
Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

 LXT1001 Network Controller

Order Number
LXT1001SW/D

Rev. 1.0 July 9, 1999

ADVANCE INFORMATION
Software Manual

l

l

Features (cont.)

LXT1001
Software Reference Manual

7/99Product Specification - Advance Information

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

Revision 1.0

L

General Description Features
The LXT1001 10/100/1000 Mbps Ethernet controller
provides the optimal combination of cost and system-level
performance for network interface connections in server
platforms and high-performance workstations.

The LXT1001 network controller is the first in a family of
high-performance network accelerators by Level One
Communications designed to meet the needs of high-speed
network equipment. The LXT1001 incorporates a
10/100/1000 Mbps 802.3-compliant Media Access
Controller (MAC) with extensive packet buffering and an
optimized 64-bit PCI system interface. The LXT1001
MAC increases system performance by including
high-level functions (e.g., VLAN filtering and IP packet
processing) in the hardware. The PCI system interface uses
the patent-pending Level One Communications
Propulsion algorithms to achieve dramatic increases in
system throughput.

• Support 10, 100 and 1000 Mbps Ethernet

• Deep, independent, on-board receive (RX) and
transmit (TX) FIFOs

• Peripheral Component Interconnect (PCI) v2.2
compliant interface supporting operation up to
33 MHz with a 64-bit wide data path

• Three data transfer methods: Programmed I/O (PIO);
Packet Descriptor List (PDL); and Propulsion
Packet Descriptor Command (PDC)

• Full- and half-duplex operation, including carrier
extension and packet bursting in half-duplex
1000 Mbps operation

• Symmetric and asymmetric flow control

• Supports MII, GMII, and TBI

• 272-pin Plastic Ball Grid Array (PBGA) package

• Commercial Temp Range (0–70 ºC)

LXT1001 Controller

LED
Interface

Serial
EEPROM
Interface

Boot ROM
Interface

Control
Registers

PC
I B

us
 In

te
rfa

ce

Bus Master
Controller

Descriptor
RAM

IEEE
I149.1
JTAG
Port

MAC

MAC
Control

VLAN

Physical
Layer

Interface

GMII
or

PCS

Ph
ys

ic
al

 L
ay

er
 D

ev
ic

e

Physical Interface

System Interface

MAC

8

8

8

8 64

64

PC
I B

us

 TX FIFO

 RX FIFO

Data Buffers

TCPIP
Checksum

Verifier
8

2
l

LXT1001 Network Controller
Additional LXT1001 Features

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

ADDITIONAL LXT1001 FEATURES

Robust Drivers and Management
Supporting software includes certified device drivers
and end user diagnostics.

• Windows® NT 3.51, 4.0 and 5.0; Windows® 95
OSR2; Windows ® 98; NetWare™ 3.12, 3.2, 4.2,
4.11 and 5.0; and Linux 2.0 and 2.2

• Support for the OnNow Initiative and PCI Power
Management

- Wake-on-LAN™ , Magic Packet™ in PC1
Power Managed systems

- PCI PME Signal

• Required elements of the 802.3 MIB

Optimized Bus Transfer Operation
• High-Speed PCI Interface

• PCI 2.2 compliant

• Efficient PCI master operation

• 33MHz, 32-/64-bit operation

• 64-bit addressing

• Supports dual address cycles

• Supports three I/O methods

• Programmed I/O

• Traditional scatter-gather “bus master” DMA

• Propulsion™ technology — packet bursting
across PCI bus increases the throughput for small
packets

• Propulsion features

• Packet bursting across PCI bus

• Minimizes bus arbitrations

• Eliminates logical to physical address translation

• Scales to wider bus widths and faster clock rates

• Minimizes interrupts by coalescing transfers
across the PCI bus

Expansion/Convenience Features
• EEPROM Interface

• Single word read/writes or reads entire contents

• Checksum after read, auto-detection

• Expansion ROM Interface

- Supports ROM, EPROM, and Flash memory

- Internally supports up to 4K expansion ROM

- Up to one megabyte can be supported using
external logic

• Supports up to four individually programmable LEDs

• IEEE 1149.1a-1993 (JTAG)-compliant boundary scan

Technology Features
• State machine design

• 0.35 micron process

• Plastic Ball Grid Array (PBGA) package

• 3.3-volt/5-volt-tolerant I/Os

• Targeted power consumption of less than 1.5W
(typical)

Host Offloading and Policy-Based
Behavior
• IPv4 checksum calculation on chip

• IP, TCP and UDP checksums supported

• Packet filtering based on checksum errors

• 802.3ac and VLAN tag support

• Programmable 16-entry table; Filtering based on
recognized VLANs; VLAN tag stripping on
receive; Global and/or per packet VLAN tag
insertion on transmit

3

LXT1001 Network Controller
Table of Contents

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

TABLE OF CONTENTS

SECTION 1 TYPES OF REGISTERS..............7
SECTION 2 THEORY OF OPERATIONS........9

Input/Output Methods ...9
Programmed Input/Output9
Packet Descriptor List9
Packet Propulsion Method (Packet
Descriptor Command)12

Organization ..16
Initialization ..17

Reset ..17
Physical Layer Configuration and Status17
PDC Buffer Allocation18
PDL Buffer Allocation18
System Initialization Event Sequence18
Initialization Algorithm18

Transmit Packet Processing23
Transmit Packet Padding23
VLAN Tag Header Insertion23
CRC Generation ..23
Transmit Completion Status23
Transmit Statistics ...23
Simultaneous Use of PDL, PDC, and PIO
I/O Methods ..23
Programmed Input/Output Method of
Transmission ...24
Packet Descriptor List Method of
Transmission ...26
Packet Propulsion Mode Method of
Transmission ...28

Receive Packet Processing31
Packet Reception Filters31
Packet Receive Status31
Receive Statistics ..31
Large Packet Reception31
Simultaneous Use of PDL, PDC, and PIO
I/O Methods ..32

Programmed Input/Output (PIO) Method of
Reception ...32
Packet Descriptor List Method of Reception34

Packet Propulsion Mode Method of
Reception ..36

Packet Propulsion Mode Receive
Algorithm ..36

Interrupt Processing ...39
Event Status Register39
Interrupt Mask Register39

Interrupt Handler ...40
VLAN Support ..42
TCP/IP Checksum Support43
EEPROM Support ...43
Expansion ROM Support44
Magic Packet Wake Up44
PCI Power Management45

SECTION 3 PCI CONFIGURATION
REGISTERS.. 47
SECTION 4 COMMAND AND STATUS
REGISTERS.. 49

CSR 00 Mode Register – 150
CSR 01 Mode Register – 254
CSR 02 Transmit PDC Buffer Address
Table Index ..56
CSR 03 Product Identification Register57
CSR 04 Transmit PDC Buffer Address
LSD ...57
CSR 05 Transmit PDC Buffer Address
MSD ..58
CSR 06 Receive PDC Buffer Address
Table Index ..58
CSR 07 Reserved ..59
CSR08 Receive PDC Buffer Address
LSD ...60
CSR 09 Receive PDC Buffer Address
MSD ..60
CSR 10 EEPROM Register61
CSR 11 Chip Status Register64
CSR12 Transmit PDL Address Register
LSD ...66
CSR 13 Transmit PDL Address Register
MSD ..68
CSR 14 Receive PDL Address Register
LSD ...68
CSR 15 Receive PDL Address Register
MSD ..73
CSR16 Transmit PDC Register74
CSR 17 Receive PDC Register76
CSR 18 Interrupt Period Register
Reserved ..79
CSR 19 TX FIFO Packet Count
Register ...79
CSR 20 TX FIFO Low Watermark
Register ...80

4
l

LXT1001 Network Controller
Table of Contents

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 21 TX FIFO DWORDs Free
Register ... 80
CSR 22 TX FIFO Write Register 81
CSR 23 Reserved .. 82
CSR 24 RX FIFO Read Register 82
CSR 25 Reserved .. 84
CSR 26 RX FIFO DWORD Count
Register ... 85
CSR 27 RX FIFO High Watermark
Register ... 85
CSR 28 RX FIFO Packet Count Register 86
CSR 29 Command Register 86
CSR 30 Interrupt Mask Register 88
CSR 31 Reserved .. 90
CSR 32 Event Status Register 90
CSR 33 Reserved .. 93
CSR 34 Multicast Hash Table
Register LSD .. 93
CSR 35 Multicast Hash Table
Register MSD ... 94
CSR 36 LED 0 Configuration Register 94
CSR 37 LED 1 Configuration Register 95
CSR 38 LED 2 Configuration Register 96
CSR 39 LED 3 Configuration Register 96
CSR 40 Reserved .. 96
CSR 41 EEPROM Data Register 97
CSR 42 LAN Physical Address
Register LSD .. 97
CSR 43 LAN Physical Address
Register MSW .. 98
CSR 44 G/MII PHY Access Register 99
CSR 45 G/MII Mode Register 100
CSR 46 Statistic Index Register 101
CSR 47 Statistic Value Register 103
CSR 48 VLAN Tag Control
Information Table 104
CSR 49 Reserved .. 105

CSR 50 Reserved .. 105
CSR 51 Command Status Register 106
CSR 52 Flow Control Watermark
Register .. 107
CSR 53 Reserved 108
CSR 54 Reserved 108
CSR 55 Reserved 108
CSR 56 Reserved .. 109
CSR 57 Reserved .. 109
CSR 58 Timer 0 Count Register 110
CSR 59 Timer 0 Interrupt Trigger
Register ... 110
CSR 60 Timer 1 Count Register 111
CSR 61 Timer 1 Interrupt Trigger
Register ... 111
CSR 62 Debug Command Register 112
CSR 63 Debug Data Register 112

PCS Interface Registers 113
Register 0 Control Register 113
Register 1 Status Register 115
Register 2 & 3 PHY Identifier Register 116
Register 4 Auto-Negotiation
Advertisement Register 116
Register 5 Auto-Negotiation Link
Partner Base Page Ability Register 117
Register 6 Auto-Negotiation
Expansion Register 118
Register 7 Auto-Negotiation Next
Page Transmit Register 119
Register 8 Auto-Negotiation Link
Partner Received Next Page Register 120
Register 15 Extended Status Register 121

Vendor Specific Registers 122
Register 16 Level One Communications
Features Register .. 122

SECTION 5 EEPROM MAP 123
SECTION 6 GLOSSARY 125

5

LXT1001 Network Controller
List of Figures

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

LIST OF FIGURES

Figure 2-1: PIO Data Transfer Process9
Figure 2-2: Transmit Packet Descriptor List10
Figure 2-3: PDL Data Transfer Process11
Figure 2-4: PDC Data Transfer Process15
Figure 2-5: VLAN Header Format43
Figure 3-1: PCI Configuration Space

Register Map47
Figure 4-1: PDL Transmit Header Format67
Figure 4-2: PDL Pre-Receive Header Format70
Figure 4-3: PDL Post-Receive Header Format71

Figure 4-4: PDC Transmit Header and
Data Format ..75

Figure 4-5: PDC Receive Header and
Data Format ..77

Figure 4-6: PDC Null Header Format78
Figure 4-7: PIO Transmit Header and

Data Format ..81
Figure 4-8: PIO Receive Header and

Data Format ..83
Figure 5-1: EEPROM Map 123

6
l

LXT1001 Network Controller
List of Figures

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

7

LXT1001 Network Controller
Types of Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0.
Rev. Date: 7/9/99

l

SECTION 1 TYPES OF REGISTERS

Several types of registers are used in the LXT1001. They
are as follows:

• Control and Status Registers.

• Control and Status Registers (CSRs) are accessible
by HOST software. CSRs are used to control the
operational behavior of the LXT1001 and
ascertain its status. In particular, CSRs can be
read/write, read only, write only, or a combination
of all three. The read/write attribute of a particular
bit or sequence of bits in a CSR is individually set.
That is to say, a CSR can be entirely dedicated to
one function (as is the case with the Transmit PDL
Address Register), or can be subdivided into one
or more bit fields (like Mode Register – 1), each
having its own read/write behavior.

• Frequently accessed bit fields in CSRs are
implemented as set/reset registers. This type of
register is subdivided into one or more mask bits
and one or more set/reset control bits. The mask
bits determine whether a particular bit will be
affected by a given write operation. For example,
a mask value of 1001b will allow a write to the
least significant bit (LSB) and most significant bit
(MSB) of a 4-bit field while preventing writes to
the middle bits. If the control bit is set to 1, then
the MSB and LSB will have 1s written to them. If
the control bit is set to 0, then the MSB and LSB
will have 0s written to them. Again, in both cases
the contents of the middle bits remain unchanged.
When set/reset registers are read, the set/reset bits
are ignored (actually, they are read as 0s) and those
bit fields that have an R/W attribute will return
their current value. Mode Register – 1 is an
example of a set/reset CSR.

• Some CSR bit fields are self-clearing. When set by
HOST software, self-clearing bit fields remain set
until some activity completes, at which point the
bit field is automatically reset by the LXT1001.
Self-clearing bits can be polled by HOST software
to determine when the activity has completed. The
SWRE bit in Mode Register – 1 is an example of
an auto-reset bit (field).

• Some CSR registers are automatically cleared
when read. Typically, this type of behavior is used
in counter registers. Once the count is retrieved,
the register resets and counting begins again at
some predetermined value, usually 0. The Event

Status Register is an example of a clear when read
register.

• CSRs are either 32 or 64 bits wide and can be
accessed using either I/O or memory cycles.

• The 64-bit registers are accessed 32 bits at a time.
However, 64-bit registers that affect an action
when read or written must be accessed most
significant DWORD (MSD) first. For example, to
pass the address of a transmit PDL to the
LXT1001, the MSD is written first, followed by
the least significant DWORD (LSD). When the
LXT1001 detects the write to the LSD of the
Transmit PDL Address Register, it will assume
that all 64 bits have been written and that the
operation can begin.

• In cases where extensive bit manipulation of CSRs
is expected, the most heavily used bits are kept in
the low order 16 bits of the register. This is done
to accommodate the byte- and word-oriented
operations of x86 microprocessors.

• The CSRs are defined in Section 4.

• PCI Configuration Space Registers.

• The LXT1001 configuration is achieved by
partially using PCI configuration space registers
and partially using CSRs. Configuration aspects
pertaining to system resources, such as interrupts
and address space, are handled in the standard
manner using PCI configuration registers.
Configuration of the operational characteristics of
the LXT1001 (e.g., wire speed, reception of
multicast frames, etc.) is done by programming
specific values into CSRs.

• The PCI configuration registers adhere to the PCI
v2.2 Specification and the PCI Power
Management Specification. See Section 4 for a
map of the configuration registers.

• All of the PCI configuration registers and the CSR
registers can be read or written from the PCI bus,
EEPROM, or internal blocks.

• As previously noted, the device registers that are visible
on the PCI bus can either be I/O mapped or memory
mapped in PCI address space.

• The registers are all aligned on DWORD
boundaries.

• The registers support 8-, 16-, 32-, and 64-bit
accesses. Note that at this time, the PCI bus only

8
l

LXT1001 Network Controller
Types of Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0.
Rev. Date: 7/9/99

Features (cont.)
supports 32-bit I/O. All 64-bit accesses are for
memory cycles only. Although 64-bit I/O is not
currently supported, it is expected that it will be
defined in the standard and supported by CPUs
within the lifetime of the LXT1001.

• The LXT1001 CSRs are organized to accommodate
high-performance drivers. The registers have been
organized to minimize the bit manipulations required
for mainstream packet processing.

9

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

SECTION 2 THEORY OF OPERATIONS

Input/Output Methods
Three I/O methods are defined for the LXT1001:
programmed input/output (PIO), packet descriptor list
(PDL), and packet Propulsion (PDC) I/O method. Of these
three methods, PIO and PDL are extensively used in
conventional ethernet adapters and are described briefly
below. The third technique, packet Propulsion I/O method,
is Level One Technologies’ unique and proprietary data
transfer method designed to highly optimize packet
processing for increased I/O bus utilization and data
throughput.

Programmed Input/Output
The PIO method implemented in the LXT1001 is a
traditional I/O method where the CPU moves data into and

out of the device. CPU read and write operations (IN and
OUT instructions in the x86 instruction set) are performed
to device registers to either place data to be transmitted into
the transmit data buffer (TX FIFO) or to extract data from
the receive data buffer (RX FIFO). Figure 2-1 depicts the
process as it is applied when transmitting a packet. Step (1)
determines whether the packet to be transmitted fits into the
TX FIFO (in the diagram, it is assumed that the packet fits).
Step (2) transfers the data to the device. The CPU performs
this task by repeatedly writing DWORDs of packet data to
the TX FIFO Write Register until all packet data is
exhausted. Step (3) informs the device that a complete
packet has been placed into the TX FIFO. Upon receiving
this indication, the device will initiate transmission of the
packet at the next available opportunity.

Figure 2-1: PIO Data Transfer Process

Packet Descriptor List
The PDL technique is also commonly referred to as
scatter-gather bus master. The PDL is a data structure that
is comprised of a header followed by a number of packet
fragment descriptors. The header specifies the total length
of the packet (the sum of the lengths of the fragments), the

number of fragments, and option flags indicating any
special processing requirements for the packet. The
fragment descriptors specify the physical memory
addresses of the buffer fragments and their individual
lengths. The data structure is arranged as follows (bit 0 is
the LSB):

FIFO

FIFO Control Logic
TX Command Register

TX FIFO Write Register

TX FIFO Free Count Register

DeviceSoftware

Determine
Available Space

Write Packet
Data to Device

Instruct Device to
Transmit Packet

{1}

{2}

{3}

10
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
Figure 2-2: Transmit Packet Descriptor List

For clarity, the field names are briefly defined below:

PKLE — Packet Length. The sum of the lengths of the
individual fragments.

FGCN — Fragment Count. The count of fragments defined
within the PDL.

TXOPTIONS — Per Packet Transmission Options.

DMDNINRQ — Request for Interrupt Upon Completion
of the Packet Transfer to the LXT1001.

FGAD LSD n — Fragment n Address, Least Significant
DWORD.

FGAD MSD n — Fragment n Address, Most Significant
DWORD.

FGLE n — Fragment n Length.

Details pertaining to this data structure are presented in the
section describing the CSR12 Transmit PDL Address
Register LSD on page 66. The PDL for receive is virtually
identical. It is described in detail in CSR 14 Receive PDL
Address Register LSD on page 68 and CSR 15 Receive
PDL Address Register MSD on page 73.

Figure 2-3 depicts the interaction between the LXT1001
and its supporting system software when performing PDL
DMA transfers. Although the diagram is presented from the
vantage point of packet transmission, packet reception
behaves in almost the same fashion. The differences are
highlighted at the end of the sub-section.

31 30 21 20 16 15 0
0

D
M
D
N
I
N
R
Q

T
X
O
P
T
I
O
N
S

F
G
C
N

P
K
L
E

RESRVD

FGAD LSD 0

FGAD MSD 0

RESRVD FGLE 0

RESRVD

FGAD LSD 1

FGAD MSD 1

RESRVD FGLE 1

RESRVD

•
•
•

FGAD LSD 30

FGAD MSD 30

RESRVD FGLE 30

RESRVD

11

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Figure 2-3: PDL Data Transfer Process

In Figure 2-3, the sequence for packet transmission is as
follows:

1. An indication is received by the LXT1001 system
software that a packet is to be transmitted. The
indication is accompanied by some form of packet
descriptor data structure usually containing
multiple packet buffer fragments that are to be
sent in the sequence that they are found in the
descriptor.

2. The addresses of the packet fragments found in

the packet descriptor can be virtual or physical
addresses. It is typical for them to be the virtual
addresses of buffers constructed by a protocol
stack. In this case, virtual addresses must be
converted to physical addresses. This operation
usually involves a call into the HOST operating
system. Once the physical addresses for the
packet are known, they are stored in the fragment
address fields of the PDL’s fragment descriptors.

3. After completely formatting the PDL (i.e., once it
fully describes the packet to be transmitted), it can

Address
of PDL

Data
Buffer

n

Data
Buffer

1

Data
Buffer

0

Header

VFrag 0

VFrag 1

•
•
•

VFrag n

Header

Frag 0

Frag 1

•
•
•

Frag n

Transmit PDL
Address MSD/
LSD Register

Transmit PDC
Register

Other Device
Registers
(CSRs)

Transmit PDC
Bfr Adrs Table

Index Reg

TX PDC Bfr Adrs
Tbl MSD/LSD

Reg

PCI
Interface

PDL
{2}

{6}

Physical Addrs.

{1}
Packet Descriptor

•
•
•

Virtual Addresses

{8}

{3}

Bus Master
Controller

{9}

Transmit Data FIFO
To MAC

To Command
Execution

Queue

Unused if
Next PDL

Can Not Be
Fully

Expanded
Into Space

PDL (Cmd 2)

PDC (Cmd 1)

PDC (Cmd 0)

Address 0

Address 1

Address 2

Address n

•
•
•

{7}

{4}

TX Cmd
FIFO

1 = PDC
0 = PLD

Cmd 0

Cmd 1

Cmd 2

Cmd n

•
•
•

1

0

1

x

•
•
•

TX PDC
Buffer

Table

Software Device

Addr.

12
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
be passed to the LXT1001 for processing. To do
this, the starting physical address of the PDL in
HOST memory is written to the Transmit PDL
Address MSD Register/LSD Register. This action
has the effect of placing the PDL’s address into
the transmit command FIFO.

4. When one or more commands are present in the
transmit command FIFO, the bus master
LXT1001 (BMC) examines the FIFO and extracts
the first available command. In our example, the
queue is assumed to be empty prior to the transmit
request, and thus the PDL is acted upon at the first
available opportunity.

5. When the BMC looks at the command FIFO, it
determines that the command is a PDL.
Consequently, the BMC issues a request to the
PCI block for the transfer of the PDL data
structure from HOST memory to the Command
Execution Queue (i.e., the header field and the
fragment fields).

6. The PCI block responds to the request by
effecting the necessary cycles on the bus to
transfer the PDL into the Command Execution
Queue.

7. Once the PDL is at the front of the Command
Execution Queue, the BMC begins to “execute” it.
It does so by interpreting the header, setting up its
counters, pointers, etc., and then issuing
commands to the PCI block to effect data transfers
from HOST memory to the transmit data FIFO.
For every fragment in the PDL, the BMC issues
one data transfer command to the PCI block.

8. The PCI block transfers each packet fragment,
one at a time to the transmit data FIFO.

9. Once the packet is completely transferred to the
transmit data FIFO, the BMC signals the data
FIFO that a complete packet has been transferred.
The FIFO control logic then updates its pointers
and signals the MAC that a packet is ready for
transmission.

The process for receiving a frame differs from the process
described above in two respects:

1. The direction of the data flow is reversed.

2. The receive process is driven by the availability of
incoming data and the availability of PDLs in the

receive command FIFO. In other words, if a
packet arrives and there is no PDL or PDC in the
receive command FIFO, then the packet will
remain in the receive data FIFO until a PDL or
PDC is placed into the receive command FIFO.

Packet Propulsion Method (Packet
Descriptor Command)
The PDC method for moving data is a specialization of the
traditional PDL technique. As previously noted, the
principle notion of PDL is that a bus master device is
instructed to obtain a command block from HOST system
memory. At a minimum, the command block contains a list
of the physical addresses of the packet fragment buffers in
HOST memory that are to be copied to the device, the count
of packet buffer fragments, and the overall length of the data
contained in the fragments (the sum of the lengths of the
individual fragments).

The device parses the command block, extracting the
address of each block of memory (fragment) to process, and
effects a transfer of the said fragment from HOST memory
to the device. The device repeats this process for each
fragment listed in the PDL until all of the data described by
the command is copied to the LXT1001 for transmission
(the direction of the data flow is reversed for receive).

Contemplating the nature of the most important modern
operating systems, several key points become apparent:

• They support and practically require virtual memory.

• Devices that initiate data movement transactions across
peripheral interconnect busses cannot use virtual
memory addresses to affect the transfers.

• In terms of performance, the conversion of virtual
addresses to physical addresses is an expensive one.

These points are significant primarily because of the
sequence of events they impose on bus master devices.
Again considering the traditional PDL technique, when data
is passed to a bus master device, the corresponding device
driver must first perform a virtual to physical address
conversion for each of the buffer fragments in the data
transfer operation. Moreover, a typical buffer passed to the
device is broken up into several buffer fragments. That is,
the data to be transferred to the device is segmented into
several pieces (typically three or four pieces). These facts
result in a situation whereby the cost of converting a virtual
address to a physical one can be repeated several times for
each block of data that is to be transferred to the device.
Given that the conversions are expensive, it is desirable to
avoid them.

13

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

One method for avoiding the virtual-to-physical address
translations is for the device driver to allocate blocks of
locked memory during device initialization. The address
conversion for these blocks can be performed once — at the
point where the memory is allocated — and the physical
address can be stored away (e.g., in a queue). Each time that
a request to transfer data to the device is received from the
upper layers, the device driver could very quickly remove
the next available memory block from the queue, copy the
data provided by the upper layer into the memory block,
format a PDL, and then pass the PDL to the LXT1001. This
method has the following advantages:

• Virtual to physical address translation is avoided.

• The formatting of the PDL is simplified.

• The amount of data to be transferred to the LXT1001
in the PDL itself is reduced.

This method for processing DMAs is frequently referred to
as “double copy” or “double buffer” DMA. Several
observations can be made regarding this technique:

• The fragment count is always 1.

• The length value in the PDL header is the same as the
length value of the first fragment.

• The physical address placed into the first fragment
address field in the PDL is one of n possible physical
addresses of pre-allocated locked buffers. Usually, n is
16, 32, 64, or some other suitably small integer (i.e.,
typically n <= 128, although it appears that future

drivers may begin using values for n that are more in
the range of 128 ≤ n ≤ 1024).

Once it is clear that some of the fields in the PDL will always
have either the same value, or one value out of a small set
of values, an expedited form of double buffering becomes
possible. This expedited double buffer technique is called
Propulsion technology, or PDC.

The principal ideas behind Propulsion technology are as
follows:

• No command block (i.e., PDL) is formatted in HOST
memory. Data transfer commands are communicated
to the LXT1001 by passing a packet descriptor
command. A PDC is a 32-bit value, subdivided into
fields, that completely describes the data transfer
operation. A PDC fits entirely within a device register
and can be constructed entirely within a CPU register.

• Only one fragment (data buffer) per data transfer
operation is communicated to the LXT1001 using a
PDC (i.e., one buffer completely contains all of the data
to be transferred to/from the LXT1001).

• The address of the data buffer is passed to the LXT1001
using a small (8-bit) ordinal value that indexes a table
maintained on the LXT1001. The table has the
complete set of physical addresses of buffers allocated
by the DRIVER for data transfer purposes.

• The length of the buffer to be copied to/from LXT1001
is contained within the PDC command.

The actual format of a PDC command is as follows:

Upon closer inspection, one other optimization can be
realized with the PDC technique. There is no restriction
inherent to the PDC technique that prevents multiple
packets from being copied by the HOST (or the LXT1001,
depending on direction) into the pre-allocated data transfer
buffers. In fact, if the data format used for the pre-allocated
buffers parallels the data formats used internally by the
LXT1001, then multiple packets can be easily formatted

into the PDC buffers and subsequently transferred to the
LXT1001 with one I/O operation by the HOST (PDC
command transfer to the LXT1001) and one burst transfer
of data by the LXT1001.

Thus, the Propulsion technique is efficient in its use of bus
bandwidth by minimizing the per-buffer overhead
associated with the transfer of data to/from the LXT1001.
Note that the per-buffer overhead includes the number of

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

X
F
D
N
I
N
R
Q

B
F
I
D

B
F
L
E

14
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
interactions between HOST software and the LXT1001
(e.g., interrupts (especially on receive since multiple
packets can be delivered into a single PDC and only one
interrupt is generated to signal their arrival)) command
block exchanges, and PIO operations to the device.

Although the PDC technique is very efficient in its use of
bus bandwidth, this efficiency does not come without a
price. The single most significant drawback of the PDC
method is that it requires that the processor move data from
application buffers into data transfer buffers — in other
words, increased CPU utilization. At first glance, this
double copy would seem an insurmountable obstacle to the
emergence of PDC as the preferred data transfer technique.
However, when one considers that on average many tens,
if not hundreds, of CPU clocks are expended in performing
virtual-to-physical address translations, and that often
times, many such translations are performed per buffer
transferred to the LXT1001, it becomes evident that a large
amount of data can be moved by the CPU in the same

amount of time taken for an address translation. Certainly
for small data transfers (and virtually half of all data
transfers are small), the technique is useful since many tens,
if not hundreds, of bytes can be moved in the time it takes
to make just one virtual-to-physical address translation.
Moreover, as CPUs move to 64-bit and larger word sizes,
the efficacy of this technique increases.

Another significant point is that the concern over CPU
utilization is not paramount in all systems. Especially in
systems where large amounts of data are moved about (e.g.,
bus utilization is high) and the CPU has nothing else to do,
then favoring bus utilization at the expense of CPU
utilization can be a desirable trade-off to make. This
argument can be extended to multiprocessor machines
where CPU bandwidth outpaces bus bandwidth by a large
margin. Here, too, expending CPU utilization to gain bus
utilization may be a worthwhile trade-off.

Figure 2-4 depicts the process of data transfer using PDCs.

15

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Figure 2-4: PDC Data Transfer Process

The sequence for packet transmission when using PDCs is
actually broken into two phases. The first phase happens
once during device/driver initialization. It consists of steps
1, 2, and 3, as follows:

1. A pool of locked buffers is allocated from the
system. Each buffer is made large enough to
accommodate one or more full-size packets. If the
individual buffers are made larger than the HOST
system’s page size (for virtual memory systems),
the buffers must be contiguous (i.e., in adjacent

pages with the lowest physical address residing in
the lowest numbered page).

2. The Transmit PDC Buffer Address Table Index
Register is pointed to the number 0 Buffer
Address Table slot.

3. The addresses of the buffers in the pool are written
to the table. Several important points can be
mentioned here:

PDC
Buffer

n

Data
Buffer

n

Data
Buffer

1

Data
Buffer

0

Header

VFrag 0

VFrag 1

•
•
•

VFrag n

Transmit PDL
Address MSD/
LSD Register

Transmit PDC
Register

Other Device
Registers
(CSRs)

Transmit PDC
Bfr Adrs Table

Index Reg

TX PDC Bfr Adrs
Tbl MSD/LSD

Reg

PCI
Interface

PDC
{1}

{4}
Data Bfr Descriptor Virtual Addresses

{6}

Bus Master
CONTROLLER

{13}

Transmit Data FIFO To MAC
To Command

Execution
Queue

Unused if
Next PDL

Can Not Be
Fully

Expanded
Into Space

PDL (Cmd 2)

PDC (Cmd 1)

PDC (Cmd 0)

Address 0

Address 1

Address 2

Address n

•
•
•

{9}

{7}

TX Cmd
FIFO

1 = PDC
0 = PLD

Cmd 0

Cmd 1

Cmd 2

Cmd n

•
•
•

1

0

1

x

•
•
•

TX PDC
Buffer

Table

Software Device

Buffer
Pool

PDC
Buffer

1

PDC
Buffer

0 Buf ID Len

PDC Command

{5}

{11}

{2}

{3}

{10}

{8}

{12}

Addr.

16
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
a. The Transmit PDC Buffer Address Table does

not need to be fully utilized. For example, if
only two transmit PDC buffers are desired,
then only two Transmit PDC Buffer Address
Table entries need be used.

b. Addresses in the table do not need to be in
adjacent slots.

c. Addresses in the table do not need to be in any
particular order.

d. The Transmit PDC Buffer Address Table Index
Register auto-increments with each write to the
Transmit PDC Buffer Address LSD Register.
This facilitates the writing of strings of buffer
addresses to the device. However, the index
register can be written prior to every write to
the address MSD/LSD registers, thus allowing
random write access to the table (both the
address and index registers are write only).

The second phase is comprised of steps 4 through 13. These
steps happen each time one or more packets are transmitted
using a PDC buffer:

4. An indication is received by the LXT1001 system
software that one or more packets are to be
transmitted. The indication is accompanied by
some form of packet descriptor data structure
usually containing multiple packet buffer
fragments (possibly describing multiple packets)
that are to be sent in the sequence that they are
found in the descriptor.

5. The addresses of the packet fragments found in
the packet descriptor can be virtual or physical
addresses. It is typical for them to be the virtual
addresses of packet buffer fragments constructed
by a protocol stack. The driver software responds
by allocating (dequeing) a PDC buffer from the
PDC buffer pool and block copying the packet(s)
into successive locations within the PDC buffer.
Note that in the case where multiple packets are
transferred using a single PDC buffer, “fence
posts” are inserted between the packets. Details
pertaining to the fence posts are provided in the
section describing the Transmit PDC LSD
Register.

6. After copying all of the packet data to a PDC
buffer, a PDC is formatted and passed to the
LXT1001. To do this, the length of the PDC

buffer, the buffer ID corresponding to the buffer,
and any processing options are formatted into a
32-bit CPU register. The contents of the CPU
register are then written to the device’s Transmit
PDC Register. This action has the effect of
placing the PDC into the transmit command FIFO
and setting a control bit in the FIFO identifying
the command as a PDC.

7. When one or more commands are present in the
transmit command FIFO, the bus master
LXT1001 (BMC) is prompted to examine the
FIFO and extract the first available command. In
our example, the queue is assumed to be empty
prior to the transmit request and thus the PDC is
acted upon at the first available opportunity.

8. When the BMC looks at the command FIFO, it
determines that the command is a PDC and moves
it directly to the Command Execution Queue.

9. The BMC now takes the PDC command and
begins to execute it. It does so by decoding the
BFID and BFLE fields (see the Transmit PDC
Register for a discussion of the PDC command
format).

10. The BMC uses the BFID value in the PDC
command to index the Transmit PDC Buffer
Address Table and obtain the starting physical
address of the buffer to be transferred to the
LXT1001.

11. Once the PDC has been decoded and the starting
physical address obtained, the BMC instructs the
PCI block to initiate a buffer data transfer to the
TX FIFO.

12. The PCI block transfers the buffer data to the TX
FIFO at the next available opportunity.

13. Once the packet is completely transferred to the
data FIFO, the BMC signals the data FIFO that a
complete packet has been transferred. The FIFO
control logic then updates its pointers and signals
the MAC that a packet is ready for transmission.

Organization
The remainder of this section contains a pseudo-code driver
for device initialization, packet transmission, packet
reception, and interrupt processing. The intent of the
pseudo-code driver is to demonstrate the basic concepts
of programming the LXT1001 controller. It does not

17

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

represent the only way or necessarily the optimal way
to operate the LXT1001 controller.

Initialization
This section contains a discussion of topics related to the
initialization of the LXT1001. Example pseudo-code is also
provided to demonstrate algorithms for initializing the
LXT1001 for PIO, PDL, and PDC I/O methods.

Reset
The LXT1001 accepts two types of resets: hard reset and
soft reset. A hard reset occurs when the PCI RST signal is
asserted. The LXT1001 takes the following actions when
performing a hard reset:

• All internal state machines of the LXT1001 are reset to
their initial state.

• All internal registers of the LXT1001 are reset to their
default value.

• All CSRs are reset to their default value.

• All PCI configuration space registers are reset to their
default value.

• If an EEPROM is present, the LXT1001 reads the
EEPROM and reloads selected CSRs and PCI
configuration registers with the values read from
EEPROM. For a detailed list of the registers loaded
from EEPROM, see EEPROM Map on page 123.

A soft reset occurs when HOST software sets the SWRE bit
in Mode Register – 1. The LXT1001 takes the same actions
for a soft reset as it does for a hard reset with one exception.
During a soft reset, the LXT1001 does not reset the PCI
configuration space registers. This is necessary to preserve
the hardware resources assigned to the device by system
BIOS and/or the operating system.

If HOST software attempts to access the LXT1001 while a
hard or soft reset is in progress, the LXT1001 generates a
PCI retry until the reset has completed. The LXT1001
indicates a PCI retry to the HOST/PCI bridge by asserting
the STOP and deasserting TRDY, while keeping DEVSEL
asserted during the first data phase of the access. Upon
receiving this indication, the HOST/PCI bridge terminates
the transaction. After waiting at least two PCI bus cycles,
the HOST/PCI bridge will retry the access. The HOST/PCI
bridge will continue retrying until the access succeeds.
From the perspective of HOST software, the I/O instruction
that generated the access blocks until the LXT1001’s reset
completes. To avoid the PCI bus and processor
inefficiencies associated with PCI retries, after initiating a
soft reset, HOST software should wait 20 ms before it

attempts any I/O to the LXT1001. Delaying 20 ms allows
the LXT1001 to fully reset without having to issue PCI
retries.

Physical Layer Configuration and
Status
The LXT1001 supports three physical layer interfaces: MII,
GMII, and PCS. Regardless of the type of PHY present,
HOST software interacts with PHY using the G/MII PHY
Access Register. HOST software accesses PHY registers
through this register. HOST software can assume the MII
basic register set is present. The basic register set consists
of the Control Register (register 0) and the Status Register
(register 1). GMII-compliant PHYs have an extended basic
register set that includes the Extended Status Register
(register 15) in addition to the MII basic register set. If a
PHY implements the Extended Status Register, it sets bit 8
in its Status Register. See IEEE Standard 802.3z, clause 22,
for a detailed description of the basic, extended basic, and
extended register sets. HOST software can also access
vendor specific registers on the PHY using the G/MII PHY
Access Register.

To read the Status Register of the PHY at address 2, for
example, HOST software writes the following values to the
G/MII PHY Access Register: GMRRIX = 1, GMCM = 0,
GMPHAD = 2. HOST software then polls the register
waiting for GMST = 0. When GMST = 0, the LXT1001 has
completed the read operation and GMDA contains the value
read from PHY. Write operations occur in a similar manner,
except that HOST software puts the value to be written to
the PHY register in the GMDA field when it initiates the
request to the G/MII PHY Access Register.

At initialization time, HOST software is responsible for
querying PHY to determine the type of PHY (MII or GMII),
the current link speed, and the current duplex mode. Once
this is determined, HOST software must set the appropriate
values in the G/MII Mode Register. Setting the G/MII Mode
Register determines how the LXT1001 interacts with PHY
when transmitting and receiving packets.

The LXT1001 has the capability to poll PHY’s Status
Register and generate an interrupt when PHY’s Status
Register changes. This capability provides an efficient
mechanism to detect changes in the physical layer status.
When the interrupt occurs, HOST software can query PHY
to determine the exact change in PHY status. HOST
software enables this capability by setting the GMSTPOEN
bit in Mode Register – 1 and the PHLASTMS bit in the
Interrupt Mask Register.

18
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
PDC Buffer Allocation
When using the PDC I/O method, HOST software must
allocate PDC buffers. HOST software allocates PDC
buffers such that they have the following attributes:

• A PDC buffer must be at least 64 bytes long.

• A PDC buffer is physically contiguous. A buffer may
span one or more page boundaries as long as the pages
are physically contiguous.

• A PDC buffer is locked. The operating system will not
swap the buffer to disk or move it a new location in
physical memory.

• If possible, the starting address of a receive PDC buffer
is on a cache line boundary and the buffer length is
evenly divisible by the cache line size. This allows the
LXT1001 to use memory write and invalidate
commands when transferring data into the buffer.

When HOST software allocates a PDC buffer, it places the
physical address of the PDC into either the Transmit PDC
Buffer Address Table or the Receive PDC Buffer Address
Table. Each of these tables hold a maximum of 64 PDCs.
HOST software does not have to use every entry in the table.

PDL Buffer Allocation
When using the PDL I/O method, HOST software must
allocate PDL buffers. HOST software allocates PDL buffers
such that they have the following memory attributes:

• A PDL buffer is physically contiguous. A buffer may
span a page boundary as long as the pages are
physically contiguous.

• A PDL buffer is locked. The operating system will not
swap the buffer to disk or move it to a new location in
physical memory.

• At a minimum, the starting address of a PDL buffer
must begin on a QWORD boundary. If possible, the
starting address of PDLs should begin on a cache line
boundary and the PDL buffer length is a multiple of
cache lines. This allows the LXT1001 to use memory
write and invalidate commands when transferring data
into the PDL buffer. The use of memory write and
invalidate commands improves system performance by
eliminating unnecessary cache line writes to memory.

The fragment buffers pointed to by a PDL have the same
memory attributes as a PDL with the following exception:
fragments can be allocated on any byte boundary. This is
necessary because fragments are typically allocated by
upper layer software and are ephemeral in nature.
Furthermore, the sum of the fragment lengths must be at
least 64 bytes.

System Initialization Event
Sequence
At system initialization time, the following sequence of
events occur.

1. The RST signal on the PCI bus is asserted,
causing the LXT1001 to perform a hard reset.

2. HOST BIOS reads and writes the LXT1001’s PCI
Configuration Space Registers to determine the
LXT1001’s capabilities and resource
requirements.

3. HOST BIOS assigns resources to the LXT1001 by
writing to the LXT1001’s PCI Configuration
Space Registers.

4. If an expansion ROM is attached to the LXT1001,
HOST BIOS shadows (copies) the expansion
ROM image into system RAM.

5. If the LXT1001 is the active boot device, HOST
BIOS invokes the expansion ROM image to bring
the LXT1001 to a fully operational state.

6. The operating system is loaded (either from a
local disk or via the network connection provided
by the LXT1001) and HOST BIOS gives control
to the operating system.

7. The operating system loads and invokes the
HOST device driver software for the LXT1001.

Initialization Algorithm
The pseudo-code in Table 2-1 demonstrates a typical
algorithm HOST device driver software uses to bring the
LXT1001 to a fully operational state. The “@” in the
right-hand column indicates lines where HOST software
accesses the LXT1001.

19

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Table 2-1: Initialization Pseudo-Code

(1) Function Initialize (TransmitPacketList)

(2) Locate the device using PCI services provided by BIOS or the operating system. @

(3) Query the CONTROLLER’s PCI Configuration Registers to determine the
IO Base Address, Memory Base Address, and Interrupt level.

@

(4) Select the desired mode settings via Mode Register – 1 (CSR00) and
Mode Register – 2 (CSR001)

@

(5) If (the user has configured a locally administered address)

(6) Program the locally administered address into the LAN Physical
Address Registers (CSR42 and CSR43).

@

(7) Endif

(8) Query the PHY via G/MII PHY Access Register (CSR44) to determine the link status,
 duplex mode, and link speed.

@

(9) If (the current PHY mode is incompatible with the link speed, duplex mode, or auto-
negotiation modes settings the user has requested)

(10) Reprogram the PHY to the user requested settings using CSR44. @

(11) If necessary, force the PHY to renegotiate with its link partner to reflect the
new PHY settings.

@

(12) Endif

(13) Set the appropriate link speed and duplex mode values in the G/MII Mode Register
(CSR45).

@

(14) Perform the BIST test using the BIST Register in the PCI Configuration space. @

(15) Call LoopbackTest(). See below. @

(16) If (the loopback test failed)

(17) Return indicating a fatal error occurred. @

(18) Endif

(19) If (a bus mastering method will be used to transmit packets)

(20) Read TXCMFECN from the Command Status Register (CSR51) and save the result
in TxCommandsAvailable.

@

(21) Note: PDC and PDL modes are not mutually exclusive.

(22) If (the PDC I/O method will be used to transmit packets)

(23) Call InitializePDCTransmit() @

(24) Endif

(25) If (the PDL I/O method will be used to transmit packets)

(26) Call InitializePDLTransmit()

(27) Endif

(28) Else

(29) Read TXFIDWCN from the TX FIFO DWORDs Free Register (CSR21). @

(30) Set BytesFreeInTxFIFO = TXFIDWCN * the number of bytes in a DWORD.

(31) Endif

20
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
(32) If (PDC and/or PDL I/O method will be used for receiving)

(33) Read RXCMFECN from the Command Status Register (CSR51) and save the result
in RxCommandsAvailable.

@

(34) If (the PDC I/O method will be used to receive packets)

(35) Call InitializePDCReceive(RxCommandsAvailable). @

(36) Endif

(37) If (the PDL I/O method will be used to receive packets)

(38) Call InitializePDLReceive(RxCommandsAvailable). @

(39) Endif

(40) Set the interrupt mask RXPDMS in the Interrupt Mask Register (CSR30). This
will cause an interrupt each time the CONTROLLER has filled a PDL or PDC
with a inbound packet.

@

(41) Else using PIO method

(42) Set the interrupt mask RXMS in the Interrupt Mask Register (CSR30). This will
cause an interrupt when there is at least one packet in the RX FIFO.

@

(43) Endif

(44) Enable the transmitter and receiver by setting the TXEN and RXEN bits in
Mode Register – 1 (CSR00).

@

(45) Install the interrupt service routine to handle interrupts generated by the CONTROLLER.

(46) Enable the CONTROLLER’s ability to generate an interrupt by setting the
INENMS bit in the Interrupt Mask Register (CSR30).

@

(47) Return Success.

(48) Endfunction

(49)

(50) Function LoopbackTest()

(51) Enable MAC level loopback using the LPBKMD field in Mode Register – 2 (CSR01). @

(52) Enable the transmitter and receiver by setting the TXEN and RXEN bits in
 Mode Register – 1 (CSR00).

@

(53) Transmit a packet to self using PIO method. @

(54) Poll the RXPKAV bit in the Chip Status Register (CSR11) until it is set. @

(55) Receive the packet just transmitted using PIO receive. @

(56) If (errors occurred transmitting or receiving the loopback packet)

(57) Return indicating PIO loopback test failed.

(58) Endif

(59) Build and issue a PDL receive command to the CONTROLLER. @

(60) Build and transmit a packet to self using PDL method. @

(61) Wait for RXDMDNCN field in the Command Status Register (CSR51) to
be non-zero.

@

(62) Examine the packet just received. @

(63) If (errors occurred transmitting or receiving the loopback packet)

Table 2-1: Initialization Pseudo-Code – continued

21

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

(64) Return indicating PDL loopback test failed.

(65) Endif

(66) Build and issue a PDC receive command to the CONTROLLER. @

(67) Build and transmit a packet to self using PDC method. @

(68) Wait for RXDMDNCN field in the Command Status Register (CSR51) to
be non-zero.

@

(69) Examine the packet just received. @

(70) If (errors occurred transmitting or receiving the loopback packet)

(71) Return indicating PDC loopback test failed.

(72) Endif

(73) Disable the transmitter and receiver by clearing the TXEN and RXEN bits
in Mode Register – 1 (CSR00).

@

(74) Return success.

(75) Endfunction

(76)

(77) Function InitializePDCTransmit()

(78) Initialize TableIndex = 0.

(79) For (the number of transmit PDC buffers to be allocated — up to the maximum of 64)

(80) Allocate a transmit PDC buffer.

(81) Set the table index in the Transmit PDC Buffer Address Table Register (CSR02)
to TableIndex.

(82) Write the physical address of the transmit PDC buffer to the Transmit PDC Buffer
Address Registers (CSR05 and CSR04). Writing to CSR04 causes the
TBIX to automatically increment.

@

(83) Add the PDC to the TransmitPDCAvailableList.

(84) Increment TableIndex.

(85) Endfor

(86) Endfunction

(87)

(88) Function InitializePDCReceive(ReceiveCommandsAvailable)

(89) Initialize TableIndex = 0.

(90) For (for the number of PDC buffers to be allocated — up to the maximum of 64)

(91) Allocate a PDC buffer from the operating system.

(92) Set the table index in the Receive PDC Buffer Address Table Register (CSR06)
to TableIndex.

(93) Write the physical address of the receive PDC buffer to the Receive PDC Buffer
Address Registers (CSR09 and CSR08). Writing to CSR08 causes the TBIX
to automatically increment.

@

(94) Increment TableIndex.

(95) If (RxCommandsAvailable)

Table 2-1: Initialization Pseudo-Code – continued

22
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

The initialization pseudo-code above and the pseudo-code
for packet transmission, packet reception, and interrupt
processing that follow constitute a pseudo driver of sorts.

The pseudo driver is based upon the following set of
assumptions and design points:

• The driver will transmit packets using the PIO I/O
method or a mixture of PDL/PDC I/O methods. It does
not mix the PIO I/O method with other I/O methods.

• The driver receives packets using the PIO mode, PDL,
or PDC I/O methods. It does not mix I/O methods when
receiving.

• The protocol stack provides a list of packets to transmit
rather than one packet.

• The driver indicates received packets to the protocol
stack one at a time.

The Initialize() function is the top level function. It is
responsible for bringing the device into an operational state.
In a real driver, this function is called immediately after the
driver is loaded. The major tasks it performs are as follows:

• Locating the device

• Initializing the PHY

• Performing a MAC loopback test using the PIO I/O
method

(96) Call PDCQueueReceiveCommand(PDC, ReceiveCommandsAvailable)
See Table 2-7

(97) Else

(98) Put the PDC on ReceivePDCAvailableList.

(99) Endif

(100) Endfor

(101) Endfunction

(102)

(103) Function InitializePDLTransmit()

(104) For (the number of transmit PDL buffers to be allocated)

(105) Allocate a transmit PDL.

(106) Put the PDL on the TransmitPDLAvailableList.

(107) Endfor

(108) Endfunction

(109)

(110) Function InitializePDLReceive(RxCommandsAvailable)

(111) For (for the number of PDL buffers to be allocated)

(112) Allocate a PDL buffer from the operating system.

(113) If (RxCommandsAvailable)

(114) Allocate a ReceivePacketDescriptor from the operating system.

(115) Call PDLQueueReceiveCommand (PDL, ReceivePacketDescriptor,
RxCommandsAvailable).
See Table 2-6

@

(116) Else

(117) Put the PDL on ReceivePDLAvailableList.

(118) Endif

(119) Endfor

(120) Endfunction

Table 2-1: Initialization Pseudo-Code – continued

23

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

• Allocating PDC buffers and initializing the PDC buffer
address tables

• Allocating PDLs

• Hooking an interrupt and enabling the LXT1001’s
ability to generate an interrupt for transmit and receive
events

The variables used to model the LXT1001’s transmitter and
receiver states will be discussed in later sections.

Transmit Packet Processing
This section contains discussions on topics related to
transmitting packets with the LXT1001. Example
pseudo-code is also provided to demonstrate algorithms for
transmitting a packet in PIO, PDL, and PDC modes.

Transmit Packet Padding
By default, when transmitting a packet that is smaller than
the minimum packet size, the LXT1001 adds padding bytes
to the end of the packet. For Ethernet, the minimum packet
size is 60 bytes, excluding the CRC. The pad bytes added
by the LXT1001 are included in the CRC calculation of the
packet. The LXT1001’s ability to pad undersized packets
can be disabled by clearing the TXPPEN bit in Mode
Register – 1. When this feature is disabled, it is the
responsibility of HOST software to pad the packets prior to
giving them to the LXT1001 for transmission. Failure to do
so results in runt packets being transmitted on the network.

VLAN Tag Header Insertion
The LXT1001 provides the capability to insert VLAN tag
headers during the transmission of packets. See VLAN
Support on page 40 for a detailed description of how to use
this function.

CRC Generation
By default, the LXT1001 calculates and appends a 4-byte
CRC to outbound packets. This capability can be disabled
by clearing the TXCREN bit in Mode Register – 1. When
TXCREN is cleared, it is the responsibility of HOST
software to include a CRC in the packet data given to the
LXT1001.

HOST software should ensure the TXCREN bit is set
whenever it has enabled other LXT1001 features that cause
the LXT1001 to insert or modify packet data prior to the
packet’s transmission. In particular, the TXCREN bit
should be set when HOST software has enabled VLAN tag
header insertion, or transmit packet padding. Failure to set
the TXCREN in these circumstances results in a packet

containing an invalid CRC to be transmitted onto the
network.

Transmit Completion Status
The LXT1001 implements a “lying send” transmit policy.
This means a packet is considered to be successfully
transmitted as soon as it is copied into the LXT1001’s TX
FIFO. When using the PIO I/O method, this occurs as soon
as HOST software has moved the packet into the TX FIFO.
When using the PDL and PDC I/O methods, this occurs as
soon as the LXT1001 has transferred the packet data into
the TX FIFO. Ultimately, it is the responsibility of the
protocols above the driver to ensure that packets are
successfully transmitted to remote stations. If a packet is
lost during transmission by the LXT1001, the protocol is
responsible for recognizing that the packet is lost and
effecting a corrective action (e.g., retransmit).

Transmit Statistics
The LXT1001 maintains the following packet transmission
s t a t i s t i c s : a F r a m e s T r a n s m i t t e d O K ,
aSingleCollisionFrames, aMultipleCollisionFrames,
Errored Transmit Packet Count, TCP/IP Non Ipv4 Packet
Count, and Late Collision Count. The counts do not wrap.
See Table 4-1 for a detailed description of these statistics.

Simultaneous Use of PDL, PDC,
and PIO I/O Methods
The LXT1001 supports the use of PDL and PDC I/O
methods simultaneously. When transferring data, HOST
software indicates the desired data transfer method by the
CSR used to initiate the transfer. For packet transmission
using the PDC I/O method, HOST software initiates the
process by writing to the Transmit PDC Register. If the
HOST wishes to transmit a packet using the PDL method,
it writes to the Transmit PDL Address Register instead.

Although intermixing of PDC and PDL transmit commands
is directly supported by the LXT1001, intermixing of PIO
with either PDC or PDL transfer methods is not directly
supported. It is possible to intermix PIO with the other two
transfer methods, however, careful coordination must be
carried out to prevent simultaneous accesses to the TX FIFO
by the LXT1001’s System Interface Block and HOST
software. More specifically, prior to initiating a
transmission using the PIO method, HOST software must
guarantee that all PDL and/or PDC transmit commands
issued have been completed by the LXT1001. A PDL and
PDC transmit command is considered completed when the
LXT1001 has transferred the transmit packet data from

24
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
HOST memory into the LXT1001’s TX FIFO and
incremented the TXDMDNCN count in the Command
Status Register.

Programmed Input/Output Method
of Transmission
PIO mode is often referred to as a slave mode. The two terms
are used interchangeably in this document. In PIO mode,
the HOST is responsible for effecting all packet data
movement to and from the LXT1001.

Transmitting a packet using the PIO method is a four-step
process:

1. Determining the TX FIFO has enough free space
to accommodate the transmit header and packet

2. Writing the transmit header to the TX FIFO

3. Writing the packet data to the TX FIFO

4. Issuing the transmit command

The LXT1001 maintains a count of the number of free
DWORDs in the TX FIFO. The LXT1001 decrements the
count as data is written to the FIFO, and increments the
count as data is removed from the FIFO and transmitted.

HOST software ascertains this count by reading the TX
FIFO DWORDs Free Register. If the TX FIFO does not
contain enough free space to accommodate the packet,
HOST software must wait until enough free space exists.
HOST software waits by polling, retrying periodically, or
by requesting an interrupt be generated when the TX FIFO
hits a low watermark. Refer to the TX FIFO Low Watermark
Register description for more information on how to
generate a TX FIFO low watermark interrupt.

Once HOST software has determined the TX FIFO can
accommodate the packet, it constructs the transmit header
and writes it to the TX FIFO via the TX FIFO Write Register.
Next, HOST software copies the data to the LXT1001’s TX
FIFO by sequencing through the packet data and writing it
to the TX FIFO Write Register. HOST software then sets
the SLMDTXCM bit in the Command Register to indicate
the entire packet is in the TX FIFO and is ready for
transmission. The LXT1001 transmits the packet data onto
the network in the order that it is written to the TX FIFO
Write Register.

The pseudo-code in Table 2-2 demonstrates how to transmit
a list of packets using the PIO data transfer method. Lines
with an “@” in the right-hand column indicate an access to
the LXT1001.

Table 2-2: PIO Transmit Pseudo-Code

(1) Function PIOTransmitPacketList(TransmitPacketList)

(2) Get the first packet from TransmitPacketList.

(3) While (there is a packet to be transmitted)

(4) PacketLength = the number of bytes in the packet.

(5) Set RetryCount = MAX_RETRIES + 1.

(6) While (BytesFreeInTxFIFO < PacketLength + number of bytes in the
transmit header)

(7) If (RetryCount = 0)

(8) Set the transmit status code for the current and all remaining packets
 in TransmitPacketList to indicate they did not transmit.

(9) Return out of TX FIFO resources.

(10) Endif

(11) Read TXFIDWCN from the TX FIFO DWORDs Free Register (CSR21). @

(12) Set BytesFreeInTxFIFO = TXFIDWCN * the number of bytes in a DWORD.

(13) Decrement RetryCount.

(14) Endwhile

(15) Determine the per packet processing options.

25

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

The PIO transmit pseudo-code models the LXT1001’s
transmitter using the variable BytesFreeInTxFIFO. This
variable represents the minimum number of unused bytes
in the TX FIFO at any given point in time. The variable is
used to determine if there is enough space in the TX FIFO

to accommodate a packet and its transmit header. Initially,
BytesFreeInTxFIFO is set to the size of the TX FIFO. Each
t i m e a p a c k e t i s c o p i e d i n t o t h e T X F I F O ,
BytesFreeInTxFIFO decrements by the number of bytes in

(16) Construct the FIFO Transmit Header using the PacketLength and per packet
processing options.

(17) Write the FIFO Transmit Header to the TX FIFO Write Register (CSR22). @

(18) For (each fragment in the packet)

(19) If (the fragment starting address is odd)

(20) Write the first BYTE of the fragment to the TX FIFO Write
Register (CSR22).

@

(21) Endif

(22) If (the fragment starting address is not evenly divisible by the size of a DWORD)

(23) Write the next WORD of the fragment to the Transmit FIFO Write Register
(CSR22).

@

(24) Endif

(25) While (at least a DWORD remains in the fragment)

(26) Write the next DWORD of the fragment to the Transmit FIFO Write
Register (CSR22).

@

(27) Endwhile

(28) If (at least a WORD is remains in the fragment)

(29) Write the next WORD of the fragment to the Transmit FIFO Write Register
(CSR22).

@

(30) Decrement the remainder by the size of a WORD.

(31) Endif

(32) If (a BYTE remains in the fragment)

(33) Write the next BYTE of the fragment to the TX FIFO Write Register
(CSR22).

@

(34) Endif

(35) Endfor

(36) Decrement BytesFreeInTxFIFO by (the number of bytes in the packet rounded
up to the next multiple of 8) + the size of the transmit header.

(37) Start the PIO transmit by setting the SLMDTXCM in the Command Register
(CSR29).

@

(38) Set the packet’s transmit status code to success.

(39) Get the next packet in the TransmitPacketList.

(40) Endwhile

(41) Return Success.

(42) Endfunction

Table 2-2: PIO Transmit Pseudo-Code – continued

26
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
the packet plus the size of the transmit header rounded up
to the next QWORD boundary.

Packet Descriptor List Method of
Transmission
The pseudo-code in Table 2-3 demonstrates how to transmit
a list of packets using the PDL data transfer method. Lines
with an “@” in the right-hand column indicate an access to
the LXT1001.

Table 2-3: PDL Transmit Pseudo-Code

(1) Function PDLTransmitPacketList(TransmitPacketList)

(2) Get the first packet from TransmitPacketList.

(3) While (there is a packet to be transmitted)

(4) If (TransmitCommandsAvailable = 0)

(5) Read TXCMFECN from the Command Status Register (CSR51). @

(6) If (TXCMFECN = 0)

(7) Set the transmit status code for the current and all remaining packets
in TransmitPacketList to indicate they did not transmit.

(8) Return indicating no more transmit commands are available.

(9) Else

(10) TransmitCommandsAvailable = the value read from TXCMFECN.

(11) Endif

(12) Endif

(13) If (a PDL buffer is available)

(14) Get a PDL from the TransmitPDLAvailableList.

(15) TotalLength = 0.

(16) PDLFragmentIndex = 0.

(17) For (each fragment in the packet)

(18) If (the fragment is not in locked memory)

(19) Call the operating system to lock the memory.

(20) Endif

(21) If (the fragment address is a virtual address)

(22) Call operating system to convert the virtual address to a list of
physical addresses.

(23) Endif

(24) For (each of the virtual fragment’s physical addresses)

(25) Set PDL.FGAD[PDLFragmentIndex] to the physical fragment
address.

(26) Set PDL.FGLE[PDLFragmentIndex] to the number of bytes in the
physical fragment.

(27) TotalLength = TotalLength + the number of bytes in the physical
fragment.

(28) Move to the next physical fragment in the physical address list.

27

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

The PDL transmit pseudo-code models the LXT1001’s
transmitter state using the following variables:

• TransmitCommandsAvailable — This variable is the
minimum number of additional transmit commands the
LXT1001 can take at any given point in time. Each time
a transmit PDL or PDC command is given to the
LXT1001, this count decrements. When it reaches 0,
the count is refreshed by reading the TXCMFECN field
in the Command Status Register.

• TransmitPDLAvailableList — This is a list of PDLs
available for transmitting packets. This pool of transmit

PDLs is allocated at initialization time. Each time a
packet is transmitted using the PDL I/O method, a PDL
is removed from this list. PDLs are returned to this list
after a PDL transmit command completes.

• TransmitCommandsInProgressQueue — This is a
FIFO queue of PDL and PDC commands issued to the
LXT1001. This queue preserves the ordering in which
the commands were issued to the LXT1001. When a
transmit PDL or PDC command is given to the
LXT1001, the PDL or PDC is enqueued on this queue.

(29) Increment PDLFragmentIndex.

(30) Endfor

(31) Endfor

(32) Set PDL.PKLE field to the TotalLength calculated.

(33) Set PDL.FGCN field to PDLFragmentIndex.

(34) Set the desired per packet processing options in the PDL header.

(35) Queue the PDL onto the TransmitCommandsInProgressQueue.

(36) Write the MSD of the PDL’s physical address to Transmit PDL
Address MSD Register (CSR13).

@

(37) Write the LSD of the PDL’s physical address to Transmit PDL
Address LSD Register (CSR12).

@

(38) Set the transmit status code status for the packet to indicate the transmit is
in progress.

(39) Decrement TransmitCommandsAvailable.

(40) Else

(41) Set the transmit status code for the current and all remaining packets in
TransmitPacketList to indicate they did not ransmit.

(42) Return indicating no more PDLs are available.

(43) Endif

(44) Get the next packet in the TransmitPacketList.

(45) Endwhile

(46) Return Success

(47) Endfunction

(48)

(49) Function PDLTransmitDMADoneEvent(PDL)

(50) Call the protocol stack and indicate the packet associated with this PDL was transmitted
successfully.

(51) Queue the PDL on the TransmitPDLAvailableList.

(52) Endfunction

Table 2-3: PDL Transmit Pseudo-Code – continued

28
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
Items are taken off this queue when a TXDMDNIN
interrupt occurs.

The PDLTransmitPacketList() function transmits a list of
packets it is given as input. For each packet in the list, it
performs the following major tasks:

• Determines if the LXT1001 can accept any more
transmit commands

• Prepares the fragments that constitute a packet to be
transmitted for the LXT1001 — Preparing the
fragments involves:

• Locking the fragments memory

• Acquiring the physical addresses of the fragments

• Constructs a PDL using the physical addresses and
lengths of the fragments

• Writes the physical address of the PDL to the
LXT1001’s Transmit PDL Address Registers (CSR13
and CSR12)

PDLTransmitDMADoneEvent() is called by the interrupt
handler each time the LXT1001 has completed processing
for a transmit PDL. When called, it notifies the protocol
stack that the packet has been transmitted successfully and
returns the PDL associated with the packet back to the list
of available transmit PDLs.

Packet Propulsion Mode Method of
Transmission
The pseudo-code in Table 2-4 demonstrates how to transmit
a list of packets using the PDC data transfer method. Lines
with an “@” in the right-hand column indicate an access to
the LXT1001.

Table 2-4: PDC Transmit Pseudo-Code

(1) Function PDCTransmitPacketList(TransmitPacketList)

(2) Set Offset = size of PDC Buffer to cause a PDC to be obtained during the first iteration of
the loop.

(3) Set PDC = NULL to indicate there is not a PDC awaiting ready to be given to the
CONTROLLER.

(4) Get the first packet from TransmitPacketList.

(5) While (there is a packet to be transmitted)

(6) If (TransmitCommandsAvailable = 0)

(7) Read TXCMFECN from the Command Status Register (CSR51). @

(8) If (TXCMFECN = 0)

(9) Set the transmit status code for the current and all remaining packets in
TransmitPacketList the list to indicate they did not transmit.

(10) Return indicating no more transmit commands are available.

(11) Else

(12) TransmitCommandsAvailable = the value read from TXCMFECN.

(13) Endif

(14) Endif

(15) PacketLength = the number of bytes in the packet.

(16) If (the size of the PDC buffer – Offset < PacketLength + the size of the PDC
transmit header)

(17) If (PDC is not NULL)

(18) Call StartPDCTransmit(Offset, PDC’s Buffer ID).

(19) Endif

(20) If (a PDC structure is available)

(21) Get a PDC from the TransmitPDCAvailableList.

29

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

(22) HeaderOffset = 0.

(23) Else

(24) Set the transmit status code for the current and all remaining packets in
TransmitPacketList the list to indicate they did not transmit.

(25) Return indicating no more PDCs are available.

(26) Endif

(27) Else

(28) HeaderOffset = Offset.

(29) Endif

(30) Offset = HeaderOffset + the size of the PDC transmit header.

(31) For (each fragment in the packet)

(32) Copy fragment data to PDC[Offset].

(33) Offset = Offset + the number of bytes in the fragment.

(34) Endfor

(35) Set the desired packet processing options in the PDC[HeaderOffset].

(36) Set PDC[HeaderOffset].LEN = PacketLength.

(37) Offset = HeaderOffset + size of the PDC transmit header + PacketLength.

(38) Round up the Offset to the next QWORD boundary.

(39) Set the packet’s transmit status code to success.

(40) Get the next packet in the TransmitPacketList.

(41) Endwhile

(42) If (PDC is not NULL)

(43) Call StartPDCTransmit(Offset, PDC’s Buffer ID).

(44) Endif

(45) Return Success.

(46) Endfunction

(47)

(48) Function StartPDCTransmit(ActualPDCLength, PDCBufferID)

(49) If (interrupt wanted after data transfer from PDC has completed)

(50) Set the TransferDoneInterruptFlag.

(51) Endif

(52) Construct the PDC Transmit Command with the ActualPDCLength, the
PDCBufferID, and the TransferDoneInterrupt flag.

(53) Queue the PDC onto the TransmitCommandsInProgressQueue.

(54) Write the PDC Transmit Command to the Transmit PDC Register (CSR16). @

(55) Decrement TransmitCommandsAvailable.

(56) Endfunction

(57)

Table 2-4: PDC Transmit Pseudo-Code – continued

30
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

The PDC transmit pseudo-code models the LXT1001’s
transmitter state using the following variables:

• TransmitCommandsAvailable — This variable is the
minimum number of additional transmit commands the
LXT1001 can take at any given point in time. Each time
a transmit PDL or PDC command is given to the
LXT1001, this count decrements. When it reaches 0,
the count is refreshed by reading the TXCMFECN field
in the Command Status Register.

• TransmitPDCAvailableList — This is a list of PDCs
available for transmitting packets. This pool of transmit
PDCs is allocated at initialization time. Each time a
packet is transmitted using the PDC I/O method, a PDC
is removed from this list. PDCs are returned to this list
after a transmit PDC command has completed.

• TransmitCommandsInProgressQueue — This is a
FIFO queue of PDL and PDC commands issued to the
LXT1001. This queue preserves the ordering in which
the commands were issued to the LXT1001. When a
transmit PDL or PDC command is given to the
LXT1001, it is enqueued on this queue. Items are taken
off this queue when a TXDMDNIN interrupt occurs.

PDCTransmitPacketList() transmits a list of packets it is
given as input. It performs the following major tasks:

• Determines if the LXT1001 can accept more transmit
commands

• Gets a PDC from the pool of available PDCs

• Copies as many packets as it can into the PDC

• When the PDC can not hold the next packet in the list,
the PDC is added to the
TransmitCommandsInProgressQueue and is given to
the LXT1001 by writing the PDC’s index in the
Transmit PDC Address Table to the Transmit PDC
Register (CSR16).

The above steps are repeated until all packets are
transmitted, no more PDCs are available, or the LXT1001
can not accept any more commands.

Since PDCTransmitPacketList() copies the packet data into
a transmit PDC buffer, it reports the packet as having been
transmitted successfully without having to wait for the
TXMDNIN to occur.

PDCTransmitDMADoneEvent() is called by the interrupt
handler each time the LXT1001 has completed processing
for a transmit PDC. When called, it returns the PDC to the
list of available transmit PDCs.

(58) Function PDCTransmitDMADoneEvent(PDC)

(59) Queue the PDC on the TransmitPDCAvailableList.

(60) Endfunction

Table 2-4: PDC Transmit Pseudo-Code – continued

31

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Receive Packet Processing
This section contains discussions on topics related to
receiving packets with the LXT1001. Example pseudo-code
is also provided to demonstrate algorithms for transmitting
a packet in PIO, PDL, and PDC modes.

Packet Reception Filters
The LXT1001 provides packet reception filters that can be
applied to received packets to determine whether or not an
inbound packet is transferred to HOST memory and
indicated to HOST software. The packet reception filters
operate concurrently with respect to one another and the
reception of the packet. Conceptually, however, the filters
operate in a hierarchical manner. A packet must pass each
active filter in the hierarchy before it is transferred to HOST
memory and indicated to HOST software.

The first filter in the hierarchy is the destination address
filter. The destination address filter accepts/rejects frames
based on the 6-byte destination address in a received
packet’s MAC header. The acceptance of unicast,
broadcast, and multicast packets can be enabled and
disabled independently via the UCEN, BCEN, and MCEN
bits in Mode Register – 1. When UCEN is set, the packet
will pass the destination address filter if the destination
address matches the address in the LAN Physical Address
Registers. When the BCEN bit is set, packets containing the
all stations broadcast address will pass the destination
address filter. When the MCEN bit is set, the LXT1001
performs a hash operation on the destination address field
of multicast packets. The result of the hash operation is an
index into a 64-bit hash table. If the hash table bit at the
index is set, the packet will pass the destination address
filter, otherwise the packet is rejected. The LXT1001 can
be configured to operate in promiscuous mode by setting
the POEN bit in Mode Register – 1. In promiscuous mode,
all packets pass the destination address filter. See the
definitions for Mode Register – 1 and the Multicast Hash
Table LSD/MSD Register for more details on configuring
the destination filter.

The second filter in the hierarchy is the VLAN tag filter.
The VLAN tag filter only affects received packets
containing a VLAN tag header. When configured by HOST
software, the VLAN tag filter passes packets containing a
VLAN tag header that matches the protocol ID value
0x8100 and a tag control information (TCI) field in the
VLAN Tag TCI Table. See “VLAN Support” on page 42
for a detailed description of the LXT1001’s VLAN support.

The third filter in the hierarchy is the errored packet filter.
By default, the errored packet filter is enabled and rejects
received packets for which the LXT1001 detects an error.
The LXT1001 detects CRC, alignment, runt, length, and
large packet errors. HOST software can change this
behavior by setting the PAERPKEN bit in Mode Register –
1. When PAERPKEN is set, the LXT1001 allows HOST
software to receive packets containing errors. In this case,
the LXT1001 will set the appropriate error status bits in the
packet’s receive header. Regardless of the state of the
PAERPKEN bit, the LXT1001 always forwards received
packets that result in an overflow error (EROV).

The final filter is the TCP/IP checksum filter. When enabled
by HOST software, the LXT1001 rejects received packets
containing TCP/IP checksum errors. See “TCP/IP
Checksum Support” on page 43 for a detailed description
of the LXT1001’s TCP/IP checksum support.

Packet Receive Status
CRC, runt packet, alignment, and long packet errors are
detected by the LXT1001 and are signaled to HOST
software by way of specific bits in the PIO/PDL/PDC
Receive header. The packet receive header also contains
additional information bits pertaining to the type of
destination address the packet contained, whether or not the
packet contained valid TCP/IP checksums, and whether or
not the packet contained a VLAN tag. For details on the PIO
receive header, see Figure 4-8. For details on the PDL
receive header, see Figures 4-2 and 4-3. For details on the
PDC receive header, see Figure 4-5.

Receive Statistics
The LXT1001 maintains the following packet reception
s t a t i s t i c s : a F r a m e s R e c e i v e d O K ,
aFrameCheckSequenceErrors, aAlignmentErrors, Dropped
Packet Count, Errored Receive Packet Count, Runt Packet
Count, Large Packet Count, VLAN Accepted Packet Count,
TCP/IP Checksum Error Count, and VLAN Discarded
Packet Count. Refer to Table 4-1 for a detailed description
of these statistics.

Large Packet Reception
By default, the LXT1001 regards a packet that exceeds the
maximum packet size as an error. Such frames will not be
seen by HOST software unless the PAERPKEN bit is set in
Mode Register – 1. If the PAERPKEN bit is set, the
LXT1001 passes the packet to HOST software and sets the
ERROR and LGPK status bits in the packet’s receive header
to indicate the packet contains an error.

32
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
By setting the LGPKEN bit in Mode Register – 1, HOST
software can modify the LXT1001’s large packet
processing. When LGPKEN is set, the LXT1001 does not
regard a packet that exceeds the maximum packet size as an
error. In this case, the LXT1001 passes large packets to
HOST software, regardless of the state of the PAERPKEN
bit, and sets the LGPK bit in the packet’s receive header.

Simultaneous Use of PDL, PDC,
and PIO I/O Methods
The LXT1001 supports the use of PDL and PDC I/O
methods simultaneously. When transferring data, HOST
software indicates the desired data transfer method by the
CSR used to initiate the transfer. For packet reception using
the PDC I/O method, HOST software initiates the process
by writing to the Receive PDC Register. If the HOST wishes
to receive a packet using the PDL method, it writes to the
Receive PDL Address Register instead.

Although intermixing of PDC and PDL receive commands
is directly supported by the LXT1001, intermixing of PIO

with either PDC or PDL transfer methods is not directly
supported. It is possible to intermix PIO with the other two
transfer methods, however, careful coordination must be
carried out to prevent inadvertent simultaneous accesses by
the LXT1001’s system interface block and HOST software.
More specifically, prior to initiating a receive using the PIO
method, HOST software must guarantee that all PDL and/or
PDC receive commands have been completely processed
by the LXT1001. A PDL and PDC receive command is
considered completely processed when the LXT1001 has
transferred the receive packet data from the LXT1001’s RX
FIFO into HOST memory and incremented the
RXDMDNCN count in the Command Status Register.

Programmed Input/Output
(PIO) Method of Reception
The pseudo-code in Table 2-5 demonstrates how to receive
a packet using the PIO data transfer method. Lines with an
“@” in the right-hand column indicate an access to the
LXT1001.

Table 2-5: PIO Receive Pseudo-Code

(1) Function PIOProcessReceiveEvent()

(2) Read the RX FIFO Packet Count Register (CSR28) to see how many packets have
been received and save the result in ReceivePacketsAvailable.

@

(3) While (ReceivePacketsAvailable > 0)

(4) While (ReceivePacketsAvailable > 0)

(5) Read the RX FIFO Read Register (CSR24) to get the first DWORD of
the Receive Header.

@

(6) PacketLength = LEN field in the first DWORD of the Receive Header.

(7) Read the RX FIFO Read Register (CSR24) to get the second DWORD of
the Receive Header.

@

(8) Set NumDWORDS = (PacketLength + size of a DWORD – 1)/ size of a DWORD.

(9) Acquire a receive buffer large enough to hold NumDWORDS of receive data.

(10) If (no receive buffers are available)

(11) Set the RXFISKPK in the Command Register (CSR29) to skip the
partially read packet.

@

(12) Return (indicating out of receive buffer resources).

(13) Endif

(14) Set the ReceivePacketBuffer to the address of the receive buffer just allocated.

(15) For (NumDWORDS)

(16) Read a DWORD from the RX FIFO Read Register (CSR24) into
the ReceivePacketBuffer.

@

33

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

The PIO receive pseudo-code is very simple. The RXMS
bit in the Interrupt Mask Register is set at initialization time.
Setting this bit causes the LXT1001 to generate an interrupt
each time a complete packet has been put in the RX FIFO.
Upon determining that an RXIN interrupt event has
o c c u r r e d , t h e i n t e r r u p t h a n d l e r d i s p a t c h e s
PIOProcessReceiveEvent(). PIOProcessReceiveEvent()
uses the RX FIFO Read Register (CSR24) to read the

packet’s receive header from the FIFO. The receive header
contains the length of the packet. The function then
performs an even number of DWORD reads of CSR24 and
puts the data read into HOST memory. The function
proceeds in this manner until the RX FIFO Packet Count
Register (CSR28) indicates no more packets are in the RX
FIFO.

(17) Advance the ReceivePacketBuffer pointer by one DWORD.

(18) Endfor

(19) If (NumDWORDS is an odd number)

(20) Read a DWORD from the RX FIFO Read Register (CSR24) and discard
the value read. This is necessary to keep the FIFO QWORD aligned.

@

(21) Endif

(22) Call the protocol stack and give it the ReceivePacketBuffer.

(23) If (the protocol stack has copied the data)

(24) Free the ReceivePacketBuffer.

(25) Endif

(26) Decrement the ReceivePacketsAvailable count.

(27) Endwhile

(28) Read the RX FIFO Packet Count Register (CSR28) to see how many packets have been
received and save the result in ReceivePacketsAvailable.

@

(29) Endwhile

(30) Return Success.

(31) Endfunction

Table 2-5: PIO Receive Pseudo-Code – continued

34
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)Packet Descriptor List Method
of Reception
The pseudo-code in Table 2-6 demonstrates how to receive
a packet using the PDL data transfer method. Lines with an

“@” in the right-hand column indicate an access to the
LXT1001.

Table 2-6: PDL Receive Pseudo-Code

(1) Function PDLQueueReceiveCommand(PDL, ReceivePacketDescriptor)

(2) If (ReceiveCommandsAvailable = 0)

(3) Read RXCMFECN from the Command Status Register (CSR51). @

(4) If (RXCMFECN = 0)

(5) Return indicating no more receive commands are available.

(6) Else

(7) ReceiveCommandsAvailable = the value read from RXCMFECN.

(8) Endif

(9) Endif

(10) TotalLength = 0.

(11) PDLFragmentIndex = 0

(12) For (each fragment in the ReceivePacketDescriptor)

(13) If (the fragment is not in locked memory)

(14) Call the operating system to lock the memory.

(15) Endif

(16) If (the fragment address is a virtual address)

(17) Call the operating system to convert the virtual address to a list
of physical addresses.

(18) Endif

(19) For (each of the virtual fragment’s physical addresses)

(20) Set PDL.FGAD[PDLFragmentIndex] to the physical fragment address.

(21) Set PDL.FGLE[PDLFragmentIndex] to the number of bytes in
the physical fragment.

(22) TotalLength = TotalLength + the number of bytes in the physical fragment.

(23) Move to the next physical fragment in the physical address list.

(24) Increment PDLFragmentIndex.

(25) Endfor

(26) Endfor

(27) Set PDL.PKLE field to the TotalLength calculated.

(28) Set PDL.FGCN field to the number of fragments in the ReceivePacketDescriptor.

(29) Set the desired per packet processing options in the PDL header.

(30) Enqueue the PDL onto the ReceiveCommandsInProgressQueue.

(31) Write the MSD of the PDL’s physical address to Receive PDL Address MSD Register
 (CSR15)

@

35

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

The PDL receive pseudo-code uses the following variables
to model the state of the LXT1001’s receiver:

• ReceiveCommandsAvailable — This variable is the
minimum number of additional receive commands the
LXT1001 can take at any given point in time. Each time
a receive PDL command is given to the LXT1001, this
count decrements. When it reaches 0, the count is
refreshed by reading the RXCMFECN field in the
Command Status Register.

• ReceiveCommandsDone — This variable is effectively
the RXDMDNCN from the Command Status Register
(CSR51). The RXDMDNCN is also aliased into the
Event Status Register (CSR32). Each time the Event
Status Register is read, the RXDMDNCN is added to
ReceiveCommandsDone. This determines how many

items are taken off the
ReceiveCommandsInProgressQueue following an
interrupt.

• ReceiveCommandsInProgressQueue — This is a FIFO
queue of PDL receive commands issued to the
LXT1001. This queue preserves the ordering in which
the commands were issued to the LXT1001. When a
PDL receive command is given to the LXT1001, the
PDL is enqueued on this queue. PDLs are taken off this
queue when an RXDMDNIN interrupt occurs.

• ReceivePDLAvailableList — This is a list of PDLs that
are available for receiving packets. This pool of receive
PDLs is allocated at initialization time. Each time a
packet is received using the PDL I/O method, a PDL is
removed from this list. PDLs are returned to this list

(32) Write the LSD of the PDL’s physical address to Receive PDL Address LSD Register
(CSR14)

@

(33) Decrement the ReceiveCommandsAvailable count.

(34) Return Success.

(35) Endfunction

(36)

(37) Function PDLProcessReceiveEvent(ReceiveCommandsDone)

(38) While (ReceiveCommandsDone > 0)

(39) Dequeue the PDL from the ReceiveCommandsInProgressQueue.

(40) Get the ReceivePacketDescriptor corresponding to this PDL.

(41) Update the length fields in the ReceivePacketDescriptor to reflect the lengths
returned in the PDL.

(42) Examine the receive status codes in the PDL receive header and update the
ReceivePacketDescriptor as necessary.

(43) Call the protocol stack to give it the ReceivePacketDescriptor.

(44) Call the operating system to get another ReceivePacketDescriptor.

(45) Call PDLQueueReceiveCommand(PDL, ReceivePacketDescriptor).

(46) If (return code indicates no more receive command were available)

(47) Free the ReceivePacketDescriptor just allocated.

(48) Put the PDL back into the PDLAvailable pool.

(49) Endif

(50) Decrement ReceiveCommandsDone.

(51) Endwhile

(52) Return Success.

(53) Endfunction

Table 2-6: PDL Receive Pseudo-Code – continued

36
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
after a PDL receive command has completed and the
received packet has been offered to the protocol stack.

The PDLQueueReceiveCommand() performs the following
tasks:

• Determines if the LXT1001 can accept more receive
commands

• Prepares the fragments that constitute the receive buffer
for the LXT1001 — Preparing the fragments involves:

• Locking the fragments memory

• Acquiring the physical addresses of the fragments

• Constructs a pre-receive PDL using the physical
addresses and lengths of the fragments

• Writes the physical address of the PDL to the
LXT1001’s Receive PDL Address Registers (CSR14
and CSR15)

PDLProcessReceiveEvent() is called by the interrupt
handler when the LXT1001 has completed the processing
f o r o n e o r m o r e P D L r e c e i v e c o m m a n d s .
ReceiveCommandsDone indicates the number of PDL
receive commands that have been completed. For each PDL

receive command completed, PDLProcessReceiveEvent
performs the following tasks:

• Dequeues the PDL from the
ReceiveCommandsInProgressQueue

• Updates the receive descriptor associated with the PDL

• Calls the protocol stack and gives it the receive
descriptor for the received packet. In this case the
protocol owns the receive descriptor and is responsible
for freeing it

• Constructs another a PDL receive command and issues
it to the LXT1001

Packet Propulsion Mode Method of
Reception

Packet Propulsion Mode Receive
Algorithm

The pseudo-code in Table 2-7 demonstrates how to
receive a packet using the PDC data transfer method.
Lines with an “@” in the right-hand column indicate
an access to the LXT1001.

Table 2-7: PDC Receive Pseudo-Code

(1) Function PDCQueueReceiveCommand(PDC)

(2) If (ReceiveCommandsAvailable = 0)

(3) Read RXCMFECN from the Command Status Register (CSR51). @

(4) If (RXCMFECN = 0)

(5) Return indicating no more receive commands are available.

(6) Else

(7) ReceiveCommandsAvailable = the value read from RXCMFECN.

(8) Endif

(9) Endif

(10) Construct the PDC Receive command with PDC length, PDC Buffer ID, and the desired
setting for RXINRQ.

(11) Enqueue the PDC on the ReceiveCommandsInProgressQueue.

(12) Write the command to Receive PDC Register (CSR17). @

(13) Decrement the ReceiveCommandsAvailable count.

(14) Return Success.

(15) Endfunction

(16)

(17) Function PDCProcessReceiveEvent(ReceiveCommandsDone)

(18) While (ReceiveCommandsDone > 0)

37

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

(19) Dequeue the PDC from the ReceiveCommandsInProgressQueue.

(20) ReceiveHeader = the virtual address of the PDC.

(21) Set the PDC’s use count = 0.

(22) For (each packet in the PDC)

(23) Get a ReceivePacketDescriptor from the operating system.

(24) If (no ReceivePacketDescriptors are available)

(25) If (PDC’s use count is non-zero)

(26) Put the PDC on the PDCLoanedToProtocolList.

(27) Else

(28) Put the PDC on the ReceivePDCAvailableList.

(29) Endif

(30) Return indicating packets were lost due to lack of HOST resources.

(31) Endif

(32) PacketLength = the ReceiveHeader.LEN field.

(33) Set the packet length in the ReceivePacketDescriptor to PacketLength.

(34) Set the fragment count in the ReceivePacketDescriptor to 1.

(35) Set the first fragment virtual address in the ReceivePacketDescriptor
to the packet’s first RXDATA byte in the PDC; i.e., the
CurrentPacketaddress of the first byte past the packet’s receive header in
the PDC.

(36) Examine the receive status codes in the packet’s PDC receive
header and update the ReceivePacketDescriptor as necessary.

(37) Advance the ReceiveHeader to the next packet in the PDC; i.e., the (sum
of ReceiveHeader + PacketLength + size of the receive header) rounded
up to the next QWORD boundary.

(38) Call the protocol stack to give it the ReceivePacketDescriptor.

(39) If (the protocol is not finished with the buffer)

(40) Increment the PDC’s use count.

(41) Endif

(42) Endfor

(43) If (PDC’s use count is not zero)

(44) Put the PDC on the PDCLoanedToProtocolList.

(45) Get another PDC from the ReceivePDCAvailableList

(46) Endif

(47) If (PDC pointer is not null)

(48) Call PDCQueueReceiveCommand(PDC) to queue up another receive
 command.

(49) If (the return code indicates no more receive commands are available)

(50) Put the PDC on the ReceivePDCAvailableList.

Table 2-7: PDC Receive Pseudo-Code – continued

38
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

The PDC receive pseudo-code uses the following variables
to model the state of the LXT1001’s receiver:

• ReceiveCommandsAvailable — This variable is the
minimum number of additional receive commands the
LXT1001 can take at any given point in time. Each time
a receive PDC command is given to the LXT1001, this
count decrements. When it reaches 0, the count is
refreshed by reading the RXCMFECN field in the
Command Status Register.

• ReceiveCommandsDone — This variable is effectively
the RXDMDNCN from the Command Status Register
(CSR51). The RXDMDNCN is also aliased into the
Event Status Register (CSR32). Each time the Event
Status Register is read, the RXDMDNCN is added to
ReceiveCommandsDone. This determines how many
items are taken off the
ReceiveCommandsInProgressQueue following an
interrupt.

• ReceiveCommandsInProgressQueue — This is a FIFO
queue of PDC receive commands issued to the
LXT1001. This queue preserves the ordering in which
the commands were issued to the LXT1001. When a

PDC receive command is given to the LXT1001, the
PDC is enqueued on this queue. PDCs are taken off this
queue when an RXDMDNIN interrupt occurs.

• ReceivePDCAvailableList — This is a list of PDCs that
are available for receiving packets. This pool of receive
PDLs is allocated at initialization time. Each time a
packet is received using the PDC I/O method, a PDC
is removed from this list. PDCs are returned to this list
when the protocol stack has finished processing all
packets in the PDC and the LXT1001 cannot
accommodate any more PDC receive commands.

• PDCLoanedToProcotolList — This is a list of PDCs
whose use counts were not zero when
PDCProcessReceiveEvent finished processing the
PDC. This occurs if one or more packets contained in
the PDC are still in use by the protocol stack. The
protocol stack calls the PDCReceiveDone() function.

The PDCQueueReceiveCommand() performs the
following tasks:

• Determines if the LXT1001 can accept more receive
commands

(51) Endif

(52) Endif

(53) Decrement ReceiveCommandsDone.

(54) Endwhile

(55) Return Success.

(56) Endfunction

(57)

(58) Function PDCReceiveDone(ReceivePacketDescriptor)

(59) Get the PDC that corresponds to the ReceivePacketDescriptor.

(60) Decrement the PDC’s use count.

(61) Free the ReceivePacketDescriptor.

(62) If (the PDC’s use count is zero)

(63) Remove the PDC from the PDCLoanedToProtocolList.

(64) Call PDCQueueReceiveCommand(PDC) to queue up another receive command.

(65) If (the return code indicates no more receive commands are available)

(66) Put the PDC on the ReceivePDCAvailableList.

(67) Endif

(68) Endif

(69) Endfunction

Table 2-7: PDC Receive Pseudo-Code – continued

39

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

• Enqueues the PDC to the
ReceiveCommandsInProgressQueue

• Writes the PDC’s buffer ID and length to the
LXT1001’s Receive PDC Register (CSR17)

PDCProcessReceiveEvent() is called by the interrupt
handler when the LXT1001 has completed the processing
f o r o n e o r m o r e P D C r e c e i v e c o m m a n d s .
ReceiveCommandsDone indicates the number of PDC
receive commands that have been completed. For each PDC
receive command completed, PDCProcessReceiveEvent
performs the following tasks:

• Dequeues the PDC from the
ReceiveCommandsInProgressQueue

• Parses the PDC packet for the beginning of each packet
received into the PDC — For each packet in the PDC,
it does the following:

• Allocates and initializes the receive descriptor to
point to the data in the PDC and include the receive
status of the packet

• Calls the protocol stack to give it the receive packet
descriptor; in this case, the protocol stack either
completely processes the packet before returning,
or calls the PDCReceiveDone() at some later point
in time to indicate it has finished processing the
packet

• Maintains a use count for each PDC to keep track of
how many packets within the PDC are in use by the
protocol stack; PDCs whose use count is non-zero are
added to the PDCLoanedToProcotolList

• Calls PDCQueueReceiveCommand() to issue another
PDC receive command to the LXT1001

PDCReceiveDone() is called by the protocol stack to
indicate it is finished processing a received packet. The use
count for the corresponding PDC is decremented. If the PDC
use count is zero, PDCReceiveDone() attempts to issue
another PDC receive command to the LXT1001.

Interrupt Processing

Event Status Register
The Event Status Register acts as an accumulator of
LXT1001 events. The LXT1001 tracks the following
categories of events in the Event Status Register:

• Receive events

• Transmit events

• FIFO watermark events

• Timer events

As events occur, their corresponding event bits get set in the
Event Status Register. Event bits remain set until the register
is read by HOST software. When the Event Status Register
is read, the LXT1001 returns the current value of the register
to HOST software and then clears the register. Only the bits
that are read are cleared. In other words, if HOST software
does a byte access to the second byte in the Event Status
Register, only that byte is cleared.

The Event Status Register has two special attributes. First,
the high order byte of the register is actually an alias for the
RXDMDNCN in the Command Status Register. When this
field is read, the LXT1001 automatically clears it in both
the Event Status Register and the Command Status Register.

Second, a read of this register also causes the INENMS bit
in the Interrupt Mask Register to be cleared if an interrupt
is pending (i.e., the LXT1001’s interrupt line is active). This
has the effect of disabling the LXT1001’s ability to generate
further interrupts. It is the responsibility of HOST software
to re-enable the LXT1001’s ability to generate an interrupt
by setting the INENMS bit in the Interrupt Mask Register.

Interrupt Mask Register
The Interrupt Mask Register governs the LXT1001’s ability
to generate interrupts on the PCI bus. The INENMS bit in
the Interrupt Mask Register is the LXT1001’s master
enable/disable switch for interrupt generation. If INENMS
is set, the LXT1001 has the capability to generate an
interrupt. If INENMS is clear, the LXT1001 cannot generate
an interrupt.

All other bits in the Interrupt Mask Register determine
which events in the Event Status Register generate an
interrupt. For each event bit in the Event Status Register,
there is a corresponding interrupt mask bit in the Interrupt
Mask Register. If the INENMS bit is set and the event bit’s
corresponding mask bit is set in the Interrupt Mask Register,
the LXT1001 generates an interrupt whenever the event bit
gets set in the Event Status Register. Note that the Interrupt
Mask Register does not prevent bits from being set in the
Event Status Register, it merely determines which events
cause the LXT1001 to generate an interrupt.

40
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
Interrupt Handler
The pseudo-code in Table 2-8 demonstrates a typical
interrupt handler for processing LXT1001 interrupts.

Table 2-8: Interrupt Handler Pseudo-Code

(1) Function InterruptHandler(PDC)

(2) Read the Interrupt Mask Register (CSR30) and save it in InterruptMask. @

(3) If (the INENMS bit is not set)

(4) Return indicating the CONTROLLER did not generate the interrupt.

(5) Endif

(6) Read the Event Status Register (CSR32). NOTE: The act of reading CSR32 will clear the
INENMS bit in CSR30 if the CONTROLLER’s interrupt line is high when the read
occurs. This has the effect of disabling the CONTROLLER’s ability to generate
interrupts.

@

(7) EventStatus = EventStatus OR with the value just read from CSR30.

(8) If (using PDC or PDL method to receive packets)

(9) ReceiveCommandsDone = RXDMDNCN from EventStatus +
ReceiveCommandsDone.

(10) Endif

(11) If ((EventStatus AND InterruptMask) is zero)

(12) Return indicating the CONTROLLER did not generate the interrupt.

(13) Endif

(14) If (required by the operating system)

(15) Issue an EOI to the interrupt CONTROLLER.

(16) Enable interrupts at the CPU.

(17) Endif

(18) While (EventStatus AND InterruptMask) is not zero)

(19) If (using PDC method for receiving packets)

(20) Call PDCProcessReceiveEvent(ReceiveCommandsDone).
See Table 2-7

@

(21) Else If (using PDL method for receiving packets)

(22) Call PDLProcessReceiveEvent(ReceiveCommandsDone).
See Table 2-6

@

(23) Else using PIO method for receives

(24) If ((EventStatus AND RXIN) is not zero)

(25) Call PIOProcessReceiveEvent(). See Table 2-5 @

(26) Endif

(27) Endif

(28) If ((EventStatus AND TXDMDNIN) is not zero)

(29) TransmitCommandsDone = Read TXDMDNCN from the
Command Status Register (CSR51).

@

41

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

The interrupt handler pseudo-code above is designed to
operate with the initialization, transmit, and received
pseudo defined earlier. It is intended to demonstrate the
fundamental organization of the interrupt handler. It is not
necessarily the optimal way to organize the interrupt
handler.

The interrupt handler pseudo-code uses the following
variables for interrupt processing:

• InterruptMask — This variable is the value read from
the Interrupt Mask Register (CSR30). It is used to
determine whether the LXT1001’s master interrupt
enable bit INENMS is set. InterruptMask is also used
to mask values read from the Event Status Register
(CSR32).

• EventStatus — This variable accumulates events read
from the Event Status Register (CSR30). EventStatus
is bitwise ORed with the initial read of the Event Status
Register in InterruptHandler(). EventStatus is set to the

value read from the Event Status Register each time
InterruptHandler() iterates through the event
processing loop.

• ReceiveCommandsDone — This variable is the
RXDMDNCN from the Command Status Register
(CSR51). It indicates the number of PDC or PDL
commands that the LXT1001 has completed
processing and need to be processed by the driver.

• TransmitCommandsDone — This variable is the
TXDMDNCN from the Command Status Register
(CSR51). Each time a TXDMDNIN occurs, the
TXDMDNCN field is read and its value is saved in
TransmitCommandsDone. This determines how many
items are taken off the
TransmitCommandsInProgressQueue following a
TXDMDNIN.

• TransmitCommandsInProgressQueue — This is a
FIFO queue of PDL and PDC commands issued to the
LXT1001. This queue preserves the sequence and type

(30) While (TransmitCommandsDone > 0)

(31) Dequeue from the TransmitCommandsInProgressQueue.

(32) If (the item dequeued was a PDC)

(33) Call PDCTransmitDMADoneEvent(PDC).
See Table 2-4

(34) Else the item dequeued was a PDL

(35) Call PDLTransmitDMADoneEvent(PDL).
See Table 2-4.

(36) Endif

(37) Decrement the TransmitCommandsDone count.

(38) Endwhile

(39) Endif

(40) Read the Event Status Register (CSR32) and save the result in
EventStatus.

@

(41) If (using PDC or PDL method to receive packets)

(42) ReceiveCommandsDone = RXDMDNCN from EventStatus +
ReceiveCommandsDone.

(43) Endif

(44) Endwhile

(45) Enable CONTROLLER interrupt by setting INENMS in the Interrupt Mask
Register (CSR30).

@

(46) Return Success.

(47) Endfunction

Table 2-8: Interrupt Handler Pseudo-Code – continued

42
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
of transmit commands issued to the LXT1001. When
a transmit PDL or PDC command is given to the
LXT1001, the PDL or PDC is enqueued on this queue.
Items are taken off this queue when a TXDMDNIN
interrupt occurs.

InterruptHandler() is called by the operating system when
the interrupt occurs on the interrupt line for which the
handler is registered. The interrupt handler first determines
whether the LXT1001 generated the interrupt. To determine
this, it reads the Interrupt Mask Register (CSR32) and
checks the INENMS bit. If INENMS is clear, the LXT1001
did not generate the interrupt so the interrupt handler exits.
If the INENMS is set, HOST software must then read the
Event Status Register and bitwise AND the value read with
the value read from the Interrupt Mask Register. If the result
is of this operation is non-zero, the LXT1001 generated the
interrupt, otherwise some other device generated the
interrupt.

It is important to note that the value read from the Event
Status Register, when determining whether the LXT1001
generated the interrupt, must be saved even if the LXT1001
did not generate the interrupt. This is necessary because of
the clear after read nature of the Event Status Register. The
value read from the Event Status Register is bitwise ORed
with the EventStatus variable, even when the LXT1001 did
not generate the interrupt. This prevents the loss of
LXT1001 events for which the LXT1001 is not configured
to generate an interrupt. For similar reasons, if the driver is
using PDL or PDC mode to receive frames, the
RXDMDNCN read from the Event Status Register is added
to ReceiveCommandsDone.

Once the InterruptHandler() has determined the LXT1001
generated an interrupt, it proceeds to the event processing
loop. For each iteration of the loop, the appropriate event
processing occurs for each bit set in EventStatus. At the
bottom of the loop, the Event Status Register is read again
and EventStatus and ReceiveCommandsDone are updated.
The InterruptHandler() continues looping until EventStatus
and ReceiveCommandsDone are 0.

Note that this implementation of the interrupt handler
checks to see the type of receive I/O method being used for
receive, because the driver implements all three modes.
Typically, a driver implements a single receive I/O method
that is optimal for the target operating system. In this case,
the check to determine the receive I/O method being used
is unnecessary.

VLAN Support
The LXT1001 provides the following VLAN IEEE 802.1Q
support with the following functionality:

• VLAN tag insertion

• VLAN tag removal

• VLAN tag packet filtering

A VLAN tag is 4 bytes long and consists of a 2-byte protocol
ID field followed by a 2-byte tag control information (TCI)
field. The TCI field is divided into a 3-bit user priority field,
a 1-bit canonical format identifier (CFI) field, and a 12-bit
VLAN Identifier (VLID) field. VLAN tag headers are
located at bytes offset 12 – 15 in a packet’s MAC header
(i.e., between the source address field and length/type field).
The protocol ID field is used by the LXT1001 for VLAN
tag insertion and filtering. The LXT1001 uses the value
0x8100 for the protocol ID field when performing VLAN
tag insertion and filtering. The LXT1001 also provides a
16-entry table for TCIs. The VLAN Tag TCI table is used
by the LXT1001 for VLAN tag insertion and filtering.
HOST software adds and deletes entries in the table using
the VLAN Tag TCI Table Register.

The VLEN bit in Mode Register – 1 is the master
enable/disable bit for the LXT1001’s VLAN support. By
default the VLEN bit is clear, meaning the LXT1001’s
VLAN support is disabled. When the VLEN bit is set, the
LXT1001’s VLAN support is enabled and HOST software
can then independently configure and enable the three
functions described above.

The LXT1001’s VLAN tag insertion function can operate
in two different modes: global and per-packet. In global
mode, the LXT1001 inserts a VLAN tag header in all
packets transmitted. The LXT1001 constructs and inserts a
VLAN tag using the value of 0x8100 for the protocol ID
and the value in the first (0) entry of the VLAN Tag TCI
Table. HOST software enables the global mode of VLAN
tag insertion by setting the VLEN and VLISGB bit in Mode
Register – 1.

Per-packet VLAN tag insertion gives HOST software the
capability to request the VLAN tag insertion on a per-packet
basis. First, the VLEN bit must be set. HOST software then
sets the VLIS bit in the packet’s transmit header to indicate
the VLAN tag header is to be inserted. When VLIS is set,
HOST software must also set the VLTBIX field in the
packet’s transmit header. The VLTBIX field is an index into
the VLAN Tag TCI Table. The LXT1001 constructs and
inserts the VLAN tag header using the value of 0x8100 for
the protocol ID and the TCI information using the VLAN
Tag TCI Table entry specified by VLTBIX.

43

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Figure 2-5: VLAN Header Format

Per-packet VLAN tag insertion gives HOST software the
capability to request the VLAN tag insertion on a per-packet
basis. First, the VLEN bit must be set. HOST software then
sets the VLIS bit in the packet’s transmit header to indicate
the VLAN tag header is to be inserted. When VLIS is set,
HOST software must also set the VLTBIX field in the
packet’s transmit header. The VLTBIX field is an index into
the VLAN Tag TCI Table. The LXT1001 constructs and
inserts the VLAN tag header using the value of 0x8100 for
the protocol ID and the TCI information using the VLAN
Tag TCI Table entry specified by VLTBIX.

HOST software can mix the global and per-packet tag
insertion modes by setting the VLISGB in Mode Register –
1 and then setting the VLIS bit in the transmit header of
selected packets. In this case, the VLIS prevails and the
LXT1001 constructs and inserts a VLAN tag header using
the per-packet method.

The LXT1001’s VLAN tag removal support can be enabled
by setting the VLEN and VLRMID bits in Mode Register –
1. When enabled, the LXT1001 parses inbound packets for
a VLAN tag header. If a VLAN tag header is found, it is
removed from the packet prior to being put into the RX
FIFORX FIFO. Consequently, the VLAN tag is never seen
by HOST software. When the LXT1001 removes a VLAN
tag header from a packet, the CRC is always removed too,
regardless of the state of the PACREN bit in Mode Register
– 1. The CRC is removed because it is no longer valid since
the VLAN tag is included in the CRC calculation.

Finally, the LXT1001 can filter inbound packets that
contain a VLAN tag header. The VLAN tag filter affects
received packets that contain a VLAN header. When
configured by HOST software, the VLAN tag filter
forwards packets containing a VLAN header whose
protocol ID equals 0x8100 and whose VLID field matches
the VLID of an entry the VLAN Tag Table. This feature is
enabled by setting the VLTBEN bit in Mode Register – 1.
When the VLAN tag filter is enabled, the LXT1001
provides additional receive status information in the
packet’s PIO/PDL/PDC receive header. In particular, the
LXT1001 sets the VLHT bit in the receive header of packets
that contain a VLAN tag header that passed the VLAN tag
filter. The LXT1001 also puts the index of the matching
VLAN Tag TCI Table entry in VLTBIX field of the receive
header.

TCP/IP Checksum Support
The LXT1001 provides advanced capabilities for
processing TCP/IP checksums. The LXT1001 can verify IP,
TCP, and UDP checksums during packet reception. The
LXT1001 overlaps the checksum processing with packet
reception. The LXT1001’s TCP/IP checksum capabilities
increase system performance by overlapping checksum
processing with the packet reception and by relieving the
HOST CPU of the checksum verification tasks.

There are three bits in Mode Register – 2 that enable/disable
the LXT1001’s ability to verify TCP/IP checksums in
received packets. Setting the RXIPCKEN bit in Mode
Register – 2 causes the LXT1001 to verify the IP checksum
for all inbound packets containing an IP header. If the
checksum fails, the LXT1001 sets the IPCKER status bit in
the packet’s PIO/PDL/PDC receive header. If the checksum
is valid or the packet does not contain an IP header, the
IPCKER bit will be clear in the receive header. The
LXT1001 handles checksums for TCP and UDP in a similar
manner. The RXTPCKEN and RXUPCKEN bits in Mode
Register – 2 enable the TCP and UDP checksum
verification. The TPCKER and UPCKER bits in the
packet’s PIO/PDL/PDC receive header will be set if a TCP
or UDP checksum error occurs.

Finally, the action the LXT1001 takes for packets
containing TCP/IP checksum errors is governed by the
PACKEREN bit in Mode Register – 2. When PACKEREN
is set, received packets containing TCP/IP checksum errors
are passed to HOST software. When clear, the packets are
discarded by the LXT1001.

EEPROM Support
The LXT1001 provides a 93C46 compatible EEPROM
interface. EEPROM is used as a convenient nonvolatile
store of LXT1001 parameters. In particular, EEPROM is
used to store the LXT1001’s Universally Administered
Address (UAA), PCI configuration space defaults, and
overrides for some CSR’s default values. EEPROM can also
be used by HOST software as a nonvolatile store for
software configuration parameters. Typically, EEPROM is
accessed following a LXT1001 reset or by HOST diagnostic
software.

31 16 15 13 12 11 00

Protocol ID (PID) User
Priority

CF
I

VLAN Identifier (VLID)

44
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
Following a LXT1001 hard or soft reset, the LXT1001 reads
EEPROM and overwrites the CSRs. See Figure 6-1 to
determine which CSRs are overwritten following a reset.
When reloading CSRs from EEPROM, the LXT1001
calculates a 32-bit checksum and compares the checksum
against the checksum value stored in EEPROM. If an
incorrect checksum is obtained, the LXT1001 will set
EECKSMER in the EEPROM register. If this bit is set, it is
the responsibility of the HOST software to restore the
default values to the CSRs.

HOST software can access EEPROM using the EEPROM
and EEPROM Data Registers on an individual DWORD
basis. Although EEPROM is organized internally as 16-bit
words, the LXT1001 presents the EEPROM contents as
32-bit DWORDs to HOST software. The LXT1001
accomplishes this by combining two EEPROM 16-bit
words into a 32-bit big endian DWORD.

Since the LXT1001 can operate without EEPROM, HOST
software must determine if EEPROM is present prior to
accessing it. If EEPROM is present, the LXT1001 sets the
EEPMPN bit in the EEPROM Register. To read a value from
EEPROM, HOST software sets EEAD in the EEPROM
Register to the index of the EEPROM DWORD to be read.
It then sets EERDCM and EESL bits in the EEPROM
Register to initiate the read command. HOST software must
then poll the EESL bit to await the completion of the
EEPROM read command. The LXT1001 clears the EESL
bit after completing the read command. HOST software can
then read the value from the EEPROM Data Register.

To write a value to EEPROM, HOST software first writes
the value to be written to EEPROM to the EEPROM Data
Register. Next, HOST software sets EEAD in the EEPROM
Register to the index of the EEPROM DWORD to be
written. It then sets EEWTCM and EESL bits in the
EEPROM Register to initiate the write command. HOST
software must then poll the EESL bit to await the completion
of the EEPROM write command. The LXT1001 clears the
EESL bit after completing the write command. If HOST
software writes a value in EEPROM, it must also recalculate
and write the new checksum value to EEPROM.

Expansion ROM Support
The LXT1001 provides an expansion ROM interface. If
present, the expansion ROM contains an executable image
that is invoked by the HOST system’s BIOS during the boot
process. An expansion ROM attached to the LXT1001
typically contains an executable image that allows the
network connection to be the boot device (i.e., the device
from which the operating system is loaded). The LXT1001

expansion ROM interface supports EPROM and flash
devices.

HOST BIOS detects the presence and size of the expansion
ROM using the Expansion ROM Base Address Register at
offset 30h in the PCI Configuration space. If the expansion
ROM is present, HOST BIOS maps the expansion ROM
into the HOST’s memory address space by writing at the
base address to the Expansion ROM Base Address Register.
Due to the slow access times for expansion ROM devices,
BIOS shadows (i.e., copies) the expansion ROM image into
system RAM. When BIOS executes the expansion ROM
image, it executes the expansion ROM image copied to
RAM.

Once BIOS has mapped expansion ROM into HOST
memory address space, HOST software can read the
expansion ROM just as it reads any other memory location.
HOST software can read the expansion ROM using 8-, 16-,
and 32-bit memory accesses. Due to the slow access times
of most flash devices, however, HOST software should
avoid 32-bit read accesses after system initialization time
to ensure the PCI 16- and 8-clock bus holding rules are not
violated. The PCI specification allows the bus holding rules
to be violated during system initialization so expansion
ROMs can be shadowed to system RAM using 32-bit
accesses.

If the expansion ROM is a flash device, HOST software can
also perform memory writes to the device. HOST software
can determine whether a flash device is present by checking
the FLPN bit in the EEPROM Register. To enable writing
to the flash device, HOST software must first set the
FLWTEN bit in the EEPROM Register. HOST software
then writes to the flash device using 8-bit accesses. The host
software must delay at least 1 ms between each byte written
to the flash. If either the FLPN or FLWTEN bits are clear,
write accesses to the expansion ROM do not change the
contents of the expansion ROM.

Magic Packet Wake Up
The LXT1001 supports wake up via Magic Packet
technologyin systems that support PCI power management.
Magic Packet technology, developed by Advanced Micro
Devices, allows a computer system in a low or no power
state to be restored to a full power state remotely via
network. This is accomplished by sending a packet
containing a specific data sequence. This is referred to as a
Magic Packet data sequence. The LXT1001 requires the
power to be supplied to the LXT1001 via the PCI bus,
however, all other components in the computer system can
be in a low or no power state.

45

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

In order for a packet to be considered a Magic Packet data
sequence, it must meet the following criteria:

• It must contain a valid 14-byte MAC header; i.e., 6-byte
destination address, 6-byte source address, and 2-byte
length/type field. The destination address can be a
unicast, multicast, or broadcast address.

• The packet must be have a valid CRC and be at least
the minimum frame size in length.

• The LLC data portion of the packet must contain a
6-byte preamble 0xFF, followed by 16 repetitions of
the LXT1001’s MAC address. The preamble and MAC
address repetitions must be contiguous. The sequence
itself can begin at any offset within the LLC data.

It is necessary to permit Magic Packet data sequences to
contain a multicast or broadcast destination address to
ensure the computer is reachable through routers. Some
protocols cause routers to discard the unicast MAC address
of a computer from their routing tables when the computer
is powered off. In such instances, a Magic Packet data
sequence containing a unicast destination address can not
be routed to the computer. A Magic Packet data sequence
containing a broadcast or multicast address, however, can
always be routed to a computer and, therefore, allow the
computer to be successfully awakened.

The LXT1001 is put into Magic Packet mode by setting the
MGPKEN bit in Mode Register – 1. When a Magic Packet
data sequence is received, the RXMGPKIN bit is set in the
Event Status Register. If the RXMGPKMS and INENMS
bit are set in the Interrupt Mask Register, an interrupt on the
PCI bus is generated.

The reception of a Magic Packet data sequence can also
cause the system to wake up via the power management
event (PME) pin. In a computer that supports PCI power
management, assertion of the PME causes the system to
return to a fully powered state. The following section
discusses how to configure the LXT1001 such that a Magic
Packet data sequence results in the PME pin being asserted.

PCI Power Management
The LXT1001 complies with the PCI Power Management
Interface Specification, Rev. 1.0. This specification defines

a set of PCI configuration space registers used to query a
PCI device’s power management capabilities, and query
and set its power management state. Additionally, a PME
pin is defined for signaling wake up events to the computer
system. System-level software uses these interfaces to
manage the power state of the PCI devices. Refer to the PCI
Power Management Specification, Rev. 1.0, for a detailed
description of these registers and pin.

The LXT1001 supports power management in the following
manner:

• It supports device power states D0, D3hot, and D3cold.

• No explicit action is taken to power down blocks within
the LXT1001. Power savings occur because the PCI
block and MAC will not put data into the Tx and RX
FIFOs during the D3hot state.

• PME assertion can occur due to Magic Packet data
sequence frame recognition during either the D0 or
D3hot power states.

• PCI Configuration space accesses are enabled while in
the D0 and D3hot power state.

• Interrupts, PCI memory transactions, and PCI I/O
transactions are disabled in D3hot.

• The Power Management Register Block is
implemented in the PCI configuration space.

The PME_En bit in the Power Management Control/Status
Register (PMCSR) governs whether or not a Magic Packet
event results in the PME pin being asserted. The MGPKEN
enable bit in CSR 00 enables the Magic Packet detection
logic in the MAC. For a Magic Packet data sequence to be
detected and cause PME to be asserted, both the MGPKEN
bit in CSR 00 and the PME_En bit in PMCSR must be set.
When these bits are set and a Magic Packet data sequence
is received, the PME pin is asserted and the LXT1001 resets
itself as if a PCI RST had occurred, with one exception: the
PME context is preserved across the reset. The PME context
is defined as the state of all bits in the Power Management
Control/Status Register and the state of the PME pin. The
PME will remain asserted until either the PME_Status bit
or the PME_En bit is cleared by software.

46
l

LXT1001 Network Controller
Theory of Operations

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

47

LXT1001 Network Controller
PCI Configuration Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

SECTION 3 PCI CONFIGURATION REGISTERS

Figure 3-1 PCI Configuration Space Register Map

In Figure 3-1, default values following PCI RST appear in
parenthesis. The default values for registers loadable from
EEPROM become overridden by values specified in
EEPROM when EEPROM is present and functioning. Refer
to the PCI 2.2 Specification for a detailed description of the

PCI configuration registers. Refer to the PCI Bus Power
Management Interface Specification, Rev, 1.0, for a
detailed description of the PCI configuration registers
specific for power management.

00h Device ID (0001h) Vendor ID (1394)

04h Status (00B0h) Command (0000h)

08h Class Code (020000h) Revision ID (02)

0Ch BIST (00h) Header Type (00h) Latency Timer (0Dh) Cache Line Size (00h)

10h Base Address Register 0: I/O base address (00000001h)

14h Base Address Register 1: memory base address – LSD (00000004h)

18h Base Address Register 2: memory base address – MSD (00000000h)

1Ch Base Address Register 3: Not used by LXT1001. (00000000h)

20h Base Address Register 4: Not used by LXT1001. (00000000h)

24h Base Address Register 5: Not used by LXT1001. (00000000h)

28h Cardbus CIS Pointer: Not used by LXT1001. (00000000h)

2Ch Subsystem ID (0001h) Subsystem Vendor ID (1308h)

30h Expansion ROM Base Address (00000000h)

34h Reserved (0000000h) Capabilities Ptr (44h)

38h Reserved (00000000)

3Ch Max_Lat (00h) Min_Gnt (00h) Interrupt Pin (01h) Interrupt Line (00h)

40h Reserved (0000h) Retry Timeout (00h) TRDY Timeout (00h)

44h Power Management Capabilities Register (4801h) Next Item Ptr (00h) Power Mgmt Cap. ID
(01h)

48h Reserved (0000h) Power Management Control/Status Register (0000h)

4Ch –
FFh

Reserved (00000000h)

Loaded from EEPROM

48
l

LXT1001 Network Controller
PCI Configuration Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

49

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

SECTION 4 COMMAND AND STATUS REGISTERS

This section presents the details of the register interface to
the LXT1001. The information is arranged in tabular form
with the following format:

The individual columns of the table have the following
significance:

Bit Field — This column indicates the start and end bit
position of a field of bits. The most significant bit position
is listed first, followed by a colon character (“:”) and the
least significant bit position of the field within the register.
For single bit fields, the position number is listed without
the ensuing colon and end bit identifier. For example, 20:17
identifies a bit field that is 4 bits wide. The most significant
bit is bit 20, and the least significant bit is bit 17. Bit 20
represents a value of 23 and bit 17 represents a value of 20.

Type — The type field can contain a series of single letter
identifiers that denote the behavioral attributes of specific
bit fields within a register. The identifiers are concatenated
together to denote the attributes that apply to the given bit
field. Acceptable type designators are:

• R — Read.

• W — Write.

• A — Auto Clear. (Auto Clear implies the field is
readable.)

• C — Clear after read.

E2 — This column is used to denote if the field’s initial
value is to be obtained from the serial EEPROM. If a field’s
initial value is obtained from EEPROM, a check mark (√)
is placed in this column. Otherwise, an x mark (x) is placed
in the column.

Mnemonic — Values in this column provide symbolic
names for the corresponding field. The mnemonics are
constructed to aid in the pronunciation of the field’s name.
Generally, mnemonics are two characters in length and are
concatenated to form a single symbol. For example, the
mnemonic BFAD is comprised of the two sub-mnemonics
BF which represents the word buffer and AD which
represents the word address. Together, they symbolize a
buffer address. Each mnemonic used in this document is
listed in the Glossary, Section 7.

Default Value — The Default Value column denotes the
value the register will assume once the LXT1001 has been
powered up and placed into its start state. Fields that are
initialized from EEPROM also have a default value. In these
cases, the default value is applied prior to EEPROM being
read. This method provides a means for the chip to initialize
even if the EEPROM should fail, or if an EEPROM is not
desired.

Description — The Description column provides a brief
explanation of the field and its usage.

One important aspect of the register interface is that it is
inherently a 32-bit interface. This is due to the PCI’s use of
a 32-bit I/O path despite its support for 64-bit data and
address paths for memory cycles. The net result of this
design attribute of the PCI bus is that 64-bit address registers
implemented in the LXT1001 must be accessed with two
32-bit I/O cycles. To avoid race conditions when writing to
64-bit registers, a policy is adopted by the LXT1001
whereby it only examines the contents of a 64-bit register
once the least significant DWORD (LSD) is written. To help
clarify the policy, consider the case where a 64-bit register
is maintained by the LXT1001 and is updated by HOST
software. The HOST begins by writing the MSD register.
After the MSD is written, the HOST writes the LSD. This
policy brings about two noteworthy behaviors. First, it
eliminates the potential for a race condition between the
HOST and the LXT1001. Second, it provides a means by
which 64-bit registers can be updated with single 32-bit
writes. For example, when initializing the PDC Buffer
Address Table (which requires 64-bit physical addresses for
PDC data buffers), HOST software can write the contents
of the Transmit PDC Buffer Address MSD Register prior to
initializing the table. Subsequently, the HOST software can
consecutively write the LSDs of the PDC buffer addresses
to the register without further manipulation of the MSD
register. This technique works because the MSDs of the
addresses of PDC data buffers are almost certainly the same
for all PDC data buffers allocated by HOST software. Once
this MSD is written to the Transmit PDC Buffer Address
MSD Register, it is read by the LXT1001 each time the LSD
register is written.

Bit Field Type E2 Mnemonic Default Value Description

50
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 00 Mode Register – 1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

L
N
C
K
E
N

U
S
P
I

M
D
1

U
S
P
I

M
D
0

V
L
I
S
G
B

V
L
R
M
I
D

V
L
T
B
E
N

V
L
E
N

S
E
R
E
C
L

R
X
F
L
C
T
E
N

M
G
M
C
B
C
E
N

M
G
P
K
E
N

R
E
S
R
V
D

T
X
C
R
E
N

P
A
E
R
P
K
E
N

P
A
C
R
E
N

S
E
R
E
C
L

L
G
P
K
E
N

U
C
E
N

P
O
E
N

B
C
E
N

M
C
E
N

R
X
E
N

T
X
E
N

S
E
R
E
C
L

R
E
S
R
V
D

T
X
P
P
E
N

G
M
S
T
P
O
E
N

R
X
T
R
P
R

R
E
S
R
V
D

R
E
S
R
V
D

S
W
R
E

S
E
R
E
C
L

Bit
Field Type E2 Mnemonic

Default
Value Description

0 W x SERECL 0 Set/Reset Control — Set/reset control bit for bits[7:1]

1 WA x SWRE 0 Soft Reset — When set, the LXT1001 resets all internal
registers with the exception of the PCI configuration
registers. This includes the Transmit PDC Buffer, Receive
PDC Buffer, Address Table, VLAN Tage Control Table,
etc. This bit remains set for the duration of the reset. Upon
completion of the reset, the LXT1001 automatically clears
this bit. HOST software can poll this bit to determine
when the reset has completed.

2 N/A x RESRVD N/A Reserved

3 N/A x RESRVD N/A Reserved

4 RW √ RXTRPR 0 Receive/Transmit Priority — Bus arbitration priority
between receive and transmit. When set, the LXT1001
uses a round-robin arbitration scheme between receive and
transmit (equal priority). When reset, receive has an 8:1
priority over transmit.

5 RW √ GMSTPOEN 0 G/MII Status Polling Enable — When set, the LXT1001
periodically queries the PHY to determine if a status
change has occurred. If a status change has occurred, the
LXT1001 sets the PHLASTIN bit in the Event Status
Register.
When clear, the LXT1001 does not query the PHY for a
status change. HOST software can perform this operation
manually via the G/MII PHY Access Register.

6 RW √ TXPPEN 1 Transmit Packet Pad Enable — When set, the LXT1001
pads a transmit packet to the minimum frame size. The
minimum frame size for ethernet is 60 bytes, excluding the
CRC and VLAN tag field.

7 N/A √ RESRVD N/A Reserved

8 W x SERECL 0 Set/Reset Control — Set/reset control bit for bits[15:9]

51

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

9 RW x TXEN 0 Transmitter Enable — When set, the LXT1001 can
perform transmits. When reset, the LXT1001 will not
perform transmits. If a packet transmission is in progress,
the LXT1001 will complete it and stop.

10 RW x RXEN 0 Receiver Enable — When set, the LXT1001 can perform
receives. When reset, the LXT1001 will not perform
receives. If a packet reception is in progress, the LXT1001
will complete it and stop.

11 RW x MCEN 0 Multicast Enable — When set, the LXT1001 will accept
a packet with a multicast destination address that matches
in the Multicast Hash Table Register.

12 RW x BCEN 0 Broadcast Enable — When set, the LXT1001 will accept
a packet with a broadcast destination address.

13 RW x POEN 0 Promiscuous Mode Enable — When set, all packets will
pass the LXT1001’s destination address filter, regardless
of the settings of UCEN, MCEN, and BCEN. Packets,
however, are still subject to the LXT1001’s other
reception filters. To cause the LXT1001 to accept all
packets without modification, HOST software must set the
POEN, PAERPKEN, and PACREN bits in Mode Register
– 1, and clear the VLTBEN, VLRMID, and RMPPEN bits
in Mode Register – 1.

14 RW x UCEN 1 Unicast Mode Enable — When set, the LXT1001 will
accept frames in which the destination address matches the
LXT1001’s unicast address; i.e., the address set in the
LAN Physical Address Register (CSR 42). When reset,
frames with the destination addresses matching the
station’s unicast address will not be accepted.

15 RW √ LGPKEN 0 Large Packet Enable — This bit determines how the
LXT1001 processes packets that exceed the maximum
packet size.
When the LGPKEN bit set, the LXT1001 receives the
packets that exceed the maximum packet size into the RX
FIFO and sets the LGPK bit in the receive header. The
Large Packet Count is incremented.
When the LGPKEN bit is clear, the LXT1001 treats
packets that exceed the maximum packet size as an errored
packet. If the PAERPKEN bit is clear, the LXT1001
discards the packet. If the PAERPKEN bit is set, the
LXT1001 receives the packet into the FIFO and sets the
LGPK and ERROR bits in the receive header. Regardless
of the state of PAERPKEN, the LXT1001 increments the
Large Packet Count and Errored Packet Count.
The maximum packet size used by the LXT1001 varies
depending on the state of the VLEN bit. If VLEN is clear,
the maximum packets size is 1518 bytes (including CRC).
If VLEN is set, the maximum packet size is increased to
1522 bytes to allow for the 4-byte VLAN header.

Bit
Field Type E2 Mnemonic

Default
Value Description

52
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
16 RW x SERECL 0 Set/Reset Control — Set/reset control bit for bits[23:17]

17 RW x PACREN 0 Pass CRC Enable — When set, this bit indicates to the
LXT1001 that the HOST software wishes to receive each
frame’s CRC field. On reception, the only time this bit is
defined, the inbound frame’s CRC field is transferred to
receive buffers as it appears on the wire. Receive buffers
are expected to be sufficiently large to accommodate the
CRC. If not, a HOST buffer overflow error occurs.
Regardless of the state of PACREN, the LXT1001 does
not pass the CRC of packets from which it has removed
the packet padding or a VLAN header. Since these fields
are included in the CRC calculation, the CRC is no longer
valid after the LXT1001 has removed them. Therefore, the
LXT1001 does not pass the CRC in this case.

18 RW x PAERPKEN 0 Pass Errored Packet Enable — When set, this bit
indicates to the LXT1001 that the HOST software wishes
to receive errored packets. The errored packets are
deposited (as best they can be) into HOST receive buffers
and appropriate error bits are set in the receive header
status fields.

19 RW x TXCREN 1 Transmit CRC Enable — When set, the LXT1001 will
generate and append a CRC to transmitted packets. When
clear, the LXT1001 does not generate or append the CRC
to transmitted packets.
Clearing the TXCREN bit can conflict and cause
undefined behavior when other mode settings that cause
the LXT1001 to insert or modify packet data prior to the
packets transmission. In particular, enabling the padding,
VLAN tag insertion, or TCPIP checksum features when
the TXCREN bit is clear, results in the packet being
transmitted with a invalid CRC.

20 N/A x RESRVD N/A Reserved

21 RW √ MGPKEN 0 Magic Packet Enable — This bit enables the LXT1001’s
ability to recognize a Magic Packet recognition and
generate a wake up signal.

22 RW √ MGMCBCEN 0 Magic Packet Multicast/Broadcast Enable — When
clear, the LXT1001 only accepts Magic Packet data
sequences with a destination address that matches the
LAN Physical Address CSR.
When this bit is set, the LXT1001 accepts Magic Packet
data sequences whose destination address is a unicast,
multicast address enabled via the Multicast Hash Table
Register, or is an all stations broadcast.

Bit
Field Type E2 Mnemonic

Default
Value Description

53

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

23 RW √ RXFLCTEN 1 Receive Flow Control Enable — This bit enables the
LXT1001’s ability to detect and act upon the reception of
a MAC Control PAUSE frame.
When this bit is set and the link is a full-duplex
connection, the LXT1001 will disable the transmitter
when a MAC Control PAUSE frame is received. The
LXT1001 will re-enable the transmitter after the duration
of time specified in the PAUSE frame has elapsed. If
another PAUSE frame is received before time has elapsed,
the LXT1001 will reset its timer to the value specified in
the subsequent PAUSE frame.
When clear, the LXT1001 will ignore PAUSE frames.

24 W x SERECL 0 Set/Reset Control — Set/reset control bit for bits[31:25].

25 RW √ VLEN 0 VLAN Enable — When set, the LXT1001’s VLAN
support is enabled. When clear, VLAN support is disabled.

26 RW √ VLTBEN 0 VLAN Tag Table Enable — This bit enables/disables the
LXT1001’s VLAN receive filter. The VLAN receive filter
is applied to packets that contain a VLAN header and have
already passed the destination address filter.
When this bit is set, the LXT1001 only accepts packets
whose VLAN IDs are found in the VLAN register table.
If VLTBEN is clear, the LXT1001 accepts all VLAN
frames that pass the destination address filter.

27 RW √ VLRMID 0 VLAN Remove ID — When set, the LXT1001 removes
the VLAN header from received packets.
When clear, the LXT1001 does not remove the VLAN
header from packets.

28 RW √ VLISGB 0 VLAN Insert Global — When set, the LXT1001 inserts
the global VLAN header prior to transmitting a packet.
The VLAN header is constructed based on the tag
definition at index zero of the VLAN Tag Table.
When clear, the LXT1001 does not automatically insert a
VLAN header into a transmitted packet.
The effect of the VLISGB bit can be overridden on a per
packet basis by setting the VLIS bit in the transmit header.
Refer to the transmit header definitions for PIO, PDL, and
PDC modes for more detail.

29 RW √ USPIMD0 0 User Pin0Mode — This bit determines whether User Pin0
is an input or output. When this bit is set, User Pin0 is an
input. When operating as an input, the LXT1001 updates
the USPIST0 bit in the Chip Status Register to reflect the
state of this pin.
When this bit is clear, the LXT1001 drives the state of the
pin based on the value in the USPIST0 bit in the Chip
Status Register.

Bit
Field Type E2 Mnemonic

Default
Value Description

54
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

CSR 01 Mode Register – 2

30 RW √ USPIMD1 0 User Pin1Mode — This bit determines whether User Pin1
is an input or output. When this bit is set, User Pin1 is an
input. When operating as an input, the LXT1001 updates
the USPIST1 bit in the Chip Status Register to reflect the
state of this pin.
When this bit is clear, the LXT1001 drives the state of the
pin based on the value in the USPIST1 bit in the Chip
Status Register.

31 RW √ LNCKEN 1 Length Check Enable — This bit governs the LXT1001’s
ability to detect length errors in received packets. A length
error is defined as a packet containing a length/type field
with a value less than 1536 and one of the following two
conditions:

• The value is greater than the number of bytes in the data
field (the bytes after length/type and before the FCS).

• The value is less than the number of bytes in the data
field and the packet size is not the minimum length or
greater than the maximum length (i.e., a large packet).

When LNCKEN is set, the LXT1001’s length checking
logic is enabled.
When LNCKEN is clear, the LXT1001’s length checking
logic is disabled.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

P
A
C
K
E
R
E
N

R
X
U
P
C
K
E
N

R
X
T
P
C
K
E
N

R
X
I
P
C
K
E
N

R
E
S
R
V
D

L
P
B
K
M
D

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

4:0 N/A x RESRVD N/A Reserved

7:5 RW x LPBKMD 000 Loopback Mode
• 000 is no loopback.

• 010 is MAC loopback. This setting causes the
LXT1001’s MAC block to route outbound packets to
the MAC receiver logic instead of to the PHY
transmitter logic.

All other values are reserved.

Bit
Field Type E2 Mnemonic

Default
Value Description

55

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

11:8 N/A √ RESRVD N/A Reserved

12 RW √ RXIPCKEN 0 Receive IP Header Checksum Enable — When set, the
LXT1001 computes the IP header checksum of all
received packets containing an IP header and compares the
checksum against the IP header checksum in the received
packet. If the checksum passes, the packet is accepted and
IPCKSMER bit in the receive header is cleared.
If the checksum fails, the action taken depends on the state
of the PACKEREN bit. If the PACKEREN bit is set,
IPCKSMER bit is set in the receive header. Otherwise, the
LXT1001 discards the packet.

13 RW √ RXTPCKEN 0 Receive TCP Checksum Enable — When set, the
LXT1001 computes the TCP checksum of all received
packets containing a TCP header and compares the
checksum against the TCP checksum in the received
packet. If the checksum passes, the packet is accepted and
TPCKSMER bit in the receive header is cleared.
If the checksum fails, the action taken depends on the state
of the PACKEREN bit. If the PACKEREN bit is set,
TPCKSMER bit is set in the receive header. Otherwise,
the LXT1001 discards the packet.

14 RW √ RXUPCKEN 0 Receive UDP Checksum Enable — When set, the
LXT1001 computes the UDP checksum of all received
packets containing a UDP header and compares the
checksum against the UDP checksum in the received
packet. If the checksum passes, the packet is accepted and
UPCKSMER bit in the receive header is cleared.
If the checksum fails, the action taken depends on the state
of the PACKEREN bit. If the PACKEREN bit is set,
UPCKSMER bit is set in the receive header. Otherwise,
the LXT1001 discards the packet.

15 RW √ PACKEREN 0 Pass Checksum Error Enable — This bit determines
how the LXT1001 handles packets containing IP, TCP, or
UDP checksum errors. If this bit is set, the LXT1001 sets
the appropriate checksum error bits in the receive header
and passes the packet to HOST software. If this bit is clear,
the LXT1001 discards the packet and HOST software
never sees the packet.
The PAERPKEN bit in Mode Register – 1 overrides this
bit. If PAERPKEN is set, packets containing TCP/IP
checksum errors are received regardless of the setting of
PACKEREN. If PAERPKEN is clear, the setting of
PACKEREN governs the acceptance of packets TCP/IP
checksum errors.

31:16 N/A x RESRVD N/A Reserved

Bit
Field Type E2 Mnemonic

Default
Value Description

56
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 02 Transmit PDC Buffer Address Table Index

In PDC mode, a table of pre-allocated buffer physical
addresses is maintained onboard the LXT1001. PDC
transmit commands passed to the LXT1001 reference
preprogrammed addresses in the table with the buffer ID
(BID) field of the PDC command. The BID field is used to
index into the table and extract the address of the desired
buffer. Thus, the LXT1001 knows where in HOST memory
to look for the data to be transmitted.

As used above, pre-allocated buffers are locked
(non-pageable), and occupy contiguous CPU pages
(allocated once per driver invocation) and their physical
addresses can be determined far in advance of actual use —
usually at system initialization time. For this process to work
correctly, the physical addresses of the pre-allocated buffers
must be made known to the LXT1001 prior to first use
(typically during initialization). HOST software initializes
the table by writing the index of the desired table entry into
this register and the physical address of a specific
pre-allocated buffer into the Transmit PDC Buffer Address
MSD Register and the Transmit PDC Buffer Address LSD

Register. The stated order is required for addresses larger
than 32-bits on PCI implementations that do not support
64-bit I/O — essentially, all current PCI implementations.
A method for reducing the number of I/O cycles required
to pass addresses larger than 32-bits using a single PCI
transaction in systems supporting only 32-bit I/O is
described below. By repeating this process for each slot in
the table, the whole table can be initialized with the physical
addresses of pre-allocated buffers.

For systems that do not require the additional 32-bits of
address space, or for those systems where the upper 32-bits
are the same for all the transmit buffers, the MSD register
can be written once with the appropriate value. Once the
MSD register is initialized, all subsequent writes can be
directed at the LSD register. Each time the LSD register is
written, the LXT1001 will transfer the preprogrammed
value in the MSD register along with the new value
programmed into the LSD register into the buffer address
table.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

T
B
I
X

Bit
Field Type E2 Mnemonic

Default
Value Description

5:0 W x TBIX 0 Table Index — This value specifies which slot in the PDC
Transmit Base Address Table will be modified by the next
write to the Transmit PDC Buffer Address Register. The
PDC Transmit Base Address Table has 64 slots.

7 x x RESRVD x Reserved

31:8 x x RESRVD x Reserved

57

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 03 Product Identification Register

CSR 04 Transmit PDC Buffer Address LSD

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
V
I
D

D
V
I
D

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 R x DVID 1 Device Identifier — A value that uniquely identifies the
LXT1001 from all other Level One Technologies
products. When read, this field returns the same value that
is returned when reading the Device ID register in the
LXT1001’s PCI configuration space.

23:16 R x RVID 0 Revision Identifier — A value that uniquely identifies a
particular revision level of the LXT1001. Revision
numbers are assigned beginning at 0.
When read, this field returns the same value that is
returned when reading the Revision ID Register in the
LXT1001’s PCI configuration space.

31:24 x x RESRVD 0 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
F
A
D
L
O

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x BFADLO 0 Buffer Address Low DWORD — Values written to this
register are placed by the LXT1001 into the LSD (bits
31:0) of the Transmit PDC Buffer Address Table. Once
HOST software writes to this register, the LXT1001 will
transfer the contents of this register and the contents of the
Transmit PDC Buffer Add MSD register to the Transmit
PDC Buffer Address Table. The HOST identifies which
entry in the buffer address table is to be modified by
writing the entry’s index value in the Transmit PDC Buffer
Address Table Index Register.

58
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 05 Transmit PDC Buffer Address MSD

CSR 06 Receive PDC Buffer Address Table Index

In PDC mode, a table of pre-allocated buffer physical
addresses is maintained onboard the LXT1001. PDC
receive commands passed to the LXT1001 reference

pre-programmed addresses in the table with the BID field
of the PDC command. Thus, the LXT1001 knows where in
HOST memory to look for the data to be transferred.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
F
A
D
H
I

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x BFADHI 0 Buffer Address High DWORD — Values written to this
register are placed by the LXT1001 into the MSD (bits
63:32) of the Transmit PDC Buffer Address Table. The
HOST identifies which entry in the buffer address table is
to be modified by writing the entry’s index value in the
Transmit PDC Buffer Address Table Index Register.
The buffer address table proper is not affected by any data
stored in this register until the LSD (bits 31:0) of the
address are written into the Transmit PDC Buffer Address
LSD Register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

T
B
I
X

Bit
Field Type E2 Mnemonic

Default
Value Description

5:0 W x TBIX 0 Table Index — This value specifies which slot in the PDC
Receive Base Address Table will be modified by the next
write to the PDC Receive Base Address Table Data
Register. The PDC Receive Base Address Table has 64
slots.

7:6 x x RESRVD x Reserved

31:8 x x RESRVD x Reserved

59

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

As used above, pre-allocated buffers are locked
(non-pageable), and occupy contiguous CPU pages
(allocated once per driver invocation) and their physical
addresses can be determined far in advance of actual use —
usually at system initialization time. For this process to work
correctly, the physical addresses of the pre-allocated buffers
must be made known to the LXT1001 prior to first use
(typically during initialization). HOST software initializes
the table by writing the index of the desired table entry into
this register and the physical address of a specific
pre-allocated buffer into the Receive PDC Buffer Address
MSD Register and the Receive PDC Buffer Address LSD
Register. The stated order is required for addresses larger
than 32 bits on PCI implementations that do not support
64-bit I/O — essentially, all current PCI implementations.
If PCI versions subsequent to 2.1 implement 64-bit I/O, the
Receive PDC Buffer Address LSD/MSD Register can be
accessed as a single register and the sequence restriction

does not apply. A method for reducing the number of I/O
cycles required to pass addresses larger than 32-bits using
a single PCI transaction in systems supporting only 32-bit
I/O is described below. By repeating this process for each
slot in the table, the whole table can be initialized with the
physical addresses of pre-allocated buffers.

For systems that do not require the additional 32 bits of
address space, or for those systems where the upper 32 bits
are the same for all the transmit buffers, the MSD register
can be written once with the appropriate value. Once the
MSD register is initialized, all subsequent writes can be
directed at the LSD register. Each time the LSD register is
written, the LXT1001 will transfer the preprogrammed
value in the MSD register along with the new value
programmed into the LSD register into the buffer address
table.

CSR 07 Reserved
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

60
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR08 Receive PDC Buffer Address LSD

CSR 09 Receive PDC Buffer Address MSD

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
F
A
D
L
O

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x BFADLO 0 Buffer Address Low DWORD — Values written to this
register are placed by the LXT1001 into the Receive PDC
Buffer Address Table at the slot indicated by the TBIX
field in the Receive PDC Buffer Address Table Register.
The LXT1001 examines the values in the Receive PDC
Buffer Address LSD/MSD Registers when the Receive
PDC Buffer Address LSD Register is written.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
F
A
D
H
I
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x BFADHID 0 Buffer Address High DWORD — Values written to this
register are placed by the LXT1001 into the Receive PDC
Buffer Address Table at the slot indicated by the TBIX
field in the Receive PDC Buffer Address Table Register.
The LXT1001 examines the values in the Receive PDC
Buffer Address LSD/MSD Registers when the Receive
PDC Buffer Address LSD Register is written.
The buffer address table proper is not affected by any data
stored in this register until the LSD (bits 31:0) of the
address is written into the Receive PDC Buffer Address
LSD Register.

61

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 10 EEPROM Register
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

F
L
W
T
E
N

F
L
P
N

E
X
R
M
T
M

R
E
S
R
V
D

E
E
A
D

R
E
S
R
V
D

E
E
S
L

E
E
M
U

E
E
C
K
S
M
E
R

R
E
S
R
V
D

E
E
W
T
C
M

E
E
R
D
C
M

E
E
P
M
P
N

Bit
Field Type E2 Mnemonic

Default
Value Description

0 R x EEPMPN 0 EEPROM Present — This bit is set if EEPROM is
present.

1 W x EERDCM 1 EEPROM Read Command — This bit selects the
EEPROM read command. This bit must be set in
conjunction with either the EEMU bit or EESL bit for a
read command to occur.

2 W x EEWTCM 0 EEPROM Write Command — This bit selects the
EEPROM write command. This bit must be set in
conjunction with the EESL bit for a write command to
occur.

3 x x RESRVD 0 Reserved

4 A x EECKSMER 0 EEPROM Checksum Error — When set, this bit
indicates that a checksum error occurred when the
LXT1001 attempted to read EEPROM. HOST software
can retry the operation if desired. If this bit is set, it is the
responsibility of the HOST software to restore the default
values to the CSRs.

62
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
5 WA x EEMU 1 EEPROM Multiple Access — Instructs the LXT1001 to

begin processing a multiple access read command. A
multiple access read command causes the LXT1001 to
reinitialize CSRs with their associated EEPROM values.
See Figure 6-1 for a list of CSRs that have associated
EEPROM values.
The EEMU bit must be set in conjunction with the
EERDCM bit for the reads to occur.
The EEMU bit remains set for the duration of the multiple
access read command. Upon completion of the command,
the LXT1001 will automatically clear this bit. HOST
software can poll this bit to determine when the command
has completed.
Setting the EEMU bit in conjunction with the EEWTCM
bit will result in an error.
The default value for this register is 1. This causes the
LXT1001 to read EEPROM following a hard or soft reset.
When the read of EEPROM has completed, the LXT1001
clears EEMU.

6 WA x EESL 0 EEPROM Single Access — Instructs the LXT1001 to
begin processing a single access command to EEPROM. A
single access command can be either a read or write.
Setting the EESL bit in conjunction with the EERDCM bit
causes a single access read from EEPROM. The EEPROM
offset read from EEPROM is specified by EEAD. The
LXT1001 places the value read from EEPROM into the
EEPROM Data Register.
Setting the EESL bit in conjunction with the EEWTCM bit
causes a single access write to EEPROM. The EEPROM
offset written is specified by EEAD. The EEPROM Data
Register contains the value to be written.
Whether reading or writing, the EESL bit remains set for
the duration of the command. Upon completion of the
command, the LXT1001 automatically clears this bit.
HOST software can poll this bit to determine when the
command has completed.

7 x x RESRVD 0 Reserved

12:8 W x EEAD 0 EEPROM Address — This field specifies the offset of
the EEPROM DWORD to be read or written. Although
EEPROM is organized in 16-bit WORDs, the LXT1001
presents EEPROM to software as 32-bit DWORDs. For
example, to read the second DWORD in EEPROM,
software will set EEAD to 2. The LXT1001 will then
retrieve the WORDs at EEPROM offsets 4 and 5 and place
the result in the EEPROM Data Register.

15:13 x x RESRVD 0 Reserved

19:16 RW √ EXRMTM 0 Expansion ROM Timings

Bit
Field Type E2 Mnemonic

Default
Value Description

63

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

The EEPROM is manipulated at the following times:

1. During manufacturing, when the default
configuration and the MAC address are
programmed for the first time.

2. Each time the system is restarted, the default
configuration is reloaded into volatile LXT1001
registers.

3. Anytime HOST software explicitly requests that
EEPROM be read or written. This might happen
if a utility program is used to change the
programmed significance of the LEDs.

EEPROM is used as a convenient nonvolatile store of
LXT1001 parameters that are directly related to a particular
LXT1001 and ought not easily change, or that are required
during system boot. Apart from system startup time,
EEPROM will seldom be manipulated. EEPROM may also
be used by HOST software as a nonvolatile store for
software configuration parameters.

When reloading CSRs from EEPROM, the LXT1001
calculates a 32-bit checksum and compares the checksum
against the checksum value stored in EEPROM. If HOST
software writes a value in EEPROM, it must also recalculate
and write the new checksum value to EEPROM.

20 R √ FLPN 0 Flash Present — This bit is used to distinguish between
the presence of a flash device or ROM device. When set,
this bit indicates a flash device is attached to the
LXT1001. When clear, a ROM device is attached.

21 RW x FLWTEN 0 Flash Write Enable — When set, the LXT1001 allows
the flash expansion ROM to be written to via PCI memory
transactions. When clear, the flash can not be written.

31:22 x x RESRVD 0 Reserved

Bit
Field Type E2 Mnemonic

Default
Value Description

64
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 11 Chip Status Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
X
I
L

T
X
I
L

U
S
P
I
S
T
1

U
S
P
I
S
T
0

F
L
C
T
S
T

R
X
P
K
A
V

T
X
P
K
A
C

Bit
Field Type E2 Mnemonic

Default
Value Description

0 R x TXPKAC 1 Transmit Packet Acceptable — When set, indicates that
the TX FIFO has room for at least one maximum size
packet.

1 R x RXPKAV 0 Receive Packet Available — When set, indicates that the
RX FIFO holds at least one packet.

2 RA x FLCTST 0 Flow Control Status — The LXT1001 sets this bit when
it has temporarily disabled the transmitter due to the
reception of a PAUSE frame. The LXT1001 clears this bit
when it has re-enabled the transmitter.
HOST software queries this bit to determine if the
transmitter has been disabled due to reception of a PAUSE
frame.

3 RW x USPIST0 x User Pin0 State — The meaning and purpose of this bit
varies depending on the state of the USPMD0 bit in Mode
Register – 1.
When USPMD0 is set, User Pin0 is an input pin. In this
case, HOST software can read USPIST0 to determine the
state of User Pin0. If User Pin0 is high, the LXT1001 sets
USPIST0. If User Pin0 is low, the LXT1001 clears
USPIST0. HOST software must not write to USPIST0
when User Pin0 is acting as an input pin.
When USPMD0 is clear, User Pin0 is an output pin. In this
case, the LXT1001 drives the state of User Pin0 according
to state of USPIST0. If HOST software sets USPIST0 to 1,
the LXT1001 drives User Pin0 to the high state. If HOST
software clears USPIST0, the LXT1001 drives User Pin0
to the low state.

65

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

4 RW x USPIST1 x User Pin1 State — The meaning and purpose of this bit
varies depending on the state of the USPMD1 bit in Mode
Register – 1.
When USPMD1 is set, User Pin1 is an input pin. In this
case, HOST software can read USPIST1 to determine the
state of User Pin1. If User Pin1 is high, the LXT1001 sets
USPIST1. If User Pin1 is low, the LXT1001 clears
USPIST1. HOST software must not write to USPIST1
when User Pin1 is acting as an input pin.
When USPMD1 is clear, User Pin1 is an output pin. In this
case, the LXT1001 drives the state of User Pin1 according
to state of USPIST1. If HOST software sets USPIST1 to 1,
the LXT1001 drives User Pin1 to the high state. If HOST
software clears USPIST1, the LXT1001 drives User Pin1
to the low state.

5 R x TXIL 1 Transmitter Idle — This bit indicates whether or not the
LXT1001’s transmitter is currently transmitting a packet.
When set, the LXT1001 is not currently transmitting a
packet.
When clear, the LXT1001 is currently transmitting a
packet.

6 R x RXIL 1 Receiver Idle — This bit indicates whether or not the
LXT1001’s receiver is currently receiving a packet.
When set, the LXT1001 is not currently receiving a
packet.
When clear, the LXT1001 is currently receiving a packet.

31:7 x x RESRVD x Reserved

Bit
Field Type E2 Mnemonic

Default
Value Description

66
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR12 Transmit PDL Address Register LSD

Figure 4-1 describes the format of the PDL used in the
master mode packet transmission. The descriptor is used to
describe a single packet. HOST software guarantees the

PDLs are QWORD aligned. The fragments pointed to by
PDLs can be on any byte boundary.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
K
D
S
A
D
L
O

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x PKDSADLO N/A Descriptor Address — Writing to this register loads a
PDL’s address into the LXT1001’s TX command FIFO
and increments the TX command FIFO count. These
actions are triggered when the least significant DWORD is
written.

67

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Figure 4-1: PDL Transmit Header Format

The fields of the packet descriptor have the following
significance:

PKLE — Packet Length. The length of the packet contained
in the fragments described by this data structure is reflected
in the packet length field. As the BMC processes this data
structure, it takes the value in the PKLE field and passes it
to the MAC to indicate the number of bytes to be
transmitted. PKLE must equal the sum of the FGLEx fields.
If it does not, the packet is not transmitted onto the wire.
The maximum value for PKLE is 32 Kbytes — the size of
the TX FIFO packet header. HOST software must guarantee
that the value of PKLE is great than zero and less than 32
bytes.

FGCN — Fragment Count. Indicates the number of
fragments that are defined by the PDL. The sum of the
lengths of each fragment in the PDL corresponds with the
value stored in the PKLE field. This field allows the BMC
to determine the size of the PDL. A maximum size PDL can
accommodate up to 31 fragments. Each fragment descriptor
is 16 bytes in length. Thus, the maximum length PDL can
be 16 * 31 + 8 = 504 bytes in length.

VLTBIX — VLAN TCI Table Index. This field is an index
into the VLAN TCI Table. The LXT1001 uses the TCI
information at this index to construct a VLAN tag header.

VLIS — VLAN Insert Tag. Setting this bit causes the
LXT1001 to construct and insert a VLAN tag header into
the packet prior to its transmission. The LXT1001
constructs the VLAN tag header using the TCI at index
VLTBIX in the VLAN TCI Table.

DMDNINRQ — DMA Done Interrupt Request. Indicates
to the BMC that an interrupt is requested when the BMC is
done transferring the final fragment described by the PDL.
Note that no explicit correlation exists between the
transferred data and the interrupt.

FGAD — Fragment Address. Fields used to pass the
physical addresses of fragments to the BMC. Each PDL can
accommodate up to 31 fragment addresses arranged in
physically contiguous memory immediately following the
PDL’s command field.

FGLE — Fragment Length. Fields used to denote the length
in bytes of the packet data stored in the fragment. The sum

3
1

3
0

2
9

2
8

2
7

2
4

2
3

2
2

2
1

2
0

1
6

1
5

0
0

D
M
D
N
I
N
R
Q

R
E
S
R
V
D

V
L
I
S

V
L
T
B
I
X

R
E
S
R
V
D

F
G
C
N

P
K
L
E

RESRVD

FGAD LSD 0

FGAD MSD 0

RESRVD FGL 0

RESRVD

FGAD LSD 1

FGAD MSD 1

RESRVD FGLE 1

RESRVD

•
•
•

FGAD LSD 30

FGAD MSD 30

RESRVD FGLE 30

RESRVD

68
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
of all the FGLE fields in a PDL equals the value specified
in the PKLE field.

RESRVD — Reserved. HOST software sets this field to 0.

CSR 13 Transmit PDL Address Register MSD

CSR 14 Receive PDL Address Register LSD

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
K
D
S
A
D
H
I

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x PKDSADHI N/A Packet Descriptor Address High — Writing to this
register loads the address of a PDL into the LXT1001’s
Transmit Command FIFO and increments the Transmit
Command FIFO Count. These actions are triggered when
the least significant. DWORD is written.
Writing to this register does not initiate a Transmit PDL
command. Transmit PDL commands are only initiated
when the LSD of the PDL Address is written into the
Transmit PDL Address LSD Register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
K
D
S
A
D
L
O

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x PKDSADLO N/A Packet Descriptor Address Low — Writing to this
register loads the address of a PDL into the LXT1001’s
Receive Command FIFO and increments the Receive
Command FIFO Count. These actions are triggered when
the least significant DWORD is written.

69

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

The Receive PDL Address Register accepts pointers to
receive PDLs. These PDLs have a reciprocal function to
their transmit counterparts. However, the format of the
command block is nearly identical.

Figures 4-2 and 4-3 denote the positions and names of the
bits in the receive PDL header. Note that for receive PDLs,
there are two distinct packet formats. The first is used when
the PDL is transferred to the LXT1001. This pre-receive
header format is used to inform the LXT1001 of the location
of receive buffers and the per PDL processing options that

the HOST software wishes to enable. When the LXT1001
transfers a packet into HOST memory, the post-receive PDL
header format is used to convey the packet length and
reception status to the HOST. HOST software guarantees
the PDLs are QWORD aligned. The fragments pointed to
by PDLs can be on any byte boundary. The sum of the
receive PDC fragments must be at least 64 bytes. Therefore,
the host software must guarantee the sum of the receive PDC
fragments is at least 64 bytes.

70
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
Figure 4-2: PDL Pre-Receive Header Format

Pre-receive PDL header fields are initialized by HOST
software prior to handing the PDL to the LXT1001. The
fields of the pre-receive packet descriptor have the
following definition:

PKLE — Packet Length. The maximum number of
received data bytes the packet descriptor can accommodate.
This value is the sum of the individual fragment lengths. If
PKLE is greater than the sum of the fragments and the
received packet size is greater than the sum of the fragment
lengths, the received packet is truncated and no error is
indicated. If PKLE is less than the sum of the fragments and
the packet size is greater than PKLE, the EROV in the
post-receive PDL is set to indicate an overflow error. The
maximum value for PKLE is 64 Kbytes — the size of the
RX FIFO packet header.

FGCN — Fragment Count. The number of fragments
attached to the PDL. The maximum number of fragments
is 31. Each fragment descriptor is 16 bytes in length. Thus,
the maximum length PDL can be 16 * 31 + 8 = 504 bytes
in length.

RXINRQ — Receive Interrupt Request. When set, this bit
forces a receive interrupt to be generated when the
LXT1001 finishes transferring the packet to HOST
memory, even if the RXMS bit in the Interrupt Mask
Register is reset. The interrupt is a one-time interrupt
associated with the PDL that has the RXINRQ bit set. This
bit is useful in reducing the overall number of interrupts
passed to the HOST for receive packet processing.

FGAD — Fragment Address. Fields used to pass the
physical addresses of fragments to the BMC. Each PDL can
accommodate up to 31 fragment addresses arranged in
physically contiguous memory immediately following the
PDL’s command field.

FGLE — Fragment Length. Fields used to specify the
maximum number of bytes each f ragment can
accommodate. The sum of all the FGLE fields in a PDL
equals the value specified in the PKLE field.

RESRVD — Reserved. HOST software sets this field to 0.

3
1

3
0

2
1

2
0

1
6

1
5

0
0

R
X
I
N
R
Q

R
E
S
R
V
D

F
G
C
N

P
K
L
E

RESRVD

FGAD LSD 0

FGAD MSD 0

RESRVD FGLE 0

RESRVD

FGAD LSD 1

FGAD MSD 1

RESRVD FGLE 1

RESRVD

•
•
•

FGAD LSD 30

FGAD MSD 30

RESRVD FGLE 30

RESRVD

71

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Figure 4-3: PDL Post-Receive Header Format

Once the LXT1001 has deposited a received packet into the
memory described by a PDL, the LXT1001 updates the PDL
header to contain the packet length and receive status. The
post-receive PDL header fields are defined as follows:

PKLE — Packet Length. Indicates the packet’s length in
bytes. Note that this value reflects the actual length of the
packet as determined by the LXT1001. In cases where the
packet overflows the receive buffer, this field still reflects
the length of the packet and not the amount of data deposited
into the buffer.

FGCN — Fragment Count. The number of fragments
attached to the PDL. The value of this field remains
unchanged from the pre-receive PDL header.

PHAD — Physical Address. The PHAD bit indicates that
the received packet’s destination address matches the
LXT1001’s station (MAC) address.

BCAD — Broadcast Address. This bit indicates that the
received packet’s destination address was the broadcast
address.

MCAD — Multicast Address. When the LXT1001
multicast address filtering mechanism determines that a
packet with a multicast destination address should be passed
to the HOST, it sets this bit in the PDL header and transfers
the packet to HOST memory.

LGPK — Large Packet. By setting this bit, the LXT1001
indicates that the inbound packet was determined to be
larger than the maximum allowable length for an ethernet
frame. If the LGPKEN enable bit is clear, the LXT1001
regards this condition as an error. If the LGPKEN enable
bit is set, the LXT1001 does not regard this condition as an
error.

EROV — Overflow Error. It is possible for incoming data
to exceed the space allotted to receive it. In such cases, the

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
6

1
5

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
5

0
4

0
3

0
0

R
X
E
R

E
R
A
L

E
R
R
U

E
R
C
R

E
R
O
V

L
G
P
K

M
C
A
D

B
C
A
D

P
H
A
D

E
R
L
N

R
E
S
R
V
D

F
G
C
N

P
K
L
E

R
E
S
R
V
D

U
P
H
D
P
N

T
P
H
D
P
N

I
P
H
D
P
N

U
P
C
K
E
R

T
P
C
K
E
R

I
P
C
K
E
R

R
E
S
R
V
D

V
L
H
T

V
L
T
B
I
X

FGAD LSD 0

FGAD MSD 0

RESRVD FGLE 0

RESRVD

FGAD LSD 1

FGAD MSD 1

RESRVD FGLE 1

RESRVD

•
•
•

FGAD LSD 30

FGAD MSD 30

RESRVD FGLE 30

RESRVD

72
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
LXT1001 will deliver as much data as will fit into the
available buffer space. Any data that does not fit will be
discarded. When this situation occurs, the LXT1001 sets the
EROV bit.

ERCR — CRC Error. When the LXT1001 detects that an
inbound packet’s CRC does not match the computed value,
it sets this bit to signal the condition.

ERRU — Runt Error. If the LXT1001 determines that an
inbound packet is shorter than the minimum ethernet packet
length, it sets the ERRU bit.

ERAL — Alignment Error. This bit is set when the
LXT1001 receives a packet that is not an integral number
of octets in length.

ERLN — Length Error. This bit is set when the LXT1001
detects that an inbound packet’s LLC data is shorter than
the length specified in the length/type field of the packet’s
MAC header.

RXER — Receive Error. Whenever an error condition is
detected for a received packet corresponding to a particular
PDL, the error bit in that PDL is set to 1. This error bit is
the “OR” of the ERLN, EROV, ERCR, ERRU, and ERAL
bits. This bit is also set if the LGPKEN bit in Mode Register
– 1 is clear, the PAERPKEN bit in Mode Register – 1 is set,
and the LGPK bit is set.

VLTBIX — VLAN Table Index. This field indicates the
index of the VLAN TCI Table entry that matched the TCI
in the received packet’s VLAN tag header. This field only
has meaning if the VLHT bit is set.

VLHT — VLAN Hit. When set, this bit indicates the
received packet contained a VLAN tag header whose TCI
matched an entry in the VLAN TCI Table. This bit is set by
the LXT1001 if the VLEN and VLTBEN bits in Mode
Register – 1 are set and the VLAN tag information in the
packet matches an entry in the VLAN TCI Table; otherwise
this bit will not be set.

IPCKER — IP Header Checksum Error. When set, this
bit indicates the packet failed the IP header checksum test.
The LXT1001 tests the IP header checksum in packets when
the RXIPCKEN bit is set in Mode Register – 2 and the packet
contains an IP header. When clear, the packet either passed

the IP header checksum test, did not contain an IP header,
or the LXT1001’s checksum support is disabled.

TPCKER — TCP Checksum Error. When set, this bit
indicates the packet failed the TCP checksum test. The
LXT1001 tests the TCP checksum in packets when the
RXTPCKEN bit is set in Mode Register – 2 and the packet
contains a TCP header and data. When clear, the packet
either passed the TCP checksum test, did not contain a TCP
header, or the LXT1001’s checksum support is disabled.

UPCKER — UDP Checksum Error. When set, this bit
indicates the packet failed the UDP checksum test. The
LXT1001 tests the UDP checksum in packets when the
RXUPCKEN bit is set in Mode Register – 2 and the packet
contains a UDP header and data. When clear, the packet
either passed the UDP checksum test, did not contain an
UDP header, or the LXT1001’s checksum support is
disabled.

IPHDPN — IP Header Present. When set, this bit indicates
the LXT1001 found an IP header in the packet. When clear,
the packet did not contain an IP header. The value of this
bit is valid irrespective of the setting of the RXIPCKEN bit
in Mode Register – 2.

TPHDPN — TCP Header Present. When set, this bit
indicates the LXT1001 found a TCP header in the packet.
When clear, the packet did not contain a TCP header. The
value of this bit is valid irrespective of the setting of the
RXTPCKEN bit in Mode Register – 2.

UPHDPN — UDP Header Present. When set, this bit
indicates the LXT1001 found an UDP header in the packet.
When clear, the packet did not contain an UDP header. The
value of this bit is valid irrespective of the setting of the
RXUPCKEN bit in Mode Register – 2.

FGAD — Fragment Address. Fields used to pass the
physical addresses of fragments to the BMC. The values of
the FGAD fields remain unchanged from the pre-receive
PDL header.

FGLE — Fragment Length. Fields used to specify the
maximum number of bytes each f ragment can
accommodate. The values of the FGLE fields remain
unchanged from the pre-receive PDL header.

RESRVD — Reserved. The LXT1001 sets this field to 0.

73

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 15 Receive PDL Address Register MSD
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
K
D
S
A
D
H
I

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x PKDSADHI N/A Packet Descriptor Address High — Writing to this
register loads bits 63:32 of a 64-bit PDL address into the
LXT1001’s RX Command FIFO Staging Register. When
the LSD of the address is written (bits 31:0), the complete
address is moved to the receive command FIFO and the
RX Command FIFO Count Register is incremented.
Writing to this register does not initiate a receive PDL
command. Receive PDL commands are only initiated
when the LSD of the PDL address is written into the
Receive PDL Address LSD Register.

74
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR16 Transmit PDC Register

Writing to this register initiates a packet Propulsion transfer
for packet transmission.

A transmit PDC buffer is used for PDC mode packet
transmission. HOST software fills the transmit PDC buffer
with one or more transmit requests and then enqueues the
PDC buffer to the LXT1001 via the Transmit PDC Register.
HOST software guarantees the transmit PDC buffers are
QWORD aligned. The maximum size of a transmit PDC
buffer is 32 Kbytes. HOST software must guarantee that the
maximum size is not exceeded.

Each transmission request within a transmit PDC buffer is
identified by a transmit packet header. The initial DWORD
in each transmit PDC buffer is a transmit packet header. The
transmit data immediately follows the transmit packet
header. The LXT1001 can determine the type of a header

by examining the HDTYPE field. The LXT1001 can use
the LEN field to determine the offset of the next header in
the buffer. All headers within a transmit PDC buffer are
aligned on a QWORD boundary. Currently, the only header
type defined for transmit PDC buffers is the transmit packet
header.

Each transmission request within a transmit PDC buffer
consists of a transmit packet header followed by the data
bytes that constitute the packet to be transmitted. The
LXT1001 can use the LEN field to determine the offset of
the next header in the buffer. All transmit packet headers
within a transmit PDC buffer begin on a QWORD boundary.
A detailed description of the PDC transmit header and data
format follows (see Figure 4-4).

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

X
F
D
N
I
N
R
Q

R
E
S
R
V
D

B
F
I
D

B
F
L
E

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 W x BFLE 0 Buffer Length — Number of bytes to be transferred by
the LXT1001.

21:16 W x BFID 0 Buffer ID — Uniquely identifies which pre-allocated
HOST buffer to use for transmission.

23:22 x x RESRVD 0 Reserved

24 W x XFDNINRQ 0 Transfer Done Interrupt Request — When set, this bit
indicates that the HOST software wishes an interrupt to be
generated upon completion of data transfer from HOST
memory to LXT1001 memory.

31:25 x x RESRVD 0 Reserved

75

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Figure 4-4: PDC Transmit Header and Data Format

The definition of the PDC transmit header and data fields
follow.

LEN — Length. Indicates the number of bytes to be
transmitted. LEN bytes of transmit data follow the transmit
packet header.

HDTYPE — Header Type. A unique value used to identify
the header type. For a transmit request header, the value is
0x2.

VLTBIX — VLAN TCI Table Index. This field is an index
into the VLAN TCI Table. The LXT1001 uses the TCI
information at this index to construct a VLAN tag header

VLIS — VLAN Insert Tag Header. Setting this bit causes
the LXT1001 to construct and insert a VLAN tag header
into the packet prior to its transmission. The LXT1001
constructs the VLAN tag header using the TCI at index
VLTBIX in the VLAN TCI Table.

TXDATA — Transmit Data. Data bytes that constitute the
packet to be transmitted. TXDATA is padded by HOST
software to the next DWORD boundary.

3
1

3
0

2
9

2
8

2
7

2
4

2
3

2
2

2
1

2
0

1
6

1
5

0
0

R
E
S
R
V
D

V
L
I
S

V
L
T
B
I
X

R
E
S
R
V
D

H
D
T
Y
P
E

L
E
N

TXDATA 3 TXDATA 2 TXDATA 1 TXDATA 0

•
•
•

TXDATA(LEN-1) TXDATA(LEN-1)

76
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 17 Receive PDC Register

Writing to this register allows a packet Propulsion transfer
for reception to occur at a future time.

A receive PDC buffer is used for PDC mode packet
reception. The Receive PDC Register is used to enqueue a
receive PDC buffer to the LXT1001. The LXT1001 fills the
receive PDC buffer with data representing one or more
received packets. When enqueuing the PDC buffer, the
format of the PDC buffer is undefined. As the LXT1001
receives packets, it places the information into the PDC
buffer in the following format. HOST software guarantees
receive PDC buffers are aligned on a QWORD boundary.
The maximum size of a receive PDC buffer is 64 Kbytes.
Receive PDC buffers have a minimum size of 64 bytes and
a maximum size of 64 Kbytes. Host software must
guarantee the minimum and maximum receive PDC buffer
sizes are not violated.

Receive PDC buffers begin with either a receive packet
header or null header. Following each header, 0 – n bytes
of data is written to the PDC buffer. HOST software can
determine the type of header by examining the HDTYPE
field. If a header has data following it, HOST software can
use the HDTYPE or LEN field to determine the offset of
the next header in the buffer. Headers within a receive PDC
buffer are aligned on a QWORD boundary. The last header
in a receive PDC buffer is always the null header. A detailed
description of each header type follows.

A receive packet header describes a received packet. For
each received packet in a PDC buffer, the LXT1001 will
write a receive packet header followed by the data bytes that
constitute the received packet. A single receive PDC buffer
may contain multiple receive PDC headers. Figure 4-5
describes the format of the receive packet header and data.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
X
I
N
R
Q

R
E
S
R
V
D

B
F
I
D

B
F
L
E

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 W x BFLE 0 Buffer Length — The maximum number of bytes that can
be transferred into the buffer specified at BFID.

21:16 W x BFID 0 Buffer ID — Uniquely identifies which pre-allocated
HOST buffer to use for reception.

30:22 W x RESRVD 0 Reserved

31 W x RXINRQ 0 Receive Interrupt Request — This bit communicates to
the LXT1001 that the HOST wishes to be interrupted
when a packet is received into the buffer corresponding to
this PDC command. The interrupt will be generated
regardless of the state of the RXMS bit in the Interrupt
Mask Register.

77

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Figure 4-5: PDC Receive Header and Data Format

The definition of the PDC receive header and data fields
follow.

LEN — Length. Indicates the number of bytes in the
received packet. LEN bytes of received data follow the
receive packet header.

HDTYPE — Header Type. A unique value used to identify
the header type. For a receive packet header, the value is
0x1.

PHAD — Physical Address. The PHAD bit indicates that
the received packet’s destination address matches the
LXT1001’s station (MAC) address.

BCAD — Broadcast Address. This bit indicates that the
received packet’s destination address was the broadcast
address.

MCAD — Multicast Address. When the LXT1001
multicast address filtering mechanism determines that a
packet with a multicast destination address should be passed
to the HOST, it sets this bit in the PDL header and transfers
the packet to HOST memory.

LGPK — Large Packet. By setting this bit, the LXT1001
indicates that the inbound packet was determined to be
larger than the maximum allowable length for an ethernet
frame. If the LGPKEN enable bit is clear, the LXT1001
regards this condition as an error. If the LGPKEN enable
bit is set, the LXT1001 does not regard this condition as an
error.

EROV — Overflow Error. For PDCs, buffer overflow can
only occur when the first packet to be deposited in the PDC
buffer is larger than the buffer proper. In this case, the
LXT1001 will deliver as much data as will fit into the
available buffer space and set the EROV bit. Any data that
does not fit into the buffer will be discarded. When
processing a PDC that already contains one or more packets,
a packet that does not fit into the remaining buffer space
does not cause an overflow error. Instead, the PDC
completes (i.e., it is given to the HOST), and the packet in
question is delivered into the next available PDC buffer.

ERCR — CRC Error. When the LXT1001 detects that an
inbound packet’s CRC does not match the computed value,
it sets this bit to signal the condition.

ERRU — Runt Error. If the LXT1001 determines that an
inbound packet is shorter than the minimum ethernet packet
length, it sets the ERRU bit.

ERAL — Alignment Error. This bit is set when the
LXT1001 receives a packet that is not an integral number
of octets in length.

ERLN — Length Error. This bit is set when the LXT1001
detects that an inbound packet’s LLC data is shorter than
the length specified in the length/type field of the packet’s
MAC header.

RXER — Receive Error. Whenever an error condition is
detected for a receive packet, the error bit in that receive

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
6

1
5

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
5

0
4

0
3

0
0

R
X
E
R

E
R
A
L

E
R
R
U

E
R
C
R

E
R
O
V

L
G
P
K

M
C
A
D

B
C
A
D

P
H
A
D

E
R
L
N

R
E
S
R
V
D

H
D
T
Y
P
E

0x01

L
E
N

R
E
S
R
V
D

U
P
H
D
P
N

T
P
H
D
P
N

I
P
H
D
P
N

U
P
C
K
E
R

T
P
C
K
E
R

I
P
C
K
E
R

R
E
S
R
V
D

V
L
H
T

V
L
T
B
I
X

RXDATA 3 RXDATA 2 RXDATA 1 RXDATA 0

•
•
•

RXDATA(LEN-1) RXDATA(LEN-2)

78
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
packet header is set to 1. This error bit is the “OR” of the
ERLN, EROV, ERCR, ERRU, and ERAL bits. This bit is
also set if the LGPKEN bit in Mode Register – 1 is clear,
the PAERPKEN bit in Mode Register – 1 is set, and the
LGPK bit is set.

VLTBIX — VLAN Table Index. This field indicates the
index of the VLAN TCI Table entry that matched the TCI
in the received packet’s VLAN tag header. This field only
has meaning if the VLHT bit is set.

VLHT — VLAN Hit. When set, this bit indicates the
received packet contained a VLAN tag header whose TCI
matched an entry in the VLAN TCI Table. This bit is set by
the LXT1001 if the VLEN and VLTBEN bits in Mode
Register – 1 are set and the VLAN tag information in the
packet matches an entry in the VLAN TCI Table; otherwise
this bit will not be set.

IPCKER — IP Header Checksum Error. When set, this
bit indicates the packet failed the IP header checksum test.
The LXT1001 tests the IP header checksum in packets when
the RXIPCKEN bit is set in Mode Register – 2 and the packet
contains an IP header. When clear, the packet either passed
the IP header checksum test, did not contain an IP header,
or the LXT1001’s checksum support is disabled.

TPCKER — TCP Checksum Error. When set, this bit
indicates the packet failed the TCP checksum test. The
LXT1001 tests the TCP checksum in packets when the
RXTPCKEN bit is set in Mode Register – 2 and the packet
contains a TCP header and data. When clear, the packet
either passed the TCP checksum test, did not contain a TCP
header, or the LXT1001’s checksum support is disabled.

UPCKER — UDP Checksum Error. When set, this bit
indicates the packet failed the UDP checksum test. The
LXT1001 tests the UDP checksum in packets when the
RXUPCKEN bit is set in Mode Register – 2 and the packet
contains a UDP header and data. When clear, the packet
either passed the UDP checksum test, did not contain an
UDP header, or the LXT1001’s checksum support is
disabled.

IPHDPN — IP Header Present. When set, this bit indicates
the LXT1001 found an IP header in the packet. When clear,
the packet did not contain an IP header. The value of this
bit is valid irrespective of the setting of the RXIPCKEN bit
in Mode Register – 2.

TPHDPN — TCP Header Present. When set, this bit
indicates the LXT1001 found a TCP header in the packet.
When clear, the packet did not contain a TCP header. The
value of this bit is valid irrespective of the setting of the
RXTPCKEN bit in Mode Register – 2.

UPHDPN — UDP Header Present. When set, this bit
indicates the LXT1001 found a UDP header in the packet.
When clear, the packet did not contain a UDP header. The
value of this bit is valid irrespective of the setting of the
RXUPCKEN bit in Mode Register – 2.

RXDATA — Receive Data. Data bytes that constitute the
received packet.

A null header is used to indicate that no more headers exist
in a PDC. Figure 4-6 describes the format of the null header.

Figure 4-6: PDC Null Header Format

The definition of the PDC null header field follows.

HDTYPE — Header Type. A unique value used to identify
the header type. For a null header, the value is 0x0.

When an overflow occurs in a PDC buffer, a null header is
not deposited into the PDC buffer, since the overflow

condition implies that the first packet to be delivered was
too big to fit. In particular, this is true even if the null header
itself is the source of the overflow; e.g., as may occur when
a PDC buffer is just large enough to accommodate an
inbound packet but not the null header appended by the
LXT1001.

3
1

2
1

2
0

1
6

1
5

0
0

R
E
S
R
V
D

H
D
T
Y
P
E

0x00

R
E
S
R
V
D

79

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 18 Interrupt Period Register Reserved

CSR 19 TX FIFO Packet Count Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
M
P
E

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x TMPE FFFFFFFFh Timer Period — The value in this register specifies the
number of clock ticks that elapse before the LXT1001
generates an interrupt if either the DLINRQ or PEINRQ
bits are set in the Command Register and the Timer
Expired Interrupt Mask bit is set in the Interrupt Mask
Register. The clock operates at the speed of the PCI bus
(i.e., 33 MHz or 66 MHz).
When the DLINRQ bit is set in the Command Register, a
single interrupt is generated after the time specified here
elapses.
If the PEINRQ bit is set in the Command Register, an
interrupt is generated each time the count elapses. The
PEINRQ bit takes precedence over the DLINRQ bit.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

T
X
F
I
P
K
C
N

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 R x TXFIPKCN 0 TX FIFO Packet Count — The number of packets in the
TX FIFO

31:16 x x RESRVD 0 Reserved

80
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 20 TX FIFO Low Watermark Register

CSR 21 TX FIFO DWORDs Free Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

T
X
F
I
L
O
W
M

Bit Field Type E2 Mnemonic
Default
Value Description

15:0 RW x TXFILOWM 1000h TX FIFO Low Watermark — A write to this register sets
the low water mark. When the number of DWORDs in the
TX FIFO becomes equal to the value written into this
register, the LXT1001 will signal a TXWMIN. The actual
generation of an interrupt request is governed by the
TXWMINMS.

31:16 x x RESRVD 0 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

T
X
F
I
D
W
C
N

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 R x TXFIDWCN 2000h Transmit DWORDs Free — The number of DWORDS
free in the TX FIFO

31:16 x x RESRVD 0 Reserved

81

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 22 TX FIFO Write Register

When operating in PIO mode, HOST software accesses the
TX FIFO directly via this CSR. Data can be written to the
CSR using BYTE, WORD, and DWORD accesses.

The first DWORD written to the FIFO contains the number
of bytes in the packet. Subsequent writes to the FIFO contain
the packet data itself. Once all packet data has been written
to the FIFO, HOST software initiates the transmission by
setting the SLMDTXCM bit in the Command Register. It is

the HOST software’s responsibility to enforce minimum
and maximum packet sizes. The maximum size packet that
can be written into the TX FIFO is 32 Kbytes (including the
TX FIFO packet header). HOST software must not write to
the TX FIFO when it is full.

Figure 4-7 describes the format and sequence of the writes
to the TX FIFO.

Figure 4-7: PIO Transmit Header and Data Format

The definitions for the PIO transmit header and data fields
follow.

LEN — Length. Indicates the number of bytes to be
transmitted. LEN bytes of transmit data follow the transmit
packet header.

VLTBIX — VLAN TCI Table Index. This field is an index
into the VLAN TCI Table. The LXT1001 uses the TCI
information at this index to construct a VLAN tag header.

VLIS — VLAN Insert Tag. Setting this bit causes the
LXT1001 to construct and insert a VLAN tag header into
the packet prior to its transmission. The LXT1001

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
X
F
I

W
T

T
X
F
I

W
T

T
X
F
I

W
T

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x TXFIWT N/A TX FIFO Write — A write to this register will store the
value in the TX FIFO. The write can be performed as a
BYTE, WORD, or DWORD operation.

3
1

2
9

2
8

2
7

2
4

2
3

1
6

1
5

0
0

R
E
S
R
V
D

V
L
I
S

V
L
T
B
I
X

R
E
S
R
V
D

L
E
N

TXDATA 3 – 0

TXDATA 7 – 4

TXDATA 11 – 8

•
•
•

TXDATA(LEN-1)

82
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
constructs the VLAN tag header using the TCI at index
VLTBIX in the VLAN TCI Table.

TXDATA — Transmit Data. Data bytes that constitute the
packet to be transmitted.

CSR 23 Reserved

CSR 24 RX FIFO Read Register

When operating in PIO mode, HOST software accesses the
RX FIFO directly via the RX FIFO Read Register. Each
read of this CSR retrieves one DWORD of data from the
RX FIFO.

The first DWORD read from the FIFO returns the reception
status and packet length. The second DWORD read from
the FIFO returns VLAN tag information. Subsequent reads

to the FIFO return the packet data itself. The maximum size
packet that can be read from the RX FIFO is 64 Kbytes
(including the RX FIFO packet header). NOTE: Dropped
packets will not appear in the FIFO as an errored packet. If
a packet is dropped, the LXT1001 will simply increment
the Dropped Packet Count Register.

Figure 4-8 describes the format of a packet in the RX FIFO.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
X
F
I
R
D

R
X
F
I
R
D

R
X
F
I
R
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 R x RXFIRD N/A RX FIFO Read — A read from this register will extract
the next available value in the RX FIFO. A read when the
RX FIFO is empty is undefined and yields invalid data.
The read can be performed as a BYTE, WORD, or
DWORD operation.

83

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Figure 4-8: PIO Receive Header and Data Format

The definitions for the PIO receive header and data fields
follow.

LEN — Length. Indicates the number of bytes actually
deposited into FIFO for the received packet.

PHAD — Physical Address. The PHAD bit indicates that
the received packet’s destination address matches the
LXT1001’s station (MAC) address.

BCAD — Broadcast Address. This bit indicates that the
received packet’s destination address was the broadcast
address.

MCAD — Multicast Address. The LXT1001 sets this bit to
indicate the received packet met the following conditions:
(1) the destination address is a multicast address, and (2) the
multicast address hashing algorithm generated a bit that
matches a bit set in the Multicast Hash Table Register.

LGPK — Large Packet. By setting this bit, the LXT1001
indicates that the inbound packet was determined to be
larger than the maximum allowable length for an ethernet
frame. If the LGPKEN enable bit is clear, the LXT1001
regards this condition as an error. If the LGPKEN enable
bit is set, the LXT1001 does not regard this condition as an
error.

ERCR — CRC Error. When the LXT1001 detects that an
inbound packet’s CRC does not match the computed value,
it sets this bit to signal the condition.

ERRU — Runt Error. If the LXT1001 determines that an
inbound packet is shorter than the minimum ethernet packet
length, it sets the ERRU bit.

ERAL — Alignment Error. This bit is set when the
LXT1001 receives a packet that is not an integral number
of octets in length.

ERLN — Length Error. This bit is set when the LXT1001
detects that an inbound packet’s LLC data is shorter than
the length specified in the length/type field of the packet’s
MAC header.

RXER — Receive Error. The LXT1001 sets this bit when
an error condition is detected for a received packet. This
error bit is the “OR” of the ERLN, ERCR, ERRU, and
ERAL bits. This bit is also set if the LGPKEN bit in Mode
Register – 1 is clear, the PAERPKEN bit in Mode Register
– 1 is set, and the LGPK bit is set.

VLTBIX — VLAN Table Index. This field indicates the
index of the VLAN TCI Table entry that matched the TCI
in the received packet’s VLAN tag header. This field has
meaning only if the VLHT bit is set.

VLHT — VLAN Hit. When set, this bit indicates the
received packet contained a VLAN tag header whose TCI
matched an entry in the VLAN TCI Table. This bit is set by
the LXT1001 if the VLEN and VLTBEN bits in Mode
Register – 1 are set and the VLAN tag information in the

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

1
6

1
5

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
5

0
4

0
3

0
0

R
X
E
R

E
R
A
L

E
R
R
U

E
R
C
R

R
E
S
R
V
D

L
G
P
K

M
C
A
D

B
C
A
D

P
H
A
D

E
R
L
N

R
E
S
R
V
D

L
E
N

R
E
S
R
V
D

U
P
H
D
P
N

T
P
H
D
P
N

I
P
H
D
P
N

U
P
C
K
E
R

T
P
C
K
E
R

I
P
C
K
E
R

R
E
S
R
V
D

V
L
H
T

V
L
T
B
I
X

RXDATA 3-0

RXDATA 7-4

RXDATA 11-9

•
•
•

RXDATA(LEN-1)

84
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
packet matches an entry in the VLAN TCI Table; otherwise
this bit will not be set.

IPCKER — IP Header Checksum Error. When set, this bit
indicates that the packet failed the IP header checksum test.
The LXT1001 tests the IP header checksum in packets when
the RXIPCKEN bit is set in Mode Register – 2 and the
packet contains an IP header. When clear, the packet either
passed the IP header checksum test, did not contain an IP
header, or the LXT1001’s checksum support is disabled.

TPCKER — TCP Checksum Error. When set, this bit
indicates that the packet failed the TCP checksum test. The
LXT1001 tests the TCP checksum in packets when the
RXTPCKEN bit is set in Mode Register – 2 and the packet
contains a TCP header and data. When clear, the packet
either passed the TCP checksum test, did not contain a TCP
header, or the LXT1001’s checksum support is disabled.

UPCKER — UDP Checksum Error. When set, this bit
indicates that the packet failed the UDP checksum test. The
LXT1001 tests the UDP checksum in packets when the
RXUPCKEN bit is set in Mode Register – 2 and the packet
contains a UDP header and data. When clear, the packet
either passed the UDP checksum test, did not contain an

UDP header, or the LXT1001’s checksum support is
disabled.

IPHDPN — IP Header Present. When set, this bit indicates
that the LXT1001 found an IP header in the packet. When
clear, the packet did not contain an IP header. The value of
this bit is valid irrespective of the setting of the RXIPCKEN
bit in Mode Register – 2.

TPHDPN — TCP Header Present. When set, this bit
indicates that the LXT1001 found a TCP header in the
packet. When clear, the packet did not contain a TCP header.
The value of this bit is valid irrespective of the setting of
the RXTPCKEN bit in Mode Register – 2.

UPHDPN — UDP Header Present. When set, this bit
indicates that the LXT1001 found an UDP header in the
packet. When clear, the packet did not contain an UDP
header. The value of this bit is valid irrespective of the
setting of the RXUPCKEN bit in Mode Register – 2.

RXDATA — Received Data. Data bytes that constitute the
received packet. If the RXDATA does not end on a
QWORD boundary, HOST software will issue a RX FIFO
skip packet command to the LXT1001. Alternatively,
HOST software can also perform one more read of the RX
FIFO and discard the data.

CSR 25 Reserved
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

85

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 26 RX FIFO DWORD Count Register

CSR 27 RX FIFO High Watermark Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
X
F
I
D
W
C
N

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 R x RXFIDWCN 0 RX FIFO DWORD Count — The number of DWORDS
currently consumed by received packets in the RX FIFO.

31:16 x x RESRVD x Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
X
F
I
H
I

W
M

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 RW x RXFIHIWM 2000h RX FIFO High Watermark — A write to this register
sets the high water mark for the RX FIFO. When the
number of DWORDs in the RX FIFO becomes equal to
the value written into this register, the LXT1001 will
signal a RXWMIN. The actual generation of an interrupt
request is governed by the RXWMINMS.

31:16 x x RESRVD x Reserved

86
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 28 RX FIFO Packet Count Register

CSR 29 Command Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
X
F
I
P
K
C
N

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 R x RXFIPKCN 0 RX FIFO Packet Count — The number of packets in the
RX FIFO

31:16 x x RESRVD x Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

T
M
E
N
1

T
M
E
N
0

P
E
I
N
R
Q

D
L
I
N
R
Q

R
X
F
I
S
K
P
K

S
L
M
D
T
X
C
M

S
E
R
E
C
L

Bit
Field Type E2 Mnemonic

Default
Value Description

0 W x SERECL N/A Set/Reset Control — Set/reset control bit for bits[7:1].

1 WA x SLMDTXCM 0 Slave Mode Transmit Command — HOST software sets
this bit to initiate the transmission of a packet it has placed
in the TX FIFO. Prior to setting this bit, HOST software
must write all the packet’s PIO transmit header and packet
data to the FIFO using the TX FIFO Write Register.

2 WA x RXFISKPK 0 RX FIFO Skip Packet — Setting this bit causes the
current packet in the RX FIFO to be discarded. The
LXT1001 advances the RX FIFO’s current packet pointer
to the next available packet and decrements the
RXFIPKCN Register.

87

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

3 WA x DLINRQ 0 Delayed Interrupt Request — Setting this bit causes the
LXT1001 to start a countdown timer. Upon expiration of
the timer, the LXT1001 clears the DLINRQ bit and
generates an interrupt if the TMEXMS bit in the Interrupt
Mask Register is set. The initial value of the countdown
timer is determined by the value in the Interrupt Period
Register.
If HOST software resets the DLINRQ bit before the
countdown timer expires, the LXT1001 will cancel the
timer and no interrupt occurs.

4 RW x PEINRQ 0 Periodic Interrupt Request — Setting this bit causes the
LXT1001 to start a countdown timer. The duration of the
timer is the value specified in the Interrupt Period
Register. Upon expiration of the timer, the LXT1001
performs the following actions:

• Checks the state of the TMEXMS bits in the Interrupt
Mask Register. If the TMEXMS bit is set, the LXT1001
generates an interrupt.

• Checks the state of the PEINRQ bit. If it is still set, the
LXT1001 reloads the timer with the value in the
Interrupt Mask Register and restarts the timer.

The LXT1001 continues in this cycle until the HOST
software resets the PEINRQ bit.
If the HOST software resets the PEINRQ bit before the
countdown timer expires, the LXT1001 cancels the timer
and no more periodic timer interrupts occur.

5 RW x TMEN0 0 Timer 0 Enable — Setting this bit starts Timer 0 ticking.
The timer ticks at a rate of 25 MHz. Each tick causes the
value in the Timer 0 Count Register to be incremented.
Clearing this bit causes the timer to stop ticking and,
therefore, the value in the Timer 0 Count Register to stop
incrementing.

6 RW x TMEN1 0 Timer 1 Enable — Setting this bit starts Timer 1 ticking.
The timer ticks at a rate of 25 MHz. Each tick causes the
value in the Timer 1 Count Register to be incremented.
Clearing this bit causes the timer to stop ticking and,
therefore, the value in the Timer 1 Count Register to stop
incrementing.

7 x x RESRVD 0 Reserved

15:8 x x RESRVD 0 Reserved

31:16 x x RESRVD 0 Reserved

Bit
Field Type E2 Mnemonic

Default
Value Description

88
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 30 Interrupt Mask Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

T
M
M
S
1

T
M
M
S
0

U
S
P
I

M
S
1

U
S
P
I

M
S
0

S
E
R
E
C
L

R
E
S
R
V
D

R
X
M
G
P
K
M
S

P
H
L
A
S
T
M
S

R
X
P
D
M
S

R
X
M
S

R
X
F
I

W
M
M
S

R
X
C
M
E
M
M
S

S
E
R
E
C
L

I
N
E
N
M
S

T
M
E
X
M
S

R
E
S
R
V
D

T
X
D
M
D
N
M
S

T
X
F
I

W
M
M
S

T
X
C
M
E
M
M
S

S
E
R
E
C
L

Bit
Field Type E2 Mnemonic

Default
Value Description

0 W x SERECL N/A Set/Reset Control — Set/reset control bit for bits[7:1]

1 RW x TXCMEMMS 0 TX Command FIFO Empty Interrupt Mask

2 RW x TXFIWMMS 0 TX FIFO Watermark Interrupt Mask

3 RW x TXDMDNMS 0 Transmit DMA Done Interrupt Mask

5:4 x x RESRVD 0 Reserved

6 RW x TMEXMS 0 Timer Expired Interrupt Mask — When set, an interrupt
will occur when the single shot or periodic timer has
expired. This timer is started when the setting of either the
DLINRQ or PEINRQ bits in the Command Register has
expired. The duration of the timer is the determined by the
value specified in the Interrupt Period Register.

7 RW x INENMS 0 Interrupt Enable Mask—This bit is the master interrupt
enable bit that enables/disables the LXT1001’s ability to
generate an interrupt. When set, the LXT1001 will
generate an interrupt whenever an event bit (bits 23:0) in
the Event Status Register is set and the event bit’s
corresponding mask bit is set in this register. For example,
if the INENMS bit is set (bit 6 is set in the Event Status
Register and in the Interrupt Mask Register), the LXT1001
generates an interrupt.
When the INENMS bit is clear, the LXT1001’s ability to
generate an interrupt is disabled.
NOTE: Clearing the INENMS bit does NOT prevent the
LXT1001 from setting event bits [23:0] in the Event Status
Register. Clearing the INENMS bit merely prevents the
LXT1001 from interrupting the HOST.
If any of the Event Status Register bits [23:0] are set and
the event bit’s corresponding mask bit is set when HOST
software sets INENMS bit, the LXT1001 will interrupt the
HOST immediately.

8 W x SERECL 0 Set/Reset Control — Set/reset control bit for bits [15:9]

9 RW x RXCMEMMS 0 RX Command FIFO Empty Interrupt Mask

10 RW x RXFIWMMS 0 RX FIFO Watermark Interrupt Mask

89

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

This register controls the LXT1001’s ability to generate
interrupts.

11 RW x RXMS 0 Receive Interrupt Mask — This bit enables the LXT1001
to generate interrupts whenever the LXT1001 has placed a
complete packet into the RX FIFO.

12 RW x RXPDMS 0 Receive PDL/PDC Interrupt Mask — When set, this bit
enables per PDC/PDL interrupts as requested in the flags
field of the PDC/PDL descriptors or commands. The
interrupts are generated when the LXT1001 has
completely transferred the packet data to HOST buffers.

13 RW x PHLASTMS 0 Physical Layer Status Interrupt Mask — When set, the
LXT1001 generates an interrupt when a PHY status
change occurs.

14 RW x RXMGPKMS 0 Receive Magic Packet Mask — When set, reception of a
Magic Packet data sequence will generate an interrupt.

15 x x RESRVD 0 Reserved

16 W x SERECL 0 Set/Reset Control — Set/reset control bit for bits [23:17]

17 RW x USPIMS0 0 User Pin0 Interrupt Mask — This bit enables/
disables the generation of an interrupt based upon the state
of User Pin0. If this bit is set, and the User Pin0 transitions
from a low to high state, the LXT1001 generates an
interrupt.

18 RW x USPIMS1 0 User Pin1 Interrupt Mask — This bit enables/
disables the generation of an interrupt based upon the state
of User Pin1. If this bit is set, and the User Pin1 transitions
from a low to high state, the LXT1001 generates an
interrupt.

19 RW x TMMS0 0 Timer 0 Interrupt Mask — This bit enables/disables the
generation of an interrupt when the value of the Timer 0
Counter Register equals the value of the Timer 0 Interrupt
Trigger Register.

20 RW x TMMS1 0 Timer 1 Interrupt Mask — This bit enables/disables the
generation of an interrupt when the value of the Timer 1
Counter Register equals the value of the Timer 1 Interrupt
Trigger Register.

31:21 x x RESRVD 0 Reserved

Bit
Field Type E2 Mnemonic

Default
Value Description

90
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 31 Reserved

CSR 32 Event Status Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
X
D
M
D
N
C
N

R
E
S
R
V
D

T
M
I
N
1

T
M
I
N
0

U
S
P
I
I
N
1

U
S
P
I
I
N
0

R
E
S
R
V
D

R
E
S
R
V
D

R
X
M
G
P
K
I
N

P
H
L
A
S
T
I
N

R
X
P
D
I
N

R
X
I
N

R
X
F
I

W
M
I
N

R
X
C
M
E
M
I
N

R
E
S
R
V
D

R
E
S
R
V
D

T
M
E
X
I
N

R
E
S
R
V
D

T
X
D
M
D
N
I
N

T
X
F
I

W
M
I
N

T
X
C
M
E
M
I
N

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

0 x x RESRVD N/A Reserved

1 RC x TXCMEMIN 0 Transmit Command FIFO Empty Interrupt — This
interrupt signals that the transmit command FIFO is
empty. This bit is set when the transmit command count
rises above 0 and then returns to 0.

2 RC x TXFIWMIN 0 TX FIFO Watermark Interrupt — This interrupt is
asserted when the number of DWORDS in the TX FIFO
becomes equal to the number of DWORDS specified in
the TXFIWM Register due to a read by the MAC.

3 RC x TXDMDNIN 0 Transmit DMA Done Interrupt — When set, this bit
indicates that the LXT1001 has transferred a packet with
the DMDINRQ flag set in the PDL or PDC command
field. If multiple packets have been transferred, as can
happen with a PDC, the interrupt is signaled after the final
packet has been copied to the LXT1001.

91

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

5:4 RC x RESRVD 0 Reserved

6 RC x TMEXIN 0 Timer Expired Interrupt

7 RC x RESRVD 0 Reserved

8 RC x RESRVD 0 Reserved

9 RC x RXCMEMIN 0 Receive Command FIFO Empty Interrupt — This
interrupt signals that the receive command FIFO is empty.
The LXT1001 asserts this signal immediately after the last
receive PDC/PDL is extracted from the receive command
FIFO. This bit is set when the receive command count
rises above 0 and then returns to 0.

10 RC x RXFIWMIN 0 RX FIFO Watermark Interrupt — This interrupt is
asserted when the number of DWORDS in the RX FIFO
becomes equal to the number of DWORDS specified in
the RXFIWM Register due to a write by the MAC.

11 RC x RXIN 0 Receive Interrupt — The LXT1001 generates receive
interrupts whenever a complete packet is available in the
RX FIFO.
Note that RXIN interrupts override RXPDIN interrupts. In
other words, when the RXMS bit is set, an RXIN interrupt
is generated for each packet that is received by the
LXT1001 irrespective of how the RXINRQ bit is set in the
receive PDCs and PDLs.

12 RC x RXPDIN 0 Receive PDC/PDL Interrupt — When the Interrupt
Mask Register RXPDMS bit is set to 1, the LXT1001
generates receive interrupts for each packet received into a
PDC or PDL style buffer that has the RXINRQ bit set. The
RXPDIN interrupt is asserted only after the LXT1001 has
transferred the complete packet (or group of packets in
PDC mode) to HOST memory.
Note that if RXIN interrupts are also enabled
(InterruptMaskRegister.RXMS=1), then each received
packet generates an interrupt
(InterruptStatusRegister.RXIN=1) irrespective of the state
of the RXINRQ bit in receive PDCs or PDLs.

13 x x PHLASTIN 0 Physical Layer Status Interrupt — When set, this bit
indicates the LXT1001 has detected a PHY status change.
HOST software can obtain the current PHY status via the
G/MII PHY Access Register.

14 RC x RXMGPKIN 0 Receive Magic Packet Interrupt — When set, this bit
indicates that a Magic Packet data sequence was received.

15 RC x RESRVD 0 Reserved

16 RC x RESRVD 0 Reserved

17 RC x USPIIN0 0 User Pin0 Interrupt — An interrupt occurs when the
User Pin0 transitions from a low to high state.

18 RC x USPIIN1 0 User Pin1 Interrupt — An interrupt occurs when the
User Pin1 transitions from a low to high state.

Bit
Field Type E2 Mnemonic

Default
Value Description

92
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

The Event Status Register indicates the events that have
been detected by the device. When an event is detected, the
corresponding bit in this register is set. If both the INENMS
bit and the event’s corresponding mask bit are set in the
Interrupt Mask Register, then the occurrence of the event
causes the device to signal an interrupt. Following a read of
any of the event status bits in this register, the LXT1001
automatically resets all the event status bits. Moreover, the
LXT1001 automatically resets the INENMS bit in the
Interrupt Mask Register if an interrupt is pending (i.e., the

LXT1001’s interrupt line is active). This automatic clearing
of the INENMS bit disables the LXT1001’s ability to
generate further interrupts. To re-enable LXT1001
interrupts, the HOST software must set the INENMS bit in
the Interrupt Mask Register. When the HOST software sets
the INENMS bit, the LXT1001 will immediately signal an
interrupt for any pending events; i.e., events having
occurred after the last read of the Event Status Register.

19 RC x TMIN0 0 Timer 0 Interrupt — An interrupt occurs when the value
of the Timer 0 Count Register equals the value of the
Timer 0 Interrupt Trigger Register.

20 RC x TMIN1 0 Timer 1 Interrupt — An interrupt occurs when the value
of the Timer 1 Count Register equals the value of the
Timer 1 Interrupt Trigger Register.

23:21 RC x RESRVD 0 Reserved

31:24 RC x RXDMDNCN 0 Receive DMA Done Count — The count of receive
PDL/PDCs that the LXT1001 has completed processing
since the last read of this field. The receive command
queue can hold 31 commands. HOST software uses this
field to determine how many receive PDL/PDC buffers
have been filled with receive data by the LXT1001. The
LXT1001 resets the count to zero after each read.
NOTE: This field can be accessed as a BYTE, WORD, or
DWORD. A BYTE read of this field has no affect on the
state of other fields in the CSR. A BYTE read of this field
does NOT disable the LXT1001’s ability to generate
interrupts.
NOTE: This field is aliased from the Command Status
Register. Whether the count is read via the Command
Status Register or the Event Status Register, the LXT1001
will reset the count after the read.

Bit
Field Type E2 Mnemonic

Default
Value Description

93

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 33 Reserved

CSR 34 Multicast Hash Table Register LSD

When enabling a multicast address, the driver computes the
hash value and makes the LXT1001 aware of the new

address by writing a new hash value into MCHSTBLO or
MCHSTBHI.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

M
C
H
S
T
B
L
O

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x MCHSTBLO 0 Multicast Hash Table Low — The Multicast Hash Table
is set by the driver to indicate to the LXT1001 which
multicast addresses are acceptable to the HOST. The
hashing algorithm is an imperfect filter. Consequently, the
HOST must ultimately examine inbound packets with
multicast destination addresses to determine if they are
indeed intended for the recipient HOST. The Multicast
Address Table is 64 bits wide. Bits 31 through 0 of the
table are maintained in this register.

94
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 35 Multicast Hash Table Register MSD

When enabling a multicast address, the driver computes the
hash value and makes the LXT1001 aware of the new

address by writing a new hash value into MCHSTBLO or
MCHSTBHI.

CSR 36 LED 0 Configuration Register

3
1

0
0

M
C
H
S
T
B
H
I

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x MCHSTBHI 0 Multicast Hash Table High — Bits 63 through 32 of the
table are maintained in this register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

L
D
O
U

R
E
S
R
V
D

R
E
S
R
V
D

C
A

C
O

J
A

R
X

T
X

A
D
M
A

L
K
S
T

A
N

F
D

R
E
S
R
V
D

1
0
0
0
M
B

1
0
0
M
B

1
0
M
B

P
U
X
P

L
D
I
P
S
G
P
L

L
D
E
N

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

0 x x RESRVD 0 Reserved

1 RW √ LDEN 1 LED Enable — Allows the LED to be turned off without
upsetting the programming of the LED Configuration
Register. This bit permits the LED configuration to be
taken directly from EEPROM without driver intervention.
The driver need only enable the LED if it is disabled.

2 RW √ LDIPSGPL 1 LED Input Signal Polarity — Inverts the input signal to
the LED.

3 RW √ PUXP 1 Pulse Expander — Stretches the time that the LED is on
(or off) such that it can be easily perceived visually.

95

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 37 LED 1 Configuration Register
See LED 0 Configuration Register for a detailed description
of the programming.

4 RW √ 10MB 0 10 Megabit — Indicates that the LXT1001 is configured
for 10 Mb operation. When this bit is set and the 10MB bit
in the LED Signal Latch Register is set, the signal sent to
the LED will oscillate at 1 Hz.

5 RW √ 100MB 0 100 Megabit — Indicates that the LXT1001 is configured
for 100 Mb operation. When this bit is set and the 100MB
bit in the LED Signal Latch Register is set, the signal sent
to the LED will oscillate at 4 Hz.

6 RW √ 1000MB 0 1000 Megabit — Indicates that the LXT1001 is
configured for 1000 Mb operation.

7 x x RESRVD 0 Reserved

8 RW √ FD 0 Full-Duplex — Indicates that full-duplex operation is
enabled.

9 RW √ AN 0 Auto Negotiating — Indicates that auto negotiation is in
progress.

10 RW √ LKST 1 Link State — Indicates whether the link is functional or
nonfunctional.

11 RW √ ADMA 0 Address Match — Indicates that an address match with
the LXT1001’s physical address has been detected.

12 RW √ TX 0 Transmit — Indicates that the LXT1001 is transmitting a
frame.

13 RW √ RX 0 Receive — Indicates that the LXT1001 is receiving a
frame.

14 RW √ JA 0 Jabber — Indicates that the LXT1001 has detected a
jabbering station.

15 RW √ CO 0 Collision — This bit indicates that the LXT1001 is
transmitting and receiving data simultaneously. In
half-duplex mode, transmitting and receiving data
simultaneously is an error condition known as a collision.
In full-duplex mode, transmitting and receiving data
simultaneously is not an error condition. This bit should
not be set when operating in full-duplex mode.

16 RW √ CA 0 Carrier Sense — Indicates PHY has sensed a CARRIER.

30:17 x x RESRVD 0 Reserved

31 R x LDOU x LED Out — The signal sent to the LED is routed to this
bit as well.

Bit
Field Type E2 Mnemonic

Default
Value Description

96
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 38 LED 2 Configuration Register
See LED 0 Configuration Register for a detailed description
of the programming.

CSR 39 LED 3 Configuration Register
See LED 0 Configuration Register for a detailed description
of the programming.

CSR 40 Reserved
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 R x RESRVD 0 Reserved

97

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 41 EEPROM Data Register

CSR 42 LAN Physical Address Register LSD

The LAN physical address registers are programmed with
the MAC address of the LXT1001. The LXT1001 will
accept all frames that have a destination MAC address

(OUI) matching the one programmed into this CSR when
the unicast enable (UCEN) bit is set in Mode Register – 1
(CSR 0). When UCEN is reset, the LXT1001 will not accept

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

E
E
D
A

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x EEDA 0 EEPROM Data Register — This is the data register used
when performing single accesses to EEPROM.
When reading from EEPROM, the LXT1001 places value
read from EEPROM in this register. HOST software must
not read this register until after the LXT1001 has cleared
the EESI bit.
When writing to EEPROM, this register contains the value
to be written. HOST software must set the value in this
register prior to setting the EESI bit. HOST software must
not change this value until after the LXT1001 has cleared
the EESI bit.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
H
A
D
3

P
H
A
D
2

P
H
A
D
1

P
H
A
D
0

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW √ PHAD0-3 0083E000h Physical Address 0–3 — When programming the
LXT1001’S MAC address, bytes 0 through 3 of the 6-byte
address are written to this register. For purposes of this
discussion, byte 0 is the first byte of the OUI as
transmitted on the physical medium. The example below
further clarifies the point. The LXT1001 uses the
DWORD programmed into this register along with the
WORD programmed into CSR 43 to select unicast frames
specifically directed at the LXT1001.

98
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
any unicast frames unless the promiscuous mode enable
(POEN) bit is set, in which case all frames are accepted.

Level One Technologies’ OUI is: 00-E0-83. A sample MAC
address based on this OUI is:

00-E0-83-01-02-03

The notation above is frequently referred to as canonical
format. In canonical format, the leftmost hexadecimal value
(00 in the example) is transmitted first. The hexadecimal
value immediately to its right (E0 in the example) is

transmitted next, and so on. Each hexadecimal value
represents a byte where bit 0 has the value 20, bit 1 has the
value 21, etc., through bit 7. For purposes of this example,
the leftmost byte is referred to as byte 0 (PHAD0 in the CSR
diagram above) and the rightmost byte is referred to as byte
5.

When bytes 0 through 3 of the physical address are written
to this register (CSR 42), byte 0 is written to bits 0 through
7, byte 1 is written to bits 8 through 15, etc. The result is as
follows:

The remaining 2 bytes of the MAC address are deposited
into the LAN Physical Address Register MSW (CSR 43) as
follows:

CSR 43 LAN Physical Address Register MSW

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

01 83 E0 00

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved Reserved 03 02

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

P
H
A
D
5

P
H
A
D
4

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 RW √ PHAD 4–5 0100h Physical Address 4–5 — The LXT1001’s MAC address,
bytes 4 and 5. The most significant WORD of the OUI is
programmed in this register.

31:16 RW x RESRVD x Reserved

99

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 44 G/MII PHY Access Register

HOST software uses the G/MII PHY Access Register to
access the PHY’s status and control registers. Prior to
forcing the PHY to renegotiate with its link partner, it is the

responsibility of HOST software to quiesce packet
transmission and reception by clearing the Transmit Enable
and Receive Enable bits in Mode Register – 1.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

G
M
D
A

G
M
S
T

R
E
S
R
V
D

G
M
P
H
A
D

G
M
C
M

R
E
S
R
V
D

G
M
R
R
I
X

Bit
Field Type E2 Mnemonic

Default
Value Description

4:0 RW x GMRRIX 0 G/MII Register Index — Index of the PHY register to be
targeted by the I/O operation.

6:5 x x RESRVD 0 Reserved

7 RW x GMCM 0 G/MII Command — If GMCM = 0, a read of the PHY
register specified by GMRRIX is performed. The result is
stored in the GMDA.
If GMCM = 1, a write of the value in the GMDA is written
to the PHY register specified by GMRRIX.

12:8 RW x GMPHAD 0 G/MII Physical Address — Physical address of the PHY
device to which I/O is to be performed.

14:13 x x RESRVD 0 Reserved

15 RA x GMST 0 G/MII Command Status — HOST software polls this bit
to determine when a command to the PHY has completed.
The LXT1001 sets this bit when a write to the G/MII PHY
Access Register occurs. The LXT1001 will clear this bit
when it has completed the I/O operation with the PHY.

31:16 RW x GMDA 0 G/MII Data — If GMCM = 0, GMDA contains the value
read from the PHY. The value will be valid after the
GMST bit indicates the read operation has completed.
If GMCM = 1, GMDA contains the value to be written to
the PHY. GMDA must not be altered by HOST software
until the GMST bit indicates the write operation has
completed.

100
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 45 G/MII Mode Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

G
M
P
C
E
N

G
M
I
F
P
R

R
E
S
R
V
D

G
M
F
D

G
M
W
R
S
P

Bit
Field Type E2 Mnemonic

Default
Value Description

1:0 RW x GMWRSP 10 G/MII Wire Speed — HOST software writes these bits to
select between the following wire speeds:

GMWRSP[1] GMWRSP[0] Line Rate
1 1 Reserved
1 0 1000 Mbps
0 1 100 Mbps
0 0 10 Mbps

HOST software sets this field to match the wire speed at
which the PHY is currently operating. HOST software
determines the current PHY setting using the G/MII PHY
Access Register.

2 RW x GMFD 1 G/MII Full-Duplex Mode — HOST software writes this
bit to select between full-duplex mode and half-duplex
mode. If GMFD = 1, then full-duplex mode is selected. If
GMFD = 0, then half-duplex mode is selected.
HOST software sets this field to match the wire speed at
which the PHY is currently operating. HOST software
determines the current PHY setting using the G/MII PHY
Access Register.

7:3 RW x RESRVD 0 Reserved

8 RW x GMIFPR x G/MII Interface Protocol — This bit selects the interface
protocol to use (TBI or G/MII). If GMIFPR is set to logic
1, then the TBI interface protocol is used to connect to a
SERDES PHY device. If GMIFPR is cleared to logic 0,
then the G/MII interface protocol is used to connect to a
G/MII PHY device. Upon reset, this bit is set to the value
on the PCS_EN pin.

9 R x GMPCEN x G/MII PCS Enhance — This bit indicates whether the
external PHY device needs to be enhanced by the internal
PCS. If GMPCEN is read as logic 1, then the external
PHY requires the internal PCS. If GMPCEN is read as
logic 0, then the external PHY does not require the internal
PCS.

31:10 RW x RESRVD 0 Reserved

101

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 46 Statistic Index Register

This register is used in conjunction with the Statistic Value
Register to read statistics maintained by the LXT1001. To
read the values of a particular statistic, HOST software
selects the statistic by writing the statistic index to this
register. The act of selecting the index causes the LXT1001
to take two actions: first, the current value of the statistic is
latched into the Statistic Value Register, and second, the

statistic is reset to 0. HOST software then reads the latched
value of the selected statistic from the Statistic Value
Register.

The table below defines the statistics kept by the LXT1001..

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

S
C
I
X

Bit
Field Type E2 Mnemonic

Default
Value Description

4:0 W x SCIX 0 Statistic Index — The index of the statistic whose value is
to be placed into the Statistic Value Register. See Table
4-1 for a description of each statistic kept by the
LXT1001.

31:5 x x RESRVD 0 Reserved

SCIX Statistic Name Description
0 aFramesTransmittedOK Count of frames transmitted successfully by the LXT1001. Frames that

encounter single or multiple collisions are included in this count. Frames
that encounter the maximum number of collisions are not included. The
count does not wrap.

1 aSingleCollisionFrames Count of frames that experienced single collision prior to successful
transmission. The count does not include frames that encountered a late
collision, multiple collisions, or the maximum number of collisions. The
count does not wrap.

2 aMultipleCollisionFrames Count of frames that experienced multiple collisions prior to successful
transmission. The count does not include frames that encountered a late
collision, a single collision, or the maximum number of collisions. The
count does not wrap.

3 aFramesReceivedOK Count of frames received without error and passed the LXT1001’s
destination address filter. If the VLAN support is enabled, the packet
must also pass the VLAN filter. The count does not wrap.

4 aFrameCheckSequenceErrors Count of frames received with FCS errors. This count does not include
frames that had alignment errors. The count does not wrap.

5 aAlignmentErrors A count of frames received with alignment errors. An alignment error
occurs when the received frame is not an integral number of octets in
length and does not pass the FCS check. The count does not wrap.

102
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
6 Dropped Packet Count The number of dropped packets. A packet is considered dropped if it

passed the LXT1001’s destination address filter and VLAN filter, but
could not be successfully received due to an internal error or lack of
resource in the LXT1001. The count does not wrap.

7 Errored Receive Packet Count The number of packets that encountered an error during packet reception.
This register is the sum of all errors detected by the LXT1001 during
packet reception. The count does not wrap.

8 Errored Transmit Packet Count The number of packets that encountered an error during transmission.
This register is the sum of all errors detected by the LXT1001 during
packet transmission. This count does not include packets that encountered
single or multiple collisions. The count does not wrap.

9 Late Collision Count A count of frames that encountered a late collision during transmission. A
late collision is defined as a collision that occurs after at least minimum
frame size bytes of a frame has been transmitted. The count does not
wrap.

10 Runt Packet Count A count of frames received that were smaller than the minimum frame
size of 64 bytes (including CRC). The count does not wrap.

11 aFrameTooLong A count of frames received that were larger than the maximum packet
size. The count does not wrap.

12 VLAN Accepted Packet Count A count of VLAN tagged frames received that were accepted by the
LXT1001. The count does not wrap.

13 VLAN Discarded Packet Count A count of VLAN tagged frames received that were discarded by the
LXT1001. The LXT1001 discards VLAN tagged frames if the VLEN and
VLTBEN bits are set in Mode Register – 1 and the VLAN tag in the
frame does not match any entries in the VLAN TCI Table. The count
does not wrap.

14 TCP/IP IP Checksum Error Count A count of TCP/IP packets that contained an IP header and failed the
LXT1001’s IP checksum test. This count is incremented regardless of the
state of the PACKEREN bit in Mode Register – 2. The count does not
wrap.

15 TCP/IP UDP Checksum Error
Count

A count of TCP/IP packets that contained a UDP header and failed the
LXT1001’s UDP checksum test. This count is incremented regardless of
the state of the PACKEREN bit in Mode Register – 2. The count does not
wrap.

16 alnRangeLengthErrors A count of packets that failed the LXT1001’s packet length test. The
count does not wrap.

17 TCP/IP TCP Checksum Error
Count

A count of TCP/IP packets that contained a TCP header and failed the
LXT1001’s TCP checksum test. This count is incremented regardless of
the state of the PACKEREN bit in Mode Register – 2. The count does not
wrap.

18 Reserved Reserved

19 aFramesAbortedDueToXSColls A count of packets that experienced 16 collisions and failed to transmit.
The count does not wrap.

20 Unicast Packets Received OK A count of packets containing a unicast destination address that were
received without error. The count does not wrap.

21 aMulticastFramesReceivedOK A count of packets containing a multicast destination address that were
received without error. The count does not wrap.

SCIX Statistic Name Description

103

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 47 Statistic Value Register

22 aBroadcastFramesReceivedOK A count of packets containing a broadcast destination address that were
received without error. The count does not wrap.

23 PAUSE Command Packets
Received

A count of valid PAUSE packets received. The MAC Control Packets
Received count is also incremented when this count increments. The
count does not wrap.

24 PAUSE Command Packets
Transmitted

A count of PAUSE command packets the LXT1001 generated and
transmitted. The count does not wrap.

25 MAC Control Packets Received A count of MAC control packets received by the LXT1001. This count is
independent of the PAUSE Command Packets Received count. The count
does not wrap.

26 aFramesDeferredWithXmissions A count of packets for which the first transmission was delayed because
the network was busy. The count does not wrap.

27 aFramesWithExcessiveDeferral A count of packets that were deferred greater than 3036-byte times before
successful transmission. The count is incremented at most once per
packet. The count does not wrap.

28 aCarrierSenseErrors A count of times that carrier sense was deasserted during the transmission
of a packet. The count is incremented at most once per packet. The count
does not wrap.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

S
C
V
L

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 R x SCVL 0 Statistic Value — The value of the statistic selected by the
last write to the Statistic Index Register.

SCIX Statistic Name Description

104
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 48 VLAN Tag Control Information Table

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

V
L
T
B
C
M

R
E
S
R
V
D

V
L
T
B
I
X

V
L
U
S
P
R

R
E
S
R
V
D

V
L
I
D

Bit
Field Type E2 Mnemonic

Default
Value Description

11:0 W x VLID 0 VLAN Identifier — This field corresponds to the VLAN
Identifier field in the VLAN tag header. When receiving a
VLAN tagged packet, the LXT1001 uses this field to
determine if the packet will be accepted or rejected.
When the LXT1001 is inserting a VLAN tag header prior
to packet transmission, this field is used in the
construction of the VLAN tag header.

12 x x RESRVD 0 Reserved

15:13 W x VLUSPR 0 VLAN User Priority — The field corresponds to the
user_priority field in the VLAN tag header. When
receiving a VLAN tagged packet, the LXT1001 uses this
field to determine if the packet will be accepted or
rejected.
When the LXT1001 is inserting a VLAN tag header prior
to packet transmission, this field is used in the
construction of the VLAN tag header.

19:16 W x VLTBIX 0 VLAN TCI Table Index — The index of the VLAN TCI
Table entry to be acted upon by the command specified by
VLTBCM. The TCI Table has 16 entries. The entry at
index 0 is the “global” entry.

20 x x RESRVD 0 Reserved

21 W x VLTBCM 0 VLAN TCI Table Command — This bit indicates the
operation to be performed on the VLAN TCI Tag Table.
When set, the VLID and VLUSPR information is added to
the table at the index specified by VLTBIX.
When the VLTBCM bit is clear, the TCI information at
index VLTBIX in the VLAN TCI Tag Table is deleted.

31:22 x x RESRVD 0 Reserved

105

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 49 Reserved

CSR 50 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 R x RESRVD 0 Reserved

106
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 51 Command Status Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
X
C
M
F
E
C
N

R
E
S
R
V
D

T
X
C
M
F
E
C
N

R
X
D
M
D
N
C
N

T
X
D
M
D
N
C
N

Bit
Field Type E2 Mnemonic

Default
Value Description

7:0 RC x TXDMDNCN 0 Transmit DMA Done Count — Indicates how many TX
PDL/PDCs the LXT1001 has completed processing since
the last read of this field. HOST software uses this count to
determine when TX PDL/PDC buffers are no longer in use
by the LXT1001. The LXT1001 resets the count after each
read of this field.
NOTE: This field can be accessed as a BYTE, WORD, or
DWORD. A BYTE read of this field has no affect on other
fields in the CSR. More specifically, the RXDMDNCN
count is not changed by a BYTE access to this field.

15:8 RC x RXDMDNCN 0 Receive DMA Done Count — The count of RX
PDL/PDCs the LXT1001 has completed processing since
the last read of this field. HOST software uses this field to
determine how many RX PDL/PDC buffers have been
filled with receive data by the LXT1001. The LXT1001
resets the count to 0 after each read.
NOTE: This field can be accessed as a BYTE, WORD, or
DWORD. A BYTE read of this field has no affect on other
fields in the CSR. More specifically, the TXDMDNCN
count is not changed by a BYTE access to this field.
NOTE: This field is aliased into the Event Status Register.
Whether the count is read via the Command Status
Register or the Event Status Register, the LXT1001 will
reset the count after the read.

21:16 R x TXCMFECN 31 Transmit Command Free Count — This is the number
of transmit command queue entries free in the chip. HOST
software uses this field to determine how many additional
transmit commands can be queued to the chip. The
LXT1001 can queue a maximum of 31 transmit
commands.

23:22 x x RESRVD 0 Reserved

107

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 52 Flow Control Watermark Register

29:24 R x RXCMFECN 31 Receive Command Free Count — This is the number of
receive command queue entries free in the chip. HOST
software uses this field to determine how many additional
receive commands can be queued to the chip. The
LXT1001 can queue a maximum of 31 receive commands.

31:30 x x RESRVD 0 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

F
L
C
T
H
I

W
M

F
L
C
T
L
O
W
M

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 RW x FLCTLOWM 500h Flow Control Low Watermark — This field defines the
flow control low watermark. The watermark is expressed
in terms of the number of DWORDs in use in the RX
FIFO.
When the RX FIFO reaches the high flow control high
watermark and then falls to the low watermark, the
LXT1001 constructs and transmits a PAUSE frame with
the pause duration set to 0. This PAUSE frame informs the
link partner that the congested condition has subsided and
it may begin transmitting immediately.

31:16 RW x FLCTHIWM 3B00h Flow Control High Watermark — This field defines the
flow control high watermark. The watermark is expressed
in terms of the number of DWORDs in use in the RX
FIFO.
When the RX FIFO reaches the high watermark, the
LXT1001 constructs and transmits a PAUSE frame
instructing the link partner to stop transmitting for
0FFFFh*512 bit times. As long as the RX FIFO stays
above the low watermark, the LXT1001 sends additional
PAUSE frames at an interval slightly less 0FFFFh*512 bit
times. This has the effect of keeping the link partner
paused.

Bit
Field Type E2 Mnemonic

Default
Value Description

108
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 53 Reserved

CSR 54 Reserved

CSR 55 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

109

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 56 Reserved

CSR 57 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved

110
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 58 Timer 0 Count Register

CSR 59 Timer 0 Interrupt Trigger Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
M
C
N
0

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x TMCN0 0 Timer 0 Count — The timer tick count. This count
increments with each timer tick when the TMEN0 bit is set
in the Command Register. The timer operates at 25 MHz
and therefore ticks once every 40 ns. The count remains
constant when the TMEN0 bit is clear. The count does not
wrap.
A write to this register causes the counter to be reset to 0,
regardless of the value actually written.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
M
I
N
T
R
0

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x TMINTR0 FFFFFFFFh Timer 0 Interrupt Trigger — This register specifies an
interrupt threshold for Timer 0. If the Timer 0 Count
Register equals the value in this register, and the TMMS0
bit in the Interrupt Mask Register is set, the LXT1001 will
generate an interrupt.

111

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

CSR 60 Timer 1 Count Register

CSR 61 Timer 1 Interrupt Trigger Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
M
C
N
1

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x TMCN1 0 Timer 1 Count — The timer tick count. The count
increments with each timer tick when the TMEN1 bit is set
in the Command Register. The timer operates at 25 MHz
and, therefore, ticks once every 40 ns. The count remains
constant when the TMEN1 bit is clear. The count does not
wrap.
A write to this register causes the counter to be reset to 0,
regardless of the value actually written.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
M
I
N
T
R
1

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x TMINTR1 FFFFFFFFh Timer 1 Interrupt Trigger — This register specifies an
interrupt threshold for Timer 1. If the Timer 1 Count
Register equals the value in this register, and the TMMS1
bit in the Interrupt Mask Register is set, the LXT1001 will
generate an interrupt.

112
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
CSR 62 Debug Command Register

CSR 63 Debug Data Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

D
B
S
T

R
E
S
R
V
D

B
I
S
T

Bit
Field Type E2 Mnemonic

Default
Value Description

0 W x BIST 0 Built In Self Test — This command causes the LXT1001
to perform a built-in self test (BIST). After issuing this
command, HOST software polls the DBST until it clears.
When the LXT1001 completes the BIST, it places the
BIST completion code into the Debug Data Register and
clears DBST. HOST software can then read the Debug
Data Register to obtain the completion code for BIST. A 0
completion code indicates the BIST passed. A non-zero
completion code indicates BIST failed.

30:1 x x RESRVD 0 Reserved

31 RA x DBST 0 Debug Status Bit — This bit is set by HOST software
when writing to the Debug Address Register. When the
requested action is complete, the LXT1001 clears the bit.
HOST software polls this bit to determine when the
command has completed.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

D
B
D
A

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x DBDA 0 Debug Data Register — The value and interpretation of
this field is dependent on the command issued in the
Debug Command Register. Depending on the command
issued, HOST software may need to write this register
before issuing the command, or read this register after
issuing the command.

113

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

PCS Interface Registers
The following register information is for the internal PCS
Interface block management register set. The default values
are those used by the PCS Interface block. Consult

individual PHY vendor’s documents for a list of their
management registers and their default bit values.

Register 0 Control Register
1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
S
T

L
P
B
K

S
P
S
E
L

A
N
E
N

P
W
R
D
N

IS
L
T

R
S
A
N

F
D
M
D

C
O
L
T
S
T

G
S
P
S
E
L

R
E
S
R
V
D

Bit
Field Type Mnemonic

Default
Value Description

5:0 RESRVD Reserved

6 R/W GSPSEL 1 Speed Selection 1000 Mb/s — The combination of
SPSEL and GSPSEL determines the line rate in manual
configuration. If ANEN bit is logic 1, SPSEL and
GSPSEL are ignored. If ANEN bit is logic 0, SPSEL and
GSPSEL set the line rate as follows:

GSPSEL SPSEL Line Rate
1 1 Reserved
1 0 1000 Mb/s
0 1 100 Mb/s
0 0 10 Mb/s

7 R/W COLTST 0 Collision Test — When set to logic 1, the PHY will assert
the COL signal with 512 byte times after TX_EN is
asserted and will de-assert the COL signal within 4 byte
times after TX_EN is de-asserted. It is recommended that
this bit be used only in conjunction with loopback
operation.

8 R/W FDMD 1 Duplex Mode — If ANEN is logic 0, setting FDMD to
logic 1 selects full duplex operation, and clearing it to
logic0 selects half duplex operation. If ANEN is logic 1,
the Auto-Negotiation will select the duplex mode and this
bit is ignored.

9 R/W RSAN 0 Restart Auto-Negotiation — If ANEN is logic 0 or
ANABL in the Status Register is logic 0, then RSAN is
forced to logic 0 and any attempt to write it is ignored.
Otherwise, the Auto-Negotiation process will be restarted
when RSAN is set to logic 1. This bit is cleared when the
Auto-Negotiation process is initiated.

114
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
10 R/W ISLT 1 Isolate — When set to logic 1, the outputs to the MAC

sub-layer are in a high impedance state, and the inputs
from the MAC sub-layer are ignored. When cleared to
logic 0, the PHY performsnormal operation. The
management transactions via the management interface
are not affected by ISLT.

11 R/W PWRDN 0 Power Down — When set to logic 1, the clocks from the
PHY are invalid. When cleared to logic 0 and ISLT is
logic 0, the PHY clocks are valid within 0.5 seconds. The
management transactions via the management interface
are not affected by PWRDN.

12 R/W ANEN 1 Auto-Negotiation Enable — When set to logic 1, the
Auto-Negotiation process is enabled, and the SPSEL,
GSPSEL, and FDMD bits are ignored.

13 R/W SPSEL 0 Speed Selection — The combination of SPSEL and
GSPSEL determines the line rate in manual configuration.
If ANEN bit is logic 1, SPSEL and GSPSEL are ignored.
If ANEN bit is logic 0, SPSEL and GSPSEL set the line
rate as follows:

GSPSEL SPSEL Line Rate
1 1 Reserved
1 0 1000 Mb/s
0 1 100 Mb/s
0 0 10 Mb/s

14 R/W LPBK 0 Loopback — When set to logic 1, the transmit data is
looped back to the receive data in the PHY device. The
transmit data is isolated from the line.

15 R/W RST 0 Reset — When set to logic 1, the control and status
registers are set to their default states. The reset process
shall be completed within 0.5 s from the setting of this bit.

Bit
Field Type Mnemonic

Default
Value Description

115

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Register 1 Status Register
1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

1
0
0
T
4

1
0
0
X
F
D

1
0
0
X
H
D

1
0
F
D

1
0
H
D

1
0
0
T
2
F
D

1
0
0
T
2
F
D

E
X
T
S
T
S

R
E
S
R
V
D

M
F
P
R
E
S
U
P

A
N
D
O
N
E

R
F
L
T

A
N
A
B
L

L
N
K
S
T
S

J
A
B
D
E
T

E
X
T
C
A
P

Bit
Field Type Mnemonic

Default
Value Description

0 RO EXTCAP 1 Extended Capability — When set to logic 1, the PHY has
extended register capabilities.

1 RO JABDET 0 Jabber Detect — When set to logic 1, a jabber condition
has been detected. This bit is forced to logic 0 for network
speeds greater than 10 Mb/s.

2 RO LNKSTS X Link Status — When set to logic 1, the link is able to
transmit data. When set to logic 0, the link is in
configuration or idle mode.

3 RO ANABL 1 Auto-Negotiation Ability — When set to logic 1, the
PHY is able to perform Auto-Negotiation.

4 RO RFLT x Remote Fault — When set to logic 1, a remote fault
condition has been detected.

5 RO ANDONE x Auto-Negotiation Complete — When set to logic 1,
Auto-Negotiation or Link Configuration process is
complete.

6 RO MFPRESUP 1 MF Preamble Suppression — When set to logic 1, PHY
will accept management frames with preamble suppressed.

7 RESRVD Reserved

8 RO EXTSTS 1 Extended Status — When set to logic 1, extended status
information for GMII is stored in Extended Status
Register.

9 RO 100T2HD 0 100BASE-T2 Half Duplex — When set to logic 1, the
PHY is able to perform half duplex 100BASE-T2.

10 RO 100T2FD 1 100BASE-T2 Full Duplex — When set to logic 1, the
PHY is able to perform full duplex 100BASE-T2.

11 RO 10HD 0 10 Mb/s Half Duplex — When set to logic 1, the PHY is
able to operate at 10 Mb/s in half duplex mode.

12 RO 10FD 0 10 Mb/s Full Duplex — When set to logic 1, the PHY is
able to operate at 10 Mb/s in full duplex mode.

13 RO 100XHD 0 100BASE-X Half Duplex — When set to logic 1, the
PHY is able to perform half duplex 100BASE-X.

116
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

Register 2 & 3 PHY Identifier Register

Register 4 Auto-Negotiation Advertisement Register

14 RO 100XFD 0 100BASE-X Full Duplex — When set to logic 1, the PHY
is able to perform full duplex 100BASE-X.

15 RO 100T4 0 100BASE-T4 — When set to logic 1, the PHY is able to
perform 100BASE-T4.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

O
U
I

M
M
N

R
E
V

Bit
Field Type Mnemonic

Default
Value Description

3:0 RO REV 0 Revision Number — For the internal PCS, the current
revision number is ‘h0.

9:4 RO MMN 00 Manufacturer’s Model Number

31:11 RO OUI 00E083 Organizationally Unique Identifier — The OUI for
Level One Communications is 00E083. External
GMII/MII PHYs may have their own OUIs.

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

N
X
P
G

R
E
S
R
V
D

R
F
L
T

R
E
S
R
V
D

P
S

H
D
P

F
D
P

R
E
S
R
V
D

Bit
Field Type Mnemonic

Default
Value Description

4:0 RO RESRVD Reserved

5 R/W FDP 1 Full Duplex — If set to logic 1, the Local Device is
capable of full duplex operation. If cleared to logic 0, the
Local Device is incapable of full duplex operation.

6 R/W HDP 1 Half Duplex — If set to logic 1, the Local Device is
capable of half duplex operation. If cleared to logic 0, the
Local Device is incapable of half duplex operation.

Bit
Field Type Mnemonic

Default
Value Description

117

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Register 5 Auto-Negotiation Link Partner Base Page Ability Register

8:7 R/W PS 11 Pause — PS provides a pause capability exchange
mechanism.

[8] [7] Description
0 0 No pause
0 1 Symmetric pause
1 0 Asymmetric pause
1 1 Pause toward local device

11:9 RO RESRVD Reserved

13:12 R/W RFLT 0 Remote Fault — RFLT provides a mechanism for the
transmission of simple fault and error inofrmation and
may indicate to the Link Partner that a fult or error
condition has occurred.

[13] [12] Description
0 0 No error, link okay
0 1 Link failure
1 0 Offline
1 1 Auto-Negotiation error

14 RO RESRVD Reserved

15 R/W NXPG 0 Next Page Ability — Set to logic 1 to indicate to the Link
Partner that the Local Device is capable of handling next
pages and that it has subsequent pages to be transmitted.
Cleared to logic 0 to indicate that there is no next page
information to be sent.

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

N
X
P
G

A
C
K

R
F
L
T

R
E
S
R
V
D

P
S

H
D
P

F
D
P

R
E
S
R
V
D

Bit
Field Type Mnemonic

Default
Value Description

4:0 RO RESRVD Reserved

5 R/W FDP X Full Duplex — If set to logic 1, the Local Device is
capable of full duplex operation. If cleared to logic 0, the
Local Device is incapable of full duplex operation.

6 R/W HDP X Half Duplex — If set to logic 1, the Local Device is
capable of half duplex operation. If cleared to logic 0, the
Local Device is incapable of half duplex operation.

Bit
Field Type Mnemonic

Default
Value Description

118
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

Register 6 Auto-Negotiation Expansion Register

8:7 R/W PS X Pause — PS provides a pause capability exchange
mechanism.

[8] [7] Description
0 0 No pause
0 1 Symmetric pause
1 0 Asymmetric pause
1 1 Pause toward local device

11:9 RO RESRVD Reserved

13:12 R/W RFLT X Remote Fault — RFLT provides a mechanism for the
transmission of simple fault and error inofrmation and
may indicate to the Link Partner that a fult or error
condition has occurred.

[13] [12] Description
0 0 No error, link okay
0 1 Link failure
1 0 Offline
1 1 Auto-Negotiation error

14 RO ACK X Acknowledge — ACK is set to logic 1 to indicate that the
Link Partner has successfully received the Local Device’s
base page.

15 R/W NXPG X Next Page Ability — Set to logic 1 to indicate to the Link
Partner that the Local Device is capable of handling next
pages and that it has subsequent pages to be transmitted.
Cleared to logic 0 to indicate that there is no next page
information to be sent.

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

N
P
A
B
L
E

P
G
R
C
V
D

R
E
S
R
V
D

Bit
Field Type Mnemonic

Default
Value Description

0 RO RESRVD Reserved

1 RO
SC

PGRCVD 0 Page Received — PGRCVD is set to logic 1 if a new page
has been received and stored in either the link partner
ability base or next page register. This bit is cleared to
logic 0 upon a read of this register.

Bit
Field Type Mnemonic

Default
Value Description

119

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Register 7 Auto-Negotiation Next Page Transmit Register

2 RO NPABLE 1 Next Page Able — When read as logic 1, NPABLE
indicates that the Local Device is capable of handling next
pages. When read as logic 0, NPABLE indicates that the
Local Device cannot perform next pages.

15:3 RO RESRVD Reserved

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

N
X
P
G

R
E
S
R
V
D

M
S
P
G

A
C
K
2

T
O
G

M
U
C
F

Bit
Field Type Mnemonic

Default
Value Description

10:0 R/W MUCF 0 Message/Unformatted Code Field — If MSPG is set to
logic 1, the MUCF contains one of 2048 possible
messages. If MSPG is set to logic 0, the MUCF may
contin an arbitrary value.

11 RO TOG 0 Toggle — TOG is used to ensure synchronization with the
Link Partner during next page exchange. This bit is set to
logic 1 if the previous value transmitted was logic 0. This
bit is cleared to logic 0 if the previous value transmitted
was a logic 1.

12 R/W ACK2 0 Acknowledge 2 — Set to logic 1 to indicate that the Local
Device will comply with the message. Cleared to logic 0
to indicate that the Local Device cannot comply with this
message.

13 R/W MSPG 0 Message Page — This bit is set to logic 1 to indicate a
message page. This bit is cleared to logic 0 to indicate an
unformatted page.

14 RO RESRVD Reserved

15 R/W NXPG 0 Next Page — Set to logic 1 to indicate subsequent pages to
be transmitted. This bit is cleared to logic 0 to indicate that
there is no next page information to be sent.

Bit
Field Type Mnemonic

Default
Value Description

120
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
Register 8 Auto-Negotiation Link Partner Received Next Page Register

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

N
X
P
G

R
E
S
R
V
D

M
S
P
G

A
C
K
2

T
O
G

M
U
C
F

Bit
Field Type Mnemonic

Default
Value Description

10:0 RO MUCF X Message/Unformatted Code Field — If MSPG is set to
logic 1, the MUCF contains one of 2048 possible
messages. If MSPG is set to logic 0, the MUCF may
contin an arbitrary value.

11 RO TOG X Toggle — TOG is used to ensure synchronization with the
Link Partner during next page exchange. This bit is set to
logic 1 if the previous value transmitted was logic 0. This
bit is cleared to logic 0 if the previous value transmitted
was a logic 1.

12 RO ACK2 X Acknowledge 2 — Set to logic 1 to indicate that the Local
Device will comply with the message. Cleared to logic 0
to indicate that the Local Device cannot comply with this
message.

13 RO MSPG X Message Page — This bit is set to logic 1 to indicate a
message page. This bit is cleared to logic 0 to indicate an
unformatted page.

14 RO RESRVD Reserved

15 RO NXPG X Next Page — Set to logic 1 to indicate subsequent pages to
be transmitted. This bit is cleared to logic 0 to indicate that
there is no next page information to be sent.

121

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

Register 15 Extended Status Register
1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

1
0
0
0
X
F
D

1
0
0
0
X
H
D

1
0
0
0
T
F
D

1
0
0
0
T
H
D

R
E
S
R
V
D

Bit
Field Type Mnemonic

Default
Value Description

11:0 RO RESRVD Reserved

12 RO 1000THD 0 1000BASE-T Half Duplex — When set to logic 1,
1000THD indicates that the PHY has the ability to
perform half-duplex 1000BASE-T signaling. When read
as a logic 0, 1000THD indicates that the PHY is unable to
perform half-duplex 1000BASE-T signaling.

13 RO 1000TFD 0 1000BASE-T Full Duplex — When set to logic 1,
1000TFD indicates that the PHY has the ability to perform
full-duplex 1000BASE-T signaling. When read as a logic
0, 1000TFD indicates that the PHY is unable to perform
full-duplex 1000BASE-T signaling.

14 RO 1000XHD 1 1000BASE-X Half Duplex — When set to logic 1,
1000XHD indicates that the PHY has the ability to
perform half-duplex 1000BASE-X signaling. When read
as a logic 0, 1000XHD indicates that the PHY is unable to
perform half-duplex 1000BASE-X signaling.

15 RO 1000XFD 1 1000BASE-X Full Duplex — When set to logic 1,
1000XFD indicates that the PHY has the ability to perform
full-duplex 1000BASE-X signaling. When read as a logic
0, 1000XFD indicates that the PHY is unable to perform
full-duplex 1000BASE-X signaling.

122
l

LXT1001 Network Controller
Command and Status Registers

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)Vendor Specific Registers

Register 16 Level One Communications Features Register
1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

P
S
R
S

Bit
Field Type Mnemonic

Default
Value Description

0 R/W PSRS Pause Resolution — When set to logic 1, pause resolution
is used in priority resolution and the setting of the remote
fault bits and the remote fault indication. When cleared to
logic 0, pause resolution is not used in priority resolution.

15:1 RO RESRVD Reserved

123

LXT1001 Network Controller
EEPROM Map

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

SECTION 5 EEPROM MAP

Figure 5-1: EEPROM Map

Off
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0 REGISTER

00 Reserved Unused

01 SUBSYSTEM ID SUBSYTEM VENDOR ID PCI CFG

02 MAX LATENCY MIN GRANT RESERVED PCI CFG

03

L
N
C
K
E
N

U
S
P
I
M
D
1

U
S
P
I
M
D
0

V
L
I
S
G
B

V
L
R
M
I
D

V
L
T
B
E
N

V
L
E
N

R
E
S
E
R
V
E
D

R
X
F
L
C
T
E
N

M
G
M
C
B
E
N

M
G
P
K
E
N

R
E
S
E
R
V
E
D

L
G
P
K
E
N

R
E
S
E
R
V
E
D

R
M
P
P
E
N

T
X
P
P
E
N

G
M
S
T
P
O
E
N

R
X
T
R
P
R

R
E
S
E
R
V
E
D

CSR 00

04

R
E
S
E
R
V
E
D

C
A

C
O

J
A

R
X

T
X

A
D
M
A

L
K
S
T

A
N

F
D

R
E
S
E
R
V
E
D

1
0
0
0
M
B

1
0
0
M
B

1
0
M
B

P
U
X
P

L
D
I
P
S
G
P
L

L
D
E
N

R
E
S
E
R
V
E
D

CSR 36

05

R
E
S
E
R
V
E
D

C
A

C
O

J
A

R
X

T
X

A
D
M
A

L
K
S
T

A
N

F
D

R
E
S
E
R
V
E
D

1
0
0
0
M
B

1
0
0
M
B

1
0
M
B

P
U
X
P

L
D
I
P
S
G
P
L

L
D
E
N

R
E
S
E
R
V
E
D

CSR 37

06

R
E
S
E
R
V
E
D

C
A

C
O

J
A

R
X

T
X

A
D
M
A

L
K
S
T

A
N

F
D

R
E
S
E
R
V
E
D

1
0
0
0
M
B

1
0
0
M
B

1
0
M
B

P
U
X
P

L
D
I
P
S
G
P
L

L
D
E
N

R
E
S
E
R
V
E
D

CSR 38

07

R
E
S
E
R
V
E
D

C
A

C
O

J
A

R
X

T
X

A
D
M
A

L
K
S
T

A
N

F
D

R
E
S
E
R
V
E
D

1
0
0
0
M
B

1
0
0
M
B

1
0
M
B

P
U
X
P

L
D
I
P
S
G
P
L

L
D
E
N

R
E
S
E
R
V
E
D

CSR 39

08 RESERVED PHAD5 PHAD4 CSR 43

09 PHAD3 PHAD2 PHAD1 PHAD0 CSR 42

124
l

LXT1001 Network Controller
EEPROM Map

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)

*NOTE: FLWTEN must be set to zero.

10

R
E
S
E
R
V
E
D

F
L
W
T
E
N
*

F
L
P
N

E
X
R
M
T
M

R
E
S
E
R
V
E
D

CSR 10

11 RESERVED 0x8100

12

R
E
S
E
R
V
E
D

P
A
C
K
E
R
E
N

R
X
U
P
C
K
E
N

R
X
T
P
C
K
E
N

R
X
I
P
C
K
E
N

R
E
S
E
R
V
E
D

R
E
S
E
R
V
E
D

CSR 01

•
•
•

RESERVED
UNUSED

31 CHECKSUM CHECKSUM

Figure 5-1: EEPROM Map – continued

Off
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0 REGISTER

125

LXT1001 Network Controller
Glossary

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

SECTION 6 GLOSSARY

Symbol Description

AB Arbitrate

AC Acceptable

AD Address

AL Alignment

AN Auto Negotiation

AV Available

BC Broadcast

BF Buffer

BK Back

BT Byte

BU Bus

CA Carrier

CD Code

CK Check

CL Control

CM Command

CN Count

CO Collision

CR Cyclic Redundancy Check (CRC)

CS Chip Select

CT Control

DA Data

DB Debug

DE Descriptor

DF Defined

DL Delayed

DM Direct Memory Access. Refers to transactions initiated by the LXT1001 on the HOST/LXT1001 interconnect
bus portion directly attached to the LXT1001. For LXT1001, DMA refers to MASTER PCI cycles initiated
by the LXT1001.

DN Done

DR Dropped

DS Disable

DV Device

DW Double Words (4 bytes)

E2 Electrically Erasable (as in EEPROM)

126
l

LXT1001 Network Controller
Glossary

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
EM Empty

EN Enable

ER Error

EX Exhausted/Expired

FA Failure

FD Full Duplex

FE Free

FI FIFO

FL Flow

FR Frame

GM GMII

GN General

HD Header

HI High

HS Hash

HT Hit

HW Hardware

ID Identifier

IL Idle

IN Interrupt

IP Input or Internet Protocol (IP)

IS Insert

IX Index

JA Jabber

LA Layer

LD LED

LG Long

LK Link

LN Line

LO Low

LP Loop

LT Late

MA Match

MB Megabit

MC Multicast

MD Mode

MG Magic

MI MII

Symbol Description

127

LXT1001 Network Controller
Glossary

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

MS Mask

MU Multiple

NV Invalidate

OD Order

OK Okay

OU Out

OV Over

PA Pause

PE Periodic

PD PDL or PDC

PH Physical

PI Pin

PK Packet

PL Polarity

PM PROM

PN Present

PO Promiscuous or Poll

PP Packet Pad

PR Priority

PS Pass

PT Pointer

PU Pulse

RD Read

RE Reset

RESRVD Reserved

RG Ring

RM ROM or Remove

RQ Request

RR Register

RT Retries

RU Runt

RV Revision

RX Receive

SC Statistic

SE Set

SG Signal

SI Single

SK Skip

Symbol Description

128
l

LXT1001 Network Controller
Glossary

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

Features (cont.)
SL Slave

SM Sum

SP Speed

SR Stretcher

ST State/Status

SW Software

SY Symbol

TB Table

TM Timer

TP Transmission Control Protocol (TCP)

TR Trigger

TS Test

TX Transmit

UC Unicast

UP User Datagram Protocol (UDP)

US User

VL Value or VLAN

WM Watermark

WR Wire

WT Write

XP Expander

Symbol Description

129

LXT1001 Network Controller
Glossary

Document #: IS1001SR
Orig. Date: 8/24/98
Revision #: 1.0
Rev. Date: 7/9/99

l

EAST WEST ASIA/PACIFIC EUROPE

Eastern Area Headquarters &
Northeastern Regional Office

Western Area
Headquarters

Asia / Pacific Area
Headquarters

European Area
Headquarters

234 Littleton Road, Unit 1A
Westford, MA 01886
USA
Tel: (978) 692-1193
Fax: (978) 692-1124

3375 Scott Blvd., #110
Santa Clara, CA 95054
USA
Tel: (408) 496-1950
Fax: (408) 496-1955

101 Thomson Road
United Square #08-01
Singapore 307591
Thailand
Tel: +65 353 6722
Fax: +65 353 6711

Parc Technopolis-Bat. Zeta 3,
avenue du Canada -
Z.A. de Courtaboeuf
Les Ulis Cedex 91974
France
Tel: +33 1 64 86 2828
Fax: +33 1 60 92 0608

North Central
Regional Office

South Central
Regional Office

Central Asia/Pacific
Regional Office

Central and Southern
Europe Regional Office

One Pierce Place
Suite 500E
Itasca, IL 60143
USA
Tel: (630) 250-6044
Fax: (630) 250-6045

2340 E. Trinity Mills Road
Suite 306
Carrollton, TX 75006
USA
Tel: (972) 418-2956
Fax: (972) 418-2985

12F-1, No. 128, Section 3
Ming Sheng East Road
Taipei, TAIWAN, R.O.C.
Tel: +886 2 2547 5227
Fax: +886 2 2547 5228

Feringastrasse 6
D-85774 Muenchen-
Unterfoerhring, Germany
Tel: +49 89 99 216 375
Fax: +49 89 99 216 319

Southeastern
Regional Office

Southwestern
Regional Office

Northern Asia/Pacific
Regional Office

Northern Europe
Regional Office

4020 WestChase Blvd
Suite 100
Raleigh, NC 27607
USA
Tel: (919) 836-9798
Fax: (919) 836-9818

28202 Cabot Road
Suite 300
Laguna Niguel, CA 92677
USA
Tel: (949) 365-5655
Fax: (949) 365-5653

Nishi-Shinjuku, Mizuma
Building 8F
3-3-13, Nishi-Shinjuku,
Shinjuku-Ku
Tokyo, 160-0023 Japan
Tel: +81 3 3347-8630
Fax: +81 3 3347-8635

Torshamnsgatan 35
164/40 Kista/Stockholm,
Sweden
Tel: +46 8 750 3980
Fax: +46 8 750 3982

Latin/South
America
9750 Goethe Road
Sacramento, CA 95827
USA
Tel: (916) 855-5000
Fax: (916) 854-1102

Revision Date Status

1.0 7/9/99 Product Release

InternationalThe Americas

Corporate Headquarters
9750 Goethe Road
Sacramento, California 95827
Telephone: (916) 855-5000
Fax: (916) 854-1101
Web: www.level1.com

l

Copyright © 1999 Level One Communications, Inc. Specifications subject to change without notice.
All rights reserved. Printed in the United States of America.
PDS-T

The products listed in this publication are covered by one or more of the following patents. Additional patents pending.
5,008,637; 5,028,888; 5,057,794; 5,059,924; 5,068,628; 5,077,529; 5,084,866; 5,148,427; 5,153,875; 5,157,690; 5,159,291; 5,162,746; 5,166,635; 5,181,228;
5,204,880; 5,249,183; 5,257,286; 5,267,269; 5,267,746; 5,461,661; 5,493,243; 5,534,863; 5,574,726; 5,581,585; 5,608,341; 5,671,249; 5,666,129; 5,701,099

Document #: IS1001SR
Orig. Date: 8/24/98

Revision #: 1.0
Rev. Date: 7/9/99

