Digital Semiconductor

digital

EC-QC0CA-U1

DECchip 21140 PCI Fast Ethernet LAN Controller Hardware Reference Manual Update

This document provides updated information for the *DECchip 21140 PCI Fast Ethernet LAN Controller Hardware Reference Manual*, EC–QC0CA–TE.

Section 3.2.2.5 Status Register (CSR5)

On page 3-26, in Table 3-35, **CSR5 Access Rules**, the value after reset should be changed as follows:

Category	Description
Value after reset	FC000000H

3.2.2.6 Operation Mode Register (CSR6)

On page 3-27, Figure 3-15, **CSR6 Operating Mode Register**, should show that bit 25 must be one. See the following figure for the correct information:

3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1	C
MBZ - Must Be Zero	Τ
MB1 - Must Be One	
SCR - Scrambler Mode	
PCS - PCS Function	
TTM - Transmit Threshold Mode	
SF - Store and Forward	
MBZ - Must Be Zero	
HBD - Heartbeat Disable	
PS - Port Select	
CA - Capture Effect Enable	
MBZ - Must Be Zero	
TR - Threshold Control Bits	
ST - Start/Stop Transmission Command	
FC - Force Collision Mode	
OM - Operating Mode	
FD - Full-Duplex Mode	
MBZ - Must Be Zero	
PM - Pass All Multicast	
PR - Promiscuous Mode	
SB - Start/Stop Backoff Counter	
IF - Inverse Filtering	
PB - Pass Bad Frames	
HO - Hash-Only Filtering Mode	
SR - Start/Stop Receive	
HP - Hash/Perfect Receive Filtering Mode	

LJ-04294.AI

On page 3-28, in Table 3-36, **CSR6 Operating Mode Register Description**, update bits 28 through 25 as follows:

Field	Description
28:26	MBZ — Must Be Zero
	These bits are not used by the 21140 and should always be programmed to zero.
25	MBO — Must Be One
	This bit should always be programmed to one.

On page 3-31, in Table 3-36, **CSR6 Operating Mode Register Description**, add the following note to the description for bit 0:

Field	Description		
0	HP — Hash/Perfect Receive Filtering Mode (Read Only)		
	When reset, the 21140 does a perfect address filter of incoming frames according to the addresses specified in the setup frame (Table 4-8).		
	When set, the 21140 does imperfect address filtering of multicast incoming frames according to the hash table specified in the setup frame. If CSR6<2> is set, then physical addresses are imperfect address filtered too. If CSR6<2> is reset, physical addresses are perfect address filtered, according to a single physical address, as specified in the setup frame.		
	Note		

A unique condition occurs in hash/perfect receive filtering mode when a physical address is perfect filtered by comparing it to a single address. In this case, while in perfect filtering mode, the driver sends a setup frame containing the single physical address. The driver then sets the pass all multicast mode.

		Threshold (Bytes)	
CSR6<21>	CSR6<15:14>	CSR6<22> = 0	CSR6<22> = 1
0	00	128	72
0	01	256	96
0	10	512	128
0	11	1024	160
1	XX	Store and forward	Store and forward

On page 3-32, following Table 3-37, **Transmit Threshold**, add the following note:

Note _____

The CSR6<22> bit is meaningful only if the CSR6<18> bit is set. Otherwise, the threshold value remains as listed in the column with heading CSR6<22> = 1.

On page 3-33, in Table 3-39, **Loopback Operation Mode**, update footnote 1 as follows:

CSR6<11:10>	Operation Mode			
01^{1}	Internal loopback			
¹ Internal loopback is performed on the serial and MII/SYM ports. If enabled by CSR6, it also tests the PCS functions (CSR6<23>) and the scrambler function (CSR6<24>). Note that when internal loopback is performed on the SYM port, symbols appear on the network. When internal loopback is performed on the MII port, the mii_txen signal is disabled.				

Section 3.2.2.7 Interrupt Enable Register (CSR7)

On page 3-38, in Table 3-43, **CSR7 Access Rules**, the value after reset should be changed as follows:

Category	Description
Value after reset	FFFE0000H

Section 3.2.2.9 Serial Address ROM and MII Management Register (CSR9)

On page 3-42, in Table 3-47, **CSR9 Access Rules**, the value after reset should be changed as follows:

Category	Description
Value after reset	FFF097FFH

Section 4.2.2.2 Transmit Descriptor 1 (TDES1)

On page 4-16, in Table 4-7, **TDES1 Transmit Descriptor 1 Description**, add the following information to the description for bit 31:

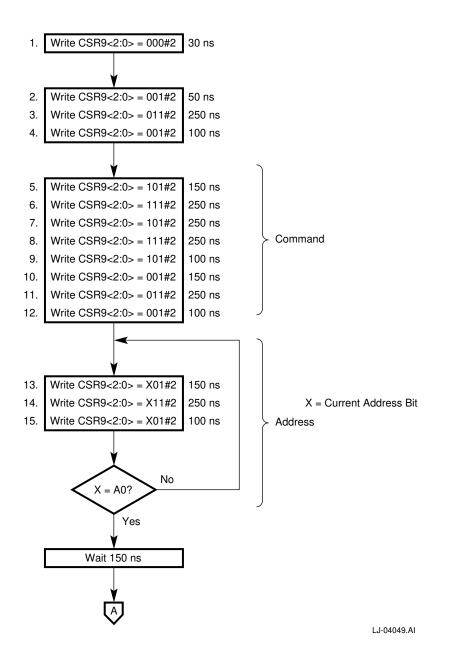
Field	Description
31	IC — Interrupt on Completion
	When set, the 21140 sets transmit interrupt (CSR5<0>) after the present frame has been transmitted. It is valid only when last segment (TDES1<30>) is set or when it is a setup packet .

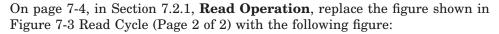
Section 5.2 Bus Commands

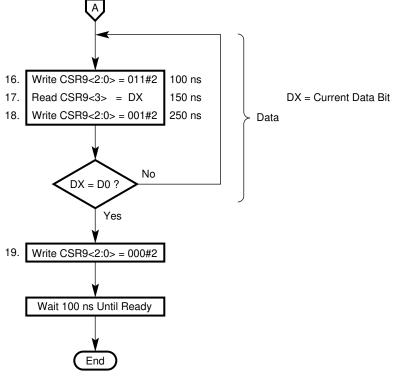
On page 5-2, in Table 5-1, **Bus Commands**, the last four commands should be changed as follows:

c_be_l<3:0>	Command	Type of Support	
1100	Memory read multiple	Supported as target	
1101	Dual address cycle	Not supported	
1110	Memory read line	Supported as target	
1111 Memory write and invalidate		Supported as target	

Section 6.4 Loopback Operations

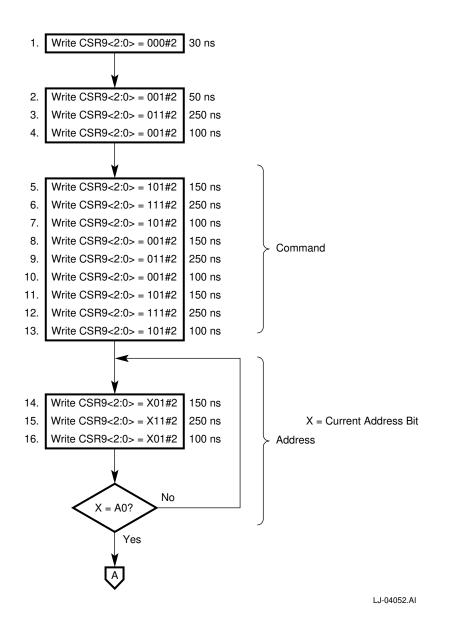

On page 6-19, in Section 6.4, **Loopback Operations**, change the last sentence, which reads "The loopback data rate is 10 Mb/s.", to the following: **The default value of the loopback data rate is 10 Mb/s. When the MII/SYM port is enabled, the loopback data rate is 100 Mb/s**.

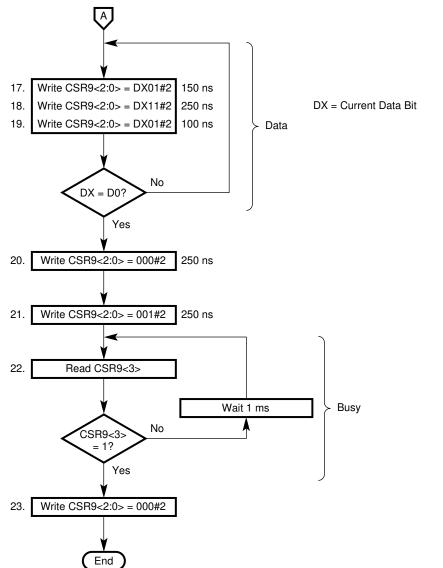

Section 6.4.2 External Loopback Mode


On page 6-19, in Section 6.4.2, **External Loopback Mode**, delete the last sentence which reads as follows: "The 21140 should be in full-duplex mode (CSR6<9>)."

Section 7.2.1 Read Operation

On page 7-3, in Section 7.2.1, **Read Operation**, replace the figure shown in Figure 7-2 Read Cycle (Page 1 of 2) with the following figure:





LJ-04050.AI

Section 7.2.2 Write Operation

On page 7-6, in Section 7.2.2, **Write Operation**, replace the figure shown in Figure 7-5 Write Cycle (Page 1 of 2) with the following figure:

On page 7-7, in Section 7.2.2, **Write Operation**, replace the figure shown in Figure 7-6 Write Cycle (Page 2 of 2) with the following figure:

LJ-04053.AI

Appendix A.2.3 Boundary-Scan Register

On page A-3, in Appendix A.2.3, **Boundary-Scan Register**, change the boundary-scan register listing to read as follows (change clk to pci_clk, do\$pd to sr_do, di\$br to sr_di, sk_br to sr_ck, and cs_\$br to sr_cs):

-> tdi	-> int_l	-> rst_l	-> pci_clk	-> gnt_l
-> req_l	-> ad_oe	-> ad<31:24>	-> cbe_oe	-> c_be_1<3>
-> idsel	-> ad<23:16>	-> c_be_1<2>	-> frame_oe	-> frame_l
-> irdy_oe	-> irdy_l	-> trdy_oe	-> trdy_l	-> devsel_oe
-> devsel_l	-> stop_oe	-> stop_l	-> perr_oe	-> perr_l
-> serr_l	-> par_oe	-> par	-> c_be_l<1>	-> ad<15:8>
-> c_be_l<0>	-> ad<7:0>	-> sr_do	-> sr_di	-> sr_ck
-> sr_cs	-> tdo			

© Digital Equipment Corporation 1995. All rights reserved. Printed in U.S.A. DECchip, Digital, and the DIGITAL logo are trademarks of Digital Equipment Corporation.

Digital Semiconductor is a Digital Equipment Corporation business.