
             

PCnetTM Application Examples

Application Note

Advanced
Micro

Devices

PCnet-ISA to MC68000
PCnet-ISA with a Big Endian Processor



Publication# 19889 Rev. A Amendment /0

Issue Date:  June 1995

PCnet Application Examples

Application Note
Mike Keith & Mike Santoro

Advanced
Micro

Devices

I. PCnet-ISA CONTROLLER IN AN
EMBEDDED APPLICATION

Interfacing to the Motorola MC68000
Microprocessor 
The design of an interface between the 68000 micro-
processor and the PCnet-ISA Ethernet controller is
presented. Among the various design options available,
and particularly whether the design effort is new or is an

upgrade of an established LANCE-based design, one
of two alternative design solutions may be optimal. A
major consideration is whether established system
software exists and must be preserved as is or whether
the software can be revised and to what degree. New
designs will obviously have greater freedom among
design options; LANCE-based system upgrades may
have very little.
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Figure 1. PCnet Ethernet Controller (Block Diagram: Bus Master Mode)
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Figure 2. PCnet Ethernet Controller (Block Diagram: Shared Memory Mode)

The PCnet-ISA controller is a highly-integrated single-
chip Ethernet controller designed to interface directly
with the PC/AT Industry Standard Architecture (ISA)
system bus. The PCnet-ISA controller is 100 percent
software compatible with the Am7990 LANCE (Local
Area Network Controller for Ethernet). The simple and
inexpensive hardware interface to the 68000 bus, the
overwhelming advantage of preserving the investment
in established system software for LANCE-based
designs, and the device cost, power, performance,
integration, and reliability benefits of the latest- genera-
tion-technology make the PCnet-ISA controller an ideal
solution for advancing the state of the art in Ethernet
connectivity for the 68000.

System Architecture

The hardware architectural design will affect system
performance, material cost, real estate, software struc-
ture, etc. There are several system architectural options
to consider. 

Block diagrams for the PCnet-ISA in Bus Master Mode
and Shared Memory Mode are shown in Figures 1
and 2.

Bus-Master Architecture vs. Shared-Memory

In the bus-master architecture, the PCnet-ISA controller
is allowed to arbitrate for and acquire control of the

68000 system bus. This provides the PCnet-ISA
controller with a DMA path into system memory, through
which data is exchanged with the 68000. In contrast,
the shared-memory architecture requires additional
dedicated memory coupled directly to the PCnet-ISA
controller for the exchange of information. This does
save the 68000 from being preempted during the
PCnet-ISA controller data transfers, but carries the
extra costs of:

a) the additional memory components, 

b) the power they must be supplied, 

c) the increase in required real estate, and 

d) the reduction in system performance and CPU
utilization associated with the need now to make an
extra copy of all network data. 

A bus-master design is the architecture of choice; this
will maintain software-compatibility with the LANCE
(the LANCE does not support the shared-memory
architecture). 

Byte-Swapping

The 68000 is characterized as a big-endian machine;
odd-addressed bytes reference data on the low-byte
data lines D<0–7>, even-addressed bytes on the
high-byte data lines D<8–15>. The PCnet-ISA controller
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is the opposite, a little-endian machine, where even-
addressed bytes reference data on the low-byte
data lines D<0–7> and odd-addressed bytes
on the high-byte data lines D<8–15>. (Unlike the
LANCE, the PCnet-ISA controller does not contain a
“byte-swapping” mechanism which optionally config-
ures it as a big-endian machine.) Any byte-oriented
data which both devices share access to, such as
network packet data, will be inconsistently byte- ad-
dressed between the two devices at the byte level.

As an example, consider packet data being received
and accepted by the PCnet-ISA controller from the
network and placed into system buffer memory. The first
byte is placed into low-byte-memory at receive-buffer
base-address-offset 0, the second byte at high-byte-
memory offset-address 1. The 68000, however, will find
the first byte at low-byte-memory address 1, the second
byte at high-byte-memory address 0. The 68000 data is
not in sequential order; it is not consistent with the
PCnet-ISA controller’s representation of the data. This
inconsistency occurs on all packet data, both transmit
and receive. 

Thus, it is seen that individual network data-bytes are
addressed in memory by the PCnet-ISA consistent with
the construction of the network packet. The 68000
addressing is inconsistent with the network data. To link
into a standard 802.3 network, some form of byte-
swapping is required. 

(As an aside, it is interesting to note the implication of
network systems with a 68000 and the PCnet-ISA
controller at each and every node. These systems could
presumably communicate freely with one another
without byte-swapping, even though the network data
would not comply with the 802.3 specification. Data
would be “reversed” once when being transmitted onto
the network, then reversed back again, to normal, at
reception—this would be transparent to the 68000 at
each end. The difficulty with this scheme lies in the node
addressing and automatic recognition by the PCnet-ISA
controller. If the address-field bytes are swapped, the
node address must be compensated in order to
recognize the targeted address; this may be simple
to handle in a small dedicated network. The remainder
of this discussion assumes full compliance with
802.3 networks.)

Consider now the distinction of “word oriented” (16-bit)
data. While individual data bytes are not consistently
addressed between the 68000 and the PCnet-ISA
controller, data words are. The bytes within the word are
not addressed the same, but the word address is
common to both devices. Thus, for example, the most
significant bit (MSB) of the data at word-address 0 is the
same bit for both devices and is transferred on D15.
However, this bit is the MSB of byte 0 for the 68000,
byte 1 for the PCnet-ISA controller. 

As a result, it is advantageous to have the non-network
data—the descriptor ring, initialization block, and the
PCnet-ISA controller internal register data—organized
and accessed strictly as 16-bit words. This maintains
consistent addressing between the two devices in this
area which greatly reduces the complexity of the overall
design, is quite easily implemented, and eliminates the
need to byte-swap this data. It does require that all
software accesses to this non-network data be coded as
word accesses only.

Byte-swapping, therefore, is required only on the
network data. There are at least three alternative
byte-swapping solutions to consider: 

Software Swap—The 68000 can perform a byte-swap
function in software. Referring to network data, the first
(byte #0, using byte addresses from the PCnet-ISA
controller point of reference) and all remaining even-
addressed data-bytes are shifted down to the lower half
of the data bus; the second (byte #1) and all remaining
odd-addressed data-bytes are shifted up to the upper
half of the data bus. This may be accomplished through
series of move instructions or by an eight-position
circular shift of data processed as 16-bit words. (Note
that there is a word-swap function in the 68000, but no
byte-swap.) This will make the network-data byte-
addresses consistent between the 68000 and the
PCnet-ISA controller. Data must pass through this
“byte-swap filter” on any transfer between the 68000
and any transmit or receive buffer. 

The overwhelming drawback of this approach is the
significant reduction in system throughput and CPU
performance associated with the inefficient and time
consuming task of software-swapping each and every
data byte which is transferred on the network. Addition-
ally, this option does not preserve LANCE software
compatibility. While viable and possibly favorable under
particular circumstances, this software-swap is rejected
in lieu of more attractive alternatives.

Data-Bus Swap—The PCnet-ISA controller data-bus
can be hard-wired in reverse so as to provide the effect
of a permanent byte-swap function. Here, SD<0–7> is
connected to high-byte memory, SD<8–15> is con-
nected to low-byte memory. This scheme will maintain
consistent addressing of all network data passing
between the 68000 and the PCnet-ISA controller. 

The major negative here is the impact on non-network
data such as in accesses to the descriptor rings, the
initialization block, or the PCnet-ISA controller internal
registers (as discussed above). Now this data must be
byte-swapped in order to negate the effects of the
hard-wired swap. Additionally, there is the confusion
factor associated with keeping track of bit positions and
data flows now that the data-bus is used in a non-
standard mode. And, as before, LANCE-compatibility
is no longer preserved.
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The attraction to this option lies in the simplicity of the
design. No special hardware is required to handle any
byte-swapping. 

The byte-swapping on the non-network data may
occur via:

(i) a software filter, as discussed earlier—the
system performance degradation associated with
the software-swap of non-network data is small
since these data transfers typically occur
relatively infrequently and usually aren’t time
critical. And the software function is fairly simple
to implement. 

Or, 

(ii) simply by redefining the bits in the non-network
data registers and tables—this is especially
applicable to new software development efforts.
If the definition of the bits in these registers/
tables are changed to reflect the effect of the
data-bus swap, the software can then be
designed to access this data properly and all is
well and transparent to the overall system; the
byte-swapping is accomplished in the system
documentation. Note that the danger of confusing
bit positions or functions here is real and
significant and must be cautiously considered.

This Data-Bus Swap design alternative is very attrac-
tive, particularly to original design efforts. It is the basis
for the first design example, detailed below.

Hardware-Buffer Swap—This alternative achieves full
architectural and software compatibility with the
LANCE. It consists of discrete hardware buffers to
byte-swap network data while maintaining a standard
and direct hardware and software interface to non-
network data. The swapping occurs on the PCnet-ISA
controller data-bus. This isolates the swapping function
from the remainder of the system.

The obvious advantage here is backward compatibility
with established LANCE system software. A LANCE-to-
PCnet-ISA controller system upgrade can be imple-
mented entirely through hardware design. There is no
need to revise software which may be mature and
field-reliable. 

The only significant caveat here lies in the technique
used to determine when to execute a swap. (Recall
that non-network data is not to be swapped.) There are
no bus-cycle distinctions between the PCnet-ISA con-
troller accesses to network and non-network data. So
how do you know when to make a swap? One possibility
is to base the decision on the address used in the
transfer: If the system memory map is partitioned into
“swap” and “no-swap” areas, the swap decision can be
made on a simple decode of the target address.
This will obviously place restrictions on the locations
available for network buffers (i.e., swap-memory only)
and thus may impact LANCE backward-compatibility.

This impact is expected to be minimal and easy to work
around. Alternatively, a different or more complex
hardware-swap decision-mechanism may be able to
match the existing software footprint and achieve the
desired 100 percent compatibility. 

The costs of the Hardware-Buffer Swap design are
minimal and are detailed in the second design
example, following.

Design Examples

The 68000-to-PCnet-ISA controller Data-Bus Swap and
Hardware-Buffer Swap design examples are illustrated
in Figures 3 through 11.

The design options presented do not address the
PCnet-ISA controller interfaces to the network, the
address PROM, or the boot PROM. These are inde-
pendent interfaces which are not affected by the
PCnet-ISA controller system bus interface design. The
one exception is the boot PROM, a PC-specific function
which will not typically apply to a 68000-based system.

Design Notes

The remainder of this document refers to Figures 3
through 11:

1. Description of diagrams:

Figure 3: Block Diagram

Figure 4: Data-Bus Swap Schematic, Sheet 1

Figure 5: Data-Bus Swap Schematic, Sheet 2

Figure 6: Data-Bus Swap MACH 110 Design File

Figure 7: Hardware-Buffer Swap Schematic,
Sheet 1

Figure 8: Hardware-Buffer Swap Schematic,
Sheet 2

Figure 9: Hardware-Buffer Swap MACH 110
Design File

Figure 10: Address Decode 16V8 Design File

Figure 11: System Memory Map Example

2. The following new signals are defined:

PCNCS_ PCnet-ISA controller chip select

MEMCS_ system memory chip select

HMCS_ high-byte memory chip select

LMCS_  low-byte memory chip select

MOE_ memory output enable

MWE_ memory write enable

IORS_ I/O read strobe

IOWS_ I/O write strobe

S/R_ send/receive, transceiver direction 
control

SWAP_ swap-transceiver enable

NOSWAP_ noswap-transceiver enable



AMD

5PCnet Application Examples

3. These designs meet worst-case timing with the
parts indicated and with the 68000 running at its
full speed of 16.67 MHz. 

4. The system memory ICs and the address
decoding scheme are an example of minimal
system resources only and are not necessarily
recommendations for a specific implementation.

5. All 68000 accesses to the PCnet-ISA controller
and to non-network data should be coded as
16-bit accesses; the hardware is configured for
operation as such.

6. “PU” pull-up and “PD” pull-down resistors are
loosely recommended as 3.3K ohm resistors.
These values must be carefully considered in an
actual design which may differ considerably in
specific areas. Watch especially signal SA0
which is sure to have additional resources
sharing its load. 

7. The decision on whether or not to swap the data
(via the transceivers) in the Hardware-Buffer
Swap design is made via address decoding per
the discussion in the text. Refer to Figure 11. 
The system SRAM is fully shadowed—all of the
memory is accessible as either swapped or
non-swapped data, as a function of A16. The
example depicted is quite flexible and open to
alternative schemes which may be tailored to an
existing (i.e., LANCE-based system) software
footprint.

8. The PCnet-ISA controller bus-cycle control
registers, MSRDA (in ISACSR0) and MSWRA 
(in ISACSR1), should be configured as follows:

MSRDA—equal to 3 (minimum) for a 150 ns
MEMR cycle minimum

MSWRA—equal to 1 (minimum) for a 50 ns
MEMW cycle minimum

9. The MACH110 design is partitioned into six
major segments: bus master exchange, wait-
state control, system memory control, hardware
swap-buffer control, misc control, and misc.

10. The MACH “bus master exchange” circuit:

a. PCnet-ISA controller output-signal MASTER
is not used. DACK is its functional equiva-
lent and is the indicator of the PCnet-ISA
controller bus-mastership when it is LOW.
Eliminating the use of MASTER frees one
MACH pin.

b. The two flip-flops used to generate ML1 and
ML2 act as a synchronizing circuit to capture
the asynchronous (DRQ + DACK_) term.
This is to minimize metastable susceptibility
in the generation of BGACK.

11. The MACH “wait-state control” circuit:

a. A minimum of two 68000 wait-states are 
inserted on 68000-to-PCnet-ISA controller
accesses.

b. DTACK_ is a totem-pole-output wait-state
control signal. To provide a wired-OR capa-
bility for other system resources to insert
68000 wait-states via DTACK_ control, the
open-drain and unused signal ZDTACK_ is
available—simply use ZDTACK_ (with a
pull-up resistor, of course) instead of
DTACK_. As implemented, ZDTACK_ may
insert an additional (i.e., three, minimum)
wait-state if worst case timing occurs. If this
cannot be tolerated, a faster MACH device
is needed.

c. The IOCHRDY output from the PCnet-ISA
controller may or may not become active to
insert additional 68000 wait-states in
68000-to-PCnet-ISA controller accesses.
IOCHRDY can be expected to insert addi-
tional wait-states under two conditions: (a)
rapid back-to-back PCnet-ISA controller 
accesses, or (b) accesses to private and
slow PCnet-ISA controller resources such
as the Address PROM.

12. The MACH “misc control circuit”: 68000
interrupts are configured for the auto vector
mode via FC and VPA_.

13. The two 74F32 OR-gates are required so as to
meet the PCnet-ISA controller address hold time
requirements. 

14. The PLD designs were compiled on AMD’s
Palasm 4, Version 1.5.

15. DISCLAIMER! Caution: This design has NOT
been prototyped. No design verification of any
physical circuitry has occurred at this time.

References

1. Ethernet/IEEE 802.3 Family 1994 World 
Network Data Book/Handbook, AMD 
PID# 14287C.

2. Am79C960 PCnet-ISA Controller Technical
Manual, May 1992, AMD PID# 16850B.

3. Hilf, Werner and Nausch, Anton, The 68000
Family, Volumes 1 and 2 (Englewood Cliffs:
Prentice Hall, 1989). ISBN# 0-13-541525-X.

4. MACH Family Data Book, High Density EE
CMOS Programmable Logic, Summer 1992,
AMD PID# 14051F.

5. MACH Technical Briefs, 1991, AMD 
PID# 15972A.



AMD

6 PCnet Application Examples

6. M68000 Family Reference, 1990, Motorola
Reference # M68000FR/AD.

7. 8-/16-/32-Bit Microprocessor User’s Manual,
Eighth Edition, Motorola Reference #
M68000UM/AD REV 7.

8. M68000 Electrical Specifications, Motorola
Semiconductor Technical Data, Motorola
Reference # M68000EC/D.

9. Solari, Edward, AT Bus Design (San Diego:
Annabooks, 1991). ISBN# 0-929392-08-6.

19889A-3

68000

Address
Decode

System
Memory

Interface
Logic

PCnet-ISA
79C960

Byte-Swap
(Note)

ADDR DATA

MACH110

DATA BUS

16V8

ADDR BUS

ADDRDATA

DATA ADDR

Standard 68000 System Resources PCnet-ISA Specific Resources

Note - Either:
1. Byte-swap buffers, or
2. Hard-wired data-bus swap.

Dotted control line used in note 1, 
not in note 2.

Figure 3. PCnet-ISA-to-68K Interface—Block Diagram



AMD

7PCnet Application Examples

M
C

68
00

0P
-1

6

25 24 23 6 13 11 12 10 28 27 26 21 7 8 9 15

P
U

P
U

P
U

13 5 14 36

7 21 38 43 6 18 19 11 35 33 32 30 31

P
U

P
U

P
U

P
U

A
S

B
R

B
G

B
G

A
C

K

D
T
A

C
K

F
C

0

F
C

1

F
C

2

V
P

A

U
D

S
LD

S

R
/W

C
LK

P
C

N
C

S

M
E

M
C

S

H
M

C
S

LM
C

S

IO
R

S

IO
W

S

D
R

Q

D
A

C
K

IO
C

H
R

D
Y

S
B

H
E

M
E

M
R

M
E

M
W A
0

M
O

E

M
W

E

25 28 10 3 16 20 17 9

1 2
3

4 5
6

49 5047 42 44 54 13 40 39

P
U

P
U

P
D

P
U P

D

P
U

P
U

N
C

N
C

N
C

N
C

P
D S

A
0

74
F

32

74
F

32

"6
8K

_I
S

A
_A

"
M

A
C

H
11

0-
20

JC

IP
L0

IP
L1

IP
L2

(T
S

) 
A

S

B
R

(T
P

) 
B

G

B
G

A
C

K

D
T
A

C
K

(T
S

) 
F

C
0

(T
S

) 
F

C
1

(T
S

) 
F

C
2

V
P

A

(T
S

) 
U

D
S

(T
S

) 
LD

S

(T
S

) 
R

/W

C
LK

(T
S

) 
A

(1
–2

3)

(T
S

) 
D

(0
–1

5)

O
S

C


16
.6

7 
M

H
z

8 27 4

T
o 

S
he

et
 2

P
U

53 45 48 51 57 58

S
A

(0
–1

9)
 (

T
S

)

LA
(1

7–
23

) 
(T

S
)

S
D

(0
–1

5)
 (

T
S

)

M
A

S
T
E

R
 (

O
C

)

IO
A

M
1

IO
A

M
0

S
M

E
M

R
 

R
E

F

IO
C

S
16

 (
O

D
)

A
E

N

M
E

M
W

 (
T

S
)

M
E

M
R

 (
T

S
)

S
B

H
E

 (
T

S
)

IO
C

H
R

D
Y

 (
O

D
)

D
A

C
K

D
R

Q
 (

T
S

)

IO
W

IO
R

IR
Q

 (
O

D
)

A
m

79
C

96
0K

C


P
C

ne
t-

IS
A

41

N
o

te
s:

 
(T

S
) 

de
no

te
s 

tr
i-s

ta
te

 o
ut

pu
t

(T
P

) 
de

no
te

s 
to

te
m

-p
ol

e 
ou

tp
ut


(O

D
) 

de
no

te
s 

op
en

-d
ra

in
 o

ut
pu

t
(O

C
) 

de
no

te
s 

op
en

-c
ol

le
ct

or
 o

ut
pu

t

19889A-4

Figure 4. PCnet-ISA-to-68K Interface—Data-Bus Swap (Sheet 1)
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Figure 5. PCnet-ISA-to-68K Interface—Data-Bus Swap (Sheet 2) 
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TITLE 68K-to-PCnet-ISA Interface, with Data-Bus Swap

PATTERN 

REVISION 0

AUTHOR Mike Keith, Field Applications Engineer

COMPANY Advanced Micro Devices

DATE  2/17/93

CHIP _68K_ISA_A MACH110

;——————————— PIN Declarations ———————

PIN 2 ZDTACK_ COMBINATORIAL ; OUTPUT

PIN 8 A0 ; INPUT

PIN 11 R_W_ ; INPUT

PIN 13 AS_ ; INPUT

PIN 33 PCNCS_ ; INPUT

PIN 17 MEMR_  ; INPUT

PIN 9 MEMW_ ; INPUT

PIN 32 MEMCS_  ; INPUT

PIN 18 UDS_ ; INPUT

PIN 19 LDS_ ; INPUT

PIN 20 SBHE_  ; INPUT

PIN 4 MWE_ COMBINATORIAL ; OUTPUT

PIN 27 MOE_ COMBINATORIAL ; OUTPUT

PIN 31 LMCS_ COMBINATORIAL ; OUTPUT

PIN 30 HMCS_ COMBINATORIAL ; OUTPUT

PIN 28 IOWS_ COMBINATORIAL ; OUTPUT

PIN 25 IORS_ COMBINATORIAL ; OUTPUT

PIN 35 CLK ; INPUT

PIN 14 BG_ ; INPUT

PIN 10 DRQ ; INPUT

PIN 16 IOCHRDY ; INPUT

PIN 21 FC0 ; INPUT

PIN 38 FC1 ; INPUT

PIN 43 FC2 ; INPUT

PIN 6 VPA_ COMBINATORIAL ; OUTPUT

PIN 7 DTACK_ REGISTERED ; OUTPUT

NODE 8 Q0 REGISTERED ; FEEDBACK

NODE 28 BRS_ REGISTERED ; FEEDBACK

NODE 30 ML2_ REGISTERED ; FEEDBACK

NODE 29 ML1_ REGISTERED ; FEEDBACK

PIN 3 DACK_ COMBINATORIAL ; OUTPUT

PIN 36 BGACK_ COMBINATORIAL ; OUTPUT

PIN 5 BR_ COMBINATORIAL ; OUTPUT

Figure 6. Mach 110 Design File—Data-Bus Swap

 MACH110 Design File—68000-to-PCnet-ISA with Data-Bus Swap 
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NODE 1 GLOBAL 

EQUATIONS

;——————————- Bus master exchange:

DACK_ = /(AS_ *

    /(BG_ * BGACK_) )

BGACK_ = (DRQ + DACK_) + ML2_

ML1_  := DRQ + DACK_

ML2_ := ML1_

BRS_ := ML2_

BR_  = /(BRS_ * DRQ)

;——————————- Wait state control:

Q0  := AS_ + PCNCS_ + DTACK_

DTACK_ := Q0 + AS_

Q0.RSTF = IOCHRDY

DTACK_.RSTF = IOCHRDY

ZDTACK_ = GND ;if needed: tri-state form of DTACK_

ZDTACK_.TRST = DTACK_ ;if needed: tri-state form of DTACK_

;——————————- System memory control:

MOE_ = MEMCS_ + (MEMR_ * (/R_W_ + DACK_))

MWE_ = MEMCS_ + (MEMW_ * R_W_)

HMCS_ = MEMCS_ + (UDS_ * (SBHE_+ DACK_))

LMCS_ = MEMCS_ + (LDS_ * (A0 + DACK_))

;——————————- Misc control:

VPA_  = /(FC0 * FC1 * FC2 * AS_)                      ; 68K autovector interrupts

IORS_ = /R_W_ + PCNCS_ + AS_

IOWS_ = R_W_ + PCNCS_ + AS_

;——————————- Misc:

ML1_.CLKF = CLK

ML2_.CLKF = CLK

BRS_.CLKF = CLK

Q0.CLKF  = CLK

DTACK_.CLKF = CLK

ML1_.RSTF = GND

ML2_.RSTF = GND

BRS_.RSTF = GND

GLOBAL.SETF = GND

19889A-6

Figure 6. Data-Bus Swap Mach 110 Design File (Continued)

 MACH110 Design File—68000-to-PCnet-ISA with Data-Bus Swap 
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Figure 7. PCnet-ISA-to-68K Interface—Hardware-Buffer Swap (Sheet 1)
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Figure 8.  PCnet-ISA-to-68K interface—Hardware-Buffer Swap (Sheet 2)
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TITLE 68K-to-PCnet-ISA Interface, with Hardware-Buffer Swap

PATTERN 

REVISION 0

AUTHOR Mike Keith, Field Applications Engineer

COMPANY Advanced Micro Devices

DATE  2/17/93

CHIP _68K_ISA_B MACH110

;————————————————— PIN Declarations ———————

PIN 2 ZDTACK_ COMBINATORIAL ; OUTPUT

PIN 8 A0 ; INPUT

PIN 15 A16  ; INPUT

PIN 11 R_W_ ; INPUT

PIN 13 AS_ ; INPUT

PIN 33 PCNCS_ ; INPUT

PIN 17 MEMR_  ; INPUT

PIN 9 MEMW_ ; INPUT

PIN 32 MEMCS_  ; INPUT

PIN 18 UDS_ ; INPUT

PIN 19 LDS_ ; INPUT

PIN 20 SBHE_  ; INPUT

PIN 24 NOSWAP_ COMBINATORIAL ; OUTPUT

PIN 37 SWAP_ COMBINATORIAL ; OUTPUT

PIN 29 S_R_ COMBINATORIAL ; OUTPUT

PIN 4 MWE_ COMBINATORIAL ; OUTPUT

PIN 27 MOE_ COMBINATORIAL ; OUTPUT

PIN 31 LMCS_ COMBINATORIAL ; OUTPUT

PIN 30 HMCS_ COMBINATORIAL ; OUTPUT

PIN 28 IOWS_ COMBINATORIAL ; OUTPUT

PIN 25 IORS_ COMBINATORIAL ; OUTPUT

PIN 35 CLK ; INPUT

PIN 14 BG_ ; INPUT

PIN 10 DRQ ; INPUT

PIN 16 IOCHRDY ; INPUT

PIN 21 FC0 ; INPUT

PIN 38 FC1 ; INPUT

PIN 43 FC2 ; INPUT

PIN 6 VPA_ COMBINATORIAL ; OUTPUT

PIN 7 DTACK_ REGISTERED ; OUTPUT

NODE 8 Q0 REGISTERED ; FEEDBACK

NODE 28 BRS_ REGISTERED ; FEEDBACK

NODE 30 ML2_ REGISTERED ; FEEDBACK

 Figure 9.  MACH110 Design File—68000-to-PCnet-ISA with Hardware-Buffer Swap
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NODE 29 ML1_ REGISTERED ; FEEDBACK

PIN 3 DACK_ COMBINATORIAL ; OUTPUT

PIN 36 BGACK_ COMBINATORIAL ; OUTPUT

PIN 5 BR_ COMBINATORIAL ; OUTPUT

NODE 1 GLOBAL 

EQUATIONS

;——————————- Bus master exchange:

DACK_ = /(AS_ *

    /(BG_ * BGACK_) )

BGACK_ = (/DRQ + DACK_) + ML2_

ML1_ := /DRQ + DACK_

ML2_ := ML1_

BRS_ := ML2_

BR_  = /(BRS_ * DRQ)

;——————————- Wait state control:

Q0  := AS_ + PCNCS_ + DTACK_

DTACK_ := Q0 + AS_

Q0.RSTF = IOCHRDY

DTACK_.RSTF = IOCHRDY

ZDTACK_ = GND     ;if needed: tri-state form of DTACK_

ZDTACK_.TRST = DTACK_  ;if needed: tri-state form of DTACK_

;——————————- System memory control:

MOE_ = MEMCS_ + (MEMR_ * (/R_W_ + DACK_))

MWE_ = MEMCS_ + (MEMW_ * R_W_)

HMCS_ = MEMCS_ + (UDS_ * (A0 + A16 + DACK_) * (SBHE_ + /A16 + DACK_))

LMCS_ = MEMCS_ + (LDS_ * (A0 + /A16 + DACK_) * (SBHE_ + A16 + DACK_))

;——————————- Hardware swap-buffer control:

NOSWAP_ =  ((PCNCS_ +R_W_ + (UDS_ * LDS_)) ; 68k reads pcnet

    * (PCNCS_ + R_W_) ; 68k writes pcnet

    * (MEMCS_ + DACK_ + /A16 + MEMR_) ; pcnet reads noswap mem

    * (MEMCS_ + DACK_ + /A16 + MWE_)) ; pcnet writes noswap mem

SWAP_ = /NOSWAP_ +

    ((MEMCS_ + DACK_ + A16 + MEMR_) ; pcnet reads swap mem

    * (MEMCS_ + DACK_ + A16 + MWE_)) ; pcnet writes swap mem

S_R_ = (/PCNCS_ * R_W_ * (/UDS_ + /LDS_) ) ; 68k reads pcnet

+ (/MEMCS_ * DACK_ * MEMR_)   ; pcnet writes mem

;——————————- Misc control:

VPA_  = /(FC0 * FC1 * FC2 * /AS_) ; 68K autovector interrupts

IORS_ = /R_W_ + PCNCS_ + AS_

IOWS_ = R_W_ + PCNCS_ + AS_

 Figure 9.  MACH110 Design File—68000-to-PCnet-ISA with Hardware-Buffer Swap (Continued)
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;——————————- Misc:

ML1_.CLKF = CLK

ML2_.CLKF = CLK

BRS_.CLKF = CLK

Q0.CLKF  = CLK

DTACK_.CLKF = CLK

ML1_.RSTF = GND

ML2_.RSTF = GND

BRS_.RSTF = GND

GLOBAL.SETF = GND

19889A-9

 Figure 9.  MACH110 Design File—68000-to-PCnet-ISA with Hardware-Buffer Swap
(Continued)

TITLE   Address Decode—68K-to-PCnet i/f

PATTERN 

REVISION 0

AUTHOR Mike Keith, Field Applications Engineer

COMPANY Advanced Micro Devices

DATE  2/17/93

CHIP _decode PALCE16V8

;————————————————— PIN Declarations ———————

PIN 1   A23                         ; INPUT 

PIN 2   A22                         ; INPUT 

PIN 3   A21         ; INPUT 

PIN 4   A20                                  ; INPUT 

PIN 5   A19                                  ; INPUT 

PIN 6   A18                                  ; INPUT 

PIN 7   A17                           ; INPUT 

PIN 13  PCNCS_ COMBINATORIAL ; OUTPUT

PIN 14  MEMCS_ COMBINATORIAL ; OUTPUT

EQUATIONS

MEMCS_ = /A17 + A23+A22+A21+A20+A19+A18

PCNCS_ =  A17 + A23+A22+A21+A20+A19+A18

19889A-10

Figure 10.  16V8 Design File—Address Decode
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19889A-11

A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 0 0

If A17  =  1:  1  =  NOSWAP 
0  = SWAP; Only PCnet-to-Memory Can Be Swapped


If A17  =  0:  Don't Care, NOSWAP 


1  =  System Memory:   
0  =  I/O (NOSWAP):    


To System Memory and I/O

System Memory
NOSWAP

System Memory
SWAP

I/O
NOSWAP

I/O
NOSWAP

64K       A16  =  1      Non-Network Data Goes Here

64K       A16  =  0     Network Data Goes Here

64K       A16  =  1     

64K       A16  =  0     

I/O Shadowed Here
(64K Block Aliased)

Memory Shadowed Here
(64K Block Aliased)

A17 = 1    128K


A17 = 0    128K


Memory Map

Address Bus

A16

A17

Chip Select
Function

PCNCS

MEMCS

MEMCS
PCNCS

Figure 11.  Memory Map Example (Applies to Hardware-Buffer Swap Only)

19889A-12

D D

CLK

IOCHRDY

QPCNCS

AS

Q0

AR

DTACK

ZDTACK

Q

AR

Figure 12.  Wait State Control Unit
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CLK

AS

IOR

DTACK

ADDR

IOCHRDY=1

Q0

DATA
(Out of
PCnet)

0 30 60 90 120 150 180 210 240 270 300 330 360

S0 S1 S2 S3 S4 S5 S6 S7 S0W1 W2

VALID

90 300

VALID

307117

227 327

132 252

192 312

210 270

DTACK
Latched
by 68K

DATA
Latched
by 68K

(16.67 MHz)

19889A-13

Figure 13a.  Wait State Control Timing Diagram (68K Reads PCnet, IOCHRDY=1)
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II. USING THE PCnet-ISA CONTROLLER
WITH A BIG ENDIAN PROCESSOR

The PCnet-ISA controller (Am79C960) is an excellent
general purpose Ethernet controller. One of its strong-
est features is buffer management. Its buffer manage-
ment is very similar to the buffer management of the
Am7990 LANCE (Local Area Network Controller for
Ethernet) [and the new Am79C90 C-LANCE (CMOS
version of the Am7990 LANCE)], another industry
standard Ethernet controller chip from AMD. Unlike the
LANCE, the PCnet-ISA controller has separate transmit
and receive FIFOs for Ethernet packets. The transmit
FIFO is 136 bytes deep, and the receive FIFO is 128
bytes deep. The PCnet-ISA controller also has an
onboard 10BASE-T transceiver as well as an onboard
Manchester encoder/decoder which can interface to a
10BASE-T, 10BASE2 or 10BASE5 MAUs (Media
Attachment Unit). Other features of the PCnet-ISA
controller include: External Address Detect Interface,
Dynamic Transmit FCS Generation on a packet by
packet basis, Power Down Modes and JTAG support.

The bus interface of the PCnet-ISA controller was
designed to be compatible to the ISA PC bus. This bus
architecture is very similar to the buses of iAPX
processors. The PCnet-ISA controller has the capability
to tune the read/write timing on its ISA bus interface.
This allows the PCnet-ISA controller to interface to
many clone PCs as well as provide interface flexibility to
a wide range of processors. The PCnet-ISA controller
may tune its read/write pulse width between 50 and
750 ns, which gives the PCnet-ISA controller a maxi-
mum throughput rate of 150 ns/word (with 50 ns
read/write pulse width).

The PCnet-ISA controller is very easy to interface to
iAPX processors. The PCnet-ISA controller can also be
interfaced to Motorola 68000 class processors. The
reader can reference the LANCE (Am7990) Technical
Manual (contained in the 1992 World Network Data
Book/Handbook PID# 14287B ) for details of interfac-
ing a 68000 to a LANCE. While the LANCE and the
PCnet-ISA controller do not have identical interfaces,
they are somewhat similar, and this application note will
give the user a feel for how to treat interface signals.

(The user can also refer to the 1994 Ethernet/IEEE
802.3 Family Data Book/Handbook, PID# 14287C for a
complete description of the Am79C90 C-LANCE;
CMOS, pin-compatible version of the Am7990 LANCE.)

(NOTE: The reader should also refer to the application
note titled “Interfacing the Motorola M68000 Micropro-
cessor to the PCnet-ISA Am79C960 Ethernet Control-
ler” by Mike Keith Senior FAE, for additional information
on byte swapping techniques to those discussed in this
application note.)

There are issues relating to byte swapping high and
low order bytes when interfacing the PCnet-ISA
controller to a 68000 class of processor, or any
processor that is a big endian processor. The rest of this
application note will propose several solutions to
dealing with byte swapping.

Big Endian Versus Little Endian

The PCnet-ISA controller device is a little Endian device
and only supports that byte orientation, unlike the
LANCE which supports both little and big endian.

A big endian device associates lower order addresses
with higher order bytes (reference Figure 16b). A 68000
has a big endian format. A little endian device associ-
ates lower order addresses with lower order bytes
(reference Figure 16a). iAPX processors are little
endian devices. Note, some devices like the AMD
29000 family can support either byte orientation.

The relation of address bits for byte lane accessing is
different for big versus little endian devices. 

For big endian devices: (lower addresses are associ-
ated with higher order bytes, refer to Figure 16b):

A<4:0> = <00000>, accesses byte 0, bits<15:8>

A<4:0> = <00001>, accesses byte 1, bits<7:0>

For little endian devices (lower addresses are associ-
ated with lower order bytes, refer to Figure 16a):

A<4:0> = <00000>, accesses byte 0, bits<7:0>

A<4:0> = <00001>, accesses byte 1, bits<15:8>

Endian Issues for the PCnet-ISA Controller

The PCnet-ISA controller is a little endian device. There
is no byte orientation problem when using the PCnet-
ISA controller with a little endian processor. To under-
stand the issues regarding mixing a the PCnet-ISA
controller with a big endian processor, it is necessary to
examine the types of data transfers with which the
PCnet-ISA controller can be involved.

The PCnet-ISA controller deals with two classes of
transfers (reference Figure 17: Basic System Block
Diagram).

1) Slave mode reads and writes. For these types of
transfers, the PCnet-ISA controller is a slave to
the processor, reacting to the processors control
signals. In these types of transfers, the processor
is accessing the PCnet-ISA controller internal
registers for the purpose of configuring or reading
the status of the PCnet-ISA controller.

2) Master mode reads and writes. For these types
of accesses, the PCnet-ISA controller is in
control of its interface bus and is controlling
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reads and writes to system memory. The
PCnet-ISA controller is performing DMAs to and
from memory during these transfers. There are
two types of transfers within the Master
mode class:

a) Ring Descriptor Transfers: The PCnet-ISA
controller is dealing with descriptor ring
data. In this case, the PCnet-ISA controller
is moving data between its internal registers
and external memory. Descriptor rings are
data structures in memory which are associ-
ated with the Ethernet transmit and receive
packets. They define the locations of trans-
mit/receive buffers and contain status relat-
ing to transmit/receive packets. The
PCnet-ISA controller and the processor both
access the Ring Descriptors.

b) Transmit/Receive FIFO Data Transfers: 
The PCnet-ISA controller is dealing with
Ethernet packet data. The PCnet-ISA
controller is either moving data to be
transmitted (onto Ethernet) from memory
into its transmit FIFO, or moving data
received from the Ethernet from its receive
FIFO to memory. The PCnet-ISA controller
and the processor both access the
transmit/receive data buffer memory.

For all types of transfers that involve the PCnet-ISA
controller internal registers, the endian-ness of the
processor versus the PCnet-ISA controller should not
be an issue. (This would include Slave mode read/writes
and Master mode descriptor ring transfers.) Effectively,
for all these types of transfers, the PCnet-ISA controller
does not care about byte ordering as implied by the
endian-ness of a processor. The PCnet-ISA controller
only cares that the specification of its bit definitions for
internal registers be met.

For example, CSR0 (Control Status Register 0 [refer-
ence Figure 18a]) defines certain status bits of the
PCnet-ISA controller. Notice that the definition of the
register is on a per bit basis and this bit definition must
be adhered to by the processor interfacing to the
PCnet-ISA controller.

Relating to Descriptor Rings, Figure 18b shows the
Transmit Descriptor Ring 1 (TMD1). Note that similar to
the status registers, the Descriptor Rings have bit level
definitions that a processor must adhered to.

For both these examples, the processor must adhere to
the definition of bits as required by the PCnet-ISA
controller to have the PCnet-ISA controller operate
correctly. Therefore, the driver code dealing with the
PCnet-ISA controller must store constants, generate bit
patterns, and output and input data accordingly.

The one area remaining is Master Mode Transfers
that transfer transmit/receive data to and from the

PCnet-ISA controller internal FIFOs. Proper byte orien-
tation is imperative for these transfers. There is a
relationship between which byte of a word is taken from
the transmit FIFO and sent onto the Ethernet first.
Assuming the PCnet-ISA controller performs an aligned
word read access from memory (with A0 = 0), the data
on data bits <7:0> will be loaded into location of the
PCnet-ISA controller’s transmit FIFO. Bits<15:8> will be
loaded into location n+1 of the FIFO. FIFO location n will
be transmitted first. There will therefore be a problem
when interfacing to a big endian processor because the
serial data stream transmitted onto the Ethernet will be
out of order. Similarly, receive data will be out of order.

Possible Solutions

The issues of interfacing the PCnet-ISA controller to a
big endian processor may be solved with either software
or hardware, or a combination of hardware and
software. As described above, Master mode transmit
and receive transfers care about endian-ness, whereas
other transfer types don’t care. Three solutions will be
proposed. Solution #1 utilizes software only. Solution #2
reverse wires the data buses between the PCnet-ISA
controller and the big Endian processor. There is some
software help required for this solution. Solution #3, the
most hardware intense, adds byte swap logic into the
path between the PCnet-ISA controller and the big
endian processor.

Solution I. Software Only 

This solution proposes that the data in the PCnet-ISA
controller transmit and receive buffers (in external
memory) is byte swapped by the processor. Code must
be added to byte swap the data in these buffers.

For transmit buffers, the transmit data is usually moved
from some application area to the PCnet-ISA controller
transmit buffer memory space, then transmitted onto the
Ethernet by the PCnet-ISA controller. When this data
movement is being performed bytes can be swapped as
the data is being moved by the processor. This will
position the bytes in the correct order for serialization
onto the Ethernet. For receive buffers, the received data
is usually moved from the PCnet-ISA controller receive
buffers in memory to an application area of memory. At
the time this data movement occurs bytes can then be
swapped by the processor so that data is now byte
ordered as the application expects.

Performance Impact of Solution 1:

Additional code to swap bytes need only be added in the
driver code for the PCnet-ISA controller. This change
should not affect upper layer software which one might
want to be portable to different systems. The addition of
instruction(s) to perform the byte swap should not add
much time to the transmit or receive code. Some
processors have single cycle byte swap instructions (for
example, 68040). However, each design should
consider the performance impact of this additional
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code based on the specifics of their design (processor
speed and time required to do byte swap). This solution
does burden every 16 bit word that is transmitted or
received with at least one additional line of code that
needs to be executed.

Solution II. Hardware/Software (Reverse Data Bus
Wiring and Software Workarounds)

Another approach to the problem is to take care of the
Master mode data buffer transfers by cross wiring the
busses between the PCnet-ISA controller and the
processor/memory (reference Figure 19). The byte
swapping required for the PCnet-ISA controller Master
mode transmit/receive buffer accesses is now accom-
plished by a hardwired swapping of high order and low
order bytes. The processor will read and write bytes in
memory in its natural way, big endian. The PCnet-ISA
controller will read and write bytes in memory in a
swapped order from the processor which will make the
positioning look like little endian for the PCnet-ISA
controller.

Now the problem of Slave Mode and Master Mode ring
buffer accesses must be addressed. One approach to
the problem is to perform a byte swap in software for the
PCnet-ISA controller slave and ring buffer accesses
(performed by the processor). This method adds some
software delay for the PCnet-ISA controller register and
ring buffer accesses. 

Another approach could be to use software tools to get
around the problem. The PCnet-ISA controller does not
care about byte ordering for slave or ring buffer
accesses. It only requires that its bit definition be
adhered to. By cross wiring the buses, we have tied bit 0
of the processor to bit 8 of the PCnet-ISA controller, and
software must take this into account. For this issue, one
can use the facilitates of a high level language compiler
or assembler to relate mnemonics to bit positions and
make this transparent to the programmer. Using
software tools to make the bit swapping transparent
should not increase software overhead when dealing
with the PCnet-ISA controller registers or the ring
buffers. 

Performance Impact of Solution 2:

The performance impact of solution #2 will probably be
less than the impact of the Software Only Solution,
solution #1. Access to transmit/receive data buffers will
be performed more often than the PCnet-ISA controller
resister and Ring Buffer accesses. Byte swap code
added to deal with transmit/receive data will be exe-
cuted more often than byte swap code dealing with Ring
buffers/the PCnet-ISA controller registers. 

Beyond that, the transfer types that must be addressed
in software with this solution (ring buffer accesses and
internal registers) can be handled by software tools
rather than performing byte swapping in software which
adds cycles to code. 

Solution III. Hardware Only

As stated previously, the only transfers that care about
byte orientation are transmit/receive data buffer trans-
fers dealing with the PCnet-ISA controller controller’s
FIFOs. To address this situation in hardware, it is
necessary to add byte swap logic between the PCnet-
ISA controller and memory. This byte swap logic is
enabled only when the PCnet-ISA controller is perform-
ing Master mode accesses to data memory (reference
Figure 20). All other types of transfers as previously
discussed need not be byte swapped. (Note: Refer to
previous section entitled “Interfacing the Motorola
M68000 Microprocessor to the PCnet-ISA Am79C960
Ethernet Controller” by Mike Keith.) 

Figure 20 shows logically how the byte swapping
hardware should work. Referencing to Figure 20; The
address decoder determines when the PCnet-ISA
controller is accessing transmit/receive buffer memory.
The address decode logic generates an ENABLE to the
Byte Swap Logic. When ENABLE is asserted, the Byte
Swap Logic will swap bytes to/from the PCnet-ISA
controller. The Byte Swap Logic must also know the
direction of transfer (read or write). Figure 20 also
shows logically, that when bytes are being swapped,
that Byte Write enables must also be swapped to the
memory banks, such that a PCnet-ISA controller byte
write modifies the proper memory bank.

There is a system level implication in that the Address
Decoder logic must know the address space of the
PCnet-ISA controller’s transmit/receive buffers since
this is the only time the byte swap logic should be
enabled. There is some implication in that this address
area for transmit/receive buffers must be fixed and
remain fixed. 

Some hardware implementation details relating to this
solution are discussed in the following section entitled
“Implementation Discussion for Solution #3”. 

Performance Impact of Solution 3:

The byte swap hardware adds delay into the path
between the PCnet-ISA controller and the big endian
processor, and the PCnet-ISA controller and memory,
for all types of the PCnet-ISA controller accesses. As
long as this addition delay does not add wait states
when: 1) the processor is accessing the PCnet-ISA
controller registers, or 2) when the PCnet-ISA controller
is accessing memory, then this solution has no perform-
ance impact.

Conclusions

The PCnet-ISA Ethernet controller is a very flexible and
powerful controller for Ethernet. While it has an interface
optimized for the ISA bus, it can be easily used with
iAPX processors. The PCnet-ISA controller can also be
used with other processors such as Motorola 68K class
processors.
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One consideration for interfacing to various processors
is the question whether the processor is big or little
endian. The PCnet-ISA controller is a little endian
device. When interfacing to a big endian processor,
there are several solutions possible in both hardware
and software.

The software solutions are fairly reasonable and
portable. Many of the software issues can be addressed
using facilities available in high level language compil-
ers or assemblers. The software overhead for perform-
ing byte swapping where necessary will probably not
hinder performance. The system designer should
determine performance impact based on processor
speed and instruction set. 

Solution # 1 requires no additional hardware nor add
any additional logic delay in the data paths of the
PCnet-ISA controller.

Solution # 2 will probably have less performance impact
than Solution # 1. In each case, the impact of ease of
understanding and maintenance from the software
viewpoint should also be considered.

Solution #3 will add some logic to the design. In some
cases, some of the logic required for address decoding
may be combined with existing logic. Additional delays
may be incurred by adding byte swap logic, depending
on how the byte swap logic is implemented. For those
designs where the PCnet-ISA controller already has a
set of transceivers, additional byte swap transceivers as
suggested in Appendix A add no extra delay to the path
between the PCnet-ISA controller and memory.
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Figure 17.  Basic System Block Diagram
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Figure 23b.  Expanded View of Byte Swap (2 bits)

Implementation Discussion for Solution #3 
[Hardware Only]

It is probably best to partition the swapping hardware
into two separate blocks (reference Figure 20): one for
address decode and one for byte swapping. Different
options for implementing byte swapping will be
discussed later. The address decode logic must decode
the address area for buffer memory when the
PCnet-ISA controller is a bus master and generate an
enable to the byte swap logic. To do this, some number
of address bits are required to decode the data ring
buffer area of memory. In this example, four upper
address bits are being used. The fact that the PCnet-ISA
controller is performing a Master mode transfer is known
when the signal MASTER is asserted by the PCnet-ISA
controller. An ENABLE is then generated and gated with
the PCnet-ISA controller read/write command signals,

MEMR and MEMW, to drive data in the proper direction
to or from memory. The decode logic must also control
bus drivers associated with the byte swap logic for
all processor reads and writes to the PCnet-ISA
controller as well as all the PCnet-ISA controller Master
mode transfers.

Since PCnet-ISA controller addresses will set up before
read/write commands, it may be better to start the
address decode early, that is, not include address
decode in the byte swap logic. In this way, the byte swap
ENABLE signal can have time to set up before the
read/write command is asserted. The logic that controls
the byte swap hardware then only need gate the
ENABLE signal with MEMR or MEMW, which can be
done in a fast PAL or fast gate to minimize delay. Note
that in some system designs where the PCnet-ISA
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controller has tri-state bus drivers, there may already be
decode logic to enable these drivers. The decode
enable for the byte swap logic may be shared, for
example, in same logic as the existing tri-state enables
(this is usually easy if the decode is done using a PAL).

Address Decode Hardware with Fixed Address
Transmit/Receive Buffers

For this implementation the decode of the ring buffer
area is fixed. The Transmit or Receive Buffer ring buffer
area has been pre-defined and its decode fixed in
hardware.

In this case (reference Figure 20), we are assuming four
upper address bits can be used to decode this area.
When an access to this area is detected with the cycle
being a PCnet-ISA controller’s Master mode access, the
byte swap logic will be enabled. Positive logic equations
are shown below (assumes that SA<0:3> are <1001>
when transmit/receive ring buffers are accessed).

ENABLE = SA0 *SA1 *SA2 * SA3 * MASTER.

Address Decode Hardware With Programmable
Address Transmit/Receive Buffers

For this implementation, some means of programming
the polarity of the address bits seen by the decode logic
must be implemented. Figure 21a depicts a logic
implementation that would work. The ADR REG is
loaded as an access to a peripheral and could share the
peripheral address space of the PCnet-ISA controller.
The address register is loaded with a bit pattern that will
generate an enable when locations of the transmit/re-
ceive buffer memory are accessed by the PCnet-ISA
controller. For example, assume the decode logic will
generate an enable when 1111 is on SA<0:3>, which
relates to the address space of transmit/receive data
buffer area in memory. The ADR REG would be loaded
with 1111 (D<0:3> respectively). If the transmit/receive
address space is changed to SA<0:3> = 1010, the ADR
REG is loaded with 1010. The mux will now present the
correct sense of address bits to generate a decode
when SA<0:3> is 1010.

Once the ADR REG is loaded, the decoder can enable
the byte swap logic when an access to this area in
 Master mode is performed by the PCnet-ISA controller.
If the system decides to change the memory
space of the transmit/receive buffers, the ADR REG is
reprogrammed. One issue here is that an extra layer of
logic is required. The address delay to decode is a bit
longer but, since addresses set up about 55ns before
the MEMR or MEMW signal, the extra delay will prob-
ably not be a problem for most implementations.

Another implementation uses a RAM to decode ad-
dresses (reference Figure 21b). The mapper RAM
locations are loaded by system software via the data
bus as a peripheral. The Mapper RAM is programmed to
generate an ENABLE when MASTER mode transmit/
receive buffer accesses are performed. That is, when
SA and MASTER indicate a master data buffer access,
the mapper RAM is accessed such that Dout generates
ENABLE low.

Byte Swap Logic Options

There are several options to perform the byte swapping
that will be outlined here.

Byte Swap Transceivers (Reference Figure 22):

This may be the best approach from a timing viewpoint.
A set of transceivers are added to swap bytes for the
PCnet-ISA controller’s access. The address decoder,
as previously discussed, provides an enable that then is
qualified with MEMR, MEMW or R/W to enable the
transceivers in the proper direction. The system design
may already have a set of transceivers between the
PCnet-ISA controller and memory anyway. In those
cases, this scheme does not add any additional delay to
the PCnet-ISA controller related transfers since data is
traveling through a set of buffers anyway. The design
will probably already have tri-state driver enable logic
which may be shared with the byte swap enable logic.
For this case, the additional logic may add a little
overhead, and no additional delay to the PCnet-ISA
controller transfers.
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Note:  
The SWAP and THRU transceivers should be enabled as follows:
1) Assume SA<0:3> = 1111 for a data buffer access.
2) PCnetDEC is a decode of A<0:3> bits denoting that the PCnet-ISA controller registers are being accessed.

SWAPENRD = MASTER * SA0 * SA1 * SA2 * SA3 * MEMR  ; PCnet-ISA data
; buffer read

SWAPENWR = MASTER * SA0 * SA1 * SA2 * SA3 * MEMW ; PCnet-ISA data
;  buffer  write

THRUENA = (PCnetDEC)*/R/W  ; PCnet-ISA slave
+ (MEMR * MASTER)(SA0 +SA1 +SA2 +SA3) ; write PCnet-ISA

;  ring buffer read

THRUENB = (PCnetDEC)*R/W ; PCnet-ISA slave
 + (MEMW * MASTER)(SA0 +SA1 +SA2 +SA3) ; read PCnet-ISA 

; ring buffer write 

Byte Swap PAL Mux (Reference Figures 23):

A rough diagram of the byte swap logic using a PAL mux
is shown in Figure 23. The PAL implements a mux,
providing byte swapped and non swapped paths, as
well as tri-state enables for the uP and the PCnet-ISA
controller buses. 

Two PALs are used for decoding access information.
The SLAVE ACCESS DECODE PAL determines
whether the PCnet-ISA controller is being accessed as

a slave. The ACCESS TYPE DECODE PAL determines
the type of access: PCnet-ISA controller Ring buffer or
Data buffer access, etc. The byte swapping is accom-
plished using one PAL per 4 bits of data.

Note, another programmable logic implementation for
byte swapping could be done using AMD MACH
devices. Use of these parts could save board space
over a PAL implementation.
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Sample PAL logic equations are as follows:

Note : 
These equations assume that the PCnet-ISA controller is accessing data buffer memory when SA<0:3> = <1111>

Slave Access Decode PAL:
This PAL will generate the signal PCNetDEC. It will use the AS signal and A<1:10> to determine if the PCnet-ISA
controller is being accessed as a slave. Therefore the decode of the address bits will be whatever peripheral address
has been assigned to the PCnet-ISA controller.

Access Type Decode PAL:

DBUSEN = MASTER * MEMW ; PCnet-ISA memory write 
+ PCnetDEC * R/W ; PCnet-ISA slave read

SDBUSEN = MASTER * MEMR ; PCnet-ISA mem read 
+ PCnetDEC *R/W ; PCnet-ISA slave write

DATACC = MASTER *SA0*SA*SA2*SA3 ; PCnet-ISA data buffer access

RINGACC = MASTER *SA0 ; PCnet-ISA 
+ MASTER *SA1 ; Ring  
+ MASTER *SA2 ; Buffer 
+ MASTER *SA3 ; access

Sample Byte Swap PAL Equations:

SD0 = D8 * DATACC * MEMR ; PCnet-ISA swapped data buffer read
   + D0 * PCnetDEC *R/W ; PCnet-ISA slave write
   + D0 * RINGACC * MEMR ; PCnet-ISA ring buffer read

SD0.TRST = SDBUSEN ; tri-state enable for SD bus

D0 = SD8 * DATACC * MEMW ; PCnet-ISA swapped data buffer write
  + SD0 * PCnetDEC * R/W ; PCnet-ISA slave read
  + SD0 * RINGACC * MEMW ; PCnet-ISA ring buffer write

D0.TRST = DBUSEN            
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