
Using the DECchip 21041 with Boot
ROM, Serial ROM, and External
Register:

An Application Note

Order Number: EC–QJLGA–TE

This application note provides information necessary to implement
connections between the DECchip 21041 Ethernet LAN controller
and boot ROM, serial ROM, and external register. It also describes a
connection of several chips sharing one serial ROM and the format of
the serial ROM programming.

Revision/Update Information: This is a new document.

Digital Equipment Corporation
Maynard, Massachusetts

April 1995

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

While Digital believes the information included in this publication is correct as of the date of
publication, it is subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

© Digital Equipment Corporation 1995. All rights reserved.
Printed in U.S.A.

DECchip, Digital, ThinWire, VAX DOCUMENT, and the DIGITAL logo are trademarks of Digital
Equipment Corporation.

Digital Semiconductor is a Digital Equipment Corporation business.

IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
MicroWire is a registered trademark of BankAmerican Corporation.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

1 Overview . 1
2 Functional Overview . 1
3 Connection to Boot ROM . 2
4 Connection to Serial ROM . 3
4.1 Single DECchip 21041 Connection . 3
4.2 Multiple DECchip 21041 Connection . 3
5 External Register Connection . 5
5.1 Configuration of External Register Without Boot ROM 5
5.2 Configuration of External Register with Boot ROM 7
6 Serial ROM Programming . 8

A Serial ROM Access — Software Description

B Serial ROM CRC Calculation

Figures

1 Boot ROM (256KB) Connection . 2

2 Serial ROM (1024-Bit) Connection . 3

3 Four Chips Sharing One Serial ROM . 4

4 External Register Connection—Write Only (No Boot ROM) 5

5 External Register Connection—Read Only (No Boot ROM) 6

6 External Register Connection—Read and Write with Boot ROM 7

7 Serial ROM Structure . 8

8 Info Leaf Format . 10

9 Media Block Format . 11

10 Media-Specific Data Format . 12

Tables

1 Boot ROM, Serial ROM, and External Register Interface Pins 1

2 Serial ROM Field Description . 9

3 Info Leaf Description . 10

4 Media Block Description . 11

iii

1 Overview

The information contained in this application note describes how to connect the

DECchip 21041 Ethernet LAN controller (21041) to its boot ROM, serial ROM,

and external register peripheral devices. Note that connection to either a boot

ROM or to an external register is not a requirement for correct operation of the

controller. You can use any combination of these connections.

The programming information supplied in this application note applies to Digital-

supplied device drivers. Users may use other formats supported by their own

device drivers.

For detailed technical product requirements, the product developer should

refer to the DECchip 21041 PCI Ethernet LAN Controller Data Sheet and the

DECchip 21041 PCI Ethernet LAN Controller Hardware Reference Manual.

2 Functional Overview

The 21041 allows connection to an upgradable boot ROM (flash or EPROM)

of 64KB, 128KB, or 256KB. The boot ROM typically contains code that can be

executed for device-specific initialization and, possibly, a system boot function.

The 21041 also supports connection to the serial ROM for read and write

operations. The serial ROM contains the IEEE address and other optional system

parameters. The interface to serial ROM is fully software driven.

Connection to a general-purpose external register can be done for read and

write operations. This connection allows a general-purpose bidirectional port for

various applications.

The 21041 provides a 12-pin interface for all the connections described in this

application note. The access control to the different devices is done by software

using CSR9 and CSR10.

Table 1 lists all the 12 interface signals and their function in each connection.

Table 1 Boot ROM, Serial ROM, and External Register Interface Pins

Pin Function

Signal Number Boot ROM Serial ROM External Register

br_ad<6:0> 113:119 Address and
data lines,
we_l, oe_l

Not used Data lines

br_ad<7>/sr_din 93 Address and
data line

Serial ROM
data in

Data line bit 7

br_a<1>/sr_sk 80 Address bit 1,
latch control for
external latches

Serial ROM
clock

Not used

br_a<0>/sr_dout 79 Address bits 16,
17, and 0

Serial ROM
data out

Read and write control

mode_select/br_ce_l 91 Chip enable
control

Not used Chip enable or read and
write control

sr_cs 81 Not used Chip select Not used

Preliminary—Subject to Change—April 1995 1

3 Connection to Boot ROM

Figure 1 shows a connection of a 256KB flash boot ROM. The required

components for this configuration are:

� Two 9-bit high edge-triggered latches (74FCT823)

� Flash ROM chip (28F020)

Figure 1 Boot ROM (256KB) Connection

LJ-04381.AI5

DECchip
21041

91

256k x 8
FLASH 28F020

Data

Address9-Bit D-Flop
74FCT823

80

79

93

113

114

115

116

117

118

119

br_ce_l

br_a<1>/sr_sk

br_a<0>/sr_dout

br_ad<7>

br_ad<6>

br_ad<5>

br_ad<4>

br_ad<3>

br_ad<2>

br_ad<1>

br_ad<0>

10

21 D7

20

19

18

17

15

14

13 D0

30 A17

3Ê

29Ê

28Ê

4Ê

25Ê

23Ê

26Ê

27Ê

5Ê

6Ê

7

8

9Ê

10Ê

11Ê

12 A0Ê

24Ê

31Ê

22 Ê

1Ê

 oe_lÊ

 we_lÊ

 ce_l Ê

 vppÊ

9

8

7

6

5

4

3

2

15

16

17

18

19

20

21

22

23

1

14

11+5 V

13

 eno

 en

 r

 c1

2

+12 V

9-Bit D-Flop
74FCT823

10

9

8

7

6

5

4

3

2

15

16

17

18

19

20

21

22

23

1

14

11+5 V

13

 eno

 en

 r

 c1

2 Preliminary—Subject to Change—April 1995

4 Connection to Serial ROM

The following sections describe connnections to the serial ROM.

4.1 Single DECchip 21041 Connection

Figure 2 shows a connection between a single DECchip 21041 and a MicroWire

1024-bit serial EPROM. No additional components are needed for this

connection.

Figure 2 Serial ROM (1024-Bit) Connection

LJ-04382.AI5

DECchip
21041

93

80

79

br_ad<7>/sr_din

br_a<1>/sr_sk

br_a<0>/sr_dout

Serial ROM
93LC46B

3

2

181sr_cs

di

clk

cs

do 4

4.2 Multiple DECchip 21041 Connection

It is possible that one serial ROM device can be shared by multiple 21041 devices.

For support, the serial ROM should contain specific information for each one of

the chips. Section 6, Serial ROM Programming, provides the required details.

Figure 3 shows a connection of four 21041 chips sharing a single MicroWire

1024-bit serial EEPROM. The required components for this configuration are:

� Dual 4-input multiplexer chip (74F153)

� Quad 2-input OR gate chip (74F32)

� Serial ROM chip

This configuration assumes that:

• One 21041 will not try to access its boot ROM (or external register) while

another 21041 has serial ROM access.

• Two 21041s will not have simultaneous access to the serial ROM.

Preliminary—Subject to Change—April 1995 3

Figure 3 Four Chips Sharing One Serial ROM

LJ-04383.AI5

DECchip
21041

93

80

79

br_ad<7>/sr_din

br_a<1>/sr_sk

br_a<0>/sr_dout

Serial ROM
93LC46B

3

2

1

81sr_cs

DECchip
21041

93

80

79

br_ad<7>/sr_din

br_a<1>/sr_sk

br_a<0>/sr_dout

81sr_cs

DECchip
21041

93

80

79

br_ad<7>/sr_din

br_a<1>/sr_sk

br_a<0>/sr_dout

81sr_cs

DECchip
21041

93

80

79

br_ad<7>/sr_din

br_a<1>/sr_sk

br_a<0>/sr_dout

81sr_cs

di

clk

cs

do 4

74F153
Dual 4-Input
Multiplexer

74F32 Quad 2-Input OR Gate

12

13

14

 I2b

11 I1b

10 I0b

6 I0a

5 I1a

4 I2a

3 I3a

 I3b

 s0

15 eb_l

zb 9

za 7

2 s1

1 ea _l

4 Preliminary—Subject to Change—April 1995

5 External Register Connection

This section describes two configuration types for using the general-purpose 8-bit

external register.

� A minimum configuration without boot ROM and using the external register

port in one direction only.

� A maximum configuration with boot ROM, using the external register as a

bidirectional port.

5.1 Configuration of External Register Without Boot ROM

This configuration assumes that boot ROM is not used and the general-purpose

external register is used for read-only or write-only operations.

Figure 4 shows a minimum type of configuration that uses the external register

for write operations only.

Figure 4 External Register Connection—Write Only (No Boot ROM)

LJ-04384.AI5

DECchip
21041

93

113

114

115

116

117

118

119

br_ad<7>/sr_din

br_ad<6>

br_ad<5>

br_ad<4>

br_ad<3>

br_ad<2>

br_ad<1>

br_ad<0>

74FCT273
Octal

D Flip-Flop

18

17

14

13

8

7

4

3

91mode_select/br_ce_l

6rst_l

11

 D7

 D6

 D5

 D4

 D3

 D2

 D1

 D0

 cp

1

Reset

mr

Preliminary—Subject to Change—April 1995 5

Figure 5 shows a configuration that uses the external register for read operations

only. Data read by the 21041 should be driven constantly on the 74FCT244

inputs.

Figure 5 External Register Connection—Read Only (No Boot ROM)

LJ-04385.AI5

DECchip
21041

93

113

114

115

116

117

118

119

br_ad<7>/sr_din

br_ad<6>

br_ad<5>

br_ad<4>

br_ad<3>

br_ad<2>

br_ad<1>

br_ad<0>

74FCT244
Tristate
Buffer

3

5

7

9

12

14

16

18

91mode_select/br_ce_l 1

 2Y3

 2Y2

 2Y1

 2Y0

 1Y3

 1Y2

 1Y1

 1Y0

 1oe_l

19 2oe_l

6 Preliminary—Subject to Change—April 1995

5.2 Configuration of External Register with Boot ROM

This connection assumes that both the external register and the boot ROM are

used by the 21041. This connection also allows read and write accesses to the

external register, making it a bidirectional general-purpose port. Note that

Figure 1 shows the boot ROM connection.

Figure 6 describes the connection of the external register used for read and write

operations with the boot ROM included on the adapter. The required components

for this configuration are:

� 1-of-8 decoder

� Octal latched transceiver (3-state).

Figure 6 External Register Connection—Read and Write with Boot ROM

LJ-04386.AI5

DECchip
21041

93

113

114

115

116

117

118

119

br_ad<7>/sr_din

br_ad<6>

br_ad<5>

br_ad<4>

br_ad<3>

br_ad<2>

br_ad<1>

br_ad<0>

74FCT543
8-Bit 3-state
Bidirectional

Register

10

9

8

7

6

5

4

3

11Vss

A7

A6

A5

A4

A3

A2

A1

A0

 e_l (ab)

23 e_l(ba)

79br_a<0>/sr_dout

13 oe_l(ab)

14 le_l(ab)

1 le_l(ba)

2 oe_l(ba)

74F138
1-of-8 Decoder

1 A0

91mode_select/br_ce_l 4 e1_l

2 A1

3Vss A2

5Vss

From D-flop 74FCT823
Pin 23 (Also
Input to Boot ROM)

 we_l

From D-flop 74FCT823
Pin 22 (Also
Input to Boot ROM)

 oe_l

e2_l

q2_l 13

q3_l 12

6 e3

Preliminary—Subject to Change—April 1995 7

6 Serial ROM Programming

The definition for serial ROM programming that is described in this section

supports multiple chips on a single board sharing a single serial ROM. It is

applicable for Digital-supplied device drivers. Users may use other formats

supported by their own device drivers.

Note

To optimize the ROM space usage, byte fields are used. Because the serial

ROM supports only word accesses, Digital recommends that you first

download the entire ROM into a memory shadow table.

Figure 7 shows the structure of the serial ROM and Table 2 describes the byte

fields.

Figure 7 Serial ROM Structure

LJ-04387.AI5

Reserved (0s)
(18 Bytes)

SROM Format Version

0

16

18

126

Chip_0 Info (Leaf Offset) 27

Byte
Offset
in SROM15 0708 00

IEEE Network Address
(6 Bytes)

Chip_0 Device_Number

19

24

26

Chip_Count () n

 n

 n

20

Chip_1 Info (Leaf Offset) 30

Chip_1 Device_Number 29

Chip_2 Info (Leaf Offset) 33

Chip_2 Device_Number 32

Chip_ Info (Leaf Offset)

Chip_0 Info Leaf

Chip_1 Info Leaf

Chip_2 Info Leaf

 nChip_ Info Leaf

0s

2 Least Significant Bytes of CRC32

Chip_ Device_Number

Reserved (MBZ)
(1 Byte)

ID
Block

8 Preliminary—Subject to Change—April 1995

Table 2 Serial ROM Field Description

Field Size (Bytes) Definition

Reserved 18 Reserved, must be zero

SROM format
version

1 SROM format version. Current version is 0x01

Chip_count (n) 1 Number of chips sharing this ROM. A single port
board will have a value of 1 in this field.

IEEE network
address

6 This is the IEEE address of the chip in a single chip
board.

In a multiple chip board, this is the base IEEE
address. Every chip (0..n) adds its index (n) to this
base IEEE address.

Chip_n Device_
Number

1 There is one such field per chip sharing the SROM.

In a multi-chip board, this field contains the
Device_Number value by which the nth chip’s
configuration space can be accessed on this board’s
secondary PCI bus. This value depends on the
hardware routing of the board. The Device_Number
is the chip select line routed from this chip to the
PCI-to-PCI bridge chip on board.

In a single chip board this field has no meaning and
should be ignored by the driver.

Chip_n info 2 Byte offset (from beginning of SROM) where chip_n
info block is located. There is one such field per
chip sharing the SROM.

Note: If multiple chips have identical information
blocks, a single leaf can be shared and all leaf
pointers can be set to point to it. This is correct
only if the user cannot select between multiple
media ports for each chip (see the following details).

For example: A 4-TP port card can share one info
block for all 4 chips.

Reserved 1 MBZ.

Note that the location of this field depends on the
number of chips supported by this card.

Chip_n
info leaf

Chip dependent Chip-specific information. See Figure 8 and Table 3
for details.

2 LSB of CRC32 2 Is calculated on all the words of the SROM from
word[0] to the word before the CRC (word[SROM_
word_size –2]).

The CRC word is derived by calculating the CRC32
of all the SROM until the last word (not including
it) and taking the two least significant bytes of
the result. That is, if the CRC is 4 bytes long
with byte 0 being the least significant byte, then
SROM_BYTE[BYTE_LEN –2] holds CRC<0> (least
significant byte) and SROM_BYTE[BYTE_LEN –1]
holds CRC<1>.

Preliminary—Subject to Change—April 1995 9

Figure 8 shows the info leaf format and Table 3 describes the byte fields.

Figure 8 Info Leaf Format

LJ-04388.AI5

Selected Connection Type

Media Count (k)

0

Media_k Block

Media_1 Block

2

Media_2 Block

3

Byte
Offset
in Leaf15 07 00

Table 3 Info Leaf Description

Field Size (Bytes) Meaning

Selected
connection
type

2 Usually, the connection type used by the chip is
selected by the user in the drivers’ configuration
files. However, this field has been provided to
allow setup utilities that are unable to modify the
configuration files and save this information in the
SROM instead. The possible values are:

0x0000 - TP
0x0100 - TP with autonegotiation
0x0204 - TP full-duplex
0x0400 - TP without LinkPass test
0x0001 - BNC
0x0002 - AUI
0x0800 - AutoSense
0x0900 - AutoSense with autonegotiation

If this field is not used, it must be set to 0xFFFF.
Any other value is invalid and may cause
unpredictable results.

Media count (k) 1 The number of media blocks present for this chip.

Media_k block Media
dependent

Describes one supported medium. There is one such
field per supported medium. See details in Figure 9
and Table 4.

10 Preliminary—Subject to Change—April 1995

Figure 9 shows the media block format and Table 4 describes the byte fields.

Figure 9 Media Block Format

LJ-04389.AI5

Media CodeReserved EXT

Media-Specific Data

07 06 00

Table 4 Media Block Description

Field Size Meaning

Media code 6 bits Indicates to the driver that this medium is
supported by the chip.

Possible values are:

00H - TP
01H - BNC
02H - AUI
04H - TP Full-Duplex

EXT 1 bit When set to 1, indicates that the lower 16 bits of
CSRs 13 through 15 (SIA registers) will be set via
the SROM, and not by using the internal default
values for this media type. The SIA setting values
are given by the media-specific data field.

Reserved 1 bit Reserved.

Media-specific
data

6 bytes Media-specific data. This field exists only when
the EXT bit is set. This field provides the values
of CSR13, CSR14, and CSR15 (Figure 10) to use
instead of the driver internal defaults for this
media type.

Preliminary—Subject to Change—April 1995 11

Figure 10 shows the media-specific data format.

Figure 10 Media-Specific Data Format

LJ-04390.AI5

CSR13 <15:0>

CSR14 <15:0>

CSR15 <15:0>

15 00

12 Preliminary—Subject to Change—April 1995

A
Serial ROM Access — Software Description

This appendix provides software code for both serial ROM read and write

accesses. The routines that follow are written for the 39LC46B serial ROM

device. Some modifications to the code may be required when supporting other

devices.

/*
** Constants, variables, functions prototypes & definitions.
*/

#define SROM_93LC46B_LAST_ADDRESS 0x3F
#define SROM_93LC46B_LAST_ADDRESS_BIT 5
#define CSR9_READ 0x4000
#define CSR9_WRITE 0x2000
#define SEL_SROM 0x0800
#define DATA_1 0x0004
#define DATA_0 0x0000
#define CLK 0x0002
#define CS 0x0001

enum WIDTH {Byte,Word,Dword};

#define Byte 0
#define Word 1
#define Dword 2

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;

#define FALSE 0
#define TRUE 1

void In32Bits(WORD port_number, enum WIDTH width, DWORD *ret_val);
void Out32Bits(WORD port_number, enum WIDTH width, DWORD value);
void Delay800nSec(void); /* Minimum time of clock high and clock low we apply

** to SROM. The 93LC46B device requres a minimum of
** 250nSec.
*/

WORD CSR9; /* Address of DC21140/DC21041 CSR9 in I/O space.
** This address is filled after locating DC21140/DC21041.
*/

Preliminary—Subject to Change—April 1995 A–1

/*
** WriteCommandEWEN
** ----------------
**
** Operation:
** Writes the Erase/Write Enable instruction to the serial ROM.
** This enables writing to the serial ROM.
*/
void WriteCommandEWEN(void)
{
WORD i;

/*
** Write the EWEN command to enable write/erase commands
*/
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Delay800nSec();

for (i=0; i<5; i++)
{
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Delay800nSec();

}

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | DATA_1);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM);
Delay800nSec();
}

A–2 Preliminary—Subject to Change—April 1995

/* WriteCommandEWDS
** ----------------
**
** Operation:
** Writes the Erase/Write Disable instruction to the serial ROM.
** This disables writing to the serial ROM.
*/
void WriteCommandEWDS(void)
{
WORD i;

/*
** Write the EWDS command to disable write/erase commands
*/
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Delay800nSec();

for (i=0; i<7; i++)
{
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Delay800nSec();

}

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | DATA_0);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM);
Delay800nSec();
}

Preliminary—Subject to Change—April 1995 A–3

/* WriteSROM
** ---------
**
** Operation:
** Writes the contents of a buffer to the SROM, word by word.
**
** Input:
** ROM_Address: Offset in SROM. Is auto incremented after write.
** It is number of WORD to which Data is written.
** Len: Length in words.
** Data: Pointer to data buffer to write.
**
** Output:
** If an error occurs, error message is printed.
**
** Return value:
** FALSE if an error occurs.
*/
int WriteSROM(WORD *ROM_Address, WORD Len, WORD *Data)
{
WORD i, j;
DWORD Dbit;
DWORD Dout;
WORD ROM_WordAddress;
WORD WordData;

ROM_WordAddress = *ROM_Address;

/*
** Make sure the ROM_Address is not too big for this ROM
*/
if (ROM_WordAddress + Len - 1 > SROM_93LC46B_LAST_ADDRESS)

{
printf("Address or data length is too big for SROM\n");
return(FALSE);
}

WriteCommandEWEN();

/*
** Loop on all DATA words.
*/
for (j=0; j<Len; j++)

{
/*
** Output the WRITE command to the SROM
*/
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Delay800nSec();

A–4 Preliminary—Subject to Change—April 1995

/*
** Output the WORD Address of the SROM
*/
for (i=0; i<=SROM_93LC46B_LAST_ADDRESS_BIT; i++)

{
Dbit = (DWORD)((ROM_WordAddress >> (SROM_93LC46B_LAST_ADDRESS_BIT-i)) & 1) << 2;
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | Dbit);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Delay800nSec();
}

/*
** Output the WORD of data to the SROM
*/
WordData = *Data;
for (i=0; i<=15; i++)

{
Dbit = (DWORD)((WordData >> (15-i)) & 1) << 2;
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | Dbit);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Delay800nSec();
}

/*
** Point at next user buffer address
*/
Data++;

/*
** Point at next SROM Address
*/
ROM_WordAddress++;

/*
** Negate the CS (chip select) to start the SROM write
*/
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM);
Delay800nSec();

/*
** Set the CS to continue the SROM write
*/
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);

/*
** Verify that the SROM is in BUSY state by reading the Dout, if Dout=0.
*/
In32Bits(CSR9, Dword, &Dout);
Dout = (Dout>>3) & 1;
if (Dout != 0)

{
printf("SROM did not become busy in write command\n");
return(FALSE);
}

Preliminary—Subject to Change—April 1995 A–5

/*
** Wait for completion of WRITE command up to 10Msec.
** 10Msec = 11900 loops of 800nSec.
*/
for (i=0; i<11900; i++)

{
Delay800nSec();
In32Bits(CSR9, Dword, &Dout);
Dout = (Dout>>3) & 1;
if (Dout == 1)

break;
}

if (Dout == 0)
{
printf("SROM did not end busy state in write command\n");
return(FALSE);
}

/*
** Negate the CS to end the SROM command
*/
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM);
Delay800nSec();

}

WriteCommandEWDS();

/*
** Save the ROM byte address for next use.
*/
*ROM_Address = ROM_WordAddress;

return 1;
}

/* ReadSROM
** --------
**
** Operation:
** Reads the contents of the SROM (starting at a given offset),
** into a given buffer.
**
** Input:
** ROM_Address: Offset in SROM. Is auto incremented after write.
** It is number of WORD to which Data is written.
** Len: Length in words.
** Data: Pointer to data to buffer to read into.
**
** Output:
** If an error occurs, error message is printed.
**
** Return value:
** FALSE if an error occurs.
*/
int ReadSROM(WORD *ROM_Address,WORD Len,WORD *Data)
{

WORD i, j;
DWORD Dbit;
DWORD Dout;
WORD ROM_WordAddress;
WORD WordData;

ROM_WordAddress = *ROM_Address;

A–6 Preliminary—Subject to Change—April 1995

/*
** Make sure the ROM_Address is not too big for this ROM
*/
if (ROM_WordAddress + Len -1 > SROM_93LC46B_LAST_ADDRESS)

{
printf("Address or data length is too big for SROM\n");
return(FALSE);
}

/*
** Loop on all DATA words.
*/
for (j=0; j<Len; j++)

{
/*
** Output the READ command to the SROM
*/
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Delay800nSec();

/*
** Output the WORD Address of the SROM
*/
for (i=0; i<=SROM_93LC46B_LAST_ADDRESS_BIT; i++)

{
Dbit = (DWORD)((ROM_WordAddress >> (SROM_93LC46B_LAST_ADDRESS_BIT-i)) & 1) << 2;
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | Dbit);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Delay800nSec();
}

/*
** Verify that the SROM output data became now 0.
*/
In32Bits(CSR9, Dword, &Dout);
Dout = (Dout>>3) & 1;
if (Dout != 0)

{
printf("SROM did not become busy in read command\n");
return(FALSE);
}

Preliminary—Subject to Change—April 1995 A–7

/*
** Input the WORD of data from the SROM
*/
for (i=0; i<=15; i++)

{
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK);
Delay800nSec();
In32Bits(CSR9, Dword, &Dout);
WordData |= ((Dout>>3) & 1) << (15-i);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);
Delay800nSec();
}

/*
** Put our read data in user buffer
*/
*Data = WordData;

/*
** Point at next user buffer address
*/
Data++;

/*
** Point at next SROM Address
*/
ROM_WordAddress++;

/*
** Negate the CS (chip select) to end the SROM command
*/
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM);
Delay800nSec();

}

/*
** Save the ROM byte address for next use.
*/
*ROM_Address = ROM_WordAddress;

return(TRUE);
}

A–8 Preliminary—Subject to Change—April 1995

B
Serial ROM CRC Calculation

This appendix provides the routine for calculating the serial ROM CRC value.

unsigned const DATA_LEN 126

struct
{

unsigned char srom_data[DATA_LEN];
unsigned short srom_crc;

} Srom;

main()
{

FillSromData(&Srom.srom_data);

Srom.srom_crc = CalculateSromCrc(&Srom.srom_data);

}

unsigned short CalculateSromCrc(unsigned char *srom_data)
{

unsigned crc = 0xFFFFFFFF;
unsigned const POLY 0x04C11DB6

unsigned char current_byte;
unsigned index;
int bit;
unsigned msb;

for (index = 0; index < DATA_LEN; index++)
{

current_byte = srom_data[index];

for (bit = 0; bit < 8; bit++)
{

msb = crc >> 31;
crc <<= 1;

if (msb ^ (current_byte & 1))
{

crc ^= POLY;
crc |= 0x00000001;

}

current_byte >>= 1;
}

}

crc = FlipLongword(crc);

return ((crc ^ 0xFFFFFFFF) & 0xFFFF);
}

Preliminary—Subject to Change—April 1995 B–1

unsigned long FlipLongword(unsigned long lw)
{

int i;
unsigned long result = 0;
unsigned bit;

for (i = 0; i < 32; i++)
{

result <<=1;
bit = lw & 1;
lw >>= 1;
result += bit;

}

return (result);
}

void FillSromData(unsigned char *srom_data)
{

/* fill the 126 bytes of data as is appropriate */
}

B–2 Preliminary—Subject to Change—April 1995

Technical Support and Ordering Information

Technical Support

If you need technical support or help deciding which literature best meets your

needs, call the Digital Semiconductor Information Line:

United States and Canada

TTY (United States only)

Outside North America

1–800–332–2717

1–800–332–2515

+1–508–568–6868

Ordering Digital Semiconductor Products

To order the DECchip 21041 PCI Ethernet LAN Controller and Evaluation Board,

contact your local distributor.

You can order the following semiconductor products from Digital:

Product Order Number

DECchip 21041 PCI Ethernet LAN Controller 21041–AA

DECchip 21041 Evaluation Board Kit 21A41–01

DECchip 21040 Ethernet LAN Controller for PCI 21040–AA

DECchip 21040 Evaluation Board Kit 21A40–01

DECchip 21140 PCI
Fast Ethernet LAN Controller

21140–AA

DECchip 21140 Evaluation Board Kit 21A40–03

Ordering Associated Literature

The following table lists some of the available Digital Semiconductor literature.

For a complete list, contact the Digital Semiconductor Information Line.

Title Order Number

DECchip 21041 PCI Ethernet LAN Controller
Product Brief

EC–QAWVA–TE

DECchip 21041 PCI Ethernet LAN Controller
Data Sheet

EC–QAWWA–TE

DECchip 21041 PCI Ethernet LAN Controller
Hardware Reference Manual

EC–QAWXA–TE

Ordering Third-Party Literature

You can order the following third-party literature directly from the vendor:

Title Vendor

PCI Local Bus Specification, Revision 2.0 PCI Special Interest Group
N/S HH3–15A
5200 N.E. Elam Young Pkwy
Hillsboro, OR 97124–6497
1–503–696–2000

Institute of Electrical and Electronics
Engineers (IEEE) 802.3

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855–1331
1–800–678–IEEE (U.S. and Canada)
908–562–3805 (Outside U.S. and Canada)

