
Publication# 19669 Rev: A Amendment/0
Issue Date: March 1995

PCnet Family Software Design
Considerations

Application Note

INTRODUCTION

The purpose of this application note is to help you un-
derstand the software interfaces of the PCnet family of
devices so you’ll be able to design an efficient, reliable
device driver. Key programming sequences are pre-
sented and tips on the operational characteristics are
given where necessary.

ACCESS OPERATIONS

I/O Resources

Controller I/O resources coexist with other system re-
sources in the I/O address space of your system. Con-
troller resources are located at specific offsets from the
base I/O address you assigned to the device, and are
organized as indicated in Table 1.

Table 1. 16-Bit I/O Resources

For the default case of Word I/O accesses, the control-
ler responds to 16-bit accesses at offsets 00h through
16h. Offset 18h, the Vendor Specific Word, is not imple-
mented by the controller. Address offsets 1Ah through
1Eh are reserved for future AMD use and should not be
implemented if upward compatibility to future AMD de-
vices is desired.

The Register Address Port is shared by the RDP and
the IDP/BDP to save I/O locations. The Vendor Specific
Word (VSW) is not implemented; this particular I/O ad-
dress is reserved for customer use and will not be used
by future AMD products. If more than one Vendor Spe-
cific Word is needed, it is suggested that RAP also be
shared with the VSW.

For the optional Double Word I/O access mode (see
Table 2), which is available only in the PCnet-32 and
PCnet-PCI controllers, the controller responds to 32-bit
accesses at offsets 0x00 through 0x1C. Except for
CSR88 all registers contain only two bytes of valid data
in bits 15-0. The upper two bytes are reserved for future
use. Reserved bits must be written as zeros, and when
read, are undefined.

Table 2. 32-Bit I/O Resources

The Register Address Port is shared by the RDP and
the BDP to save registers.

Bus Slave Operation

Your software automatically causes bus slave opera-
tion whenever you attempt writing or reading the I/O re-
sources of a PCnet device. A PCnet device enters
slave mode operation during I/O accesses when the
IOR or IOW pins (PCnet-ISA/PCnet-ISA

+

 only) are as-
serted. This mode is used for accessing the Register
Address Pointer (RAP), the Register Data Port (RDP),
and other I/O resources.

Offset (Hex) Bytes Register

00 16 Address PROM

10 2
Register Data Port
(RDP)

12 2
Register Address
Port (RAP)

14 2 Reset

16 2
Configuration
Data Port (IDP/
BDP)

18 2
Vendor Specific
Word

1A 2 Reserved

1C 2 Reserved

1E 2 Reserved

Offset (Hex) Bytes Register

00 4 Address PROM

04 4 Address PROM

08 4 Address PROM

0C 4 Address PROM

10 4
Register Data Port
(RDP)

14 4
Register Address
Port (RAP)

18 4 Reset

1C 4
Bus Configuration
Data Port (BDP)

2 PCnet Family Software Design Considerations

I/O Register Accesses

To access a Control Status Register, you must com-
plete a two step operation. First, you perform an I/O
write to the RAP using the appropriate CSR number as
your data. Then, you perform an I/O read or write ac-
cess to the RDP. Note that the contents of the RAP is
latched and is not changed until rewritten; therefore,
the register select cycle is not required in order to re-
peatedly access the same CSR.

These software accesses should be coded as 16-bit
accesses, even if the PCnet device is hardware config-
ured for 8-bit I/O bus cycles. It is acceptable (and trans-
parent) for the motherboard to turn a 16-bit software
access into two separate 8-bit hardware bus cycles.
The motherboard accesses the low byte before the
high byte and the PCnet device has circuitry to specifi-
cally support this type of access.

To access an ISA Configuration Register (ISACSR) on
PCnet-ISA and PCnet-ISA

+

 devices, the RAP must be
written first with the register number, followed by the
read or write access to the IDP. These software ac-
cesses should be coded as 16-bit accesses.

Performing a single I/O read from the reset register
causes an internal device reset. The I/O access may be
8 or 16 bits wide, and I/O write accesses are ignored.

Address PROM Access

By performing I/O reads to offsets 0x00 to 0x0F from
the I/O Base Address you can read the contents of the
address PROM (e.g., the 48-bit Ethernet address or
vendor specific information). For PCnet-ISA or
PCnet-ISA

+

 systems, reading these locations causes
accesses to an external PROM. For PCnet-32 or
PCnet-PCI reading these locations causes accesses to
internal registers that are loaded from an external se-
rial EEPROM after a hardware reset.

PCnet-ISA and PCnet-ISA

+

 support 8 and 16-bit I/O
accesses while PCnet-32 and PCnet-PCI support 8,
16, or 32-bit accesses.

Boot PROM Access (PCnet-ISA/
PCnet-ISA

+

 Only)

The boot PROM is a memory resource located at the ad-
dress selected by the IOAM1-0 pins in bus master mode
or the BPAM input in shared memory mode. It may be
software accessed as an 8-bit or 16-bit resource but the
latter is recommended for best performance.

INITIALIZATION BLOCK

Each PCnet Ethernet controller is custom configured
by way of a programmable Initialization Block which is
read from system memory.

The Initialization Block must be allocated as a contigu-
ous chunk of memory and may reside at almost any ad-
dress in system memory. There are two constraints on
the Initialization Block address. The full address must fit
in the address fields provided in CSR1 and CSR2 and
the address must be aligned on a 16-bit word boundary
(32-bit boundary for 32-bit mode).

Table 3. 16-Bit Initialization Block

During your system design process, you must make
certain decisions about how the PCnet controller will
be configured in order to meet the requirements of
your implementation.

You then design your device driver to allocate and
setup the Initialization Block using operational parame-
ters which meet your requirements. Your driver is also
responsible for starting the initialization procedure by
writing the appropriate control bits in Control Status
Register 0.

By default, the Initialization Block for the PCnet family
of controllers is twelve 16-bit words and may aligned on
any word boundary.

For PCnet-32 and PCnet-PCI versions of the controller,
which are capable of operating in 32-bit mode, the Initial-
ization Block may be configured as seven double words
aligned on a double word boundary (see Table 4). When
designing your device driver, remember that the 32-bit
version of the Initialization Block employs afield layout
which is somewhat different from the16-bit layout.

15 0

MODE IADR+00

PADR[15:0] IADR+02

PADR[31:16] IADR+04

PADR[47:32] IADR+06

LADRF[15:0] IADR+08

LADRF[31:16] IADR+10

LADRF[47:32] IADR+12

LADRF[63:48] IADR+14

RDRA[15:0] IADR+16

RLEN Reserved RDRA[23:16] IADR+18

TDRA[15:0] IADR+20

TLEN Reserved TDRA[23:16] IADR+22

PCnet Family Software Design Considerations 3

Table 4. 32-Bit Initialization Block

Your software must load the 24 or 32-bit physical ad-
dress of the initialization block into CSR1 and CSR2.
Remember that writing to any CSR is a two-step pro-
cess: First, write the CSR number to the RAP, then
write the data to the RDP. Also, note that the address
stored in CSR1 and CSR2 is a physical address, not a
80x86 segment:offset pair.

Use of the initialization block is optional. Your software
can write directly to the registers that the initialization
procedure normally loads. Also, your software can
modify any register after it has been loaded by the ini-
tialization procedure. If you don’t use the initialization
block, you must be careful not to set the INIT bit in
CSR0. This would cause the controller to load whatever
garbage the contents of CSR1 and CSR2 happen to
point to.

If the initialization block is not used, then the software
must initialize the following registers directly:

CSR 8-11 Logical Address Filter
CSR 12-14 Physical Address
CSR 15 Mode
CSR 24-25 Base Address of RCV Ring
CSR 30-31 Base Address of XMT Ring
CSR 47 Polling Interval (Not necessary for

PCnet-ISA and PCnet-ISA

+

)
CSR 76 RCV Ring Length
CSR 78 XMT Ring Length

RLEN and TLEN Fields

The receive length (RLEN) and transmit length (TLEN)
fields of the Initialization Block are used to program the
number of entries in the receive and transmit descriptor
rings. See Table 5.

For programming these fields, you must first choose
one of the eight or ten possible ring sizes, determine
the correct encoded value, then write this value to the
RLEN or TLEN field.

Table 5. RLEN/TLEN Encoding

*32-bit mode only

You perform this process independently for each de-
scriptor ring because your descriptor rings are not re-
quired to be the same size.

If your implementation requires descriptor rings of
other sizes, from 1 to 65535 entries per descriptor ring
is possible, you may override the standard values pro-
grammed in the RLEN and TLEN fields. Information on
configuring larger or odd size descriptor rings is pro-
vided later in this section.

RDRA and TDRA Fields

The Receive Descriptor Ring Address (RDRA) and
Transmit Descriptor Ring Address (TDRA) fields are
programmed with the physical address of the receive
and transmit descriptor rings which you have allocated
in system memory. Note that these are 32-bit physical

31 0

TLEN RES RLEN RES MODE IADR+00

 PADR[31:0] IADR+04

Reserved PADR(47:32) IADR+08

LADRF[31:0] IADR+12

LADRF[63:32] IADR+16

RDRA[31:0] IADR+20

TDRA[31:0] IADR+24

RLEN/TLEN Number of Descriptors

0000 1

0001 2

0010 4

0011 8

0100 16

0101 32

0110 64

0111 128

1000 256*

1001 512*

11XX 512*

1X1X 512*

4 PCnet Family Software Design Considerations

addresses, not the logical segment:offset or selec-
tor:offset pointers used by 80X86 processors.

LADRF Field

The Logical Address Filter (LADRF) is a programmable
64-bit mask that is used to accept incoming packets
based on Logical (Multicast) Addresses. If the first bit
of an incoming destination address is a logical zero, the
address is a physical address and is compared against
the physical address that was loaded through the Ini-
tialization Block. If the first bit of an incoming address
is a logical one, the address is deemed a logical ad-
dress and is passed through the logical address filter.

The incoming logical address is sent through the CRC
generator circuit producing a 32-bit result. The high
order 6 bits of the result are used to select one of the
64 bit positions in the Logical Address Filter. If the se-
lected filter bit is a one, the address is accepted and the
packet is copied to a receive buffer.

The broadcast address, which is all ones, does not go
through the Logical Address Filter and is normally en-
abled, for reception regardless of the contents of LADRF.
The reception of broadcast packets can be disabled by
writing to the MODE register (CSR 15). If the Logical Ad-
dress Filter is loaded with all zeroes, all incoming logical
addresses except broadcast will be rejected.

Note that this is not a perfect filter. It just reduces the
number of multicast frames the controller accepts. De-
pending on how the upper layer uses multicast frames,
your driver probably should maintain a list of accept-
able multicast addresses and throw away any multicast
frame whose address does not appear in the list.

PADR Field

The physical address (PADR) field is programmed with
a 48-bit value representing the unique node address
assigned by the IEEE and used for internal address
comparison. PADR[0] is the first address bit transmitted
on the wire, and must be zero. The six-hex-byte nomen-
clature used by the IEEE maps to the PCnet family ad-
dress register as follows: the first byte is PADR[7:0] with
PADR[0] being the least significant bit of the byte. The
second IEEE byte maps to PADR[15:8], the third,
fourth, fifth and sixth IEEE bytes map to PADR[23:16],
PADR[31:24], PADR[39:32], PADR[47:40].

MODE Field

The Mode Register (CSR15) allows alteration of the
chip’s operating parameters. The Mode field of the Ini-
tialization Block is copied directly into CSR15. Normal
operation is the result of configuring the Mode field with
all bits zero.

DESCRIPTOR RING ACCESS MECHANISM

Transmit and Receive Descriptor Rings

The basic organization of buffer management is a cir-
cular queue of tasks in memory called a descriptor ring
with transmit and receive operations described by sep-
arate descriptor rings.

Each descriptor ring must be allocated as a contiguous
area of memory and typically consists of from 1 to 128
multi-word entries called descriptors. Given this organi-
zation, from 1 to 128 tasks may be queued on a de-
scriptor ring awaiting execution by the PCnet device.
Information on configuring larger descriptor rings is
provided later in this section.

Table 6. 16-Bit Transmit Descriptor

*CXDA = Current Transmit Descriptor Address

Address 15 14 13 12 11 10 9 8 7-0

CXDA+00h TBADR[15:0]

CXDA+02h OWN
ERR
NO_
FCS

ADD_/ MORE ONE DEF STP ENP TBADR[23:16]

CXDA+04h 1 1 1 1 BCNT

CXDA+06h BUFF
UFLO
DEF

EX LCOL LCAR RTRY TDR

PCnet Family Software Design Considerations 5

Table 7. 16-Bit Receive Descriptor

*CRDA = Current Receive Descriptor Address

For PCnet-ISA and PCnet-ISA

+

 controllers, transmit
and receive descriptors are 8 bytes long. The PCnet-32
and PCnet-PCI controllers use either 8- or 16-byte de-
scriptors, depending on the value of the SWSIZE field
in CSR58. The larger descriptors contain all of the in-
formation in the smaller ones plus some extra informa-
tion. The differences are as follows:

■

The 16-byte descriptors support 32-bit addresses
whereas the 8-byte ones support 24-bit addresses.

■

The larger receive descriptors contain two extra
fields: a receive collision count and a runt packet
count that indicate the number of collisions detected
and the number of runt packets that were addressed
to this station since the last packet was received.

■

The 16-byte transmit descriptor has an extra field for
the transmit retry count, which is the number of
times the controller had to back off while attempting
to transmit this packet.

■

The 8-byte descriptors must be aligned on 8-byte
boundaries, while the 16-byte descriptors must be
aligned on 16-byte boundaries.

■

The locations of fields within the descriptors are dif-
ferent for the two descriptor types.

Transmit descriptors contain a buffer address pointer,
status, and the number of bytes to transmit from the
corresponding buffer. Receive descriptors contain a
buffer address pointer, status, the size of the receive
buffer in bytes, and the size of the received message,
in bytes.

The only limitations on a descriptor ring address are
that the address must fit in the address fields (RDRA
and TDRA) in the Initialization Block, and address bits
1 :0 fo r 8 -by te descr ip to rs o r b i t s 2 :0 fo r

16-bytedescriptors must be zero in order to meet the
alignment requirement.

The BCNT fields of the transmit and receive descriptors
are 12-bit negative numbers representing the twos com-
plement of the buffer size in bytes. The MCNT field of the
receive descriptor is a 12-bit positive number represent-
ing the length of the received message in bytes.

For either transmit or receive operations, multiple data
buffers may be chained together to accommodate a
packet which is longer than the current buffer size. On
transmit, when you know a packet occupies more than
one buffer, you use the Start of Packet and End of
Packet bits to inform the controller of the situation. On
receive, when the controller fills the first buffer and uses
additional buffers, it informs you of the situation by
using the Start of Packet and End of Packet bits.

To ensure proper queuing and de-queuing of message
buffers, each buffer descriptor is owned by one entity at
a time: the PCnet device or the host device driver. The
OWN bit in each descriptor indicates whether the de-
scriptor entry is owned by the host (OWN = 0) or by the
controller (OWN = 1). On transmit, you set this bit after
filling the data buffer, and the controller clears this bit
after transmitting the contents of the buffer. On receive,
the controller clears this bit after filling the buffer, and
you set this bit after emptying the buffer.

Caution

: Once you set the OWN bit you relinquish
ownership of the descriptor and must not make further
changes to any field in the corresponding descriptor.

The location of the descriptor rings, and their lengths,
are presented to the controller in the Initialization Block
which is accessed during the initialization procedure
performed by the PCnet device.

Address 15 14 13 12 11 10 9 8 7-0

CRDA+00h RBADR[15:0]

CRDA+02h OWN ERR FRAM OFLO CRC BUFF STP ENP RBADR[23:16]

CRDA+04h 1 1 1 1 BCNT

CRDA+06h 0 0 0 0 MCNT

6 PCnet Family Software Design Considerations

Table 8. 32-Bit Transmit Descriptor

CXDA = Current Transmit Descriptor Address

*TRC is four bits wide (bits 3-0); bits 11-4 are reserved.

Table 9. 32-Bit Receive Descriptor

CRDA = Current Receive Descriptor Address

When initializing the controller with the Initialization
Block, the descriptor ring size fields, RLEN and TLEN,
are used to specify the number of descriptors per ring.
The size and encoding characteristics of these fields
limit you to 128 descriptors per ring in 16-bit mode (512
descriptors per ring in 32-bit mode) with the number of
descriptors limited to a power of two.

However, you are able to manually specify a descriptor
ring with up to 65535 entries by directly writing the re-
ceive and transmit ring length registers (CSR76,
CSR78 respectively). In addition to being able to spec-
ify a larger number of descriptors, you may specify any
number of descriptors, not just those which are a power
of two. If you choose to use this method of initialization,
remember to first configure your Initialization Block and
invoke the controller initialization sequence, then per-
form the direct register accesses to override the values
read from the Initialization Block.

Caution

: If you choose to override the RLEN and TLEN
initialization values by writing directly to CSR76 and
CSR78, you must write your descriptor ring entry
counts as 16-bit negative numbers representing the
twos complement of the number of entries in the ring.

Transmit and Receive Buffers

Transmit and receive buffers may be located at any ad-
dress in system memory, need not be allocated as con-
tiguous buffers, and have no alignment requirements.

Buffers may be dynamically allocated randomly
throughout system memory. Since you specify the
starting address for each individual buffer, you are not
required to allocate buffers as contiguous blocks.

Buffers may be allocated on any boundary in system
memory. Since the controller is able to access buffer
data on a byte boundary, you are not required to ensure
buffer alignment.

PCnet controllers have only one FCS generator that is
used by the transmitter to append the FCS field to the
frame, and by the receiver to do multicast filtering and
to verify the FCS.

In allocating space for buffers, remember that the re-
ceiver stores the FCS field in the receive buffer,
whereas the software does not write FCS data to the
transmit buffer. Therefore a receive packet takes up 4
more bytes of buffer space than a transmit packet of the
same size.

DIAGNOSTICS

Internal Loopback

Normal operation of a PCnet family Ethernet controller
is as a half-duplex device. However, in order to allow
your device driver to perform an on-line operational test
of the controller, a pseudo full duplex mode is provided.
The loopback facilities of the MAC Engine, and dual in-
ternal FIFOs, allow full operation to be verified without
disturbance to the network.

Address 31 30 29 28 27 26 25 24 23-16 15-12 11-0

CXDA+00h TBADR[31:0]

CXDA+04h OWN
ERR
NO_
FCS

ADD_/ MORE ONE DEF STP ENP RES 1111 BCNT

CXDA+08h BUFF
UFLO
DEF

EX LCOL LCAR RTRY TDR RES TRC*

CXDA+0Ch RESERVED

Address 31 30 29 28 27 26 25 24 23-16 15-12 11-0

CRDA+00h RBADR[31:0]

CRDA+04h OWN ERR FRAM OFLO CRC BUFF STP ENP RES 1111 BCNT

CRDA+08h RCC RPC 0000 MCNT

CRDA+0Ch RESERVED

PCnet Family Software Design Considerations 7

In loopback mode, simultaneous transmission and re-
ception are enabled with the following constraints:

1. Packet length may be as large as the length field al-
lows and as short as 8 bytes

2. FCS may be generated and appended to the output
serial bit stream or may be checked on the input se-
rial bit stream, but not both at the same time

3. Packets should be addressed to the node itself

4. Multicast frames are not accepted when FCS logic
is connected to transmit

During loopback operation, the FCS logic can be allo-
cated to the receiver by setting the Disable Transmit
FCS bit (CSR15: DXMTFCS[3]).

If DXMTFCS = 0, the MAC Engine will calculate and
append FCS to the transmitted message. The receive
message passed to the host will therefore contain an
additional four bytes of FCS. In this loopback configu-
ration, the receive circuitry cannot detect FCS errors if
they occur.

If DXMTFCS = 1, the last four bytes of the transmit
message must contain the (software generated) FCS
computed for the transmit data preceding the FCS
bytes. The MAC Engine will transmit the data and verify
the FCS at the receiver.

When performing an internal loopback, no frame will be
transmitted to the network. However, when the control-
ler is configured for internal loopback, the receiver will
not be able to detect network traffic.

External Loopback

While configured for external loopback operation, the
controller transmits frames onto the network and re-
ceives network traffic. For external loopback tests using
the T-MAU, an external loopback connector is required
since 10BASE-T hubs do not normally feed a station’s
transmitter output back to that same station’s receiver.

INITIALIZATION PROCEDURE

Following a major system event such as the initial
power-on sequence or a system wide reset, your de-
vice driver software must be designed to perform sev-
era l fundamenta l s teps wh ich compr ise the
initialization procedure. The initialization procedure en-
sures that the PCnet controller is configured to meet
your system needs.

There are two ways to initialize the controller. You can
use the automatic initialization described below, or you
can write directly to the same registers loaded by the
automatic initialization procedure.

To use the automatic initialization your device driver must:

1. Allocate and setup the Initialization Block in system
memory

2. Disable the PCnet controller by setting the STOP
control bit in CSR0

3. Load the address of the Initialization Block into de-
vice registers CSR1 and CSR2

4. Enable the PCnet device initialization procedure by
setting the INIT control bit in CSR0

The Initialization Block contains operating parameters
necessary for device operation. Once the Initialization
Block is setup in system memory, you must set the
STOP bit (CSR0: bit 2) and the device must be pro-
grammed with the address of the Initialization Block in
CSR2 and CSR1. Address bits 15 through 0 are placed
into CSR1, and the rest of the address bits are placed
in CSR2. Note that this is the physical address.

The automatic PCnet device initialization includes
reading the Initialization Block from system memory
to obtain the operating parameters. The Initialization
Block is read when the INIT bit (CSR0: bit 0) is set.
The INIT bit should be set before or concurrent with
the STRT bit (CSR0: bit 1) to insure correct operation.
On completion of the read operation and after internal
registers have been updated, the IDON bit (CSR0: bit
8) is set and an interrupt generated if the INEA
(CSR0: bit 6) bit is set. Remember to install your inter-
rupt service routine, and enable the appropriate inter-
rupt at the interrupt controller, before invoking the
device initialization process, if interrupts are used. (Al-
ternative method: Make sure INEA is 0 during initial-
ization, so that the interrupt service routine doesn’t
have to handle IDON.)

Since initialization is not performed very often, you can
reduce the overhead in your interrupt service routine if
you poll the Initialization Done (IDON) bit in CSR0.

As the Initialization Block is read during the initialization
procedure, the various information and control fields
are loaded into specific Control Status Registers. When
the initialization procedure is complete, you may
change or override configuration settings by directly ac-
cessing the Control Status Registers.

It is possible to duplicate the effect of initialization via
the Initialization Block by writing the appropriate bits in
the appropriate registers. Either method may be used
at the discretion of the programmer. However, If the
registers are written directly, the INIT bit (CSR0: bit 0)
must not be set or the Initialization Block will be read in,
overwriting previously written information. Direct initial-
ization must set up the Polling Interval (CSR47).

REINITIALIZATION PROCEDURE

The transmitter and receiver section can be turned on
via the Initialization Block (MODE field: DTX[1] and
DRX[0]). The state of the transmitter and receiver are

8 PCnet Family Software Design Considerations

monitored through CSR0 (RXON[5] and TXON[4]). The
device should be reinitialized if the transmitter and/or
the receiver were not turned on during the original ini-
tialization, and it was subsequently required to activate
them or if either section shut off due to the detection of
an error condition such as transmit underflow or trans-
mit buffer error.

An alternative approach is to write CSR15 directly. The
STOP bit (CSR0: bit 2) must be set before writing
CSR15. Subsequently setting the STRT bit (CSR0:bit
1) without reinitialization does not make PCnet family
devices behave the way the LANCE does. The PCnet
family reloads the transmit and receive descriptor
pointers with their respective base addresses, some-
thing the LANCE does not do.

RESET (H_RESET, S_RESET, STOP)

There are three ways to reset a PCnet controller: a
hard reset by asserting the RESET pin (H_RESET), a
read access to the RESET address (i.e., offset 0x14 for
16-bit I/O, offset 0x18 for 32-bit I/O), and a soft reset by
setting the STOP bit (CSR0: bit 2). Reset causes the
device to cease operation and clear its internal logic.

For PCnet-ISA a read access to the RESET address has
the same effect as asserting the RESET pin. For
PCnet-ISA

+

, PCnet-32, and PCnet-PCI, reading the
RESET address does not affect the information loaded
into controller registers from the configuration EEPROM.

Reading the RESET register sets T-MAU to Link Fail
state. Software must wait for Link Pass before it can
transmit. (Receive works in Link Fail.) Link status can
be read from one of the LED registers (BCR4 by de-
fault). Setting the STOP bit does not affect the T-MAU.

NORMAL OPERATION

Transmit Sequence Overview

This discussion on the transmit sequence is limited to
those actions required by your device driver to transfer
control of one or more packets to the PCnet family
Ethernet controller for transmission on the network.

The PCnet controller subsystem is assumed to be ini-
tialized and operational. This means the controller has
been programmed to operate with features and modes
that support your requirements. This also means the
transmit descriptor ring has been allocated and initial-
ized and the controller has been programmed with the
information necessary to manage the transmit descrip-
tor ring and transmit buffers.

Your device driver physically allocates and initializes
the descriptor ring, and owns descriptor ring memory,
maybe even transmit buffer memory. However, logical
ownership is passed back-and-forth between your
driver and the controller in the process of queuing
packets, transmitting packets, and releasing descrip-
tors and buffers.

Transmit buffers are chunks of memory that are allo-
cated and filled by other entities in the system, such as
a file transfer application. When the application decides
it’s time to transmit the contents of these buffers, a trans-
fer request is generated and passed down through the
protocol stack. Eventually, your driver receives a trans-
mit request with the address and length of the associ-
ated buffers and performs packet queuing and
descriptor updating. The controller will find that it owns
the descriptor(s) you’ve prepared, get the address of the
transmit buffer(s), and complete the transmission.

Packet Queuing

Packet queuing takes place when you associate a spe-
cific transmit buffer with the next available transmit de-
scriptor. In a system that uses segment:offset style
addresses, your device driver is required to translate
the segment:offset style address to a 24-bit or 32-bit
physical address before updating the transmit descrip-
tor. In 16-bit mode, the least significant 16 bits of the
physical buffer address are loaded into the TMD0 ele-
ment of the descriptor, and the most significant eight
bits of the physical address are loaded into bits 7-0 of
the TDM1 element of the descriptor. In 32-bit mode, the
32-bit physical buffer address is loaded into TMD0. The
next step is to load the buffer byte count, which is the
12-bit two’s complement of the buffer length, into the
BCNT field of the descriptor. You program the byte
count field with the size of the transmit packet, in bytes,
not the raw size of the buffer.

Descriptor Update

The final step of the transmit sequence for your device
driver is the descriptor update. Certain control bits,
such as STP, ENP, ADD_FCS, and especially the OWN
bit, must be updated in the TMD1 element of the de-
scriptor. Your specific implementation dictates how and
when the first three bits are used but the OWN bit is uni-
versal. This is the key bit that transfers ownership of the
descriptor(s) to the controller, causing the controller to
begin processing transmit descriptors and associated
transmit buffers.

If your implementation results in the use of multiple de-
scriptors per transmit packet, or if you support multiple
packets per transmission opportunity, your device
driver must fully prepare all transmit buffers and related
descriptors before setting the OWN bits in reverse
order in the descriptor ring.

Receive Sequence Overview

This discussion of the receive sequence identifies ac-
tions required by your device driver to receive one or
more packets from the PCnet family Ethernet controller.

Your device driver must keep track of incoming receive
packets, perform packet removal, and update descrip-
tors. These tasks are typically handled by a software
loop that processes receive packets that span multiple

PCnet Family Software Design Considerations 9

receive buffers and processes multiple packets queued
in the receive buffers.

Your driver physically allocates and initializes the de-
scriptor ring, and owns descriptor ring memory, maybe
even receive buffer memory. However, logical ownership
is passed back-and-forth between the controller and
your driver in the process of receiving packets, filling re-
ceive buffers, and releasing descriptors and buffers.

The PCnet controller subsystem is assumed to be ini-
tialized and operational. This means the controller has
been programmed to operate with features and modes
that support your requirements. This also means that
the receive descriptor ring has been allocated and ini-
tialized and the controller has been programmed with
information necessary to manage the receive descrip-
tor ring and receive buffers. In addition, your device
driver must have already transferred descriptor/buffer
ownership to the controller by setting the ownership bit
(RMD1: OWN[15]=1 for 16-bit descriptor or RMD1:
OWN[31]=1 for 32-bit descriptor) in each descriptor.

Packet Queuing

When you initially enable the receiver, the controller
begins polling the first entry of the receive descriptor
ring to determine descriptor/buffer ownership. Re-
ceive descriptor polling repeats on a fixed 1.6 millisec-
ond cycle. (The polling interval can be programmed
via CSR47 for PCnet-32 and PCnet-PCI controllers.)
The polling process allows the controller to identify an
empty receive buffer and become prepared to capture
the next incoming packet.

If the controller has access to an empty receive buffer
when a packet arrives, it begins transferring data from
the internal receive FIFO to the receive buffer using
burst mode. The number of data transfer cycles con-
tained within a single bus cycle is, in general, depen-
dent on the programming of the DMAPLUS option
(CSR4: bit 14), the DMA Burst Register (CSR80:
DMABR[7:0]), and the Bus Timer Register (CSR82).

The controller performs a look ahead operation be-
tween periods of data transfer. Look ahead operations
allow the controller to perform data chaining, that is, to
continue receiving a packet that exceeds the size of the
current receive buffer by transferring data to the next
empty buffer. The look ahead operation consists of
reading the next descriptor to determine if the controller
has ownership of the next descriptor and to determine
the address and size of the next empty receive buffer.

When the packet being received requires data chaining
and the controller does not own another empty buffer,
an error condition exists causing the controller to abort
the receive operation and update the current descriptor
status. This includes clearing the ownership bit (OWN)
and setting the receive buffer error (BUFF) bit. Note

that the message byte count field (MCNT) is not valid
when a buffer error occurs.

When data chaining is required and an empty receive
buffer is available, the controller releases the full buffer
to your device driver by clearing the ownership bit in the
corresponding descriptor. The controller continues re-
ceiving the packet by transferring data to the next
empty buffer.

It is important to note that an interrupt is not generated
for each receive descriptor update when a receive
packet spans multiple descriptors and buffers. The in-
terrupt is generated only when receive interrupt status
is set (CSR0: RINT[10] = 1) following the update of the
final descriptor for the current packet (where the ENP
bit is set).

The controller repeats this cycle of capturing data,
transferring data, performing the look ahead operation,
and data chaining, until packets stop arriving or the
controller has no more empty receive buffers.

Packet Removal

In addition to the fundamental requirement that you de-
tect packet arrival, you must assess each received
packet by evaluating available status. Reporting error
conditions and forwarding acceptable packets to your
client layer are basic responsibilities. To ensure a
higher level of performance, you must provide a very
efficient receive buffer emptying function to maintain a
supply of empty buffers for the controller.

Received packet forwarding requires that you identify a
specific receive buffer containing packet information,
and that you identify an empty system buffer to hold the
contents of the receive buffer.

To detect packet arrival, use controller status polling or
install and use an interrupt service routine. When using
controller status polling, you’ll have to monitor status
bits INTR, RINT, and MISS in CSR0 (bits 7, 10, and 12
respectively). When using a hardware interrupt to acti-
vate your driver, just check for RINT and MISS.

To assess the condition of the received packet, evalu-
ate controller status (CSR0: ERR, MISS, MERR, RINT,
INTR, RXON) and descriptor status (RMD1: OWN,
ERR, FRAM, OFLO, CRC, BUFF, STP, and ENP).
Flushing error packets and forwarding acceptable
packets are the assumed default guidelines.

Software-based receive descriptor and system buffer
pointers, initialized and maintained by your device
driver, provide the identity of full receive buffers and
empty system buffers.

Functionally, the receive descriptor ring is a circular
queue. You must keep track of the bounds of the queue
and update a receive descriptor pointer as you process
descriptors in the order of packet arrival. At initialization,

10 PCnet Family Software Design Considerations

your pointer contains the address of the first descriptor
in the receive descriptor ring.

Upon detection of packet arrival, your receive descrip-
tor pointer identifies the descriptor to check for owner-
ship. If you own the descriptor and packet status is
error free, you’ll have access to the address of the re-
ceive buffer in RMD0[15:0] and RMD1 (HADR[7:0])
and the message byte count in RMD3 (MCNT[11:0]).

Caution

: For those cases when an empty system
buffer is not available and you are unable to empty the
receive buffers, your device driver must comply with
error policies established outside the scope of this doc-
ument. While waiting for an empty system buffer, you
have to choose between losing the oldest packets in
the receive buffers in order to capture the most recent
packets or losing the most recent packets to preserve
the oldest packets received.

With the address and length of the receive buffer
known, the next step is to identify an empty system
buffer and move the contents of the receive buffer to
the system buffer. Your system buffer pointer identifies
the empty system buffer used as the destination in the
block move. The system buffer pointer is incremented
to the next empty buffer at the conclusion of the move.

Remember that the buffer addresses stored in the de-
scriptors are physical addresses. If you are using an
80X86 type processor, you may have to convert these
physical addresses back to the segment:offset or se-
lector: offset form before moving data from one buffer
to another.

Descriptor Update

You must update the corresponding descriptor, after
forwarding (or flushing) a packet, to transfer ownership
to the controller for receiving subsequent packets.

When returning to the descriptor to set the ownership bit,
be sure to check the Start Of Packet and End Of Packet
status bits (RMD1: STP[9] and ENP[8]) for the possibility
of a packet that spans multiple buffers.

Updating your driver’s receive descriptor pointer to
the next descriptor in the ring is the final step in the
receive function.

If you are implementing a software policy that supports
emptying two or more packets per receive indication,
you use the updated descriptor pointer to evaluate the
next descriptor before exiting the receive function.
When you support this concept and another packet is
waiting, your driver proceeds as when receiving a
packet arrival notification.

Interrupt Handling

The PCnet controller signals important events to the
host processor with hardware interrupts. The primary
purpose of an Interrupt Service Routine (ISR) is to

perform a special unit of work whenever the sup-
ported controller asserts an interrupt to signal the oc-
currence of an important event.

The use of hardware interrupts, in place of software
polling, allows your host CPU to process other tasks
until the controller requires attention and keeps your
device driver from hogging the system bus with contin-
uous status reads. In addition, the controller receives
attention much sooner because it preempts lower pri-
ority tasks.

Unless special or unusual conditions exist, your de-
vice driver should handle PCnet controller interrupts
with an ISR.

Controller interrupts directed to the host processor are
generated upon:

1. Completion of the initialization procedure

2. The reception of a packet

3. The transmission of a packet

4. The end of transmission of a packet

5. Detection of the transmission of a frame longer than
1518 bytes

6. Detection of a transmitter jabber error

7. Detection of a missed packet

8. Detection of a memory error

9. Detection of an internal counter overflow (Missed
Packet, Receive Collision)

Your ISR can determine the actual cause of the inter-
rupt request by examining the BABL, MISS, MERR,
RINT, TINT, and IDON bits in CSR0 and the MPCO,
RCVCCO, TXSTRT, and JAB bits in CSR4.

Polling Tip: In a system where software polling substi-
tutes for a hardware interrupt, your device driver should
monitor the Interrupt status bit (INTR[7]) in Control Sta-
tus Register 0.

The controller hardware interrupt is a logical OR of sev-
eral interrupt causing events (e.g., BABL, MISS,
MERR, MPCO, RCVCCO, RINT, TINT, IDON, JAB or
TXSTRT). After asserting the interrupt request pin, and
before the interrupt request is acknowledged, the con-
troller does not generate another transition on the inter-
rupt pin if another event occurs.

For each interrupt request, it’s possible that your ISR will
find multiple interrupt generating conditions. For exam-
ple, when a packet arrives and an interrupt occurs, a sin-
gle packet is waiting for you. However, if ISR latency is
high, additional packets could be pending when you
evaluate controller status. The same possibility exists for
a transmit interrupt or other event interrupts also.

Therefore, it is wise to scan both the Receive and
Transmit Descriptor Rings for multiple changes of de-
scriptor ownership whenever an interrupt occurs.

PCnet Family Software Design Considerations 11

The controller hardware interrupt remains asserted
until one of the following conditions is met:

■

A one is written to each bit in CSR0 and CSR4 that
indicates an interrupt condition

■

The controller RESET pin is asserted

■

The STOP bit is set (CSR0: bit 2)

The Interrupt Service Routine can cause the interrupt
signal to go inactive by reading CSR0 and CSR4 then
writing back the values just read.

The driver can minimize software reentry problems by
clearing the IENA bit at the start of the ISR then setting
it just before the end of the ISR. This way the ISR can
run with interrupts enabled.

Interrupt Latency

Interrupt latency due to hardware (e.g., signal asser-
tion time, Programmable Interrupt Controller response
time, CPU response time), is somewhat uncontrollable
and beyond the influence of your device driver. How-
ever, interrupt latency due to excessive software execu-
tion in your ISR is your direct responsibility. The design
of your device driver must account for interrupt latency
and keep it to a minimum.

Minimizing interrupt latency can improve performance
in three major areas: your driver is capable of higher
overall throughput, your driver is less likely to lose track
of the order of significant events, and your driver is less
likely to cause artificial overrun conditions and lose in-
coming packets.

In a network environment with alternating periods of
high and low activity, you can improve throughput and
minimize packet loss by managing a software-based
status FIFO from your interrupt service routine. If you
allocate enough space to record controller status on a
per descriptor basis, you should be able to record sta-
tus in real time, from inside the ISR, then process sta-
tus and descriptors outside the ISR during the time
interrupts are inactive.

Status Processing

Status processing comprises three basic functions:
capturing controller status, detecting significant or rele-
vant status bits, performing an applicable unit of work.

As a general rule, your device driver will spend most of
its time efficiently and correctly transmitting and receiv-
ing packets without causing errors. Therefore, when in-
terrupts occur and controller status is captured and
analyzed, your device driver should first scan for re-
ceive packet status, then scan for transmit packet sta-
tus, and last, scan for error status.

Receive packet status usually gets top priority in order to
minimize packet loss which results in additional network
traffic and unnecessary packet delays. Delaying transmit
packet status checking is acceptable, up to a point, since

packets are only delayed and are not required to be re-
queued and retransmitted. Checking for errors last is ac-
ceptable because they don’t occur frequently.

Normal status processing should include capturing and
scanning the CSR0 and CSR4 registers, and the ap-
propriate receive and transmit descriptors.

Error Status Processing

Controller status is available to your device driver in
CSR0 and CSR4. The order in which your device driver
processes these status bits is determined by the level
of importance to your implementation.

Status bit ERR (CSR0: bit 15) is set by the ORing of
BABL, MERR, CERR, and MISS. ERR is also set when
the JAB bit (CSR4: bit 1) is set. ERR remains set as
long as any of the error flags are true. ERR is read only:
write operations are ignored.

Status bits BABL and MERR (CSR0: bits 14 and 11, re-
spectively) should be recognized as indicating fatal
error conditions. BABL and MERR are cleared by writ-
ing a logical one to the respective bit position.

The MISS status bit (CSR0: bit 12) is considered to be
non-fatal. MISS is cleared by writing a logical one to the
bit position.

■

When the controller detects a collision error and
sets the CERR bit, the ERR bit (CSR0: bit 15) is
also set. In addition, beware that this error condition
does not cause an interrupt to be asserted by the
controller. CERR usually indicates that an external
transceiver is not connected to the AUI port or that
the 10BASE-T cable is not connected.

■

When the controller has lost an incoming receive
frame because a receive descriptor was not avail-
able and sets the MISS bit, the ERR bit (CSR0: bit
15) is also set. However, be aware that this bit is the
only immediate indication of this error condition
since there is no receive descriptor to be updated.
This bit is included for compatibility with LANCE
software. The PCnet family devices also maintain a
count of missed frames in CSR112. You may want
to mask MISS interrupts by setting the MISSM bit in
CSR3 and ignore the MISS bit in CSR0.

Status bit JAB (CSR4: bit 1) is considered a fatal error
indicator. JAB is cleared by writing a logical one to the
bit position.

LED CONTROL

PCnet family controllers support driving up to four ex-
te rna l ly mounted LEDs. For PCnet - ISA and
PCnet-ISA

+

 one LED control pin indicates only
10BASE-T Link Status while the other LED control pins
are programmable. For PCnet-32 and PCnet-PCI all
LED control pins are programmable.

12 PCnet Family Software Design Considerations

For each programmable LED control pin, you can en-
able multiple status indications. A programmed control
pin then indicates the logical OR of the corresponding
enabled status conditions. You can enable monitoring
of the following status conditions: Collision Activity,
Jabbering, Receive Activity, Receive Polarity, Link Sta-
tus on Twisted Pair Interface, and Transmit Activity.

For the PCnet-ISA and PCnet-ISA

+

 controllers, you use
I/O write accesses to ISACSR registers 5, 6, and 7 to
perform LED control pin programming.

For the PCnet-32 and PCnet-PCI controllers, you use I/
O write accesses to BCR registers 4, 5, 6 and 7 to per-
form LED control pin programming. (BCR6 is not avail-
able on PCnet-PCI.)

FAMILY DEVICE DRIVER
CONSIDERATIONS

Common Features and Functions

The devices which make up the PCnet family of Ether-
net controllers represent evolutionary improvements of
the basic design introduced with the LANCE controller.
Many features, functions, and internal registers are
identical. In most cases, new features and functions
are controlled and monitored with additional bits in ex-
isting registers and with additional registers.

When planning the design of your device driver, you
could design a specialized driver which handles a single
controller from the family or you could design a driver
which could dynamically adapt to the different family
members. Table 10 shows common features and func-
tions is provided to help you design your device driver.

PCnet Family Software Design Considerations 13

Table 10. Common Features and Functions

Notes:

1. Major code changes required to take advantage of full 32-bit operation.

2. PROM, RDP, RAP, Reset, IDP

3. PROM, RDP, RAP, Reset, BDP

4. 24 bytes beginning with base address.

5. 32 bytes beginning with base address. Byte offsets 0-23 are active, bytes offsets 24-31 are reserved for future use.

6. 32 bytes beginning with base address. Byte offsets 0-31 are active. RDP, RAP, and BDP contain two bytes of valid data.

7. Bus Configuration Registers 0-21 are a superset of the PCnet-ISA set, minor code changes may be required.

8. ISA DMA channels used only for bus arbitration, thus, PCnet family works with either an 8 or 16-bit DMA channel.

9. PCnet-32 and PCnet-PCI use request/grant interfaces and a central bus arbiter.

 Feature/Function PCnet-ISA PCnet-ISA

+

PCnet-32 PCnet-PCI

ISO 8802-3 (ANSI/IEEE 802.3) standard standard standard standard

Am7990 (LANCE) Software run as is run as is minor change minor change

Am79C900 (ILACC) Software N/A N/A minor change minor change

PCnet-ISA Software run as is run as is run as is[1] run as is[1]

NE2100 (LANCE) Software run as is run as is run as is run as is

NE1500T (PCnet-ISA)Software run as is run as is run as is run as is

ISA Bus standard standard N/A N/A

VESA VL-Bus N/A N/A standard N/A

PCI Bus N/A N/A N/A standard

Am386DX (32-bit) Mode N/A N/A standard standard

Am486 (32-bit) Mode N/A N/A option option

16-bit Initialization Block only only default default

16-bit Descriptors only only default default

32-bit Initialization Block N/A N/A option option

32-bit Descriptors N/A N/A option option

Auto EEPROM Initialization N/A standard standard standard

I/O Resource Registers 5[2] 5[2] 5[3] 5[3]

16-bit I/O Accesses/Range Y/ [4] Y/ [4] Y/ [5] Y/ [5]

32-bit I/O Accesses/Range N/A N/A Y/ [6] Y/ [6]

CSRs (0-126) standard superset superset superset

Bus Configuration Registers 0-7 (ISA) 0-7 (ISA) 0-21[7] 0-21[7]

Software Reloc. Resources N/A Plug ’n Play Plug ’n Play PCI Config

Space

Programmable Interrupts 1 1 1 of 4 1

DMA (DRQ/DACK) 4[8] 4[8] 1[9] 1[9]

LED Outputs/Programmable 4/3 4/3 4 3

EADI option option option N/A

14 PCnet Family Software Design Considerations

Unique Features and Functions

PCnet-ISA Controller

Single Chip System Solution with ISA Bus Interface

The PCnet-ISA controller is a single chip Ethernet sys-
tem solution that interfaces directly with the PC-AT In-
dustry Standard Architecture (ISA) bus. The highly
integrated 120-pin (EIAJ PQFP) VLSI device reduces
the adapter part count and cost, and is applicable for
applications demanding higher system throughput.

PCnet-ISA contains an ISA bus interface unit, DMA
Buffer Management Unit, ANSI/IEEE 802.3 Media Ac-
cess Control engine, ISO 8802-3 (ANSI/IEEE 802.3) de-
fined Attachment Unit Interface (AUI), IEEE 802.3 (Type
10BASE-T) Twisted Pair Transceiver Media Attachment
Unit (T-MAU), support for external remote boot PROMs,
support for external address PROMs, and individual
136-byte transmit and 128-bytereceive FIFOs.

The individual 136-byte transmit and 128-byte receive
FIFOs reduce system overhead by providing sufficient
latency during packet transmission and reception thus
minimizing intervention during normal (i.e., avoidable)
network error recovery.

An integrated Manchester Encoder/Decoder provides
the Physical Layer Signaling functions required for a
fully compliant IEEE 802.3 station and eliminates the
need for an external Serial Interface Adapter (SIA).

Upgrading LANCE Code to PCnet-ISA Code—
NE2100 Compatibility

PCnet-ISA is register compatible with the Am7990
(LANCE) Ethernet controller and its DMA Buffer Man-
agement Unit supports the LANCE descriptor software
model. The controller is software compatible with Nov-
ell NE2100 and NE1500T Ethernet device drivers and
the AMD Am1500T and PCnet-ISA device drivers.

Network software written for the LANCE based
NE2100 board should run on a PCnet-ISA based board
without modification.

The fol lowing l ist of di f ferences between the
PCnet-ISA controller and an NE2100 board could af-
fect your existing software.

■

Internal loopback with or without Manchester En-
coder/Decoder (MENDEC)

■

Byte Swap, ALE Control, and Byte Control bits in
CSR3 are not used

■

CSR3 and CSR4 are accessible without setting the
STOP bit

■

Setting the STOP bit is not equivalent to hardware
reset

■

Reset does not clear the Register Address Port
(RAP)

■

Memory error (MERR) does not turn off the trans-
mitter and receiver

■

Memory error (MERR) has a slightly different mean-
ing on PCnet-ISA

■

CERR has a slightly different meaning in10BASE-T
mode

■

An I/O write after an I/O read to finish a software
reset is not required

■

All internal registers can be accessed by software

■

There are no restrictions on the minimum size of
transmit or receive buffers

■

Interrupt bits can be masked independently

■ Frame Check Sequence (FCS) can be omitted for
individual frames

■ Pad bytes for short packets can be added and
stripped automatically

■ Missed Frame and Receive Collision Counters are
provided

■ Optional mode to accept runt packets enabled by
software

■ Chip ID register allows positive ID of the controller

■ Programmable Memory Read and Memory Write
signals

■ I/O base address assignment and detection

■ Optional power down mode for T-MAU circuitry is
enabled by software

■ Idle state of the AUI drivers is controlled by software

■ Port selection (i.e., AUI or T-MAU) by jumper, by
software, or automatically

■ The 10BASE-T link test function can be disabled by
software

■ Automatic (T-MAU) polarity correction feature can
be disabled by software

■ In T-MAU mode two receiver threshold voltages are
selected by software

■ The meaning of three LED driver outputs is pro-
grammable by software

■ New External Address Detection Interface is en-
abled by software

■ Optional initialization by software writing directly to
control registers

■ Initialize (INIT) and Start (STRT) bits can be set with
a single I/O write

■ I/O resources accessed indirectly with Register Ad-
dress Port (RAP)

■ Descrip to r r ings can con ta in f rom 1 to
65535descriptors each

■ Interrupt at beginning of packet transmission is soft-
ware controlled

PCnet Family Software Design Considerations 15

■ Accept/Reject broadcast packets by software control

■ Accept/Reject frames matching physical address by
software control

■ Accessing certain active registers requires stopping
the controller

■ Transmit and Receive FIFO Watermarks are soft-
ware controlled

■ Maximum DMA burst length is software controlled

■ Transmit descriptor polling can be disabled by
software

■ The transmission two-part deferral algorithm can be
disabled by software

■ An alternate backoff algorithm can be selected by
software

PCnet-ISA Changes
The following functions are available in the LANCE but
behave differently in the PCnet-ISA controller without
affecting existing software.

Loopback

The loopback facilities of the MAC engine allow full op-
eration to be verified without disturbance to the network.
Loopback operation is affected by the state of the loop-
back control bits (LOOP, MENDECL, and INTL) in
CSR15. This affects whether the internal MENDEC is
considered part of the internal or external loopback path.

CSR3 Bits Now Reserved

In CSR3 of the LANCE the BSWP, ACON, and BCON
bits allowed you to configure the bus interface. With
PCnet-ISA a hardware reset makes the controller com-
patible with the NE2100 card so these are reserved bits
in PCnet-ISA and must be written as zero.

With PCnet-ISA, CSR3 and CSR4 are always accessi-
ble, not just when the STOP bit is set.

CSR3 Bits Now Used

In the LANCE, there were control register bits marked
as reserved. In PCnet-ISA, some of the reserved bits
are used to control new options. Existing NE2100 soft-
ware that writes zeros to these reserved positions will
run properly on the PCnet-ISA without modifications.

CSR3 of PCnet-ISA contains the following new control
bits: Babble Mask (BABLM), Missed Frame Mask
(MISSM), Memory Error Mask (MERRM), Receive In-
terrupt Mask (RINTM), Transmit Interrupt Mask
(TINTM), Initialization Done Mask (IDONM), Disable
Transmit Two Part Deferral (DXMT2PD), and Enable
Modified Back-off Algorithm (EMBA).

MODE Register (CSR15) Bits Now Used

The following bits have been added to the mode regis-
ter: Disable Receive Broadcast (DRCVBC), Disable
Receive Physical Address (DRCVPA), Disable Link

Status (DLNKTST), Disable Automatic Polarity Correc-
tion (DAPC), MENDEC Loopback Mode (MENDECL),
Low Receive Threshold (LRT)/Transmit Mode Select
(TSEL), and Port Select (PORTSEL).

TMD1 Bit Now Used

This new bit adds dynamic control of FCS generation
on a frame-by-frame basis.

Stopping PCnet-ISA

In the LANCE, setting the STOP bit is the equivalent of
asserting RESET. The controller ceases operation,
clears internal logic, forces all three-state buffers to the
high impedance state, and enters an idle state with the
STOP bit in CSR0 set.

With the PCnet-ISA controller, setting the STOP bit is
not the equivalent of asserting RESET. Setting the
STOP bit clears the appropriate status bits, but it does
not change any control bits that affect the configuration
of the device.

The STOP bit resets and disables the transmit and re-
ceive state machines. It resets the transmit and receive
FIFOs and resets the Next Receive Descriptor Address
and Next Transmit Descriptor Address Registers. All
data in the transmit and receive FIFOs are lost when
the STOP bit is set. The Next Receive Descriptor Ad-
dress and Next Transmit Descriptor Address Registers
point to the first descriptors in the transmit and receive
descriptor rings.

If the STOP bit is set in the middle of a transmit or re-
ceive operation, the PCnet-ISA will complete the cur-
rent DMA burst, but it will not issue a TINT or RINT
interrupt before it turns off the receiver and transmitter.
The PCnet-ISA does not violate the OWN bit conven-
tion when the STOP bit is set. If an OWN is set, the cor-
responding buffer has not been completely filled by the
receiver or transmitted by the transmitter.

When your software stops the controller with the STOP
bit, several steps are required before resuming opera-
tion with the STRT bit. Your software should process all
packets in the receive queue, reinitialize the transmit
and receive descriptors, then queue up any outgoing
packets that were not sent before the STOP bit was set.
Your software is not required to reinitialize any configu-
ration registers in the PCnet-ISA.

Register Address Port (RAP)

The contents of the Register Address Port are not
changed by setting the STOP bit or by hardware reset
so this register powers up in an unknown state. LANCE
software that expects the Register Access Port to be
cleared by a reset must be modified to work with
PCnet-ISA.

16 PCnet Family Software Design Considerations

Memory Errors

The Memory Error (MERR) bit does not turn off the
transmitter or the receiver in PCnet-ISA. This is unlikely
to be a problem with software written for the LANCE.

MERR occurs in the PCnet-ISA chip when DACK has
not been asserted 250 ms after DRQ occurs. In the
LANCE MERR occurs when READY has not been as-
serted within 25.6 µs after the address has been as-
serted on the DAL lines. This prevents the LANCE from
locking up the system if it tries to access non-existent
memory. However, accessing non-existent memory lo-
cations over the ISA bus does not cause the system to
lock up, because the IOCHRDY line, which is used to
insert wait states, is normally high and must be forced
low by the addressed memory to extend the cycle.

Collision Error (CERR)

CERR in the LANCE indicates that the Signal Quality
Error test (SQE) failed. This means that the external
transceiver did not activate the collision inputs to the
AUI within 20 network bit times after the chip stopped
transmitting. CERR has the same meaning in PCnet
family controllers when the AUI port is selected. How-
ever, when the T-MAU is selected, CERR indicates
that the T-MAU was in the link fail state when the chip
was transmitting.

Software Controlled Hardware Reset

An I/O read access of the Reset Register at I/O offset
0x14 creates an internal reset pulse. The controller re-
sponds to an internal reset pulse differently from when
the RST pin is asserted or the when STOP bit is set. A
reset invoked by reading the Reset Register causes
certain bits in the Command Status Registers to be au-
tomatically cleared. However, the internal reset has no
effect on bits in the Bus Configuration Registers.

The NE2100 LANCE based family of Ethernet cards re-
quire an I/O write access to the Reset Register follow-
ing a read access to the Reset Register. The
PCnet-ISA controller does not have the same require-
ment, however, if your device driver performs the extra
write access there are no negative side effects.

PCnet-ISA Enhancements
This section describes programmable functions of the
PCnet-ISA that are not available in the LANCE. The
software controls these new functions by writing to a
collection of registers that are not present in the
LANCE and by writing to certain bits that are not used
in LANCE registers.

Accessing Internal Registers

PCnet-ISA supports 108 internal registers compared to
six in the LANCE. Most of these registers are used only
for debugging and production testing and are never
touched by normal device driver software.

The PCnet-ISA registers are divided into two groups:
control and status registers (CSRs) and ISA Configura-
tion Registers (ISACSRs). Accessing either group is a
two step procedure. First, your software must load the
Register Address Port with the number of the desired
register. Then your software can read from or write to
the Register Data Port to access a CSR or the ISACSR
Data Port (IDP) to access an ISACSR.

Buffer Sizes

PCnet-ISA places no restrictions on the minimum size
of transmit or receive buffers. This means that a packet
can be made up of one or more small buffers contain-
ing protocol headers plus one or more large buffers
containing data. These buffers are linked together via
descriptors in the transmit descriptor ring.

Masking Interrupt Bits

PCnet-ISA gives you the ability to mask individual in-
terrupt sources. By setting the appropriate mask bits,
your software can allow some conditions to cause an
interrupt while disabling other classes from causing
an interrupt.

Dynamic FCS Generation

Frame Check Sequence (FCS) generation can be en-
abled or disabled on a packet-by-packet basis. This
feature is useful for bridge applications in which a
packet should be passed from one network to another
while preserving the original FCS.

The Disable Transmit FCS (DXMTFCS) bit disables
FCS generation in general, while the ADD_FCS bit
overrides DXMTFCS for an individual packet. To use
this feature, set the DXMTFCS bit in the MODE regis-
ter, then for each packet that should be sent with FCS
generation, set the ADD_FCS bit in the TMD1 field of
the packet descriptor. When the packet occupies more
than one buffer, you set the ADD_FCS bit only in the
first descriptor.

Automatic Pad Generation and Stripping

To simplify and speed up your driver software and to
help save system bus bandwidth, PCnet-ISA can be
programmed to handle packets with less than 64 data
bytes. Transmit frames can be automatically padded to
extend them to 64 data bytes (excluding preamble).
During reception of an 802.3 frame the pad field can be
stripped automatically.

Setting the Auto Pad Transmit (APAD_XMT) bit in
CSR4 enables automatic pad generation on transmit,
and setting the Auto Strip Receive (ASTRP_RCV) bit
in the same register enables automatic pad stripping
on receive.

PCnet-ISA uses the length field of the IEEE 802.3
header to determine the number of bytes to strip. It
uses the total number of bits transmitted to determine
the number of bytes to pad. A major difference between

PCnet Family Software Design Considerations 17

the Ethernet and IEEE 802.3 specifications is that
Ethernet uses the two bytes following the source ad-
dress field for a type field rather than for a length field.
Since all Ethernet type codes are numerically greater
than 1500, automatic padding and stripping can be
used with both Ethernet and IEEE 802.3 protocols.

Missed Frame Count

PCnet-ISA provides an internal 16-bit counter (Missed
Frame Count: CSR112) to record the number of frames
addressed to this node that were not saved because
the receiver was disabled or because the receive FIFO
overflowed. The Missed Frame Counter, which is ac-
cessible by software at any time, is cleared by setting
the STOP bit or by asserting a hardware reset. When
the Missed Frame Counter rolls over from 65535 to 0,
PCnet-ISA sets the Missed Packet Counter Overflow
(MPCO) bit in CSR4 and issues an interrupt signal if
this interrupt is enabled (IENA = 1 in CSR0 and
MPCOM = 0 in CSR4).

This counter eliminates the need for the Missed Frame
(MISS) bit in CSR0, but this bit is included for compati-
bility with the LANCE. The MISS bit causes an interrupt
every time a packet is missed, while the MPCO bit
causes an interrupt only after 65536 packets have
been missed.

Your software can extend the effective length of this
counter by maintaining the high order bits of an ex-
tended counter in system memory. The high order bits
are incremented by the interrupt service routine when
an MPCO interrupt occurs.

Since the Missed Frame Counter continues to count
with the receiver disabled, your software can use this
feature to create a simple network traffic monitor. When
you set the Promiscuous Mode and Disable Receiver
bits in the MODE register, you don’t need to worry
about providing receive descriptors or processing re-
ceived frames. The Missed Frame Counter will keep an
accurate count of the total number of packets transmit-
ted over the network and your software can periodically
fetch and record the count.

Receive Collision Count

PCnet-ISA provides an internal 16-bit counter (Receive
Collision Count: CSR114) to record the number of regu-
lar and late collisions. The Receive Collision Counter,
which is accessible by software at any time, is cleared by
setting the STOP bit or by asserting a hardware reset.

In a non 10BASE-T network, when the AUI interface is
active, all receive collisions are detected and counted.

This counter does not increment when the active inter-
face port is T-MAU because there are no receive colli-
sions in a 10BASE-T network.

Accepting Runt Packets

PCnet-ISA can be programmed to accept properly ad-
dressed runt packets through the use of a test mode.
Enabling this feature is a three step operation. First, set
the Enable Test Mode Operation (ENTST) bit of CSR4
to enable the Buffer Management Scratch Test Regis-
ter (BMSTR) in CSR124. Second, set the Runt Packet
Accept (RPA) bit in CSR124. Third, reset the ENTST bit
of CSR4 to disable further accesses to the Buffer Man-
agement Scratch Test Register. General networking
software should never set bits other than the RPA bit in
the BMSTR. The other control bits are reserved for fac-
tory use during IC testing.

Chip ID Register

PCnet-ISA provides a 32-bit Chip ID Register in
CSR88 and CSR89. Four well-defined fields in the Chip
ID Register allow your device driver to make a positive
identification of the controller. The four fields are as fol-
lows: bit 0 is always a one, bits 11-1 contain the Manu-
facturer ID, bits 27-12 contain the Part Number, and
bits 31-28 contain the Version. The Manufacturer ID
(per JEDEC Publication 106-A) for Advanced Micro
Devices is 00000000001 (binary), the Part Number for
PCnet-ISA is 0x0003, and the Version is a 4-bit pattern
that is silicon revision dependent.

Programmable Memory Read and Memory Write
Signals

The widths of the memory read and memory write sig-
nals asserted by PCnet-ISA during a DMA transfer are
programmable via the ISA Bus Configuration Regis-
ters. The value in the Master Mode Read Active Regis-
ter (ISACSR0) controls the width of the active portion
of the read signal (MEMR), while the value in the Mas-
ter Mode Write Active Register (ISACSR1) controls the
width of the active portion of the write signal (MEMW).
The values stored in ISACSR0 and ISACSR1 define
the number of 50 ns periods that the respective com-
mand signal is active.

I/O Base Address Assignment and Detection

The I/O resources of PCnet-ISA can be assigned to
four different base addresses. I/O base addresses
0x300, 0x320, 0x340, and 0x360, are selected with ex-
ternal jumpers controlling the IOAM1-0 input pins.

Although your software cannot read the values of
these address select pins, you can attempt to read the
Chip ID Register for each of the four possible ad-
dresses. You can also attempt to read the address
PROM, if available, which is located at offset 0x00
from the I/O base address.

Optional Power Down Modes for T-MAU Circuitry.

PCnet-ISA supports two power down modes, Sleep
and Auto-Wake, for reduced power consumption by the
T-MAU circuitry in critical battery powered applications.

18 PCnet Family Software Design Considerations

Sleep mode is enabled when the SLEEP pin is as-
serted and the AWAKE bit (ISACSR2: bit 2) is reset.
Upon entering Sleep mode, PCnet-ISA goes into a per-
manent deep sleep. Assertion of the RESET pin is the
only method of reviving PCnet-32. Sleep mode is the
default power down mode.

Auto-Wake mode is enabled when the SLEEP pin is as-
serted and the AWAKE bit is set. Upon entering
Auto-Wake mode, the T-MAU receive circuitry remains
enabled even while the SLEEP pin is asserted. The
LED0 output pin also continues to function, indicating a
good 10BASE-T link if there are link beat pulses or
valid frames present. The LED0 pin can drive external
hardware that deasserts the SLEEP pin. This configu-
ration effectively wakes the system when there is any
activity on the 10BASE-T link. Upon awakening the
controller, your device driver must allow 0.5 seconds for
the internal analog circuits to stabilize.

TSEL

The state of the AUI drivers during idle is programma-
ble through the Transmit Mode Selection (TSEL) bit in
the MODE register. TSEL must be set to zero (the de-
fault) for IEEE 802.3 or Ethernet 2 transformer coupled
networks. It should be cleared for direct coupled
Ethernet1 networks.

Network Interface Port Selection

PCnet-ISA can be connected to an IEEE 802.3 network
via one of two network interface ports. The Attachment
Unit Interface (AUI) provides an IEEE 802.3 compliant
differential interface to a remote MAU or an on-board
transceiver. The 10BASE-T interface provides a
twisted-pair Ethernet port.

Port selection is made by software or by hardware, or it
can be made automatically by the link pulse detection
logic. The External MAU Select (XMAUSEL) bit in the
MAU Configuration Register (ISACSR2) allows your
software to specify the mechanism that determines
port selection. If XMAUSEL is set, port selection is de-
termined by the state of the MAU Select (MAUSEL) pin,
otherwise, port selection is determined by the Port Se-
lect (PORTSEL) bits in the MODE register. The only
valid choices for the PORTSEL bits are 00 to select the
AUI interface or 01 to select the 10BASE-T interface.

If the Auto Select (ASEL) bit in ISACSR2 is set, the
state of the XMAUSEL bit is ignored, and the selection
is made automatically. If the T-MAU detects valid link
pulses on its Receive Data (RXD) inputs, the T-MAU is
selected. Otherwise, the AUI is selected.

T-MAU Control-Jabber

If the T-MAU detects a jabber condition, it will set the
Jabber Error (JAB) bit in CSR4, thus causing an inter-
rupt. Setting the Jabber Error Mask (JABM) bit in CSR4
will mask out this interrupt.

T-MAU Control-Link Test

Setting the Disable Link Status (DLNKTST) bit in
CSR15 will prevent the PCnet-ISA from monitoring link
pulses. This feature is used for twisted pair networks
that do not use link pulses.

T-MAU Control-Polarity

Setting the Disable Automatic Polarity Correction
(DAPC) bit in CSR15 disables the automatic polarity
correction. The actual polarity as detected by the T-
MAU receiver regardless of the state of the DAPC bit
can be read in the following rather roundabout way:
One of the three LED drivers in ISACSR5, ISACSR6,
ISACSR7, can be programmed to indicate the actual
polarity detected by the T-MAU. Your software can test
the state of this LED driver by reading the LED output
(LEDOUT) bit of the corresponding LED register.

T-MAU Control-Receive Threshold

The receiver threshold voltage can be lowered so that
the PCnet-ISA can be used with twisted pair cables that
are longer than the maximum specified in the
10BASE-T standard. To enable this feature set the Low
Receive Threshold (LRT) bit in CSR15.

Programmable LEDs

PCnet-ISA provides four LED driver output pins. One
of these (LED0) displays the T-MAU link status. LED0
is not programmable. The other three LED drivers can
be programmed to display the status of one or more of
the following internal signals from the T-MAU: colli-
sion, jabber, link, receive status, receive polarity, and
transmit status.

If one LED driver is programmed to display more than
one signal, the output will be the logical OR of the se-
lected signals. For example, if the receive (RCVE) bit is
set in the LED1 (ISACSR5) register, the LED1 pin will
be active whenever the MAU is receiving a packet. If
the RCVE and transmit (XMTE) bits in the LED1 regis-
ter are both set, the LED1 pin is active whenever the
MAU is receiving or transmitting.

Since network events are extremely short, each of the
three programmable LED driver circuits can be con-
nected to pulse stretcher circuits that will cause the
LEDs to be turned on long enough for humans to be
able to notice them. Each pulse stretcher is enabled by
setting the pulse stretcher enable (PSE) bit in the ap-
propriate LED register (ISACSR5-7).

The state of an LED driver signal before the pulse
stretcher can be read at any time by examining the
LEDOUT bit of the appropriate LED register. This tech-
nique can be used to test the polarity of the twisted pair
receiver inputs (normal or reversed).

External Address Detection Interface (EADI)

A software enabled External Address Detection Inter-
face (EADI) allows external hardware address filtering

PCnet Family Software Design Considerations 19

in parallel with frame reception and address compari-
son in the MAC Station Address Detection (SAD) block.
When the EADI is enabled (ISACSR2: EADISEL,
bit 3=1), four PCnet-ISA pins lose their default function
and are remapped as EADI control pins. LED control
pins LED1, LED2, and LED3 become EADI output con-
trol pins SF/BD, SRD, and SRDCLK. The MAU select
pin MAUSEL becomes the EADI input control pin EAR.

When external address detection hardware is used, it
may be convenient to set the disable receive broadcast
(DRCVBC) bit in the MODE register, thereby disabling
the automatic reception of broadcast messages. The
internal physical address detection logic can be turned
off by setting the Disable Receive Physical Address
(DRCVPA) bit in the MODE register. Also, the internal
logical address filtering can be disabled by filling the
Logical Address Filter (LADRF) in CSR8-11 with zeros.

Automatic or Direct Initialization

PCnet-ISA is initialized similar to the LANCE by setting
up an Initialization Block in memory, then setting the
Initialization (INIT) bit in CSR0. A minor difference is
that with PCnet-ISA, the INIT and STRT bits can be set
at the same time, whereas with the LANCE these bits
must be set in two separate I/O operations.

As an alternative to automatic initialization, PCnet-ISA
can be initialized directly by writing to the appropriate
Control and Status Registers. If you use this method
the INIT bit in CSR0 should not be set.

I/O Resource Access

To access a Control Status Register, you must com-
plete a two step operation. First, you perform an I/O
write to the Register Address Port (RAP) using the ap-
propriate CSR number as your data. Then, you perform
an I/O read or write access to the RDP. Note that the
contents of the RAP is latched and is not changed until
rewritten; therefore, the register select cycle is not re-
quired inorder to repeatedly access the same CSR.

These software accesses should be coded as 16-bit
accesses, even if the PCnet device is hardware config-
ured for 8-bit I/O bus cycles. It is acceptable (and trans-
parent) for the motherboard to turn a 16-bit software
access into two separate 8-bit hardware bus cycles.
The motherboard accesses the low byte before the
high byte and the PCnet device has circuitry to specifi-
cally support this type of access.

To access an ISA Configuration Register (ISACSR), the
RAP must be written first with the ISACSR number, fol-
lowed by the read or write access to the IDP. These soft-
ware accesses should be coded as 16-bit accesses.

Descriptor Ring Length Initialization

The LANCE restricts the sizes of descriptor rings to in-
teger powers of 2. PCnet-ISA enforces the same limita-
tion when you use auto initialization but provides you
with the ability to override the limit and set the number
of transmit or receive descriptors to any number from
1to 65535.

After performing initialization, by writing directly to the
Control and Status Registers or by invoking auto initial-
ization, you load the two’s complement of the desired
value directly into CSR76 for the receive descriptor ring
or CSR78 for the transmit descriptor ring.

Start of Transmit Interrupt

PCnet-ISA sets the Transmit Start (TXSTRT) bit in
CSR4, and optionally asserts an interrupt, when it be-
gins transmission of a frame. The Transmit Start inter-
rupt occurs if the Transmit Start Mask (TXSTRTM) bit
in CSR4 is cleared. TXSTRTM is set by default on a
controller reset.

Disable Receive Broadcast

The reception of broadcast packets is enabled by default
with a controller reset and is disabled by setting the Dis-
able Receive Broadcast (DRCVBC) bit in CSR15. This
feature is used for protocols that do not support broad-
cast addressing, except as a function of multicast.

Disable Physical Address Detection

The reception of frames matching the physical ad-
dress of the node is disabled by setting the Disable
Receive Physical Address (DRCVPA) bit in CSR15.
Frames matching the address of the node are not rec-
ognized although the frame may be accepted by the
EADI mechanism.

Accessing Active Registers

From time to time your software may find it necessary
to alter the operational parameters contained in certain
active Control and Status Registers. You must stop the
controller by setting the STOP bit in CSR0 before ac-
cessing the following control registers.

20 PCnet Family Software Design Considerations

Table 11. Accessible Active Registers

While it is not necessary to do a LANCE type automatic
initialization after the STOP bit has been set, it is nec-
essary to clean up the transmit and receive queues as
described earlier in this chapter (Stopping PCnet-ISA).

Tuning DMA Operations

PCnet-ISA lets you tune transmit and receive DMA op-
erations by the controller to the response and through-
put capacity of your system bus. You can specify
different values for the Transmit FIFO Start Point
(XMTSP), the Transmit FIFO Watermark (XMTFW),
and the Receive FIFO Watermark (RCVFW).

The Transmit FIFO Watermark is the number of FIFO
write cycles attempted on a transmit DMA operation
from system memory to the FIFO. The transmit FIFO
must have enough empty space to accommodate this
number of write cycles for the DMA to begin. You can
select 8, 16, or 32 write cycles when programming the
XMTFW field in CSR80. The default is 64 write cycles.

The Transmit FIFO Start Point is the number of bytes
that must be loaded into the FIFO before the controller
begins transmitting on the network. When the entire
frame is in the FIFO, transmission begins regardless of

the value in XMTSP. You can select 4, 16, 64, or 112
bytes written when programming the XMTSP field in
CSR80. The default is 64 bytes written.

The Receive FIFO Watermark is the number of bytes
that must be present in the FIFO before the controller
begins a receive DMA operation from the FIFO to sys-
tem memory. At least 64 bytes have to be received be-
fore the controller attempts to perform the receive
DMA. This eliminates the need for your software to
react to receive frames that are runts or suffer from a
collision during the slot time (512 bit times). If you have
enabled the Runt Packet Accept feature, the receive
DMA begins when the receive byte count matches the
RCVFW threshold or on detection of a complete valid
frame (regardless of length). You can select 16, 32, or
64 bytes received when programming the RCVFW field
in CSR80. The default is 64 bytes received.

DMA Burst Length Control

There are two ways for you to limit the maximum time
the PCnet-ISA controller retains control of the system
bus during a DMA transfer burst. You can specify a
range of values for the DMA Burst Register (DMABR)
and for the Bus Activity Timer (DMABAT).

The DMA Burst Register contains the maximum al-
lowable number of transfers during a single DMA
mastership cycle. You can specify a transfer count in
the range of 1 to 256 by writing values 0x00 through
0xFF. The default value loaded on reset is 0x10. The
DMA Burst Register is not used to limit the number
of descriptor transfers.

You can disable the DMA Burst Register by setting the
DMAPLUS bit in CSR4. When disabled, the DMA
transfer continues until the transmit FIFO is full or the
receive FIFO is empty.

The Bus Activity Timer contains the maximum allow-
able time a single bus mastership cycle is asserted by
the controller. This is a count down timer, with a resolu-
tion of 100 nanoseconds per tick, programmed with a
16-bit unsigned number corresponding to the number
of ticks desired. A value of zero limits the controller to
one bus cycle per bus mastership period. To allow a
maximum bus activity period of 51 microseconds you
program the timer with a value of 510 (0x01FE).

You enable this timer by setting the Bus Timer Register
Enable (TIMER) bit in CSR4.

Both counters can be enabled at the same time. In this
case PCnet-ISA releases the bus when either counter
is exhausted.

Disabling Descriptor Polling

By default, the controller automatically performs periodic
polling of the next available descriptor to determine if
ownership has changed in favor of the controller. If you
want to eliminate these automatic accesses and recover

Register Register Name

CSR1
Initialization Address Register
(IADR[15:0])

CSR2
Initialization Address Register
IADR[23:16])

CSR8
Logical Address Filter
(LADRF[15:0])

CSR9
Logical Address Filter
(LADRF[31:16])

CSR10
Logical Address Filter
(LADRF[47:32])

CSR11
Logical Address Filter
(LADRF[63:48])

CSR12
Physical Address Register
(PADR[15:0])

CSR13
Physical Address Register
(PADR[31:16])

CSR14
Physical Address Register
(PADR[47:32])

CSR15 Mode Register

CSR76 Receive Ring Length Register

CSR78 Transmit Ring Length Register

CSR80
Burst and FIFO Threshold
Control Register

CSR82 Bus Activity Timer

PCnet Family Software Design Considerations 21

the bus bandwidth for other uses, you can disable auto-
matic polling by setting the Disable Transmit Polling
(DPOLL) bit in CSR4.

When automatic polling is disabled and the controller is
quiescent, with respect to transmitting packets, your
software must notify the controller when new packets
are ready for transmission. With your new packets
queued and the OWN bits in the corresponding trans-
mit descriptors set, you notify the controller by setting
the Transmit Demand (TDMD) bit in CSR0. The control-
ler processes all queued packets before returning to
the transmit idle mode.

Disabling Transmit Two Part Deferral

The IEEE/ANSI 802.3 Standard (ISO/IEC 8802-3
1990) requires that the CSMA/CD MAC monitor the
medium for traffic by watching for carrier activity. When
carrier is detected, the media is considered busy and
the MAC should defer to the existing message. The ISO
8802-3 (IEEE/ANSI 802.3) Standard also allows an op-
tional two part deferral after a receive message.

The PCnet-ISA MAC engine implements the optional
two part deferral algorithm and it’s enabled by default
on reset. Your software can disable this feature by

setting the Disable Two Par t Transmit Deferral
(DXMT2PD) bit in CSR3.

Alternate Backoff Algorithm

The ISO 8802-3 (IEEE/ANSI 802.3) Standard requires
use of a “truncated binary exponential backoff” algo-
rithm that provides a controlled pseudo random mech-
anism to enforce the collision backoff interval before
re-transmission is attempted.

The PCnet-ISA MAC engine implements an optional al-
ternative algorithm that suspends the counting of the
slot time/IPG during the time that receive carrier sense
is detected. It effectively accelerates the increase in the
backoff time in busy networks, and allows nodes not in-
volved in the collision to access the channel while the
colliding nodes await a reduction in channel activity.
Your software can enable this option by setting the En-
able Modified Backoff Algorithm (EMBA) bit in CSR4.

Programmable Registers

The PCnet-ISA device has more than 70 programma-
ble registers with most of these for debugging and pro-
duction testing purposes. You should limit access to the
registers shown in Table 12 and Table13.

22 PCnet Family Software Design Considerations

Table 12. PCnet-ISA Accessible ISA Bus Configuration Registers

ISA Bus Configuration Registers

ISACSR0
MSRDA, Master Mode Read Active (Default: 5) Programs Width of Master Mode Memory
Read (MEMR) Signal

ISACSR1
MSWRA, Master Mode Write Active (Default: 5) Programs Width of Master Mode Memory
Write (MEMW) Signal

ISACSR2 MC, MAU Configuration (Default: 1)

Reserved[15:4]

0000

0008 EADISEL

0004 AWAKE

0002 ASEL

0001 XMAUSEL

ISACSR3 Reserved (Default: N/A)

ISACSR4 Reserved (Default: N/A)

ISACSR5 LED1 Control and Status Register (Default: 0084)

8000 LEDOUT 0008 RXPOLE

0080 PSE 0004 RCVE

0010 XMTE 0002 JABE

0001 COLE

ISACSR6 LED2 Control and Status Register (Default: 0008)

8000 LEDOUT 0008 RXPOLE

0080 PSE 0004 RCVE

0010 XMTE 0002 JABE

0001 COLE

ISACSR7 LED3 Control and Status Register (Default: 0090)

8000 LEDOUT 0008 RXPOLE

0080 PSE 0004 RCVE

0010 XMTE 0002 JABE

0001 COLE

PCnet Family Software Design Considerations 23

Table 13. PCnet-ISA Accessible Control and Status Registers

ISA Bus Configuration Registers

Register Contents

CSR0

PCnet Controller Status (Default: 0004)
8000 ERR 0800 MERR 0080 INTR 0008 TDMD
4000 BABL 0400 RINT 0040 IENA 0004 STOP
2000 CERR 0200 TINT 0020 RXON 0002 STRT
1000 MISS 0100 IDON 0010 TXON 0001 INIT

CSR1 Initialization Block Address, IADR[15:0] (Default: N/A)

CSR2 Initialization Block Address, IADR[23:16] (Default: N/A)

CSR3

Interrupt Masks and Deferral Control (Default: 0000)
8000 0 0800 MERRM 0080 0 0008 EMBA
4000 BABLM 0400 RINTM 0040 0 0004 0
2000 0 0200 TINTM 0020 0 0002 0
1000 MISSM 0100 IDONM 0010 DXMT2PD 0001 0

CSR4

Test and Features Control (Default: 0115)
8000 ENTST 0800 APAD_XMT 0080 0 0008 TXSTRT
4000 DMAPLUS 0400 ASTRP_RCV 0040 0 0004 TXSTRTM
2000 TIMER 0200 MPCO 0020 RCVCCO 0002 JAB
1000 DPOLL 0100 MPCOM 0010 RCVCCOM 0001 JABM

CSR8 Logical Address Filter (LADRF[15:0]) Default: N/A

CSR9 Logical Address Filter (LADRF[31:16]) Default: N/A

CSR10 Logical Address Filter (LADRF[47:32]) Default: N/A

CSR11 Logical Address Filter (LADRF[63:48]) Default: N/A

CSR12 Physical Address (PADR[15:0]) Default: N/A

CSR13 Physical Address (PADR[31:16]) Default: N/A

CSR14 Physical Address (PADR[47:32]) Default: N/A

CSR15

Mode Register (Default: 0000)
8000 PROM 0800 DAPC 0080 PORTSEL 0008 DXMTFCS
4000 DRCVBC 0400 MENDECL 0040 INTL 0004 LOOP
2000 DRCVPA 0200 LRT/TSEL 0020 DRTY 0002 DTX
1000 DLNKTST 0100 PORTSEL 0010 FCOLL 0001 DRX

CSR76 Receive Ring Length (Default: N/A)

CSR78 Transmit Ring Length (Default: N/A)

CSR80

Burst and FIFO Threshold Control (Default: 2810)
RCVFW[13:12], Receive FIFO Watermark

0000 Request DMA when 16 bytes are present
1000 Request DMA when 32 bytes are present
2000 Request DMA when 64 bytes are present
3000 Reserved

XMTSP[11:10], Transmit Start Point
0000 Start transmission when 4 bytes are present
0400 Start transmission when 16 bytes are present
0800 Start transmission when 64 bytes are present
0C00 Start transmission when 112 bytes are present

XMTFW[9:8], Transmit FIFO Watermark
0000 Request DMA when 8 cycles will fit in FIFO
0100 Request DMA when 16 cycles will fit in FIFO
0200 Request DMA when 32 cycles will fit in FIFO
0300 Reserved

DMABR[7:0], DMA Burst Register

24 PCnet Family Software Design Considerations

PCnet-ISA+ Controller

Upgraded Single Chip System Solution with ISA
Bus Interface

The PCnet-ISA+ controller is a single chip Ethernet
system solution that interfaces directly with the PC-AT
Industry Standard Architecture (ISA) bus. The highly in-
tegrated 132-pin (JEDEC PQFP) VLSI device reduces
the adapter part count and cost, and is applicable for
applications demanding higher system throughput.

New Support For Microsoft Plug ’n Play ISA
Specification

PCnet-ISA+ is compatible with the Plug ’n Play ISA
Specification, jointly written by Intel and Microsoft
Corporation. The Plug ’n Play specification describes
a hardware and software mechanism that enables
resolution of conflicts between Plug ’n Play ISA cards.
Requirements for system-wide resources (e.g., mem-
ory addresses, I/O addresses, DMA channels, and In-
t e r rup t Reques t l i nes) a re eva lua ted on a
card-by-card basis and are allocated among the cards
to eliminate conflict.

The overall tasks of Plug ’n Play configuration software are:

■ Isolate an installed ISA card

■ Read the card’s resident resource information

■ Identify the type of card and configure its resources

■ Locate and load the applicable device driver

Cards that are compatible with the Plug ’n Play ISA
Specification are electrically and functionally compati-
ble with standard ISA cards and inter-operate in an ISA
system without conflict. However, a system that con-
tains one or more standard ISA cards may not be fully
auto-configurable.

Configuration information, maintained in a standard
read-only format, identifies the card and describes the
system resources required by the card (e.g., memory
address space, I/O address space, DMA channel sup-
ported, interrupt request supported).

New Support for Auto-Configuration EEPROM

PCnet-ISA+ automatically reads the contents of a serial
EEPROM that conforms with the National Semicon-
ductor Microwire interface. Following a controller reset,
the controller configuration information, including the
48-bit IEEE address and the Plug ’n Play configuration
information is read from the EEPROM and loaded into
the appropriate PCnet-ISA+ control registers.

If the adapter is set up as a boot device (per the Plug ’n
Play Specification), it becomes active at reset and op-
erates as a normal AT card. When the adapter is first
installed, you run a configuration program to set the
configuration information (e.g., I/O address, memory
map, etc.).

If the adapter is not set up as a boot device, it remains
inactive at reset and becomes initialized by the Plug ’n
Play software.

The EEPROM contains the following information:

■ All ISACSRs

■ 48-bit IEEE Ethernet address

■ EISA configuration bits

■ I/O port address bits

■ IRQ enable bits

■ Boot ROM address enable bits

■ Serial data stream for programming external logic

■ Plug ’n Play ISA configuration information

CSR82 Bus Activity Timer (Default: N/A)

CSR88

Chip ID Register (Default: N/A)

Part Number continued[15:12], 4-bit pattern: 0011

Manufacturer ID[11:1], 11-bit pattern: 0000 0000 001

Reserved[0], 1-bit pattern: 1

CSR89

Chip ID Register (Default: N/A)

Version[15:12], 4-bit pattern, dependent on revision of silicon

Part Number[11:0], 12-bit pattern: 0000 0000 0000

CSR112 Missed Frame Count (Default: N/A)

CSR114 Receive Collision Count (Default: N/A)

CSR124

Buffer Management Scratch Test (Default: N/A)

RPA[3], Runt Packet Accept

0008 Force CORE receive logic to accept runt packets

Table 13. PCnet-ISA Accessible Control and Status Registers (Continued)

ISA Bus Configuration Registers

Register Contents

PCnet Family Software Design Considerations 25

When the EEPROM does not exist, or in the case where
there’s an EEPROM checksum error, PCnet-ISA+ waits
in the Plug ’n Play WAIT_FOR_KEY state. Your device
driver can gain access to the PCnet-ISA+ I/O resources
by writing a special AMD initialization string to the Plug
’n Play Address Port at 0x279. The AMD initialization
string is 32 hex bytes as follows:

Additional Interrupt Request Lines and DMA
Channels

PCnet-ISA+ supports the connection of up to eight
programmable interrupt lines (3, 4, 5, 9, 10, 11, 12,
and 15) to the ISA system bus. IRQ15 is a dual pur-
pose pin that acts as IRQ15 when the IEEE address
is stored in an EEPROM and as Address Prom Chip
Select (APCS) when the card manufacturer chooses
to store the IEEE address in a parallel PROM. Unless
changed by your software after initialization, IRQ3 is
the default interrupt and each interrupt is a pulse
rather than a level to support an edge triggered Pro-
grammable Interrupt Controller (PIC).

In Master Mode operation, PCnet-ISA+ supports the
connection of up to four DMA Channels (3, 5, 6, and 7)
to the ISA system bus. These four DMA channels are
seen on the ISA bus interface as four pairs of DMA Re-
quest (DRQ) and DMA Acknowledge (DACK) lines.

Supports Sixteen I/O Base Address Boundaries

Following power-on or reset, I/O address 0x300 is the
default Base Address for PCnet-ISA+. Your device
driver can write to a Plug ’n Play Register and select
from sixteen different Base Address boundaries rang-
ing from 0x200 through 0x3E0.

Supports Eight Boot PROM Locations

Following power-on or reset, memory address
0xC0000 is the default Boot PROM address for
PCnet-ISA+. Your device driver can write to a Plug ’n
Play Register and select from eight different address
boundaries ranging from 0xC0000 through 0xDC000.

Your device driver can write to a Plug ’n Play Register
and select one of four PROM sizes (8K, 16K, 32K, or
64K) or you can specify no Boot PROM selected.

Revised External Address Detection Interface
(EADI)

A software enabled External Address Detection Inter-
face (EADI) allows external hardware address filtering
in parallel with frame reception and address compari-
son in the MAC Station Address Detection (SAD) block.
When the EADI is enabled (ISACSR2: EADISEL,

bit 3=1), four PCnet-ISA pins lose their default function
and are remapped as EADI control pins. LED control
pins LED1, LED2, and LED3 become EADI output con-
trol pins SF/BD, SRD, and SRDCLK. The Disable
Transceiver pin DXCVR becomes the EADI input con-
trol pin EAR.

Revised Support for External (LED) Status
Indicators

For the PCnet-ISA+ controller, you use I/O write ac-
cesses to ISACSR registers 5, 6, and 7 to perform LED
control pin programming. ISACSR5 controls the status
indicated on the LED1 control pin and defaults to Twisted
Pair MAU Receive Polarity Status. ISACSR6 controls the
status indicated on the LED2 control pin and defaults to
Twisted Pair MAU Receive Status. ISACSR7 controls
the status indicated on the LED3 control pin and defaults
to Twisted Pair MAU Transmit Status.

Each control register can be programmed to display
one or more of the following status indications: Colli-
sion Activity, Jabbering, Receive Activity, Receive Po-
larity on Twisted Pair Interface, Transmit Activity, and
Receive Address Match.

Your device driver can now reverse the polarity of the
LED2 output pin by setting ISACSR6, bit 14.

Revised Reset Register (offset 0x14) Accesses

An I/O read access of the Reset Register at I/O offset
0x14 creates an internal reset pulse. The controller re-
sponds to an internal reset pulse differently from when
the RST pin is asserted or the when STOP bit is set. A
reset invoked by reading the Reset Register causes
certain bits in the Command Status Registers to be au-
tomatically cleared. However, the internal reset has no
effect on bits in the Bus Configuration Registers.

The NE2100 LANCE based family of Ethernet cards re-
quire an I/O write access to the Reset Register follow-
ing a read access to the Reset Register. The
PCnet-ISA+ controller does not have the same require-
ment, however, if your device driver performs the extra
write access there are no negative side effects.

PCnet-32 Controller

Single Chip System Solution with Multiple Bus
Interface

The PCnet-32 controller is a single chip Ethernet sys-
tem solution that interfaces directly with the Am486DX,
Am386DX, or VESA VL-Bus local-bus. The highly inte-
grated 160-pin VLSI device reduces the adapter part
count and cost, and is applicable for applications de-
manding higher system throughput.

PCnet-32 contains a local-bus interface unit, DMA Buffer
Management Unit, ANSI/IEEE 802.3 Media Access Con-
trol engine, ISO 8802-3 (ANSI/IEEE 802.3) defined Attach-
ment Unit Interface (AUI), IEEE 802.3 (Type 10BASE-T)
Twisted Pair Transceiver Media Attachment Unit (T-MAU),

6B, 35, 9A, CD, E6, F3, 79, BC,

5E, AF, 57, 2B, 15, 8A, C5, E2,

F1, F8, 7C, 3E, 9F, 4F, 27, 13,

09, 84, 42, A1, D0, 68, 34, 1A.

26 PCnet Family Software Design Considerations

support for auto-configuration EEPROM, and individual
136-byte transmit and 128-byte receive FIFOs.

PCnet-32 has the built-in capability of automatically se-
lecting either the AUI port or the T-MAU.

The individual 136-byte transmit and 128-byte receive
FIFOs reduce system overhead by providing sufficient
latency during packet transmission and reception thus
minimizing intervention during normal (i.e., avoidable)
network error recovery.

An integrated Manchester Encoder/Decoder provides
the Physical Layer Signaling functions required for a
fully compliant IEEE 802.3 station and eliminates the
need for an external Serial Interface Adapter (SIA).

The PCnet-32 Ethernet controller, in response to con-
figuration pin settings at reset, operates using one of
three interfaces: Am486 local bus, Am386 local bus, or
the VESA VL-Bus interface.

Revised Programmable Interrupt Support

Supports either 2 or 4 programmable interrupt lines.

Optional 32-bit I/O Mode

For the default case of Word I/O accesses, the
PCnet-32 responds to 16-bit accesses at offsets 0x00
through 0x16.

For the optional Double Word I/O access mode, the
controller responds to 32-bit accesses at offsets 0x00
through 0x1C. The RDP, RAP, and BDP registers, at
offsets 0x10, 0x14, and 0x1C respectively, contain only
two bytes of valid data in bits 15-0. The upper two bytes
are reserved for future use. Reserved bits must be writ-
ten as zeros, and when read, are undefined.

The selection of Word I/O mode (WIO) or Double Word
I/O mode (DWIO) is accomplished by two methods.

■ A hardware reset function

■ Automatic mode switching due to double word I/O
write to offset 0x10

The PCnet-32 mode setting defaults to word I/O (i.e.,
DWIO=0) after a hardware reset.

Your device driver can switch to Double Word I/O mode
by performing a 32-bit I/O write to the RDP at offset
0x10. Note that the RDP offset remains the same for
both I/O modes even though I/O resource mapping
changes when the I/O mode changes.

Accesses to non-double word address boundaries and
accesses of less than four bytes are not allowed while
in DWIO mode. An I/O write access may cause unex-
pected reprogramming of PCnet-32 control registers. A
read access will yield undefined values.

Once the controller enters DWIO mode, only a hard-
ware reset can restore WIO mode.

LANCE, ILACC, and PCnet-ISA Compatibility

PCnet-32 is register compatible with the Am7990
(LANCE), PCnet-ISA, and optional ly with the
Am79C900 (ILACC) Ethernet controllers. The DMA
Buffer Management Unit supports the LANCE and
PCnet-ISA descriptor software models and, optionally,
the ILACC software structures. The controller is soft-
ware compatible with Novell NE2100 and NE1500T
Ethernet device drivers and the AMD Am1500T and
PCnet-ISA device drivers.

Your device driver can force compatibility with ILACC
style 32-bit data structures such as the Initialization
Block and the Transmit and Receive Descriptor Rings.
Note, that the Initialization Block follows a format that is
different from the 16-bit version. Both versions of the
relevant data structures are illustrated in the Initializa-
tion Block and Descriptor Ring Access Mechanism
sections near the beginning of this chapter.

ILACC compatibility is enabled by performing a single
I/O write to BCR20. You must set the I/O Style Register
(bits 7-0) to 0x01.

Revised Reset Register (offset 0x14) Accesses

An I/O read access of the Reset Register at I/O offset
0x14 creates an internal reset pulse. The controller re-
sponds to an internal reset pulse differently from when
the RST pin is asserted or the when STOP bit is set. A
reset invoked by writing the Reset Register causes cer-
tain bits in the Command Status Registers to be auto-
matically cleared. However, the internal reset has no
effect on bits in the Bus Configuration Registers.

The NE2100 LANCE based family of Ethernet cards re-
quire an I/O write access to the Reset Register follow-
ing a read access to the Reset Register. The PCnet-32
controller does not have the same requirement, how-
ever, if your device driver performs the extra write ac-
cess there are no negative side effects.

New Software Relocatable Mode

After power-up, in the absence of an EEPROM with
specific configuration information, the PCnet-32 con-
troller enters Software Relocatable Mode. While in this
mode, PCnet-32 snoops on I/O accesses on the sys-
tem bus but does not directly respond to I/O accesses.
When the controller detects a special sequence of 12
consecutive I/O accesses, it presumes that system
control software is attempting to relocate the controller
to another 32-byte block in the I/O address space.

Following twelve consecutive I/O byte-write accesses
to address 0x378, the data written is evaluated for the
presence of a special enabling string. If the first four
bytes of data are 0x41, 0x4D, 0x44, and 0x01, the sub-
sequent eight bytes of data become the new I/O Base
Address, bus interface configuration information, and
interrupt configuration information.

PCnet Family Software Design Considerations 27

Data from accesses 5 and 6 go to BCR16 (I/O Base
Address Lower), data from accesses 7 and 8 go to
BCR17 (I/O Base Address Upper), data from accesses
9 and 10 go to BCR2 (Miscellaneous Configuration),
and the final two bytes from accesses 11 and 12 go to
BCR21(Interrupt Control).

When internal control register updating is complete, the
controller leaves Software Relocatable Mode and be-
gins responding to all I/O accesses directed to the 32
bytes of I/O address space that begins at the I/O Base
Address location.

Revised Internal Loopback Mode

Loopback mode allows the PCnet-32 controller to op-
erate in a pseudo full duplex mode for test purposes.
The loopback facilities of the MAC engine allow verifi-
cation of full operation without disturbance of the net-
work. When in loopback mode, the FCS generator
must be allocated to the receiver in order to test the
multicast address detection feature of the MAC. All
other features, such as automatic transmit padding
and receive pad stripping, operate identically in loop-
back as in normal operation.

In loopback mode, the PCnet-32 controller now allows
you to use frames with as few as 8 bytes of data by de-
fault. The controller automatically enables Runt Packet
Accept during loopback regardless of the setting of
RPA (CSR124, bit 3).

Revised Power Down Modes for T-MAU Circuitry

PCnet-32 supports two power down modes, Coma and
Snooze, for reduced power consumption in critical bat-
tery powered applications.

Coma mode is enabled when the SLEEP pin is asserted
and the AWAKE bit (ISACSR2: bit 2) is reset. Upon en-
tering Coma mode, PCnet-32 goes into a permanent
deep sleep with the T-MAU circuitry powered down.

Snooze mode is enabled when the SLEEP pin is as-
serted and the AWAKE bit is set. Upon entering
Snooze mode, the T-MAU receive circuitry remains en-
abled even while the SLEEP pin is asserted. The
LNKST output pin also continues to function, indicating
a good 10BASE-T link if there are link beat pulses or
valid frames present. The LNKST pin can drive external
hardware that deasserts to the SLEEP pin of the con-
troller. This configuration effectively wakes the system
when there is any activity on the 10BASE-T link. Upon
awakening the controller, your device driver must allow
0.5 seconds for the internal analog circuits to stabilize.

Revised External Address Detection Interface
(EADI)

A software enabled External Address Detection Inter-
face (EADI) allows external hardware address filtering
in parallel with frame reception and address compari-
son in the MAC Station Address Detection (SAD) block.

When the EADI is enabled (BCR2: EADISEL, bit 3=1
and BCR21: REJECTDIS, bit 7=0), four PCnet-ISA
pins lose their default function and are remapped as
EADI control pins. LED control pins LED1, LED2,
LEDPRE3, become EADI output control pins SF/BD,
SRDCLK, and SRD. The Interrupt Request 2 pin INTR2
becomes the EADI input control pin EAR.

Revised External (LED) Status Indicators

For the PCnet-32 controller, you use I/O write accesses
to BCR registers 4, 5, 6, and 7 to perform LED control
pin programming. BCR4 controls the status indicated
by the LNKST pin and defaults to Link Status. BCR5
controls the status indicated on the LED1 control pin
and defaults to Twisted Pair MAU Receive Polarity Sta-
tus. BCR6 controls the status indicated on the LED2
control pin and defaults to Twisted Pair MAU Receive
Status. BCR7 controls the status indicated on the
LED3 control pin and defaults to Twisted Pair MAU
Transmit Status. These four control registers are fully
programmable by your device driver.

PCnet-PCI Controller

Single Chip System Solution with PCI Bus Interface

The PCnet-PCI controller is a single chip Ethernet sys-
tem solution that interfaces directly with the Peripheral
Component Interconnect (PCI) local-bus. The highly in-
tegrated 132-pin VLSI device reduces the adapter part
count and cost, and is applicable for applications de-
manding higher system throughput.

The PCnet-PCI controller contains a local-bus interface
unit, DMA Buffer Management Unit, ANSI/IEEE 802.3
Media Access Control engine, ISO 8802-3(ANSI/
IEEE 802.3) defined Attachment Unit Interface (AUI),
IEEE 802.3 (Type 10BASE-T) Twisted Pair Transceiver
Media At tachment Uni t (T-MAU), suppor t for
auto-configuration EEPROM, and individual 136-byte
transmit and 128-byte receive FIFOs.

The PCnet-PCI controller has the built-in capability of
automatically selecting either the AUI port or the T-MAU.

The individual 136-byte transmit and 128-byte receive
FIFOs reduce system overhead by providing sufficient
latency during packet transmission and reception thus
minimizing intervention during normal (i.e., avoidable)
network error recovery.

An integrated Manchester Encoder/Decoder provides
the Physical Layer Signaling functions required for a
fully compliant IEEE 802.3 station and eliminates the
need for an external Serial Interface Adapter (SIA).

New Driver Support with Interrupt Line Register

The Interrupt Line Register (PCI Configuration Space:
offset 0x3C) contains the 8-bit Interrupt Request (IRQ)
number assigned to the controller by the system’s
Power On-Self Test (POST). The POST writes the IRQ
number and your device driver reads the value when

28 PCnet Family Software Design Considerations

it’s time to install the Interrupt Service Routine. Writing
to this register has no effect on the operation of the
controller. This register is intended to be used for pass-
ing information from the operating system to the driver.

Optional 32-bit I/O Mode

For the default case of Word I/O accesses, the
PCnet-PCI responds to 16-bit accesses at offsets 0x00
through 0x16.

For the optional Double Word I/O access mode, the
controller responds to 32-bit accesses at offsets
0x00 through 0x1C. Except for CSR88, all CSRs and
BCRs contain only two bytes of valid data in bits
15-0. The upper two bytes are reserved for future
use. Reserved bits must be written as zeros, and
when read, are undefined.

The selection of Word I/O mode (WIO) or Double Word
I/O mode (DWIO) is accomplished by two methods.

■ A hardware reset function

■ Automatic mode switching to DWIO mode due to
double word I/O write to offset 0x10

The PCnet-PCI mode setting defaults to word I/O (i.e.,
DWIO=0) after a hardware reset.

Your device driver can invoke Double Word I/O mode by
performing a 32-bit I/O write to the RDP at offset 0x10.
Note that the RDP offset remains the same for both I/O
modes even though I/O resource mapping changes
when the I/O mode changes.

Accesses to non-double word address boundaries and
accesses of less than four bytes are not allowed while
in DWIO mode. An I/O write access may cause unex-
pected reprogramming of PCnet-PCI control registers.
A read access will yield undefined values.

Once the controller enters DWIO mode, only a hard-
ware reset can restore WIO mode.

LANCE, ILACC, and PCnet-ISA Compatibility

The PCnet-PCI controller is register compatible with
the Am7990 (LANCE) and optional ly with the
Am79C900 (ILACC) Ethernet controllers. The DMA
Buffer Management Unit supports the LANCE and
PCnet-ISA descriptor software models and, optionally,
the ILACC software structures. The controller is soft-
ware compatible with Novell NE2100 and NE1500T
Ethernet device drivers and the AMD Am1500T and
PCnet-ISA device drivers.

Your device driver can force compatibility with ILACC
style 32-bit data structures such as the Initialization
Block and the Transmit and Receive Descriptor Rings.
Note, that the 32-bit Initialization Block follows a format
that is different from the 16-bit version. Both versions of
the relevant data structures are illustrated in the Initial-
ization Block and Descriptor Ring Access Mechanism
sections near the beginning of this document.

ILACC compatibility is enabled by performing a single
I/O write to BCR20. You must set the I/O Style Register
(bits 7-0) to 0x01.

Revised Reset Register (offset 0x14) Accesses

An I/O read access of the Reset Register at I/O offset
0x14 creates an internal reset pulse. The controller re-
sponds to an internal reset pulse differently from when
the RESET pin is asserted or the when STOP bit is set.
A reset invoked by reading the Reset Register causes
certain bits in the Command Status Registers to be au-
tomatically cleared. However, the internal reset has no
effect on bits in the Bus Configuration Registers.

The NE2100 LANCE based family of Ethernet cards re-
quire an I/O write access to the Reset Register follow-
ing a read access to the Reset Register. The
PCnet-PCI controller does not have the same require-
ment, however, if your device driver performs the extra
write access there are no negative side effects.

Revised Internal Loopback Mode

Loopback mode allows the PCnet-PCI controller to op-
erate in full duplex mode for test purposes. The loopback
facilities of the MAC engine allow verification of full oper-
ation without disturbance of the network. When in loop-
back mode, the FCS generator must be allocated to the
receiver in order to test the multicast address detection
feature of the MAC. All other features, such as automatic
transmit padding and receive pad stripping, operate
identically in loopback as in normal operation.

In loopback mode, the PCnet-PCI controller now allows
you to use frames with as few as 8 bytes of data by de-
fault. The controller automatically enables Runt Packet
Accept during loopback regardless of the setting of
RPA (CSR124, bit 3).

Revised BCR16, BCR17, BCR18, BCR19, BCR20
(others?) Support

BCR16 and BCR17, the I/O Base Address registers on
the PCnet-32 controller, are not used by PCnet-PCI.
Writes to these locations have no effect on the opera-
tion of the device.

BCR18 and BCR19 have reserved bits that were de-
fined in BCR18 and BCR19 of the PCnet-32 controller.

Revised External (LED) Status Indicators

For the PCnet-PCI controller, you use I/O write ac-
cesses to BCR registers 4, 5, and 7 to perform LED
control pin programming. BCR4 defaults to Link Status.
BCR5 controls the status indicated on the LED1 control
pin and defaults to Receive. BCR7 controls the status
indicated on the LED3 control pin and defaults to
Twisted Pair MAU Transmit Status. These three control
registers are fully programmable by your device driver.

PCnet Family Software Design Considerations 29

Revised Auto-Configuration Mode

The PCnet-PCI controller supports the 64-byte header
portion of the PCI Configuration Space as specified by
the PCI Local Bus Specification. The configuration reg-
isters necessary to identify the PCnet-PCI controller
and supported functions are implemented.

The configuration registers are accessible only by PCI
configuration cycles and may be accessed following
power-on while the EEPROM is being read.

In the absence of an EEPROM with specific configura-
tion information, registers that are normally loaded
from the EEPROM are set to their default values.

Revised Power Down Modes for T-MAU Circuitry

The PCnet-PCI controller supports two power down
modes, Coma and Snooze, for reduced power con-
sumption in critical battery powered applications.

Coma mode is enabled when the SLEEP pin is as-
serted and the AWAKE bit (BCR2:bit2) is reset. Upon
entering Coma mode, PCnet-PCI goes into a low
power state with the T-MAU circuitry powered down.
Coma mode is the default power down mode.

Snooze mode is enabled when the SLEEP pin is as-
serted and the AWAKE bit is set. Upon entering
Snooze mode, the T-MAU receive circuitry remains en-
abled even while the SLEEP pin is asserted. The
LNKST output pin also continues to function, indicating
a good 10BASE-T link if there are link beat pulses or
valid frames present. The LNKST pin can drive external
hardware that deasserts the SLEEP pin of the control-
ler. This configuration effectively wakes the system
when there is any activity on the 10BASE-T link. Upon
awakening the controller, your device driver must allow
0.5 seconds for the internal analog circuits to stabilize.

Revised External Address Detection Interface
(EADI)

The PCnet-PCI controller does not support an External
Address Detection Interface (EADI).

Dynamic Device Identification
Each device in the PCnet family provides a unique chip
identification number located in the Chip ID Register in
CSR88 and CSR89. Your software can read these reg-
isters and determine the exact device type.

The 16-bit identification numbers for the PCnet family
are as follows.

Table 14. Chip ID Numbers

GUIDE TO WRITING PCnet FAMILY
DRIVERS
A network adapter driver is the interface between the
network operating system and the adapter hardware.
The details of this interface are intimately connected to
the operating system, so that the idea of writing a ge-
neric driver is not really feasible. Different systems as-
sign more or less of the network protocol generation
duties to the adapter driver. Usually though, for trans-
mission the upper layer software generates the whole
frame except for preamble and FCS and passes to the
adapter driver the size and address of the buffer or buff-
ers that contain the data to be sent. On receipt of a
frame the adapter driver usually passes to the upper
layer software the entire frame except for preamble and
FCS without interpreting any header information. On
the other hand some adapter drivers use the Ethernet
type field of the received frame to determine which pro-
tocol stack to pass the frame to.

Most adapter drivers include four types of functions:

1. The initialization routines set up data structures and
initialize the hardware.

2. The status and control routines perform functions
such as managing the multicast tables, resetting the
hardware, and reporting statistics.

3. The transmit routine passes frames to the hardware
and starts transmissions.

4. The interrupt service routine (ISR) handles incom-
ing packets, services end of transmission interrupts,
collects statistics, and handles hardware errors.

Pseudocode for a very simple PCnet controller driver is
shown at the end of this application note.

Initialization
The requirements of initialization routines vary greatly
from one operating system to another. Part of the ini-
tialization task is to set up links to the upper layer soft-
ware. Specifically the upper layer needs to be able to
call the driver’s status and control routine and its trans-
mit routine. In the other direction the driver must be
able to call the upper layer’s receive routine after a
packet has arrived.

The initialization tasks that are found in all PCnet fam-
ily device drivers are setting up the initialization block
and the descriptor rings, allocating memory for trans-
mit and receive buffers, initializing the hardware, and

Controller
Chip Identification Number

CSR 88 CSR89

PCnet-ISA xxxx 0000 0000 0000 0011 0000 0000 0011

PCnet-ISA+ xxxx 0010 0010 0110 0000 0000 0000 0011

PCnet-32 xxxx 0010 0100 0011 0000 0000 0000 0011

PCnet-PCI xxxx 0010 0100 0010 0000 0000 0000 0011

Controller
Chip Identification Number

CSR 88 CSR89

30 PCnet Family Software Design Considerations

installing an interrupt vector. Most drivers also set up
counters to keep track of the number of packets and
bytes sent and received and the number of various
types of errors encountered.

The driver also needs to set up pointers into the trans-
mit and receive descriptor rings. Usually you need
one pointer into the receive ring and two into the
transmit ring. The pointer into the receive ring shows
which descriptor will point to the next received frame.
The pointers into the transmit ring point to the head
and tail of a queue of frames that are in the process of
being sent. The tail of queue pointer is used by the
transmit routine to find the next available descriptor,
while the head of queue pointer is used by the trans-
mit interrupt service routine to find the status of
frames that have just been sent.

The hardware setup requirements of course depend
on the type of computer and the operating system. For
ISA bus computers, the driver must first find out what
I/O base address is assigned to the PCnet controller
so that it can access the controller’s registers. It must
also set up the host DMA controller and programma-
ble interrupt controller.

To set up the host DMA controller in an ISA bus system,
the driver must find out what DMA channel is assigned
to the controller and set that channel into the cascade
mode. In the cascade mode the DMA controller per-
forms bus arbitration (determines which potential bus
master should gain control of the bus), but does not pro-
vide addresses and read/write signals. The driver must
also clear the mask bit for the selected DMA channel.

To set up the programmable interrupt controller (PIC) in
an ISA bus system, the driver must find out what inter-
rupt channel is assigned to the controller and clear the
PIC’s mask bit corresponding to that channel.

The driver initialization routine must also set up the ap-
propriate interrupt vector so that an interrupt from the
PCnet controller will cause the interrupt service routine
to be executed.

Status And Control Routines
These routines are highly dependent on the conven-
tions of the network operating system. They can in-
clude functions to retrieve statistics, reset the
hardware, change the number and sizes of buffers, etc.

Two common control functions deserve mention. These
are the functions that add addresses to and delete ad-
dresses from the multicast table. When the driver adds
an address to the multicast table, it should also set the
corresponding bit in the Logical Address Filter
(LADRF) so that the PCnet controller will accept
frames directed to this multicast address. The driver
determines which bit to set by applying to the multicast
address the same Cyclic Redundancy Check (CRC) al-
gorithm that the PCnet controller uses to verify the FCS

field of the frame. It then uses the six highest order bits
of the resulting CRC code as a pointer to the bit in the
LADRF. AC program to perform this calculation is
shown at the end of this section.

Once the bit is selected, the driver sets the appropriate
bit in the LADRF field of the initialization block and rein-
itializes the PCnet controller. Since the STOP bit in
CSR0 must be set before the device can be initialized,
the hardware descriptor pointers are set to point back
to the base addresses of the descriptor rings. The
driver must also set its three descriptor pointers back to
the start of the descriptor rings, set the OWN bits of all
transmit descriptors to 0, and set the OWN bits of all re-
ceive descriptors to 1.

When the driver deletes an address from the table, it
has to do more than just clear the corresponding bit in
the LADRF. This is true because more than one multi-
cast address can map to one bit in the LADRF. The
most straight forward way to adjust the LADRF after an
address has been removed from the table is to clear the
LADRF then recalculate the filter bits for all addresses
in the table. Since changing the multicast table is a very
rare event, the speed of the routines that add and de-
lete addresses is not critical.

The Transmit Routine
When the upper layer has a packet to send, it calls the
driver’s transmit routine and passes to it information
about the packet. This information includes the size
and location of the buffer or buffers that contain the
packet. Depending on the design of the driver, the
driver either copies the packet data to one or more of
its own buffers, or it writes to the next available transmit
descriptor the physical address of the buffer containing
the packet. In either case the driver starts the transmis-
sion process by setting the OWN bit of the appropriate
descriptor(s). The driver can expedite the transmission
by setting the Transmit Demand TDMD bit in CSR0 to
avoid waiting for the next transmit poll, which happens
about every1.6 ms.

The Interrupt Service Routine
The most complicated part of a driver is the interrupt
service routine (ISR). The ISR must handle any hard-
ware errors, the reception of packets, and the end of
transmission interrupts. The ISR also increments any
appropriate statistics counters.

When an interrupt occurs, the ISR reads CSR0 and op-
tionally CSR4 to determine the cause of the interrupt.
CSR0 and CSR4 are designed so that the driver can
clear the interrupt condition by writing back the values
just read. This clears the old interrupt flags without dis-
turbing any flags that may have been set since CSR0
was read. It is a good idea to leave the Interrupt Enable
(IENA) bit in CSR0 cleared until the end of the ISR. This
will prevent a second network event from causing a

PCnet Family Software Design Considerations 31

nested call to the ISR even though CPU interrupts may
be enabled. At the end of the ISR, you can disable CPU
interrupts, set the IENA bit, then execute the return
from interrupt command. Setting the IENA bit in CSR0
does not affect any other bits in CSR0. Therefore, if a
second network event has occurred while the ISR was
executing, the ISR will be called a second time without
losing any information.

If the interrupt was caused by the end of a transmission,
the TINT bit in CSR0 will be set. The ISR must check for
errors in the descriptor that the start of transmit queue
pointer points to. Depending on the requirements of the
operating system, the ISR may also call a routine in the
upper layer software to do some post processing such
as releasing buffers. Finally, the ISR must move the
head of transmit queue pointer to the next descriptor.

If the interrupt was caused by an incoming frame, the
ISR examines the current receive descriptor to look for
errors and to get the size of the frame. If there are no
errors, and multicast addressing is allowed, the ISR
must next get the destination address from the buffer
that the descriptor points to. If the least significant bit of
the first byte of the address is ONE, the address is mul-
ticast, and the driver must search the multicast table (a
software data structure) to see if this address is in the

list of acceptable addresses. Note that logical address
filter mechanism is not a perfect filter. The driver must
still maintain a multicast address list in software.

If there are no errors and the frame passes the filter
tests, the driver then calls the upper layer’s receive rou-
tine and passes to it the size and location of the re-
ceived frame. Since the message count in the receive
descriptor includes the FCS field, the driver may have
to subtract 4 from the message count, depending on
whether or not the upper layer receive routine expects
the size to include the FCS. Also note that the buffer
address in the descriptor is a physical address, which
may have to be converted to a different format such as
a 80x86segment:offset pointer.

On returning from the upper layer receive routine, the
driver sets the OWN bit in the descriptor to return the de-
scriptor and its associated buffer to the PCnet controller,
and it increments its own receive descriptor pointer.

Since another network event may have occurred while
the first interrupt was being processed, the driver should
loop back and test the OWN bits of the next receive and
transmit descriptors and continue until all outstanding
transmit and receive frames have been processed.

32 PCnet Family Software Design Considerations

PCnet Driver Pseudocode
The following pseudocode describes the principal routines for a simple driver for a PCnet family Ethernet controller.

The initialization routine:

initialize()
{ reset_PCnet_controller;

setup_DMA_controller;
setup_interrupt_controller;
setup_initialization_block;
setup_receive_descriptor_ring;
setup_transmit_descriptor_ring;
start_tx_queue = first_tx_descriptor;
end_tx_queue = first_tx_descriptor;
current_rx_queue = first_rx_descriptor;
install_interrupt_vector;
write_CSR0 (INIT);

do
{read_CSR0();
} until IDON == 1;

write_CSR0 (STRT | IENA);
}

The transmit routine:

transmit()
{

Examine OWN bit of tx descriptor at tx_queue_tail;
if (OWN == 1) return “Out of buffers”;

Get buffer address from descriptor at end_tx_queue;
Copy packet to tx buffer;
Set up BCNT field of descriptor; /* Write the negative of the packet size. */
Set OWN, STP, and ENP bits of descriptor;
tx_queue_tail = tx_queue_tail + 1;
if (tx_queue_tail > last_tx_descriptor) tx_queue_tail = first_tx_descriptor;
Set TDMD bit in CSR0;
return “OK”;

}

The interrupt service routine:

isr()
{ status = read_CSR0();

write_CSR0 (status & !IENA); /* Turn off interrupts from PCnet device. */
enable system interrupts;
do
{repeat = service_xmt();
repeat = repeat OR service_rcv();
} until repeat == 0;

if (status & ERR) inc_error_counters();
disable interrupts;
write_CSR0 (IENA); /* Turn on interrupts from PCnet device. */
return_from_interrupt;

}

PCnet Family Software Design Considerations 33

service_xmt()
{ Examine OWN bit of tx descriptor at tx_queue_head;

if (OWN == 0) return 0;

Examine ERR bit of tx descriptor at tx_queue_head;
if (ERR == 1) update_tx_error_counters();
else update_frame_&_byte_count_statistics();

increment tx_queue_head;
if (tx_queue_head > last_tx_descriptor) tx_queue_head = first_tx_descriptor;

return 1;
}

service_rcv()
{ Examine OWN bit of rx descriptor at current_rx_desc;

if (OWN == 1) return 0;

Examine ERR bit of rx descriptor at current_rx_desc;
if (ERR == 1)
{update_rx_error_counters();
goto release_descriptor;
}

Examine MCNT field of descriptor at current_rx_desc;
if (MCNT is not a legal size)
{update_rx_error_counters();
goto release_descriptor;
}

Examine DA field of buffer that rx descriptor points to;
if (not multicast address OR address is in multicast table)
{update_frame_&_byte_count_statistics();
call upper layer receive routine;
}

release_descriptor:
Set OWN bit in descriptor at current_rx_desc;
increment current_rx_desc;
if (current_rx_desc > last_rx_desc) current_rx_desc = first_rx-desc;
return 1;

}

34 PCnet Family Software Design Considerations

The following C Program generates LADRF bits for multicast addresses:

/**

* hash.c Rev 0.1 7/25/91

*

* Generate a logical address filter value from a list of

* Ethernet multicast addresses.

*

* Input:

* User is prompted to enter an Ethernet address in

* Ethernet hex format: First octet entered is the first

* octet to appear on the line. LSB of most

* significant octet is the first bit on the line.

* Octets are separated by blanks.

* After results are printed, user is prompted for

* another address.

*

* (Note that the first octet transmitted is stored in

* the LANCE as the least significant byte of the Physical

* Address Register.)

* Output:

* After each address is entered, the program prints the

* hash code for the last address and the cumulative

* address filter function. The filter function is

* printed as 8 hex bytes, least significant byte first.

**/

#include

void updateCRC (int bit);

 int adr[6], /* Ethernet address */

 ladrf[8], /* Logical address filter */

 CRC[33], /* CRC register, 1 word/bit + extra control bit */

 poly[] = /* CRC polynomial. poly[n] = coefficient of

 the x**n term of the CRC generator polynomial. */

 {1,1,1,0, 1,1,0,1,

 1,0,1,1, 1,0,0,0,

 1,0,0,0, 0,0,1,1,

 0,0,1,0, 0,0,0,0};

void main()

{

 int k,i, byte; /* temporary array indices */

PCnet Family Software Design Considerations 35

 int hashcode; /* the object of this program */

 char buf[80]; /* holds input characters */

 for (i=0;i

 printf (“Enter Ethernet addresses as 6 octets separated by blanks.\n”);

 printf (“Each octet is one or two hex characters. The first octet \n”);

 printf (“entered is the first octet to be transmitted. The LSB of \n”);

 printf (“the first octet is the first bit transmitted. After each \n”);

 printf (“address is entered, the Logical Address Filter contents \n”);

 printf (“are displayed, least significant byte first, with the \n”);

 printf (“appropriate bits set for all addresses entered so far.\n”);

 printf (“ To exit press the

 key.\n\n“);

 while (1)

 {

 loop:

 printf (“\nEnter address: ”);

 /* If 1st character = CR, quit, otherwise read address. */

 gets (buf);

 if (buf[0] == ’\0’) break;

 if (sscanf (buf, “%x %x %x %x %x %x”,

 &adr[0], &adr[1], &adr[2],&adr[3],&adr[4],&adr[5])

 != 6)

 { printf

 (“Address must contain 6 octets separated by blanks.\n”);

 goto loop;

 }

 if ((adr[0] & 1) == 0)

 { printf (“First octet of multicast address ”);

 printf (“must be an odd number.\n”);

 goto loop;

 }

 /* Initialize CRC */

 for (i=0; i

 /* Process each bit of the address in the order of transmission.*/

 for (byte=0; byte

 for (i=0; i

 updateCRC ((adr[byte] >> i) & 1);

 /* The hash code is the 6 least significant bits of the CRC

 in reverse order: CRC[0] = hash[5], CRC[1] = hash[4], etc.

36 PCnet Family Software Design Considerations

 */

 hashcode = 0;

 for (i=0; i

 /* Bits 3-5 of hashcode point to byte in address filter.

 Bits 0-2 point to bit within that byte. */

 byte = hashcode >> 3;

 ladrf[byte] |= (1 < (hashcode & 7));

 printf (“hashcode = %d (decimal) ladrf[0:63] = ”, hashcode);

 for (i=0; i

 printf (“%02X ”, ladrf[i]);

 printf (“ (LSB first)\n”);

 }

}

void updateCRC (int bit)

{

 int j;

 /* shift CRC and control bit (CRC[32]) */

 for (j=32; j>0; j--) CRC[j] = CRC[j-1];

 CRC[0] = 0;

 /* If bit XOR (control bit) = 1, set CRC = CRC XOR polynomial. */

 if (bit ^ CRC[32])

 for (j=0; j

}

Trademarks

Copyright © 1998 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Am186, Am386, Am486, Am29000,

b

IMR, eIMR, eIMR+, GigaPHY, HIMIB, ILACC, IMR, IMR+, IMR2, ISA-HUB, MACE, Magic Packet, PCnet,
PCnet-

FAST

, PCnet-

FAST

+, PCnet-Mobile, QFEX, QFEXr, QuASI

,

QuEST, QuIET, TAXIchip, TPEX, and TPEX Plus are trademarks of Advanced
Micro Devices, Inc.

Microsoft is a registered trademark of Microsoft Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

	PCnet FAMILY SOFTWARE DESIGN CONSIDERATIONS
	INTRODUCTION
	ACCESS OPERATIONS
	INITIALIZATION BLOCK
	DESCRIPTOR RING ACCESS MECHANISM
	DIAGNOSTICS
	INITIALIZATION PROCEDURE
	REINITIALIZATION PROCEDURE
	RESET
	NORMAL OPERATION
	LED CONTROL
	FAMILY DEVICE DRIVER CONSIDERATIONS
	GUIDE TO WRITING PCnet FAMILY DRIVERS

