module card should be contained in a separate file; the host systems management of multiple files is beyond the scope of this document. The module manufacturers may need to support both types of systems.

46 After the firmware has been written to the module, the host system can optionally reset 47 the module and later read the firmware version number to verify that the firmware was 48 loaded correctly.


50 10.4 Example File

51

52 This example shows the most complex form of the data file - interleaved data for both 53 module cards. A data file for either module card alone would be the same with the lines 54 for the other module card removed. Similarly, a data file for loading the module cards 55 serially would have all the lines for one module card ahead of all the lines for the 56 other module card. The example shows the human-readable header section followed by a 57 preamble which tells one module card and then the other that a firmware update is about


to commence. A status read to each module card then verifies that both module cards 1 processed the preamble correctly. The remainder of the file consists of the data packets 2 3 to be sent to the module cards and the status read-backs to verify that the data packets 4 were processed correctly. 5 6 7 8 9 10 ; XYZcompany CDFP firmware version 0.01 11 ; FMTVer=1.02 ; Version=0.01 12 ; H/Wcomp=9 13 ; F/Wcomp=0.* 14 ; CRC16=1234 15 ; CRC32=12345678 16 17 ; MD5=1234567890123456 18 ; SHA1=12345678901234567890 19 B2774C6F6164 20 B27BDEADBEEF 21 B27F07 22 B2816996 23 B280DA BA774C6F6164 24 25 BA7BDEADBEEF 26 BA7F07 27 BA816996 28 BA80DA 29 B283 B311CC 30 BA83 31 32 BB11CC B288066019310000C1A100280000D827D8270000D827D8270000D827D8270000D827A822 33 0000D827D82700005E23D8270000D827D8270000D8271A260000D827D8270000B3243CC1 34 35 BA880770D827D8270000D827D8270000D827542100004E21D82700005822D8270000D827D 8270000D827D8270000D827D8270000D827D8270000D827D8270000D827D827CD6A5FC0 36 37 B283 B33366 38 39 B28808800000D827D8270000D827D8270000D827D8270000D827D8270000D827D8270000\ D827D8270000D827D8270000D827D8270000D827D8270000D827D8270000D82769C5F25D 40 41 BA83 BB3366 42 BA880990D8270000D827D8270000D827D8270000D827D8270000D827D8270000D827D8270000D827D82 43 70000D827D8270000D827D8270000D827D8270000D827D8270000D827D8270000AD156B04 44 45 B283 B33366 46 B2880AA0D827D8270000D827D8270000D827A00F000000E4A8610000E40C28410000D94 47 48 0003200009C1D5A0B00000032A5A8000055D50AD700005500F1FF00005500F1FFB1416C89 49 BA83 50 BB3366 51 Etc. 52 53 54 10.5 Host Upgrade Procedure 55 56 The recommended procedure for the host to follow is illustrated in the flowchart below:

57

2 3 STEP 1: Does the vendor match? 4 5 The host should verify that the module manufacturer is the same as that given in the data file. Note that reading the part number or vendor name from the module may not be 6 7 sufficient - private labeling of modules means that the vendor name in the module may not 8 be that of the manufacturer. 9 10 For some vendor's modules, there may be a preliminary step as illustrated in the 11 flowchart below. 12 13 STEP 2: Is the hardware compatible? 14 The host should verify that the hardware id specified in the data file matches the value 15 read from the module. This step allows the user to update a system with multiple product 16 types generically, without loading incorrect firmware on cables from different product 17 families. 18 19 STEP 3: Does the firmware need upgrading? 20 21 If the firmware version number in the data file is the same as the firmware version 22 number in the module there is no need to do the firmware update. 23 24 25 STEP 4: Take the link down (optional) 2.6 27 This is customer specific. The customer needs to manage this step. In theory, the optical 28 engines can keep running while the firmware is being upgraded, but they do so with whatever parameters were set prior to the start of the firmware upgrade. 29 30 31 STEP 5: Do the firmware upgrade 32 33 Having decided to do the firmware upgrade, the host performs the two-wire serial 34 transactions listed in the data file(s). 35 36 STEP 6: Reset the cable end (optional) 37 38 After all lines from the data file have been written to the module, the host can toggle 39 the modules reset pin or cycle its power to activate the new firmware. Note that this will disrupt the flow of high-speed data through the module. For hitless firmware 40 41 upgrades, this step can be omitted. 42 43 STEP 7: Does the new firmware number appear in the module? 44 45 If the firmware has been upgraded successfully, the new firmware version number should appear in the memory map. If it doesn't then something went wrong with the upgrade and 46 the operation should be repeated. It is at the customers' discretion to decide how many 47 upgrade failures should result in the attempts being abandoned. 48

1

Host writes TWS command to restart

END

Figure 65: Alternate Firmware Upgrade Procedure