
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3Corn/Microsoft LAN Manager
Network Driver Interface Specification

Version 2.01 (FINAL)
PubFSshecl 5 October 1990. Printed in'the U.S.A.

Copyright 1988, 1989, 1990 3Corn Corporation/Microsoft Corporation

NOTICE
This specification is intended for use by those developing or using networking products..

•
•

I
[]

[]

I
I
I
I
I
I
I
|

This specification may be copied freely for that purpose as long as copyright notice is []
preserved on all copies of the specification. No fee or royally is required by either 3Corn
Corporation or Microsoft Corporation to develop l~xiucts which use the information []
contained within this specification. Information contained in ~his specification may be ~
included in documents, presentations, or products of third parties; however, authorship
must be attributed jointly to 3Corn Corporation and Microsoft CorlX~mtion, and appropriate
copyrighz notices must be placed in any such documents or prescnza~ions. Additional ~
copies of this specification may be obtained from 3Corn Corporazion or Microsoft •

Corporation.

Table of Contents

Chapter 1 - Introduction
Dvfinition o f Terms . 1-1
Scope o f this Document .1-1

I Changes for this Version 1-2 .

Chapter 2 - Configuration and Binding
Configurat ion and Binding Process . 2-1

Chapter 3: Protocol to MAC Interface Description
T r a n s m i s s i o n . 3-1
Recept ion . ~ . 3-1
Non Hos t -Buffe red Adapter . 3-2
Hos t -Buffered Adapter . 3-2
Indication Control . 3-3
Status Indication . 3-3
General Requests . 3-4
Sys t em Requests . 3-4
Protocol Manager Primitives . . 3-4

Chapter 4 - Data Structures
M o d u l e C h a r a c t e r i s t i c s . 4-1
C o m m o n C h a r a c t e r i s t i c s . 4-1
M A C Service-Specific Characteristics . 4-3
M A C Service-Specific Status Table . 4-7
M A C U p p e r D i s p a t c h T a b l e . 4-10
P r o t o c o l Se rv i ce -Spec i f i c Charac te r i s t i c Tab le .. 4-11
Protocol Lower Dispatch Table . 4-11
Cha rac t e r i s t i c T a b l e s fo r N e t B I O S Dr i ve r s . 4-11
Frame Data Description . 4-13

T r a n s m i t B u f f e r D e s c r i p t o r . 4-13
Transfer Data Buffer Descr ip tor . 4-14
Receive Chain Buffer Descriptor . 4-14

P R O T O C O L . I N I . 4-15
Configuration Memory Image . : .4-17
Conf igMemoryImage . 4-17
ModuleConf ig . 4-18
KeywordEn t ry . 4o15
Param . 4-19
BindingsList . 4-20

Chapter 5 - Specification of Primitives I . 5-3 Dkect Plimi~ves
TransmitCha.in . S- 3
T r a n s m i t C o n f ' m . 5-4
ReceiveLookahead . 5-5
TransferData . 5-6
I n d i c a t i o n C o m p l e t e . 5-7

I

ReceiveChain . 5-8
ReceiveRelease . 5-9
Indicat ionOff . 5 :9
IndicationOn " .. 5-I0

General Requests ... 5-11
InithteDiagnostics ... 5- ! I
RcadErrorLog .. 5-12
SetStationAddress ... 5-12
OpenAdapter .. , 5-13
CloscAdapter ... 5-14
ResetMAC .. 5-15
SetPacketF'dter ... 5-16
AddMulticastAddress ... 5-17
DeleteMulticastAddress 5-18
UpdateStatistics .. 5-18
Cle~rStatistics .. 5-19
InwrruptRequest ... 5-19
SetFunctionalAddress ... 5-20
SetLookahead . 5-20
General Request Conf i rmat ion ... 5-21

Status I nd i ca t i ons . 5-21
R i n g S t a t u s . 5-22
AdapterCheck . 5-23
Star tReset . 5-24
EndReset . 5-25
Interrupt . 5-25

Sys tem Requests . 5-26
InitiateBind . 5-26
Bind . 5-27
I n i t i a t e P r e b i n d (OS/2 o n l y) . 5-28
I n i t i a t e U n b i n d . 5-28
U n b i n d . 2 . 5-29

Protocol Manager Primitives . 5-29
GetProtocolManagerInfo . 5-30
RegisterModule . 5-31
BindAndStar t . _ . 5-32
G e t P r o t o c o l M a n a g e r L i n k a g e . 5-34
GetProtocolIniPath . 5-34
R e g i s t e r P r o t o c o l M a n a g e r I n f o . 5-35
Ini tAndRegister . 5-36
Unb indAndStop . 5-36
B i n d S t a t u s . ~ . 5-38
R e g i s t e r S t a t u s . 5-40

Chapter 6 - Protocol Manager
Prc~ocol Manager Initialization . 6-1
Static Binding Sequence . 6-1
OS/22 Call ing Convent ion . 6-3
DOS Calling Convent ion . 6-4

Chapter 7 - VECTOR and Dynamic Binding
Static

I
I
I
I
I
I
I
I
,I
I
I
I
I
I
I
I

VECTOR B i n d i n g . 7- I I

Dynamic VECTOR Binding ... 7-2
Dynamic Binding/Unbinding in the DOS Environment 7-2
Dynamic Binding/Unbinding in the OS/2 Environment . 7-3
VECTOR Demukiplexing . 7-4

Appendix A - System Return Codes

i
Appendix B - Reference Material

Appendix C - 802.3 Media Specific Statistics
!

Appendix D - 802.5 Media Specific Statistics

I Appendix E - Utilities Provided with the

I

1

I

I

I

1

I

I

I

I

I

I

Protocol Manager

. . I

m

Chapter 1 -Introduction
This document describes the LAN Manager network driver architecture and interfaces that
let a DOS or OS/2 system support one or more network adapters and protocol stacks. This
architecture .provides a standardized way for writing drivers for network adapters and
communicauons protocols. It also solves the problem of how to configure and bind
multiple drivers into the desired set of layered protocol stacks.

Drivers written to the interfaces defined here will function concurrently in a system with
other networking and protocol drivers, and will operate correcdy with the LAN Manager
software for DOS and 0S/2.

Definition of Terms
To simplify the job of supporting muldple adapters and protocols, the architecture defines
four kinds of drivers.

Media Access Control (MAC) drivers, which provide low-level access to network
adapters. The main function of a MAC driver is to support transmitting and
receiving packets, plus some basic adapter management functions. MAC drivers
arc device drivers that are loaded during system initialization and remain
permanently in memory. Since they cannot be unloaded, they are called "static".

Protocol drivers, which provide higher-level communication services from dam link
to application (depending on the driver). An example is a NetBIOS driver that
provides a NetBIOS interface at the top and talks to a MAC driver at the bottom.
Protocol drivers can be device drivers, TSRs, or transient DOS applications. A
protocol driver is called "static" if it cannot be unloaded. A protocol driver is called
"dynamic" if it can be loaded and unloaded on demand.

MAC-layer cndfiCs, which bind to real MAC drivers and expose a new MAC-like
layer interface on top. Possible examples are MAC bridges, test tools, or interface
mappings which change the NDIS interface to meet some environment-specific
administrative requiremcan

The Protocol Manager driver. This is a special driver ~hat provides a standardized
way for multiple MAC and protocol drivers to get configuration information and
bind together into the desired protocol hierarchy. The Protocol Manager gets all
configuration information from a cenwaJ file, PROTOCOL.INI.

Scope of this Document
This documcm defines:

. Protocol Manager functions and interfaces for configuration and binding of MAC
and protocol drivers.

2. The software interface between MAC and protocol drivers.

Separate documenLs will specify ~e configuration and interface details for other kinds of
protocol drivers, including data link and transport drivers.

Page I-I

I
I

Changes for this Version
The major highlights of this version compared to the last (l.0) are: , i
1. Support for dynamic binding/unbinding of protocol modules, allowing protocols to m

be swapped in and out of memory as needed. No changes are required of MAC ~
drivers to support the dynamic bind/unbind features. In particular NDIS 1.0.1
confonnant MACs will support dynamically binding protocol modules.

•

2. Additional Protocol Manager functions to support dynamic binding and future ~
adminisuadve r e q ~ t s .

.

.

.

•
Some adjustments to the Reset MAC function, StartReset, and EndReset l:n'imidves I
were made to correct, some inconsistenciesand keep-the logic out of the cridcial
paths.

Additional fields were added to certain tables to provide additional information.
The presence or absence of these fields can be determined by examining the length
field in each table.

Some new recommendations and clarifications on such issues as double-word
alignment of data blocks, the use of the permanent station address, the copying of
DS and cnn'y points, the use of 80386 32-bit registers, the release of internal
resom~es before confirmadons, the handling of 0 length data blocks, the formatting
of MAC headers, the use of zero handles, new uansmit error codes for Token Ring
to support source-routing, and various other points that needed additional
elarificadonso

I
I
I
I

6~

7.

.

A standard for protocol sendce-specific characteristics tables.

The inclusion of additional 802.3 and 8023 specific information and added
statistics definitions.

Additional information and caveats to help developers.

I
i

.

10.

11.

12.

13.

14.

The Protocol Manager now has a transient component (in some configurations)
called PROTMAN.EXE. This is now described with certain res~cidons imposed
on Protocol Manager primitives.

Some new error response codes were defined.

A new appendix, Appendix E, was added to describe some helpful bind and
configteadon management utilities provided with Protocol Manager.

Selected statistics designated as manditory for both service-specific and media
specific statistics(802.3 and 802.5).

Ex~nded 803.3 s~:isdcs m include Number_of_Undernms.

I
I
I
I

OpenAdapter function expanded to permit driver town of vendor specified warning ~
errors and/or hardware enor codes. I~

Page 1-2

It is not expected that any of these changes will result in incompatibilities with protocol and
MAC drivers written to previous versions of this specification. Great care was taken to
avoid creating incompatibilities. It is the protocol's responsibility to identify and
interoperate with older NDIS version driver implementations that may not have
implemented support for statistics. Older network drivers will co-exist with network
drivers written to this specification. However, to take advantage of new features (such as
dynamic binding), developers may wish to update their protocol drivers to be NDIS 2.0.1
compliant.

Page 1-3

Chapter 2 - Configuration and Binding
A network server or workstation includes at least one Media Access Control (MAC) and
one protoqol driver, plus the Protocol Manager driver. More complex configurations may
have multiple MAC and protocol drivers.

The Protocol Manager is always defined in CONFIG.SYS to load before any MAC or
protocol drivers. Its job is to read the configuration information out of the
PROTOCOL.INI file and make this available to MAC and protocol drivers which load
later.

MAC and protocol drivers use this information to set initialization parameters and allocate
memory appropriately. For example, a NetBIOS driver may use the configuration
information provided by.the Protocol Manager to determine its maximum number of names
and sessions.

As each driver configures and initializes itself, it identifies itself to the Protocol Manager
using a driver-defined "module name" and "characteristics table". The module name
defines a kind of logical name for the communication service provided by the driver. The
characteristics table provides specific parameters about the service and the set of entry
points the driver uses to communicate with other drivers. A single driver may identify
itself to the Protocol Manager as multiple logical modules if, for example, it implements
more than one layer of protocol interface (such as transport and data link).

Before two modules can communicate, they must be bound together. Binding is the
process of two modules exchanging characteristics tables so that they can access each
other's entry points. This establishes the linkage they need to make requests of one another
and indicate asynchronous request completion. Binding is controlled by the Protocol
Manager based on information from PROTOCOL.INI. Binding can be either static or
dynamic for protocol drivers. If a protocol driver is static, then its binding is static. If it is
dynamic, then its binding is dynamic. A dynamic protocol driver can be unbound from its
bound drivers prior to unloading itself from memory. This unbinding process is also
controlled through the Protocol Manager.

Configuration and Binding Process
In the typical case of a system with one MAC driver and a NetBIOS driver, the set of
drivers load and initialize as follows:

1. Protocol Manager loads, initializes, and reads PROTOCOL.INI.

.

.

.

MAC driver loads. It calls GetProtocolManagerlnfo to get any needed
configuration information, like its DMA channel.

MAC driver initializes and calls RegistcrModule to identify itself as the module
named e.g. "ETFIERCARD." This call passes ETHERCARD's characteristics table
to Protocol Manager.

•

NetBIOS driver loads. It calls GetProtocolManagerlnfo to get any needed
configuration information, like the maximum number of names, sessions, and
commands to support.

Page 2-1

. Ne~BIOS driver initializes and calls Regis~erModule to identify itself as ~he module
named "NetBIOS". This call passes NetBIOS's chafa~ris~ics table to Protocol
Manager and indicates that NetBIOS wants to bind to E'II-IERCARD.

. After all device dr/vcrs have loaded, Prowcol Manager determines from the
informal/on supplied on previous Rcgls~erModule requests ~hat Ne~IOS must bind
to ETHERCARD. Using a defined dispatch address in the ~ r i s d c s ~ablc for
NetBIOS, Protocol Manager calls NctBIOS and instructs it to bind to
ETHERCARD. The call, InitiateBind, includes ~he charac~risfics ~ablc for
ETHERCARD.

. NetBIO$ calls ETHERCARD, requesting to Bind. The modules exchange
characteristics ~ables with each other. They now have each other's entry points and
are bound.

. NetBIOS may now call ETHERCARD at its deirmed entry points for ~ransmi~ng
and receiving packets (see next section).

If the example Ne~BIOS driver was dynamically loadabl~ the binding to the ETHERCARD
MAC would be done through the Protocol Manager's VECTOR faciliw (s~ Chapter 7).
The Vector shields the static MAC driver from the details of dynamic binding.

Page 2-2

I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 3" •

Description
Protocol to MAC Interface

The interface between a protocol and MAC driver provides for the transmission and
reception of network packets, called frames. The interface includes other functions for
controlling and determining the status of the network adapter controlled by the MAC.

To allow for efficient use of memory and to minimize buffer copies, frames being
transmitted and received arc passed between protocol and MAC using a scatter/gather
buffer description convention. This passes an array of pointers/lengths called a frame
buffer descriptor. There are three types of these descriptors, one for describing frames
being transmitted (TxBufDescr) and two for frames being received (RxBufDescr and
TDBufDescr).

Overall, the calls at the protocol/mac interface are grouped into categories of transmission,
reception, indication control, status indications, and general requests. An additional
category of function, system requests, is generic to all drivers.

Transmission
Transmitting data can work either synchronously or asynchronously, at the option of the
MAC. Protocols must be able to handle both cases. Primitives are TransmitChain and
TmnsmitConfima.

Protocol MAC

Transmit Chain ~ C A L L m >

< - - R E T U R N B

Call passes TxBufDescr and unique handle.
MAC may copy data now or later.
Return indicates if data has been copied. If
not, MAC now owns frame data blocks and
will copy them asynchronously.

Later on, after data is copied by MAC:

TransrnitConfirrn <-~.~dkLL---

~RETURN~>

Call supplies unique handle from Transmit.
.

Data block ownership returned to protocol.

NOTE: If the MAC transmits the frame synchronously, it indicates this on the return from
TransmitChain and will not generate a TransmitConfirm.

Reception
Receiving data can work in either of two ways, depending on the MAC. Protocols must be
able to handle both cases.

The MAC generates a ReceiveLookahead indication that points to part or all of the
received frame in contiguous storage. This is called the "lookahead'" data. The
protocol may issue a TransferData call back to the MAC if it wants the MAC to
copy all or part of the received frame to protocol storage. The protocol may, of

Page 3-1

course, copy the look ahead data itself. In some implementations, this may be the
entire frame.

The MAC generates a ReceiveChain indication that points to a RxBuiDescr that
describes the entire frame received. The protocol may copy the data immediately or
later. If later, it releases the frame buffer areas back to the MAC via a call to
ReceiveRelease.

Generally, the first approach will be implemented by MAC drivers for non-host buffered
network adapters, while drivers for host buffered network adapters will implement the
second. Non-host buffered adapters that use programmed I/O or DMA will generally
provide a small leading portion of the received frame as look ahead data, whereas those
using a single memory mapped buffer will usuallyprovid~ the whole frame.

In either case, the protocol must validate the received packet very rapidly (within a few
instructions) and to reject it if necessary. This is very important to perfornaanee in a multi-
protocol environment.

The following sections illustrate the non host-buffered adapter versus host-buffered adapter
receive scenarios:

Non Host-Buffered Adapter
MAC Protocol

ReceiveLookahead --CAI .I.---> Call passes pointer to lookahead data.
Protocol examines this data.

If protocol wants the frame and look ahead wasn't the whole frame, the protocol cm], ask
MAC to transfer the frame:

TransferData < CA1.T~---

- - R E T U R N s >

Passes TDBufDescr indicating where to put
the received data.

< - - R E T U R N ~

Upon return from protocol, MAC re-enables the hardware.

IndicadonComplezc .~C.ALL--->

<--RETURNm

MAC calls protocol to allow interrupt-dine
post processing.

Host-Buffered
MAC

ReceiveChain

Adapter

CALL-->

Protocol

Call passes pointer to RxDataDescr.

Page 3-2

I
!

I
I
I
I
I
I

IndicationComplete

< - - R E T U R N ~

CALLa-->

<--RETURND

Return tells if protocol accepts the frame,
and if so, whether it copied the data. If
accepted but not copied, ownership of dam
blocks passes to the protocol which copies
the data asynchronously.
MAC calls protocol to allow interrupt-time
post processing.

Later, if protocol deferred copying the data (this may occur during IndicationComplete)

<.-~..ALLr~

- -RETURN-->

RcceiveRelease. The call supplies the
unique handle from ReceiveChaln.
Data block ownership returned to MAC.

Indication Control
Two primitives let a protocol selectively control when it can be. called with indications from
the MAC. These are IndicationOn and IndicationOff.

Before calling an indication routine, the MAC implicitly disables indications. This means,
for example, that if another frame arrives while the protocol is processing the indication for
the previous one, the protocol will not be reentered. Likewise, if the protocol issues a
TransmitChain for loopback data from within the ReceiveLookahead indication routine, it
will not be reentered to process the loopback data reception.

Protocols can re-enable indications upon returning from ReceiveLookabead, ReceiveChain
or Status indications or by calling IndicationOn within the IndicationComplete routine.

Status Indication
Status indications are calls from a M A C to protocol that convey a change in adapter or
network status.

A status indication works much like a reception indication. The stares indication handler is
entered with indications disabled and there is a mechanism which will leave indications
disabled.

MAC

Status

IndicationComplete

c a t .t ._..>

<--RETURND

. ..CALL--.-.>

<- -RETURN--

Protocol

Call passes status type and information.

MAC calls protocol to allow interrupt-time
post processing.

Page 3-3

General Requests
General requests are calls from a protocol to a MAC, asldng it to do a general function such
as open or close the network adapter or change the station address.

General requests work much like a TransmitChain request, except the primitives are
Request and RequestConfn'm.

Protocol

Request ~ 1 .I . .-->

<--REI I IRN--

Latex, i f request c o m p l ~ asynchronously:.

< - - C A D

--RETURN-->

MAC

Issue request to MAC with unique handle.

Return indicates ff request completed.

RequestConfirm. The gall supplies unique
handle from Request.

• If the MAC sadsfies the request synchronously, it indicates this on the return from Request
and will not generate a RequestConfirrn.

System Requests
System requests support module binding and management functions. They are usually
made by the Protocol Manager to a MAC or protocol module, but can also be made by a
protocol to another protocol or MAC module.

System requests work much like general requests except that all are synchronous and the
requests are not module specific.

Upper Module Lower Module

System CAT +L--> Issue request to lower module.

<--RETURN-- Return indicates ngluest completed.

Protocol Manager Primitives
Protocol Manager primitives are requests from protocol or MAC modules to the Protocol
Manager for various Protocol Manager services. These requests are always synchronous.

Protocol or MAC
Module
Primitive ---CALJ., >

<--RETURN--

Protocol Manager

Issue request to Protocol Manager

Return indicates request completed

Page 3-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l

Chapter 4 - Data Structures

Module Characteristics
Protocol and Media Access Control (MAC) modules arc described by a dam structure called
a characteristics table. Each characteristics table consists of several sections: a master
section called the common characteristics table and four subtables. The common
characteristics table contains module-independent information, including a dispatch address
for issuing system commands like InifiateBind to the module. The four module-specific
subtables arc chained off the common characteristics table. These dcf'me module-specific
parameters and the entry points used for inter-module communication (such as the
MAC/protocol interface functions). When two modules bind together, they exchange
pointers to their common characteristics tables, so that each gets access to the other's
descriptive information and entry points.

NOTE: NDIS drivers must copy the Module DS and entry point addresses (from the
Common Characteristics and Upper/Lower Dispatch Tables) to their local data segment at
Bind time. In future versions of this specification, this information may be volatile.
Having this information directly accessible will also improve performance. This
information must not be copied prior to the Bind call and must not be used unless the Bind
completes successfully.

N O T E : The information in the characteristics table for a module is primarily
informational, in support of network management and configuration tools. Upper modules
binding to lower ones will NOT need to parse this information to adapt their" behavior at the
interface. They will generally just use the information to validate that they have been bound
to the correct ~ype of module. Most of the other information is provided in the structure to
support information utilities.

Some new fields have been added to some of the characteristics tables for V2.0.1. The
size/length fields at the start of the tables can be checked to s e e if the new fields are
available in the table.

Common Characteristics
"rhc format of this information is identical for all module.s. Note that all information in this
section of the table is static.

WORD
BYTE
BYTE
WORD
BYTE
BYTE
DWORD

BYTE[16]

Size of common characteristics table (bytes)
Major NDIS Version (2 BCD digits - 02 for this version)
Minor NDIS Version (2 BCD digits - 00 for this version)
Reserved
Major Module Version (2 BCD digits)
Minor Module Version (2 BCD digits)
Module function flags, a bit mask :

0 - Binding at upper boundary, supported
1 - Binding at lower boundary supported
2 - Dynamically bound (i.e., this module can be swapped ou0
3-31 - Reserved, must bc zero

Module name - ASCIIZ format

Page 4-1

I

BYTE

BYTE

BYTE

BYTE

WORD
WORD
LPFUN
LPBUF
LPBUF
LPBUF
LPBUF
LPBUF
LPBUF

Protocol level at upper boundary of module:
1 - MAC
2 - Data link
3 - Network

I

I
4 - Transport
5 - Session ~
-I - Not specified •

Type of interface at upper boundary of module:
For MAC's: I => MAC •
For Data I,inks: To be defined |
For Transports: To be defined
For Session: l => NCB m

For any level: 0 => private (ISV defined) I
Protocol level at lower boundary of module.

0 - Physical
! -MAC I
2 - Data link •
3 - Network
4 - Transport
5 - Session
-1 - Not specified

Type of interface at lower boundary of module:
For MAC: 1 => MAC
For Data Link: To be defined
For Transport: To be defined
For Session: 1 => NCB
For any level: 0 => private ¢ISV defined)

Module ID filled in by Protocol Manager on return from RegisterModule
Module DS
System request dispatch entry point
Pointer to service-specific characteristics (NULL if none)
Pointer to service-specific status (NULL if none)
Pointer to upper dispatch table (see below; NULL if none)
Pointer to lower dispatch table (see below; NULL if none)
Reserved for future expansion, must be NULL
Reserved for future expansion, mast. be NULL

I
I
I
I
I

NOTE: LPSZ
LPBUF
LPFUN

Long pointer to an ASCIIZ string
Long pointer to a data buffer
Long pointer to a function

In V 1.0.1, the 2 bytes after the first WORD were required to be set to 0. For compatibility
with V1.0.1, an NDIS spec major version number of 00 is interpreted the same as major
version number 01.

The module function flags bit mask must accurately specify the capabilities of the module.
The Protocol Manager uses these fields; e.g. the "Dynamically bound" (bit 2) flag when set
indicates that this module is a dynamically Ioadable and unloadable module. Such a module
can only be used in the Protocol Manager dynamic mode..

The upper and lower boundary protocol level and interface type bytes must accurately
specify the protocol level and interface type. The Protocol Manager uses these fields. If an
interface does not support NDIS bindings or a protocol level is undefined at the interface, a
value at OxFF must be used. In this case the corresponding interface type is undefined.

Page 4..2

I
I
I
I
I
I
I

In addition to the above common characteristics table, a given module will typically have a
set of sub-tables that are chained off the common table:

Serdee-speeific characteristics table:
This table contains descriptive information and parameters about the module.

Service-specific status table:
This table contains rundme operating stares and statistics for the module.

Upper dispatch table:
This table contains dispatch addresses for the upper boundary of the module --
i.e., the entry points it exports as a service provider.

Lower dispatch table:
This table contains dispatch addresses for the lower boundary of the module - -
i.e., the entry points it exports as a service client.

NOTE: Under OS/22 dispatch addresses and data segments are Ring 0 selectors. This field
is usually set at Ring 3 INIT time even though the selector set must be Ring 0.

MAC Service-Specific Characteristics
All MAC's use the following format for this table. This table contains volatile information
(like the current station address) which may be updated by the MAC during the course of
operation. Other modules may read this table directly during execution.

WORD
BYTE [16]

WORD
BYTE [16]
BYTE [16]
DWORD
LPBUF
DWORD
DWORD

Length of MAC service-specific characteristics table
Type name of MAC, A$CIIZ format:

802.3
802.4
802.5
802.6
DIX
DIX+802.3
APPLETALK
ARCNEF
FDDI
SDLC
BSC
HDLC
ISDN

Length of station addresses in bytes
Permanent station address
Current station address
Current functional address of adapter (0 if none)
Multicast Address List (structure defined below)
Link speed (bits/see)
Service flags, a bit mask:

0 - broadcast supported
1 - multieast supported
2 - functional/group addressing supported
3 - promiscuous mode supported

Page 4-.3

I

WORD
DWORD
WORD
DWORD
WORD
CHAR[3]
CHAR
LPSZ
WORD
WORD
WORD

|
4 - software seizable station address "
5 - statistics are always current in service-specific status table
6 - InitiateDiagnostics supported ~
7 - Loopback supported •

8 - Type of receives
0 - MAC does primarily ReceiveLookahead indications []
1 - MAC does primarily ReceiveChain indications |

9 - IBM Source routing supported
1 0 - Reset MAC supported
11 - Open I Close Adapter supported ~
12 - Interrupt Request supported ml

13 - Source Routing Bridge supported
14 - GDT virtual addresses supported ~
15 - Multiple TransferDams permitted during a single indication (V2.01 |

and later)
16 - Mac normally sets PrameSize = 0 in ReceiveLookahead (V2.01 and |
17o31 o Reserved, must be ~

Maximum fran~ size which may be both sent and received
Total ~ o n buffer capacity in the driver (bytes) •
Transmission buffer allocation block size (bytes) []
Total reception buffer capacity in the driver (bytes)
Reception buffer allocation block size (bytes) m
[EEE Vendor code |
Vendor Adapter code
Vendor Adapter desoriplion
IRQ Interrupt level used by adapter (V2.0.1 and later)
Transmit Queue Depth (V2.O.I and later)
Maximum number of data blocks in buffer descriptors supported (V2.O.I
and later)

Remaining bytes in table (based on Length) are vendor-specific

In interpreting these tables the implementer must always bear in mind that additional
functions may be added to furore MAC's and that the support of functions @tat the protocol
does not need must not prevent the protocol from accepting a bind for the MAC.

The type name describes to the protocol the type of MAC protocol header that the MAC
driver supports. In general, protocol stacks must be prepared to support the types "802.3",
"$02.5", "DIX" and "DIX+802.3". If the native media of the MAC is not one of these
types (for example, ARCNET) then it is recommended that the MAC developer must
consider claiming support for one of the above types and doing a wansparent internal
mapping between the private header format of the media and the public header format being
claimed. Without support for one of the above header formats, general protocol
compatibility cannot be guaranteed. The list specified above is not exhaustive. New names
may be added in the future or a vendor may provide special MAC type names for use with
protocols that intemperate with special MACs provided by that vendor. In the latter case it
is recommended that a vendor use a MAC type name that does not start with an
alphanumeric character to avoid conflicts with NDIS MAC type names that might be
Specified in future versions of this specifu:ation.

The normal type name of an ethernet MAC would be "DIX+802.3." See Appendix B for
references on IEEE 802.3 and DIX.

I
I
I
I
I

Page 4-4

In the various parts of this specification, all station and multicast addresses for a given
MAC have the length specified in the "Length of Station Address" field.

The permanent station address must be obtained from the hardware if at all possible, as it
may be used by LAN Manager for security or administrative purposes. If a
PROTOCOL.INI entry is used to override the cun'ent station address, the permanent station
address must not be affected. Only if there is no hardware based addressing scheme will it
be possible to override the permanent station address by configuration parameters. The
current station address will always reflect the current address as set via parameter or by
calling Request SetSetationAddress.

The functional address DWORD represents the functional address bit pattern present in the
last 4 bytes of an IBM compatible functional address. This excludes the first 2 bytes 0xC0,
0x00. The functional address DWORD represents the logical OR of all functional
addressess currently registered to the adapters.

Multicast Address List is a buffer formatted as follows:

WORD
WORD
BYT£[16]
BYTE[16]

BYTE[16]

Maximum number of multicast addresses
Current number of multieast addresses
Multicast address 1
Multieast address 2

ivit~lticast Address N

The Multicast Address List is kept packed by the MAC so that the current multicast
addresses occur first in the list.

Service flags indicate which optional functions are supported by an NDIS driver. If a
particular function bit is set, that function is supported. When attempts are made to invoke
unsupported functions, NDIS MAC drivers must respond properly by returning
INVALID_FUNCTION (0x0008).

If loopback is supported in the network adapter hardware, then bit 7 of the MAC service
flags must be set.

If loopback is not supported in hardware (bit 7 of the MAC service flags is not set), the
protocol driver must handle this function itself by some loopback delivery of the frame to
be transmitted.

The following criteria must be met for loopbaek:

. The destination address is the same as the local station's current station
address or the destination is a broadcast, multieast or functional address
which would have been received by this station if .sent by another.

2. The frame must qualify for reception according to the current packet filter.

The loopback mechanism must cause the Receive indication to occur at interrupt time (and it
must be delayed by IndicationOfO

If IBM source routing is used (bit 9 is set) it is the protocol module's responsibility to
encode and interpret appropriate source routing information. This bit merely implies that

Page 4-5

I
the dcvi~ is capable of sending packets with the "source muting bit" set in the source
address so that a protocol may recognize such a packet.

While.the ResetMAC function (bit I0) is optional, it is strongly recommended that those
implementing the NDIS MAC driver support this function..Some protocol drivers may rely
on this function to recover from hardware error conditions.

If the service flags indicate that OpenAdapter is supported (bit 11 is set), then the protocol
driver must ensure that the adapter is open. The open status of an adapter can be
determined by examining bit 4 of the MAC status in the MAC service-specific status table.
If the adapter is not open, then the protocol must issue an OpenAdapter Request (normally
during biud-time processing).

If Source Routing Bridge is set (bit 13) then it is implied that the MAC is capable of
receiving all packets on the network which have the source..routing bit set.,

If GDT virtual addresses are supported (bit 14 is set) then Ring 0 GDT virtual addresses
may be used to describe frames. All MA,C,'s must support the use of physical addresses to
describe frames; however, for some MAC s it is preferable to supply a GDT address if one
is readily available. The GDT adclress must remain valid throughout the scope of its use by
the MAC.

If bit 16 of the service flags field is set, then the MAC clriver does not normally provide the
total frame size of received data. In this case the MAC normally calls RecieveLookahead
with the FrarncSize parameter equal to O. Setting this bit is optional. It is left to the MAC
implementor to determine how frequently returning FrameSize equals 0 constitutes
sufficient grounds to set this bit. However, this bit must be reset if the MAC always calls
ReceiveLookahead with the FrarneSize parameter non-zero or if a 0 FrameSize parameter is
returned only for intermittent erroneous packet reception. For V1.0.1 compatibility, bit 16
reset gives no indication whether the MAC will return a zero FrameSize parameter or not.
Some MAC and higher layer protocols do not support "length" fields within their encoding.
Such protocols rely on knowing the size of valid frame data received at the MAC interface
and then deduce the amount of dam at their layer by stripping off the lower layer protocol
headers. This bit warns such protocols that the required received frame size is not normally
available at the MAC interface and that receive frames might not be able to be processed.
Such protocols can refuse to bind to such MACs.

The maximum frame size must reflect the maximum size packet that can be both uansmitted
and received by the MAC clienL This size must reflect only the bytes which actually cross
the NDIS boundary. For Ethernet, this value is typically 1514, since the client does not
specify the CRC bytes. Token Ring values vary but do not include the non-data SD, ED
and FS bytes or the FCS.

I
I
I
I
I
I
I
I
I
I
I
I
I

The network adapter RAM is characterized by four parameters. The first is the number" of []
bytes available for storing packets to be transmitted, usually one or two full-size packets in |
size. The second parameter is the allocation granularity, typically about 256 bytes,
indicating how much memory would be occupied by a one byte packet pending
transmission. The next two parameters are the number of bytes available for storing
received packets and the receive packet granularity. Often these parameters wig be affected
by PROTOCOL.INI keywords (for example, specifying two transmit buffers rather than
one), and it is required that these numbers accurately reflect the current adapter
configuration. Protocol drivers may use these numbers to determine reasonable window
sizes, and incorrect values may impact performance.

The intent of the IEEE Vendor and Vendor Adapter Codes is'that, when used in
combination, they uniquely identify this MAC driver for this adapter. The IEEE Vendor
Code uniquely defines the vendor providing the MAC driver. The use of the IEEE Vendor
Code avoids the need for any global registry of Vendor Adapter Codes. The IEEE Vendor
Code is assigned by the IEEE and becomes the first three bytes of a six-byte IEEE 802
address. The Vendor Adapter Code specifies a particular MAC driver provided by the
Vendor for an adapter. If the IEEE Vendor Code is assigned to the Vendor, the Vendor
assigns a unique Vendor Adapter Code to each MAC driver provided. For those without
an IEEE Vendor Code, a value of Oxvvvvvv is required. In this case, the Vendor Adapter
Code is undefined.

The Vendor Adapter description string is an ASCIIZ string containing a description of the
adapter that could be used to format an error message (for example, "3Com EtherLink II
Adapter").

The wansmit queue depth specifies the maximum number of TransmitChain requests the
MAC can buffer internally. This number must be set to one if the TransmitChain
implementation in the MAC is synchronous. Each queued TransrnitChain request requires
that the MAC driver copy at least the chain descriptor and immediate data, so this parameter
is generally configurable through a PROTOCOL.INI keyword called MAXTRANSMITS.
The protocol driver can use this queue depth to compute the amount of time a transmit
might be queued up within the MAC.

The maximum number of data buffer blocks is the maximum number of blocks supported
in Transmit, TransferData, and ReceiveChain buffer desciptors. For V 1.0.1 backward
compatibility this must be a minimum of 8. For V1.0.1 compatible MACs for which this
field is absent, the maximum number assumed is 8.

The size of the NDIS defined part of the MAC specific characteristics table may increase in
subsequent versions of the specification. If vendor specific information follows the NDIS
defined information, a protocol using it must check the NDIS spec version number in the
Common Characteristics table to determine where the NDIS specified information ends and
the vendor specified information begins.

MAC Service-Specific Status Table
The MAC service-specific status and media-specific statistics tables provide information
about the status of and traffic through a MAC. Since these tables can be updated by the
MAC driver at interrupt time, a protocol must ensure that these tables are read with
interrupts disabled. The MAC must update this table (and the media-specific statistics table
ff present) atomically.

WORD
DWORD

DWORD

I.~ngth of status table
Date/time when diagnostics last run (0x~vvl-vv-vl- if no~ ~n). F o n t is
s~onds s~ce 12:~ ~ i g h t J ~ 1, 1970
~ C s m ~ , a 32-bk ~ k :

~ 2 - ~ ~ ~ fo~ows:
0 - H ~ not i n s ~
1 - H ~ w ~ f ~ s ~ p diagnostics
2 - H ~ d w ~ f ~ due to c o n f i ~ f i o n ~ b l e m
3 - H ~ w ~ not opemf ion~ due to h ~ w ~ fault
4 - H ~ w ~ o~mfing m ~ n ~ l y due to soft faults
5-6 R e s ~

Page 4-7

!

WORD

!
7 - Hardware fu]ly operational
3 - If set, MAC is bound, else not bound ~
4 - If set' MAC is open, else not open (if adapter doesn't support •

open/close function, set to I if hardware is functional)
5 - If set, adapter diagnostics are in progress (V2.0.1 and later) I
6-31 - Reserved, must be zero |

Ctm 'en t ' a bit mask: ?~ t packet filter,
~ b ~ t s t a n d multicast or group and functional |

2 - p r o m i s c u o u s m
3 - al/source muting
4-15 - Reserved, must be zero •

|

!
Statistics for MAC's

Statistics in bold are mandatory, all others are strongly reconm~nded.
0xt.t.t.t;/-t-t.t--means not supported.
Reserved slots should return as O x t " ~ ' ~ (unsupported).

LPBUF
DWORD

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Pointer to media specific statistics table (may be NULL) ~
Date/time when last ClearStafistics issued (0x~.t-t-t-~t't't. ff not kept) format •
is seconds since 12:00 Midnight January l , 1970
Total f rames received OK m
Total frames with CRC error I
Total bytes received
Total frames discarded - no buffer space
Total multicast frames received OK ~
Total broadcast frames received OK •

Reserved (Obsolete statistic)
Reserved (Obsolete statistic) Isl
Reserved (Obsolete statistic) |
Reserved (Obsolete statistic)
Reserved (Obsolete statistic)
Total frames discarded - hardware error •
Total frames t ransmit ted OK I~

Total bytes wansmitted OK
Total multicast frames wan,mdtted
Total broadcast frames transmitted
Reserved (Obsolete statistic)
Reserved (Obsolete stat ist ic)
Total frames not uansndtted - time-out
Total Frames not wansmit~ed - hardware error •

!

Remaining bytes (based on Length) in table an: vendor specific.

All statistics counters are 32-bit unsigned integers that wrap to zero when the maximum
count is reached after which the counters will continue m count. When updating these
counters, a frame is counted in all the supported counters that apply, The case of an
unsupported counter (0xt.t.~.t.t.t,l../-) can be distinguished from the situation wherby a
counter is about the wrap around ff the values of the counters are checked at bind times. If
the initial value of the counter is then the counter is not supported.
Otherwise the counter is supported and 0xt-vt-t-~--t-t't- at a later time means the counter is
about to wrap around.

SERVICE S P E C I F I C STATISTICS DEFINITIONS:

Page 4-8

Total f rames received ok
(NumberOfFramesReceivedOK) - corresponding 802.3 statistics

This contains a count of frames that are successfully received. It does not include
"frames with errors", as listed in non-media specific statistics item 7.

Frames received with CRC er ror
(NumbeK)fFramesReceivedWithFrameCheckSequenceErrors)

This contains a count of flames that are an integral number of bytes in length and do
not pass the FCS check. Reports on CRC errors "as the station sees it".

Total bytes received ok

This contains a count of bytes in frames that are successfully received. It includes
bytes from received multicast and broadcast frames. This number should include
everything, starting from destination address up to but excluding FCS. Source
address destination address, length (or type) and pad arc included. It should
exclude FCS and the preambles.

According to this definition, this NDIS statistics is not exactly the same as 802.3's
NumberOfBytesRcccivedOK, which does not include the octets in the address and
length/type fields.

Frames discarded - no buffer space

Frames discarded by MAC driver due to a lack of buffer space.

Mult icast f r ames received ok.
(NumberOfMulticastFramesReceivedOK)

This includes all of the muldcast frames the MAC driver received successfully.

It does not include "frames with errors" as listed in non-media specific statistics
item 7.

Broadcas t f rames received ok.
(NumberOfl3roadcastFramesReceivedOK)

This includes all of the broadcast frames the MAC driver receives successfully.

It does not include "frames with errors" as listed in non-media specific statistics
item 7.

Frames discarded - hardware error

Frames discarded due to hardware error.

Page 4-9

I
!

Definition of this statistic should be adapter specific. I
Total frames transmitted ok.
(NumberO~ramesTransmi~K)

Total number of frames uansmitted successfully.

Total bytes transmitted ok.

Total number of bytes transmitted successftdly.

I
I
I

This number should include everything, starting from destination address up to but
excluding FCS. Source address destination address, length (or type) and pad are
included. It should exclude FCS and the preambles. I

Multicast frames transmitted ok.
(NumberOfMulticastFntmesTransmittedOK)

Number of frames transmitted successfully to non-broadcast group address.

I
I

Broadcast frames transmitted ok.
(NumberOfBroadcastFramesTransmittedOK) I

Number of frames transmitted successfully to broadcast address.

Frames not transmitted - t ime-out

This contains a count of frames that could not be transmitted due to the hardware
not signaling transmission completion for an excessive period of time.

Frames not transmitted - hardware error

I
I
I

This contains a count of frames ~hat could not be u'ansmiued due to a hardware
error. This count should exclude DMA underrun error which itself is a separate
counter (Frames transmitted with underun). Definition of this stadstic should be
adapter specific.

MAC Upper Dispatch Table

I

I
The number and meaning of dispatch addresses provided here apply to the b o t m d ~ ~
between a MAC and a protocol. This may differ at other protocol boundaries. Note that •

each upper/lower module binding may have its own unique set of dispatch addresses that is
set up when the modules exchange characteristics tables. This can be achieved by B
exchanging copies of the common characteristics table, where the copy has the desired ~
pointers to the specific dispatch tables for the binding.

LPBUF Back pointer to common charactcdsdcs table I

Page 4-10

LPFUN
LPFUN
LPFUN
LPFUN
LPFUN
LPFUN

Request address
TransmitChain address
TransfcrData address
ReceiveRelease address
IndicationOn address
IndicadonOff address

NOTE: No dispatch address is allowed to be NULL.

Protocol Service-Specific Characteristic Table
For compatibility with future versions of this specification, all protocols must provide a
protocol service-specific characteristics table which starts with the following fields:

WORD
BYTE [16]
WORD

Length of protocol service-specific characteristics table
Type name of protocol, ASCIIZ format:
Protocol type code

This may be followed by protocol-specific information.

The protocol type name will be used in future versions of this specification. Specific type
names for different protocol types will be defined later. Protocol type codes will also be
defined later. For the moment these two fields are simple place holders and must bc set to
null string and zero resp~tivcly.

Protocol Lower Dispatch Table
The protocol lower dispatch table is specified in the characteristics table for the protocol
binding to the MAC. The characteristics table for the MAC actually does not supply a
lower dispatch table (the pointer to it is NULL).

LPBUF
DWORD

LPFUN
LPFUN
LPFUN
LPFUN
LPFUN
LPFUN

Back pointer to common characteristics table
Interface flags (used by Vector flame dispatch):

0 - Handles non-LLC frames
1 - Handles specific-LSAP LLC frames
2 - Handles non-specific-I.SAP LLC frames
3-31 - Reserved must be zero

RequestConfirm address
TransmitConfirm address
ReceiveLookahead indicadon address
IndicationComplete address
ReceiveChain indication address
Status indicadon address

NOTE: No dispatch address is allowed to be NULL.

Characteristic Tables for NetBIOS Drivers
NetBIOS drivers written to the existing LAN Manager Ring0 NetBIOS specification can be
adapted to fit into the Protocol Manager structure by defining a common characteristics
table for them shown below. Note that such a NetBIOS driver must still respond to the

Page 4-11

I

existing LAN Manager NetBIOS Linkage binding m~hardsm; these drivers will only use
Protocol Manager binding at their lower boundary (to the MAC). A variant kind of
NetBIOS module will be defined in the future that takes advantage of Protocol Manager
binding at both boundaries.

Common characteristics for NetBIOS drivers:

I
I
I

WORD
BYTE
BYTE
WORD
BYTE
BYTE
DWORD
BYr []6]
BY'IS
BYIE
BYTE
B Y I ~
WORD
WORD
LPFUN
LPBUF
LPBUF
LPBUF
LPBUF
LPBUF
LPBUF

Size ofcomnmn chmacmfi~cs table (bytes)
Major NDIS Version (2 BCD digits) I~
Minor NDIS Version (2 BCD digits) U

Reserved
Major Module Version (2 BeD digits) •
Minor Module Version (2 BCD digits) •
Module function flags,. 0x00000002 (binds lower)
NetBIOS Module name t i m

Protocol level at upper boundary of module: 5 = Session •
Type of interface at upper boundary of module: 1 = LANMAN NCB U

Protocol level at lower boundary of module: 1 = MAC
Type of interface at lower boundary of module: 1 = MAC
NetBIOS Module ID
NetBIOS Module DS
System request dispatch entry point
Pointer to service-specific characteristics (see below)
Pointer to service-specific status, must be (NUI J-)
Pointer to upper dispatch table (see below)
Pointer to lower dispatch table (see below)
Reserved, must be NUI-!-
Reserved, must be NUT J-

Upper dispatch table for a NetBIOS module:

LPBUF
LPFUN
LPFUN

Back pointer to common characteristics table
Request address
NetBIOS NCB handler (I.ANMAN calling conventions)

I
I
I
I
I

Lower dispatch table for a NetBIOS module:

LPBUF
DWORD

LPFUN
LPFUN
LPFUN
LPFUN
LPFUN
LPFUN

I
Back pointer to e.orranon characteristics table
Interface flags (used by Vector frame dispatch): m a t

0 - Handles non-LLC francs •
1 - Handles specific-LSAP !J C frames. m

2 - Handles non-specific-LSAP LLC frames
3-31 - Reserved must be zero

RequestConfirm address I
TransmitConfirm address
ReceiveLookahesd indication address
IndicationComplete address
ReceiveChain indication address
Status indication address

Service-specific characm'isfics for a NetBIOS module:

WORD
[61

I

I
Length of NetBIOS module service-specific charaem~tics table ~1
Type name of NctBIOS module. ASCIIZ format: ~

Page 4.- ! 2 I

WORD NetBIOS module type code

This may be followed by module-specific information.

The protocol type name will be used in future versions of this specification. Specific type
names for different protocol types will be defined later. Protocol type codes will also be
defined later. For the moment these two fields are simple place holders and must be set to
null string and zero respectively.

Frame Data Description
The MAC describes frame data with a data structure called a buffer descriptor. The
descriptor is composed of pointers and lengths which describe a logical frame. Buffer
descriptors arc ephemeral objects. A dcscriptoris valid only during the scope of the call
that references it as a parameter. The called routine must not modify the descriptor in any
way. If the called routine needs to refer to the described data blocks after returning from
the call, it must save the information contained in the descriptor.

Data blocks described by descriptors arc long-lived. Ownership of the data blocks is
implicitly passed to the module that is called with the descriptor. The called module
relinquishes ownership back to the caller either via setting a return argument, or by later
issuing a call back to the supplying module. Under OS/2, some pointers may be either
GDT virtual addresses or physical addresses. In this case the pointer has an associated
pointer type opcoded field. Defined values arc 0 for physical address and 2 for GDT
virtual addresses. GDT virtual addresses may be supplied to the MAC only if bit 14 of the
service flags in the MAC service specific characteristics table is set. The GDT address
must remain valid throughout the scope of its use by the MAC.

Under DOS there is no distinction between physical and virtual addresses. All addresses in
this case are segrncnt: offset. Care must be taken to ensure that the segment offset plus data
length do not exceed the 64K segment boundary. The pointer type field if present is
always encoded as a 0.

For performance reasons,it is recornmcnded that data blocks used for transmission and
reception be double-word aligned where possible. Both MAC and protocol NDIS drivers
may choose to perform byte, word or dword memory movement without first ensuring
proper alignment. This will result in reduced performance in combination with drivers
which do not guarantee such alignment.

A buffer descriptor may contain one or more data blocks of length zero. In this case the
other fields in the data block (Data Ptr and Data Type) may not be valid and must be
ignored.

Transmit Buffer Descriptor
All transmit data is passed using a far pointer to a transmit buffer descriptor, TxBufDcscr.
The format of this descriptor is:

WORD TxIrnmedLcn
LPBUF TxImmedPtr
WORD TxDataCount

;Byte count of immediate data; max is 64
;Virtual address of immediate data
;Count of remaining dam blcx~ks; max is configurablc

Followed by TxDataCount instances of:

Page 4-13

I
I

BYTE TxPtrType ;Type of pointer (0=Physicai, 2=GDT)
BYTE TxResByte ;Reserved Byte (must be 0) ~
WORD TxDat~l eu ;Length ofdata block
LPBUF TxDataPtr ;Address of data block

I~
In a TxBufl~esc¢" structure, the immediate data described by the first two fifi~lds is ephemeral ~
and may be referenced only during the scope of the call that supplies it. Such immediate
data is always wansmitted before data described by TxDataLen and TxDataPtr pairs. If the
called routine needs to refer to the immediate data after returning from the call, it must copy
the data. The maximum size of immediate data is 64 bytes. For V2.0.I MACS or later the
maximum TxDataCount is specified in the MAC specific characteristics table.. For V1.0.1
MACs the maximum count is 8.

•

Transfer Data Buffer Descriptor
Transfer data can be described by a far pointer to a ~ansfer data buffer descriptor,
TDBufDescr. Transfer data buffer descriptors have the following format.

WORD TDDataCount ; Count of wansfer data blocks; max is configurable

Followed by TDDataCount instances of:

BYTE TDPtrTypc
BYTE TDResByte
WORD TDDataLen
LPBUF TDDataPa"

;Type of pointer (0=Physical, 2=GDT)
;Reserved Byte (must be 0)
;Length of dam block
;Address of data block

For V2.0.1 MACs or later the maximum TDDataCount is specified in the MAC specific
characteristics table. For V 1.0.1 MACs the maximum count is 8.

I
I
I
I
I

Receive Chain Buffer Descriptor
Receive chain data can be passed by a far pointer to a receive chain buffer descriptor,
RxBufDcscr. Receive chain buffer descriptors have the following format:

WORD RxDataCount ;Count of receive data blocks; max is configumable

Followed by RxDataCount instances of:

WORD RxDataLcn
LPBUF RxDaraPtr

;Length of,4~t~ block
;Virtual _address of data block

For V2.0.1 MACs or later the maximum receive data block coum is specified in the MAC
specific characteristics cable. For VI.0.1 MACs the maximum count is 8.

For received frames that are larger than 256 bytes, the fast data block of the frame must be
at least 256 bytes long. Frames less than or equal to 256 bytes will be passed up with
RxDataCount equal to 1.

I
I
I
I

Page ~14

I
I
I

PROTOCOL.IN!
The PROTOCOL.INI file stores configuration and binding information for all the protocol
and MAC modules in the system. The file uses the same general format as the
LANMAN.INI file. It consists of a series of named sections, where the section name is in
fact the module name from a module characteristics table. Below the bracketed module
name is a set of configuration settings for the module in nam~value formal For example:

[MYNetBIOS]
Drivername = NetBIOS$
Bindings = ETHERCARD
MaxNCCBs = 16
MaxSessions = 32
MaxNames = 16

The rules for PROTOCOL.INI contents are:

Bracketed module name. Must be the name of a protocol or MAC module, e.g.
[MYNetBIOS]. This is the name of the module as defined in that module's
characteristics table. The name must be 15 characters or less (not counting the
brackets). Mixed case may be used but the Protocol Manager will convert it to
uppercase when it reads the file into memory.

Drivcmamc = <device driver name>. This parameter is required for all device
driver modules. It defines the name of the OS/2 or DOS device driver that the
module is contained in. Note that a single device driver name may be mentioned by
several sections of the PROTOCOL.INI file, if the driver contains multiple logical
modules. The Drivemame parameter is the recommended method by which a
module searches for its module section in the PROTOCOL.INI file to get its
configuration parameters. This allows the module to find all relevant module
sections based on a single name intrinisic to the module independent of the
particular bracketed module name used in the PROTOCOL.INI file. This keyword
is also required for DOS dynamic modules like TSRs or transient application
modules. Although there is no driver name instrinsically assigned to such modules
it is required that a unique name be assigned to this keyword for such modules
anyway. In this way the same search mechanism used by device drivers can be
used by dynamic DOS modules to find their relevant module sections in
PROTOCOL.INI.

Bindings = <module name> I <module name>,<rnodule name>, ... This parameter
is optional for protocol modules. It is not valid for MAC modules. If present, it is
Used by the protocol module to determine what MAC modules it will ask to bind to.
(In other words, changing this parameter in the PROTOCOL.INI file can
reeonfigure a protocol to bind to a different MAC.). The Bindings parameter may
be omitted if the protocol driver software is preeonfigured to bind to a particular
MAC, or if the system will only contain one MAC and one smile protocol module.
In the latter ease (only in smile mode), the Protocol Manager by default will ask the
one static protocol to bind to the one MAC.

Other keywords and parameters. Any other keyword = value statements are
module specific. Keyword names must be 15 characters or less. They may be
mixed case but are converted to uppercase when read by the Protocol Manager.

Page 4-15

I
!

Note that keyword names are unique within the scope of each <module name>
section and can appear within the section in any order, i

[]
Wh/tespace around the equals sign is not significant, nor is trailing white space on

• the line. Except for this leading and nailing white space, all other characters of the
value string are taken verbatim. ~

U

A fist of 0 or more parameters can appear to the right of the equals sign. If there are
no parameters the equals sign can be optionally omitted. A parameter is terminated |
by a space, tab, comma, or semicolon. No parameters are interpreted by the •
Pmur.~l Manager.

m
A parameter can either be up to a 31-bit signed numeric value or a string of any •
length. g

A numeric parameter can be expressed either in decimal or hexadecimal formal All
numeric parameters must start with the characters '0 ' through '9" or by a + or -
followed by the "0' to'9' character. A hexadecimal parameter must start with '0x'
or 'OX' and use valid hexadecimal digits. A non-hexadecimal numeric parameter is
treated as decimal integer. A parameter not surrounded by quotes and starting with
0 to 9 or + and - followed by 0 to 9 will be assumed to be a numeric parameter.

A string is a parameter which either starts with a non-numeric character or is
surrounded with quotes (" "). The string is preserved in the memory image as it
appears in PROTOCOL.INI.

A line starting with a semicolon in column 1 is a comment and is ignored. Blank
lines are ignored too.

Lines may be as long as required. Continuation fines are not supported. Lines end
with CR LF.

I
I
I
I
I

Tabs, formfceds, and spaces are considered to be whitc space.

The Protocol Manager supports an optional section with optional keywords defined below:

[PROTMAN]
Drivernarne = PROTMAN$
Dynamic = YES orNO
PRIOPATY = protl, proO, ...
Bindsmms = YES or NO

I
I
I

The bracketed module name can be any valid name as long as it is unique within this []
PROTOCOL.INI. Drivername is required and must be assigned PROTMAN$, identifying ~
the section as belonging to the Protocol Manager. None of the entries are case-sensitive.

The DYNAMIC keyword is optional. It defaulm to NO if not presenL If set to NO, the
Protocol Manager opcrams only in the static mode and does not support dynamic protocol
drivers. If set to YES, the Protocol Manager operams in the dynamic mode and supports
both static and dynamic binding.

The PRIORITY keyword is optional. If absent, then the VECTOR uses default
dernultiplexing priority if multiple protocol drivers are bound to the same MAC (see Vector
Demultiplexing in Chapter 7). If present, the parameters on the right-hand side are

Page 4-16

presumed to be a list of protocol module names, highest priority first. The VECTOR
prioritizes protocol drivers for demultiplexing (if neee, ssary) according to their order in the
list, and packets are offered to the fast protocol driver listed first. Protocol drivers not
listed are assigned default priority AFTER those listed. It is not necessary that a protocol
driver ever bind for it to be listed here.

The BINDSTATUS keyword is optional. If absent, then the BindStatus command is not
supported by the Protocol Manager. If set to YES, then BindStatus is supported by the
Protocol Manager. The default disable condition is a memory optimization feature
primarily for DOS environments.

When syntax errors ate detected in processing the PROTOCOL.INI commands, by
convention, all NDIS drivers should:

I)
2)

Display a error message detail exact syntax problem.
Assume some non-fatal, value for the parameter associated with the error
and complete processing.

Configuration Memory Image
When the Protocol Manager initializes, it reads PROTOCOL.INI and parses it into a
memory image that it makes available to MAC and protocol modules via the Get Protocol
Manager Info call. The parsed image is formatted to make it easy for run-time modules to
interpret. All information contained in PROTOCOL.INI is present in the memory image in
the same order as in the file. (Comments and white space are of course not present in the
image). Note that in static mode the image is only available during device driver
initialization time. In dynamic mode the image may additionally be created by a utility
which then registers it with the Protocol Manager.

The structure definitions defined below do not conform rigorously to C language syntax.
They provide a pseudo C-like language to define the data structures encoded in the
configuration memory image.

ConfigMemorylmage
The ConfigMcmoryImagc data structure defines the complete memory image for all logical
devices read from the PROTOCOL.INI configuration file. It is a doubly linked list of
ModulcConfig structures. Each ModulcConfig structure corresponds to one module. The
ConfigMcmorylmagc structure is defined as follows:

struct ConfigMernorylmagc
{

struct Module Config(1) Module(I);
struct Module Config(2) Module(2);

~t~'t~ct ModuleConfig(N) Module(N);
};

where:

N=thc number of modules encountered by the Protocol Manager when parsing the
configuration file PROTOCOL.INf.

Page 4-17

ModuleConfig
The ModuleConfig(i) structure defines the memory image for configuration parameters
corresponding to one (bracketed name) module. For the (i)th module specified in
PROTOCOLINI it is defined as follows:

s~u~ ModuleConfig(i)
{

s~ruct ModuleConfig(i+ I) far *NextModule;
slxuct ModuleConfig(i-l) far *Pzev Module;
undgned char Module Name [16];
stru~ KcywordEnn'y(I) KcywordEnlry(1);
sn'u~ KeyworcLEnlry(2) KeywordEn~ry(2);

};

* • •

su'uct KeywordEnlry(N) KeywordEntry(N);

where:

N = the number of kcyword entries encountered in the PROTOCOL.1NI file for this
module.

Ncx~Modul¢ = a FAR pointer to the next module configuraton s~zucmr¢. NULL if this is
the structure for the last module. For OS,r2 the selector is a Ring 3 selector. For DOS the
pointer is a segment:offset pair.

PrcvModule = a FAR poinmr to the previous module configuration s~rncmrc. NULL ff this
is the structure for the first module. For OS[2 the selector is a Ring 3 selector. For DOS
the poinwx is a segment:offset pair.

ModuleNamc = array containing the charaacrs of the module name (given in brackets in the
configuraton file). This is an A$CIIZ string consisting of a maximum of 15 non-null
uppcccasc characters.

KeywordEntry
For each keyword line in the configu~don file for the module a memory image smclure is
created specifying the kcyword and the parameter values• The (j)th kcyword encountered
in the PROTOCOL.INI file for the module is defined as follows:

s~'u~ KcywordEnn'y(j)
(

sl:ruct KeywordEntry(j+l) far *NextKeywordEm:ry;
s~ruc~ KeywordEnrry(j- 1) far *PrevKeywoniEm:ry;
unsigned char Keyword[16];
unsigned NumPa.mms;
sm.¢t Pamm(l) Param(1);
s~ruct Param(2) Param(2);
• • •

suet Param(N) Param(N);
};

where:

,Page 4,-.] 8

I
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

N = the number of parameters entered with the keyword. If N =0 the parameters are not
present.

NextKeywordEntry = a FAR pointer to the next keyword entry structure in the memory
image. NULL if this is the last keyword entry. For OS/2 the selector is a Ring 3 selector.
For DOS the pointer is a segment:offset pair.

PrevKeywordEntry = a FAR pointer to the previous keyword entry structure in the
memory image. NULL if this is the first keyword entry. For OS/2 the selector is a Ring 3
selector. For DOS the pointer is a segment:offset pair.

Keyword = the array containing the characters of the kcyword found in the configuration
file. This is an ASCIIZ string consisting of a maximum of 15 non-null characters. The
ease of alphabetic characters will be uppercase in the memory image.

NumPaxams = the number (N) of parameters entered with the keyword each parameter
described by a param structure. The value is 0 if no parameters were present.

Param(k) = the (k)th parameter structure to specify the value of one parameter in a list of
parameters for a keyword. "Param(k+l)" follows Param(k) in sequence within the
memory image. Each parameter is delimited by a length field for the parameter. It is
assumed that a keyword's fields will be parsed sequentially.

Pararn
For the (k)th parameter defined in a parameter list for a specific keyword the following
structure def'mes its value and attributes:

struct Pararn(k)
{

unsigned ParamType;
unsigned PararnLen;
union PararnValue
{

long Numeric;
unsigned char String[STRINGLEN];

};
};

where:

STRINGLEN = length of the ASCIIZ parameter string (including the terminating NULL)
for string parameters.

ParamType = The type of parameter. The following types are supported:
0 - signed integer supporting up to 31 bits least significant byte first.
1 - a string of characters.

PararnLen = The length of the parameter value. The length could be one of the
following either be 4 for numeric parameters or STRINGLEN for string
parameters where STRINGLEN is the length of the string (including the
terminating NULL).

Numeric = a 3 l-bit signed numeric value.

Page 4-19

String = an ASCIIZ character string. The case of alphabetic characters in the
string is preserved from that in PROTOCOL.INL

The size of" the Param (k) sla'ucmr¢ is thus ParamLen + 4.

BindingsList
For each module that r~osters with the Protocol Manager a BindingsList su, uctttre may be
given to the Protocol Manager specifying the set of modules that the Oven module wishes
to bind to. The current module will require services from these ocher modules. This
structure is defined as follows:

struct BindingsList
{

unsigned NurnBindings;
su'uct Module
{

char ModuleNam¢[16];

};
} BoundDriver[NUMBINDINGS];

where:

NumBindings = the number (NUMBINDINGS) of modules that the specified module
wants to be bound to it from below. In the static default binding mode of one static
protocol and one MAC, a value of 0 in this field means for the protocol that it will bind to
the MAC. Otherwise in the non-default binding mode, a value of 0 in this field means that
the module has no lower bindings.

ModuleName = an ASCFIZ string specifying the logical name of a module which the
current module wishes to have bound to it from below. Maximum of 15 non-null
characters. The Protocol Manager will convert all alphabetic characters to uppercase.

BoundDriver = an array of NUMBIND1NG$ module names specifying the list of modules
to which the current module wants to be bound.

The order of the modules in the list is significant in that lrtitialeBind requests will be issued
to the protocol module in this order.

Page 4-20

I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I

Chapter 5 -
Primit ives

Specification of

Implementers should obey the following general guidelines:

All primitives specified in this section can be called in prot~ted mode in either
interrupt or task context under OS/2. Since any primitive may be called in interrupt
context it is illegal to block during the execution of a primitive.

All routines must run (as much as possible) with interrupts enabled. Interrupt
handlers must dismiss the inten'upt at the 8259 as soon as possible.

An indication handler :will.normally be entered withinterruptsenabled. The handler
may enable or disable interrupts if it chooses and on return the MAC must assume
that the interrupt state may have been changed.

Under MS-DOS indication handlers must assume they have only 200 bytes of stack
space. If more stack space is needed then the handler must supply a stack.

Confirmation and IndieationComplete handlers must be fully re-entrant and are
always entered with interrupts enabled. Under DOS Confirmation and
IndicationComplete handlers must assume they are entered on whatever stack the
interrupt occurred on.

Aconfirmation handler may be entered with the confirmation for a request before
the request has returned.

It is recommended that a MAC release the internal resources associated with either
TransrnitChain or a request before calling the confirmation handler. This allows the
protocol to submit a new TransmitChain or request from the confirmation handler.
Failing to do so may have a significant impact on performance.

A protocol must assume whenever it gives control to a MAC that interrupts may be
enabled by the MAC unless otherwise explicitly specified.

When passing a virtual address to one of these primitives under OS/2 the address
must be a Ring 0 GDT address unless otherwise specified. The interrupt service
routine portion of the MAC must handle the fact that this address may not be valid if
an interrupt occurs in real mode.

All primitives have a set of specific error codes defined. In general, MAC's and
protocols must return these specific codes. However it is acceptable to return
GENERAL_FAILURE for any non-recoverable failure. NDIS developers must be
aware that new error cedes may be added in the future and must design their code to
allow for this.

If a particular entry point or function is not supported by an NDIS protocol or MAC
driver, the entry point must still be exposed and an error (INVALID_FUNCTION
0x0008) returned if it is called. Crashing when an unsupported request is made is
unacceptable.

Page 5-1

I

Parameters are passed on the stack compatible with Microsoft C FAR Pascal calling
conventions. On entry to any routine the called module must save the caller's DS
before setting its DS from the "dataseg" parameter. At exit the caller's DS must be
restored. Furthermore the called module must follow standard Microsoft C
conventions about saving "register variable" SI and DI registers if these are used.
Modules which use the 80386 registers EDI, ESI and EBP must preserve these
registers also. The direction bit is assumed to be clear on entry and must be clear
upon exit. These conventions apply for calls in both directions across the NDIS
MAC interface.

Direct calls return in AX a return code specifying the status of funct/on invocation.
Those functions specified as using IOCTLs return this in the status field of the
request block.

Before callinga module in OS/2 it is the caller's responsibility to ensure that it is
currently executing in protected mode. If it is running in real mode it must do an
OS/2 "ReaIToProt" DevHlp call before calling the inter-module interface function.
Furthermore in OS/2 the inter-module call can only be made at post CONFIG.SYS
/NIT time since all selectors are Ring 0 selectors.

A MAC starts with packet reception disabled. A protocol must call SetPacketFilter
to enable reception of packets.

It is recommended that the number of Request commands which can be
simukaneously queued by the MAC be configurable. The suggested keyword in
the configuration file is "MaxRequests." The recommended default is 6. The
suggested range is 1 to 10.

The number of TransmitChain commands which can be simultaneously queued by
the MAC must be configurable. The suggested keyword in the configuration file is
"MaxTransmits". The recommended default is 6. The suggested range is I to 50.

On a DIX or 802.3 network, packet buffers received may have been padded to the
minimum packet size for short p~ke~s. It is the responsibility of the MAC client to
examine the length field ff present and s~p off the padding.

For DIX or 802.3 networks the MAC client can transmit a buffer with packet length
smaller than the minimum. It is the responsibility of the MAC to provide the
required padding bytes before n'ansraission on to the wire. The content of the
padding bytes is undefined.

Protocol drivers conforming to this specification are expected to format and
interpret MAC headers for the MAC driver types supported. Generally, protocols
are expected to suppo~ 802.3, DIX, and 802.5 MAC headers. It is recommended
that MAC drivers for other media types consider claiming w be one of the above
types and doing a transparent internal mapping between that and its own private
MAC header format. In doing so, the MAC will be able to claim interoperabflity
(assuming the appropriate testing is done) with most protocol drivers developed for
LAN Manager.

In the absence of any such conversion, the MAC header is passed protocol-to-MAC
or MAC-to-protocol in exactly the format in which it exists on the medium. The
CRC and non-data fields are not passed across this boundary. Therefore the
Ethernet CRC and the Token Ring SD, FCS, ED and FS fields are not passed and

Page 5-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

will not be included in the packet length. The protocol must convert header fields
found in the header buffer passed up to whatever format is required to conveniently
store them in local memory. For example multi-byte fields (e.g., 802.3 length)
may not be received in the byte order that is normally used by the CPU for storing
mdd-byte parameters. For exact format of the MAC header refer to the appropriate
standards document (see Appendix B).

For performance reasons, it is recommended that PhysToGDT be used whenever
possible instead of PhysToVirt.

Commonly Used Parameters

The unique module ID of the protocol, assigned at bind time by the Protocol
Manager.

MACID The unique module 1D of the MAC, assigned at bind time by the Protocol
Manager.

ReqHandle A handle assigned by the protocol to identify this request. If the request is
implemented asynchronously by the MAC driver in question, this handle is
returned on the confirmation call used to indicate completion of the request.
A ReqHandle of 0 indicates that the confirmation be unconditionally
suppressed. For example, the request may still be handled asynchronously
but there will be no notification of completion. A ReqHandle of 0 must not
change the immediate return code.

ProtDS DS value for called protocol module, obtained from the module's dispatch
table at bind time.

MACDS DS value for called MAC module, obtained from the module's dispatch
table at bind time.

Direct Primitives

TransmitChain
Purpose: Initiate transmission of a frame

PUSHWORD
PUSHWORD
PUSHLPBUF
PUSHWORD
CALL TransmitChain

ProtlD
ReqHandle
TxBufDescr
MACDS

;Module ID of protocol
;Unique handle for this request or 0
;Pointer to framebufferdeseriptor
;DS of called MAC module

Returns: 0x0000
0x0002
0x0006
0x0007
0x0008
0x000A
0x000B
0x000C

SUCCESS
REQUEST_QUEUED
OUT_OF_RESOURCE
INVALri3_PARAMETER
INVALII~FUNCTION
HARDWAR]~ERROR
TRANSMrI~ERROR
NO_SUCH_DESTINATION

Page 5-3

I

OxOO~F GENERAL_FAILURE

TxBafDescr Far pointer to the buffer descriptor for the frame.

Description:

This call asks the MAC to uansrnit data. The MAC may either copy the data described by
TxBut'Descr before returning, or queue the request for later (asynchronous) lm3cessing.
The MAC indicates which option it is taking by setting the appropriate return code.

In the asynchronous case, ownership of the frame data blocks passes to the MAC until the
transmission is complete; the protocol must not modify these areas until then. Ownership
of the data blocks is returned to the protocol when the MAC either returns a status code
which implies completion of the original request or calls its TmnsrnitConfirrn emry with the
RcqHandle fromTransrnitChain. If a request handle of zero was used and therefore
TransmitConfirrn will not be called, then ownership must not be considered returned until
the protocol receives a message that implies the transmission has occurred (e.g., receiving
an ACK to the transmitted message).

Note that when doing asynchronous transmission, the MAC must retain any needed
information from TxBufDescr, since the pointer to that sn'ucture becomes invalid upon
returning from TransmitChain. Also, if the TxImmedLen of the descriptor is non-zero, the
MAC must retain a copy of the immediate data at TxImmedPtr, since the immediate data
area becomes invalid upon returning from TransmitChain.

I
I
I
I
I
I
I
I

The MAC header must fit entirely in the immediate data, if present, or in the fu'st non-
immediate clement described in TxBufDes~" if there is no immediate data.

A MAC must be prepared to handle a TransmitChain request at anytime, including from
within interrupt-time indication routines.

The return code REQUEST_QUEUED will cause a TransmitConfirm to be called from the
MAC back to the protocol if the ReqHandle on the TransmitChain ccall is not 0. All other
return codes from TransmitChain imply that no TransmitConfmn will occur.

The TRANSMIT_ERROR and NO_SUCH_DESTINATION error codes are intended to
allow a protocol to recreate the frame status byte on a Token Ring network. Thus,
NO_SUCH_DESTINATION implies that the address recognized bits were not set (and
therefore the frame was not copied), while TRANSMIT_ERROR merely means that the
frame was not copied. Protocols which make use of Source Routing may need the
NO_SUCH_DESTINATION error code to be completely ¢onformanL Token Ring MAC
driver writers must make every attempt to retm'n these ~iv~' codes properly.

TransmitConfirm
Purpose: Imply the completion of wansrnitting a frame.

PUSH WORD protlD
PUSH WORD MACID
PUSH WORD ReqHandle
PUSH WORD Status
PUSH WORD ProtDS
CALL TransmitConfirrn

•
;Module ID of Protocol ~
;Module ID of MAC
;Unique handle from TransmitChain
;Status of original TransmitChain
;DS of called protocol module

Page 5 4

Returns: 0x0000
0x0007
0x00FF

SUCCESS
INVA!-Ir~PARAMETER
GENERAL_FAILURE

Dcscripdo_n:

This routine is cailed by a MAC to indicam completion of a previous TransmitChain. The
purpose of this is to return ownership of the transmitted data blocks back to the protocol..

The ProdD parameter must be the value passed by the protocol on the previous
TransmitChain to identify the requester.

The RcqHandle is the value passed by the protocol on the previous TransmitChain which
identifies the original rcquesL

TransmitConfirm doe, s not necessarily imply that the packet has been transmitted, though it
generally will have been (with the exception of some intelligent adapter implementations).
If the packet has been transmitted, Status must indicate the final transmit status:

0x0000
Ox000A
0x000B
0x000C
0x00FF

SUCCESS
HARDWARt~ERROR
TRANSMIT_ERROR
NO_SUCI-~DESTINATION
GENERAL~FAILURE

See TransmitChain for more details.

ReceiveLookahead
Purpose: Indicate arrival of a received frame and offer lookahcad data.

PUSH WORD MACID
PUSH WORD FramcSizc
PUSH WORD BytcsAvail
PUSH LPBUF Buffer
PUSH LPBYTE Indicate
PUSH WORD ProtDS
CA! -I~ RcceiveLookahcad

;Module ID of MAC
;Total size of frame (0 if not known)
;Bytes of lookabead available in Buffer
;Virtual address of lookahcad data
;Virtual address of indicate flag
;DS of called protocol module

Returns: 0x0000
0x0003
0x0004
0x0005
0x0006
0x0007
0x00FF

SUCCESS
FRAMt~NOT_RECOGNr7 -r~
FRAlVIt~REIECTED
FORWARE~FRAME
OUT_OF_RESOURCE
INVALID_PARAMETER
GENERAL_FAILURE

FrameSiz¢ The total size, in bytes, of the ~ceived frame. A value of 0 indicates that
the MAC does not know the total frame size at this time.

BytcsAvail The number of bytes available in the lookaheacl buffer. This is guaranteed
to be at least as large as the lookahead size established with the
SetLookabead ruquest. For frames which are smaller than the lookabead
size, the lookahcad buffer will contain the whole frame.

Page 5-5

Buffer Virtual address of contiguous lookahead buffer. The buffer contains the
leading BytesAvail octets of the frame. This buffer is ephemeral; it is
addressable to the protocol only during the scope of the Receive call.

Indicate Virtual address of indication flag byte. This byte is set to OxFF by the MAC
prior to this call. If the protocol clears the byte to zero prior to returning
then indications will be left disabled until IndicationOn is called from
IndicationComplete.

Description:

This routine is called by a MAC to indicate reception of a frame and to offer frame
lookahead data. The protocol is expected to inspect this information very rapidly to
determine flit wants to acceptthe frame or not. [fit wants to accept the frame, it may call
TransferData to ask the MAC to copy the frame data to a specified buffer described by a
TDBufl~escr. The protocol can indicate that it is rejecting or does not recognize the frame
by rearming an appropriate error code. Note that the frame not recognized error has special
significance to the Vector function. If the protocol is accepting the frame and if the
Iookahead buffer contains the whole frame, the protocol can simply copy the data itself
before returning from Receive. The protocol may determine that it has the whole frame if
BytesAvail equals FrameSize, or if the Iookahead information includes a protocol header
with the frame length, and this matches BytesAva/l.

It is strongly recommended that MACs provide a non-zero FrameSize whenever possible.
Some protocols might not be able to process frames unless the frame size given by this
parameter is known. A MAC can optionally indicate that it does not normally provide a
non-zero frame size by se~ng bit 16 of the service flags in the MAC specific characteristics
table.

The MAC implicitly disables indications ('IndicafionOff) before calling Receive Lookahead.
The Indicate flag byte instructs the MAC on whether to recnablc indications or leave them
disabled on the return. If the protocol chooses to leave indications disabled, it can enable
them within IncficationCompiete by calling IndicadonOn.

The protocol must absolutely minimize its processing time within the ReceiveLookahead
handler. This is necessary to let certain MAC's re-enable the hardware to avoid loss of
incoming frames. Shortly after returning from ReceiveLookahead, the MAC wig call the
protocol back at its IndicationComplete entry point. The protocol can do any needed post-
processing of the received flame at that time. The MAC does not guarantee to provide one
IndicationComplete call for each indication. It can choose to issue a single
IndicarionComplete for several indications that have occtmed.

TransferData
Purpose: Transfer received frame data from the MAC to a protocol.

PUSH LPWORD
PUSH WORD
PUSH LPBUF
PUSH WORD
CALL TransferData

BytesCopied
Fran~Offset
"FDBufDescr
MACDS

;Number of bytes copied
;Starting offset in frame for transfer
;Virtual address of wansfer data description
;DS of called MAC module

Returns: O x O 0 0 0 SUCCESS

Page 5-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0x0007
0x000$
0x00FF

[NVALII~PARAME'I~..R
INVALIi~FUNCTION
GENER.AL~FAILURE

BytesCopied Virtual address of buffer for returning number of bytes copied during
transfer data operation.

FrarneOffset Starting offset in received frame where data transfer must start. The
value of FrameOffset must be less than or equal to the value of
BytesAvail from the corresponding ReceiveLookahead.

TDBufDesor Virtual address of transfer descriptor describing where to store the frame
data.

Description:

A protocol calls this synchronous routine from within its RecciveLookahcad handler before
return, to ask the MAC to transfer data for a received frame to protocol storage. The
protocol can specify any starting frame offset and byte count for the transfer, so long as
these don't exceed the frame's length. If bit 15 of the MAC service flags is set, multiple
TransferDatas may be called during a single RceeiveLookahead indication. If this bit is
reset, only one TransferData per ReeeiveLookahead indication is permitted. In the latter
case subsequent calls within the same indication will return an error.

For MACs with bit 15 of the MAC service flags reset, a protocol intending to call
TransferData must do so only if it has decided to accept the incoming packet. Since the
MAC driver may be shared by multiple protocols, a protocol's failure to follow this
restriction in this case jeopardizes other coexisting protocol drivers from receiving these
packets. When a protocol is bound to a MAC with bit 15 set, this restriction does not
apply as a mandatory requirement. However, it is sdll recommended in such cases for
performance reasons that a protocol call TransferData only if it has decided to accept the
incoming packet. A protocol module must set the Lookahead size large enough to
determine if the packet is intended for it by examining ony the Lookahead bytes presented
by ReceiveLookahead.

It is recommended that the multiple TransferData feature with bit 15 set be implemented in
MAC drivers whenever it is reasonable.to do so with the adapter hardware.

lndicationComplete
Purpose: Allow protocol to do post-processing on indications.

PUSH WORD MACID ;Module ID of MAC
PUSH WORD ProtDS ;DS of called protocol module
Ca,] .I. IndieationComplete

Returns: 0x0000
0x0007
0x00FF

SUCCESS
INVALIl~PARAMETER
GENERAL~FAILURE

I3¢seription:

A MAC calls this entry point to enable a protocol to do post-processing after an indication.
The MAC will always generate an IndicationComplete subsequent to an indication

Page 5-7

regardless of the return code of the indication. Although still in interrupt context and
subject to the normal OS/2 guidelines for interrupt processing, the protocol is not under the
severe time constraints of the indication. The MAC must minimize stack usage before
calling this routine and, under DOS, must have swapped off of any special "interrupt"
stack.

This routine is always entered with interrupts enabled and with the network adapter
interrupt dismissed from the interrupt controller. Thmefore, it may be reentered at the
completion of another indication. Also no one-to-one correspondence is guaranteed
between indications and IndicationComplete. A MAC may generate one
IndicationComplete for several indications. A protocol may enforce a one-to-one
correspondence by leaving indications disabled until the return from IndicationComplete.

If indications are explicitly disabled by a protocol on. return, from an indication,, it is the
protocol's responsibility to invoke IndicationOn as soon possible during
IndicationComple~c.

MAC developers must avoid simply serializing each indication with IndicationComplete as
this can negatively affect performance. The MAC must be designed to allow an indication
to occur during IndicationComplete processing. Of course, if this occurs, another
IndicationComplete call will be necessary.

ReceiveChain
Purpose: Indicate reception of a frame in MAC-managed buffers.

PUSH WORD MACID
PUSH WORD FrameSize
PUSH WORD ReqHandle
PUSH LPBUF RxBu~Descr
PUSH LPBYTE Indicate
PUSH WORD ProtDS
CALL ReceiveChain

;Module ID of MAC
;Total size of frame (bytes)
;Unique handle for this request
;Virtual address of receive descriptor
;Virtual address of indicate flag
;DS of called protocol module

Returns: 0x0000
0x0001
0x0003
0x0004
0x0005
0x0006
0x0007
0x00FF

SUCCESS
WAIT_FOR_RELEASE
FRAME_NOT_RECOGNr~
FRAME_REJECTED
FORWARD_FRAME
OUT_OF_RESOURCE
INVAI ~Ir~PARAMETER
GENERAL_FAILURE

FrameSize Total size of received frame, in bytes.

RxBufDescr Virtual address of receive descriptor describing the received frame.

Indicate Virtual address of indication flag byte. 'This byte is set to OxFF by the
MAC prior to this call. If the protocol clears the byte to zero prior to
returning then indications will be left disabled until IndicationOn is
called from IndicationComplete.

Description:

Page 5-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A MAC calls this roudne to indicate the reception of a frame in MAC-managed storage.
Ownership of this storage is implicitly passed to the protocol when this call is made. At its
option, the protocol may copy the data right away and indicate this via the return code (in
which case ownership reverts to the MAC); or the protocol may queue the request and copy
the frame later, in which case it retains ownership of the frame's storage until it calls
ReeeiveRelcase. Since the protocol may queue data received in this manner, it is possible
that the MAC may run low on available frame buffers. The MAC may elect to call
ReeciveLookahead instead of RceeiveChain while it is low on frame buffers. This allows
the MAC to retain control of its ~rnaining buffers until the protocol releases the buffers it is
holding.

Note that for frames longer than 256 bytes, the MAC must guarantee that the first data
block of the frame is at least 256 bytes long. Frames less than or equal to 256 bytes in
length must be completely specified with a single data block. This allows the protocol to
parse packet headers out of the first data .block and greatly facilitates protocol processing
efffieicney.

Like RcccivcLookahead, a protocol's processing within ReceivcChain is rime critical. At
some point after return from ReceivcChain the MAC will generate an IndicationComplete to
allow post-processing of the indication.

The MAC implicidy disables indications (IndicationOtT) before calling RecciveChain. The
Indicate flag byte instructs the MAC on whether to rcenablc indications or leave then
disable on the return. If the protocol chooses to leave indications disabled, it can enable
them within IndicationCornpletc by calling IndicationOn.

R e c e i v e R e l e a s e

Purpose: Retttrn frame storage to the MAC that owns it.

PUSH WORD RcqHandlc
PUSH WORD MACDS
CALL ReceivcRelease

;Unique handle from RcccivcChain
;DS of called MAC module

Returns: 0x0000
0x0007
0x0009
0x00FF

SUCCESS
INVALID_PARAMETER
NOT_SUPPORTED
GENERAL_FAILURE

Description:

A protocol uses this call after it has copied frame data provided by a ReceiveChain call.
ReccivcRcleas¢ returns ownership of the frame data blocks to the MAC.

I n d i c a t i o n O f f "

Purpose: Disable MAC indications

PUSH WORD MACDS
CALL IndicationOff

;DS of called MAC module

Returns: 0×0000
0x0008
0x00FF

SUCCESS
INVALID_FUNCYION
GENERAL_FAILURE

Page 5-9

Description:

A protocol may use this call to prevent the generation of ReceiveLookahead, ReceiveChain
and Status indications from the MAC. This is similar in concept to disabling interrupts.
When indications are off, a MAC must queue events that would cause it to generate
indications to the prot~x~ol. A MAC implicitly disables indications just before calling the
ReceiveLookahead, ReceiveChain or Status indication entry point of a protocoL

The only legal use of IndicationOff is to bracket a call or calls to the MAC. For example,
the following sequence is valid:

 nd/c onOff
T~znsmkCl'~in
Indk:ationOn

In this situation the protocol must not block while indications are off and must call
IndicationOn as soon as possible. The protocol must ensure that all calls to IndicafionOff
are paired up with a corresponding call to IndicafionOn. If the protocol issues an
IndicationOff call from a timer tick handler, or from a ReceiveLookahead, ReceiveChain or
Status indication handler it must issue the IndicationOn call before returning.

Note that IndicationComplete may still occur even though indications are disabled.
Disabling indications has no effect on a MAC's ability to call IndicmionComplete. •

This function always returns with interrupts disabled. It is the responsibility of the caller to
re-enable them.

IndicationOn
Purpose: Enable MAC indications

Called from protocol to MAC.

PUSH WORD MACDS
CALL IndicationOn

;DS of called MAC module

Returns: OxO000
OxO008
OxOOFF

SUCCESS
INVALID_FUNCHON
GENERAL_FAILURE

Description:

A protocol must use this call to re-enable indications after having disabled them. Note that
a MAC may optionally defer the actual re-enabling of indications.

It is possible that IndicationOff and IndicationOn pairs will nest. Therefore the MAC must
maintain a reference count w enable it to de~rmine when to actually re-enable indications.
The protocol must not assume that a call to IndicafionOn will immediately enable
indications.

IndicationOn may be called from an IndicationComplete handler after leaving indications
disabled on return from an indication handler. IndicafionOn may also be used, paired with
IndicadonOff, to bracket a call or calls to the MAC.

Page 5-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

This function always returns with intenmpts disabled. It is the responsibility of the caller to
re-enable them. No indications will be generated until after the call has returned.

General Requests
General requests are commands from a protocol to a MAC directing it to do adapter
management operations like setting the station address, running diagnostics, and changing
operating parameters or modes. A MAC may choose to implement any of the Request
functions synchronously or asynehronously. A MAC returns the REQUEST_QUEUED
return code to inform the protocol that a given request will be processed asynehronously.
When this is the case, the MAC will call back to the protocol's RequestConfirm entry point
to indicate when processing of the request is complete. If a request handle of zero is used
then the RequestConfirm call is suppressed.. It is.the caller:s responsibility to make.certain
that any data referenced by the request remains valid until the request is guaranteed to have
completed. If a protocol makes a general MAC request when executing its InitiateBind
startup function and the MAC returns REQUEST_QUEUED, the protocol must wait for the
correspondingRequestConfirm to be returned before exiting from the InitiateBind function.
Any other return code from a general request implies that no RequestConfirm will occur.

All general requests have the following common calling convention:

PUSH WORD ProtlD
PUSH WORD ReqHandle
PUSH WORD Paraml
PUSH DWORD Param2
PUSH WORD Opcode
PUSH WORD MACDS
Call Request

;Module ID of Protocol or 0
;Unique handle for this request or 0
;Request dependent word parameter or 0
;Request dependent dword parameter or 0
;Opcode of request
;DS of called MAC module

InitiateDiagnostics
Purpose: Start runtime diagnostics.

PUSH WORD ProtID
PUSH WORD ReqHandle
PUSH WORD 0
PUSH DWORD 0
PUSH WORD 1
PUSH WORD MACDS
Call Request

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter - must be 0
; Pad parameter - must be 0
; Initiate Diagnostics Request
; DS of called MAC module

Returns: 0x0000
0x0002
0x0006
0x0007
0x0008
0x0009
0x000A
0x00FF

SUCCESS
REQUEST_QUEUED
oI.rILO1LRESOURCE
INVALII~PARAMETER
INVALII~FUNCI'ION
NOT_SUPPORTED
HARDWARE_ERROR
GENERAL_FAILURE

Description:

Page 5-11

I

Causes. a MAC to run hardware diagnostics and update its status information in the MAC-
specific stares section of the characteristics table. A MAC must return an error if it does not
support run time diagnostics. While the diagnostics are in progress, the MAC must set the
diagnostics in progress bit (bit 5) in the MAC stares field in the MAC service-specific status
table. If HARDWARE_ERROR is returned, the protocol may examine the various fields in
the service-specific status table for an indication as to the cause of the problem.

I
I
I

ReadErrorLog
Purpose: Return error log. I
PUSH WORD
PUSH WORD
PUSH WORD
PUSH LPBUF
PUSH WORD
PUSH WORD
Call Request

Returns: 0x0000
0x0002
0x0006
0x0007
0x0008
0x0009
0x00FF

ProtID ; Module ID of Protocol []
RcqHandlc ; Unique handle for this request or 0 |
LogLcn.~. ; Length.oflog-.buffcr.:
LogAddr ; Buffer for returning log m
2 ; Read Error Log Request |
MACDS ; DS of called MAC module

SUCCESS
REQUEST_QUEUED
OUT_OF_RESOURCE
INVALID_PARAMETER
INVALID_FUNCtION
NOT_SUPPORTED
GENERA~FAILURE

I

I

Description:

Causes a mad error log to be issued to adapter. This command is implemented on the IBM
token ring adapter and possibly other adapters. The format of the information returned is
adapter specific and not specified here.

SetStationAddress
Purpose: Set ~e network address of the station.

PUSH WORD ProtID
PUSH WORD ReqHandle
PUSH WORD 0
PUSH LPBUF AdaptAddr
PUSH WORD 3
PUSH WORD MACDS
Call Request

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter- must be 0
; Buffer containing the adapt" address
; SetS~tionAddress R~uest
; DS of called MAC module

Returns: 0x0000
0x0002
Ox0006
0x0007
0x0008
0x000~
0x00FF

SUCCESS
REQUEST_QUEUED
OUT_OF_RESOURCE
INVALID_PARAMETER
INVALID_FUNCTION
N O ~ S U P ~ R ~
G ~ ~ L ~ A ~

Description:

I
I
I
I

Page 5-12

I
I
I
I
I
I

There is only a single station address. Each time it replaces the current station address in
the MAC service-specific characteristics table and will rcconfigure the hardware to receive
on that address if required. The staten will be initially configured with the address
specified in the permanent station address field of the MAC service-specific characteristics
table (which this call does not modify).

The adapter address buffer contains only the bytes of the address to be set. The length of
the address must be equal to the length specified in the MAC service characteristics table.

If the hardware does not support a mechanism to modify its station address then the current
station address buffer is not updated and this function returns INVALID_FUNCTION. In
this ease the MAC continues to use the permanent station address to recognize incoming
directed packets.

If a MAC does not support the OpenAdapter and CloseAdapter commands (bit 11 of the
MAC service flags is reset), then the SctStationAddrcss command can be issued by the
protocol at any time. However, if the MAC supports the Open Adapter and CloseAdapter
commands (bit 11 of the MAC service flags is set), then this command is valid only either
during system initialization time or while the MAC is in a dosed state. The protocol driver
must issue an Open Adapter call after issuing the SetStationAddress call for the
SetStafionAddress command to take effect.

OpenAdapter
Purpose: Issue open request to network adapter.

PUSH WORD ProtlD
PUSH WORD ReqHandle
PUSH WORD OpenOpfions
PUSH DWORD ExtendedRet

PUSH WORD 4
PUSH WORD MACDS
Call Request

; Module ID of Protocol
; Unique handle for this request or 0
; Adapter specific open options
; Optional pointer to a DWORD extended return code

(vendor-specific or warning level)
; Open Adapter Request
; DS of called MAC module

Returns: 0x0000
0x0002
0x0006
0x0007
0x0008
0x0009
0x0024
0x002A
0x00FF

SUCCESS
REQUEST_QUEUED
OU'IhOILRESOURCE
INVALI PARAM r£
INVALID_FUNCTION
NOT_SUPPORTED
HARDWAR]~FAILURE
NETWORK_MAY_NOT_BE_CONNECTED
GENERAL_FAILURE

Optional vendor-specific information can be returned through the ExtendedRet pointer. A
caller supporting this would push a pointer to a DWORD. The DWORD would have been
initialized to 0xPvt'H--l--tq ~ (unsupported). If there is any extended return information this
value would be changed. A caller not supporting this would simply push a NULL (0)
pointer. The OpenAdapter routine which supports this would verify the ExtendedRet

Page 5-13

I

pointer is not NULL (0) and then write the information. The OpenAdapter routine which
does not support this would simply ignore the pointer.

The purpose of ExtendedRet is to provide warning messages on a SUCCESS return
without requiring additional testing for those callers not supporting warnings, to provide
additional information on GENERAL_FAILURE and HARDWARE_FAILURE, and to
pass vendor-specific codes on any return to provide for active functional experimentation
and evolution without inconveniencing other vendor's components.

Description:

The purpose of the OpenAdapter function is to activate an adapter's network connection.
This may involve making an electrical connection for some adapters like token ring
adapters. This also implies that a considerable delay may occur between submittal of this
request and its confirmation. If the MAC indicates that OpenAdapter is supported (by
setting bit 11 of the service flags in the MAC sewiceospecific characteristics table), then the
protocol driver must ensure the adapter is open during bind-dine processing. Since
OpenAdapter can only be called when the adapter is closed, even in a VECTOR
configuration, the protocol must first check if the adapter is already open by examining bit
4 of the MAC status in the MAC service-specific status table.

While an adapter is closed the following functions are guaranteed to operate:
SetLookahead, Ser.PacketFilter, SetStatioaAddress, Interrupt, Indicationoff, IndicationOn.

Since this function is adapter specific it is expected that any necessaxy parameters are either
known a priori by the MAC or can be recovered from the PROTOCOL.INI file. The
format of the information is highly adapter specific and left up to the implementer to define.

The OpcnOptions parameter is adapter specific. For IBM TokenRing and compatible
adapters, these are defined in the IBM Token Ring Technical Reference Manual.

CloseAdapter
Purpose: Issue close request to network adapter.

I
I
I
I
I
I
I
I
I
I
I
I

PUSH WORD ProtID ; Module ID of Protocol
PUSH WORD ReqHandle ; Unique handle for this request or 0
PUSH WORD 0 ; Pad parameter- must be 0
PUSH DWORD 0 ; Pad parameter - must be 0
PUSH WORD 5 ; Close Adapter Request •
PUSH WORD MACDS ;DS of called MAC module a
Call Request

Returns: 0x0000
0x0002
0x0006
0x0007
0x0008
0x0009
0x00FF

SUCCESS
REQUE3T_QUEUED
OUT_OF_RF~OURCE
~ ~ _ P ~ T ~
~ ~ ~ ~ O N
N O ~ S ~ R ~
G ~ _ F A ~

Description:

Page 5-14

I
I
I
I
I

This function closes an adapter. This causes it to decouple itself from a network so that
packets cannot be sent or received. CloseAdapter resets the functional or multicast
addresses currently set.

Since this function is adapter specific it is expected that any necessary parameters are either
already known by the MAC or can be recovered from the PROTOCOL.INI file. The
format of the information is highly adapter specific and left up to the implementer to def'me.

ResetMAC
Purpose: Reset the MAC software and adapter hardware.

PUSH WORD ProtID
PUSH WORD ReqHandle
PUSH WORD 0
PUSH DWORD 0
PUSH WORD 6
PUSH WORD MACDS
Call Request

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter- must be O.
; Pad parameter - must be 0
; Reset MAC Request
; DS of called MAC module

Returns: 0x0000
0x0006
0x0007
0x0008
0x0009
0x0024
0x002A
0x00FF

SUCCESS
OUT_ OF_RESOURCE
INVALID_PARAMETER
INVALID_FUNCTION
NO'I~SUPPORTED
HARDWARE~FAILURE
NETWOR~MAY_NOT_BE_CONNECrED
GENERAL_FAILURE

Description:

The function causes the MAC to issue a hardware reset to the network adapter. The MAC
may discard without confirmation any pending requests and abort operations in progress.
For compatibility with some current protocols which do not properly handle resets, it is
suggested the MAC complete pending requests, returning INVALID_FUNCTION on all
confirmations which result. The MAC must preserve the current station address,
LOOK.AHEAD length, packet filter, multicast address list, functional address and
indication on/off state.

For MAC's that support the OpenAdapter function, the Reset MAC command leaves the
adapter in the opened state if it was opened prior to the reset. The adapter open parameters
that were in effect prior to the reset must be the same ones in effect after the reset.

When the reset is initiated, the MAC must generate a StartReset status indication back to the
protocol. For some MAC's a considerable delay can elapse between the start of the reset
and its completion. All MAC's must subsequently issue an EndReset indication when the
reset is complete. During the time between the StartReset indication and the corresponding
EndReset indication, the MAC must return INVALID_FUNCTION for any request it
receives while a reset is in progress. The EndReset indication notifies the protocol that the
MAC can handle new requests. As always, an IndieationComplete follows these
indications. MACs written to V 1.0.1. of this spec will not issue the End Reset. They must
issue the IndieationComplete to signal the end of the reset.

Page 5-15

I

Note that the completion (i.e. the return from this command or the request confirm) of the
Reset MAC request itself does not signal the start or end of the reset.

There can be no guarantee that this function will succeed, though the NDIS MAC developer
must make every attempt. An error return from this call can be considered fatal. If the
reset fails, the adapter may no longer be in the same state. For example, ff the adapter was
open before a failed ResetMAC, it may now be closed.

I
I
I

ResetMac must not be queued.

SetPacketFilter
Purpose: Select received packet general filtering parameters.

PUSH WORD ProtID
PUSH WORD ReqHandle
PUSH WORD FilterMask
PUSH DWORD 0
PUSH WORD 7
PUSH WORD MACDS
Call Request

; Module ID of Protocol
; Unique handle for this request or 0
; Bit mask for packet filter
; Pad parameter- must be 0
; Set Packet Filter Request
; DS of called MAC module

I
I
I
I

FflterMask bit
0 directed and mukicast or group and functional
1 broadcast packets
2 any packet on LAN (promiscuous)
3 any source muting packet on LAN
4-15 Reserved, must be zero

I

I
Returns: 0x0000 SUCCESS ~

0x0002 REQUEST_QUEUED •
0x0006 OUT_OF_RESOURCE
0x0007 INVALII~PARAMET~R
0x000$ INVALID_FUNCTION
0x00FF GENERAL_FAILURE

Description:

This command tells the MAC which kinds of received packets must generate
indications to the protocol invokin.g, this com. mand. A Fi l terMask of 0 |
indicates that the MAC must not indicate received packets to that protocol. U
If a Fil terMask bit is set, then this indicates that the MAC must indicate
that type of packet to the protocol. Except for a 0 FilterMask, a filter bit of
0 does not require the MAC to suppress indications for that type of packet. ~
For example the FilterMask used by the MAC may or may not correspond to m
the capabilities of the hardware adapter . For example a MAC may be
designed to receive multicast frames by promiscuously r.eceivi.n.g all f rames |
and discarding those that do not match the filter. I t ~s ophonal for the •
MAC to support such software filtering. If the MAC can suppress such
indications, it is strongly recommended that it do so. However, if the
MAC does not suppress such indications, then the protocol must be
prepared to receive these and discard the incoming packet if necessary.

Page 5- ! 6

If this request returns SUCCESS, then
the types of packets requested and will
for those types of packets.

the hardware is enabled to receive
generate Indications to the protocol

If the MAC does not support the receiving of packets of the type specified,
then it will return GENERAL FAILURE. In this case the FilterMask is left
in its previous state.

AddMulticastAddress
Purpose: Allow adapter to respond to a multicast address.

PUSH WORD ProtID
PUSH WORD ReqHandle
PUSH WORD 0
PUSH LPBUF MuldAddr
PUSH WORD 8
PUSH WORD MACDS
Call Request

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter- must bc 0
; Buffer containing multicast address
; Add Multicast Address Request
; DS of called MAC module

Rcmms: 0x0000
0x0002
0x0006
0x0007
0x0008
0x0009
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF_RESOURCE
 NVAL PARAMETER
INVALID_FUNCI'ION
NOT_SUPPORTED
G E ~ ~ F A ~

Description:

This function allows the addition of multicast addresses. The term multicast address also
implies 802.5 group addresses. This function allows the addition of only one address at a
time but can bc repeated to add more multicasts.

It is the MAC's responsibility to remm an error if too many muhicast addresses have bccn
added (OUT_OF_RESOURCE or INVALID_FUNCTION) or if an address of the wrong
type has bccn added (INVALID_PARAMETER).

Multicast addresses are never over written and will return an error
(INVALID_PARAMETER) if they already exist no matter what their type. They must be
explicidy deleted.

The muldcast address buffer contains only the bytes of the multicast address to be added.
The length of the multicast address must b¢ equal to the length specified in the MAC service
characteristics table.

Page 5 - 17

I

DeleteMulticastAddress I
Purpose: Forbid adapter to respond to a muldcast address. I

I

PUSH WORD ProtID ; Module ID of Protocol
PUSH WORD ReqHandle ; Unique handle for this request or 0 I
PUSH WORD 0 ; Pad parameter- must be 0 ~
PUSH LPBUF MuhiAddr ; Buffer containing mulficast address
PUSH WORD 9 ; Delete Muldcast ~_dress Request
PUSH WORD MACDS ; DS of called MAC rrgxiul¢ []
Call Request B

Returns:

Description:

0x0000 SUCCESS I
0x0002 REQUEST_QUEUED
0x0006 OUT_OF_RESOURCE.
0x0007 INVALID_PARAMETER
OXO008 INVALID_FUNCTION I
0x0009 NOT_SUPPORTED
0x00FF GENERAL_FA]I.URE

!
This function removes a previously added multicast address. The term multicast address
also implies 802.5 group addresses. INVALID_PARAMETER is returned if the address
was not in the ruble. I
The multicast add.~ss buffer has the sarlg format as in the AddMuldcastAddress command.

UpdateStatistics
Purpose: Cause MAC statistics to be updated.

PUSH WORD ProtID
PUSH WORD ReqHandle
PUSH WORD 0
PUSH DWORD 0
PUSH WORD 10
PUSH WORD MACDS
Call Request

; Module ID of Protocol
; Unique handle for this re.quest or 0
; Pad parameter - must be 0
; Pad parameter- must be 0
; Update Statistics request
; DS of called MAC module

Returns: 0x0000
0x0002
0x0006
0x0007
0x0005
0x00FF

SUCCESS
REQUEST_QUEUED
OUT_ OF_ RESOURCE
INV# LI'I3_PARAMETER
INVALID_FUNCHON
G ~ L _ F ~ ~

Description:

Causes the MAC to atomically update the statistics in its characteristics table. The requester
can then read the table when this operation is complete. Those statistics which are not
always current will remain the same until the next UpdateSmtistics call is performed. If all
of the statistics in the table are always current this function must return SUCCESS.

I
I
I
I
I
I
I
I
I

Page 5-18

ClearStatistics
Purpose: Cause MAC statistics to be cleared.

PUSH WORD ProtID
PUSH WORD ReqHandle
PUSH WORD 0
PUSH DWORD 0
PUSH WORD 11
PUSH WORD MACDS
Call Request

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter- must be 0
; Pad parameter- must be 0
; Clear Stat ist ics request
; DS of called MAC module

Returns: 0x0000
Ox0002
Ox0006
Ox0007
Ox0008
0x00FF

SUCCESS
REQUEST_QUEUED
OUT_OF_RESOURCE
INVALII~PARA!~R
INVALID_FUNCTION
GENERAL_FAILURE

Description:

Causes the MAC to reset its statistics counters. This implies that all statistics must be reset
to zero in an atomic OlX~r~fion.

InterruptRequest
Purpose: Request asynchronous indication.

PUSH WORD ProtID
PUSH WORD 0
PUSH WORD 0
PUSH DWORD 0
PUSH WORD 12
PUSH WORD MACDS
Call Request

; Module ID of Protocol
; Pad parameter- must be 0
; Pad parameter - must be 0
; Pad parameter - must be 0
; InterruptRequest
; DS of called MAC module

Returns: Ox0000
Ox0006
0x0008
0x0009
OxOOFF

SUCCESS
OL~OF_RESOURCE
INVALID_FUNCTION
NOT_SUPPORTED
GENERAL_FAILUR.E

Description:

This function requests the MAC to generate an asynchronous Interrupt Status indication
back to the protocol. The protocol may control the generation of this Intern~pt Status
indication by disabling and later enabling indications. The MAC may at its discretion
suppress the generation of this indication if them is another indication pending which may
be issued in place of the Interrupt status indication. This request is intended to be used for
MAC's which can generate a hardware interrupt on demand. This function must be
implemented if at all possible. Interrupt request will substantially improve the perfomaance
of some protocols (particularly DLC).

Page 5-19

I

SetFunctionalAddress
Purpose: Cause adapter to change its functional ~ .

PUSH WORD ProtlD
PUSH WORD ReqHandle
PUSH WORD 0
PUSH LPBUF FunctAddr
PUSH WORD 13
PUSH WORD MACDS
Call Request

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter- must be 0
; Buffer containing functional address
; Set Functional Address Request
; DS oft:ailed MAC module

I
I
I
I

Returns: 0x0000
0x0002
0x0006
0x0007
0x0008
0x0009
0x00FF

SUCCESS
REQUEST_QUEUED
OUT_OF_RESOURCE
INVALID_PARAMETER
INVALID_FUNCTION
NOT_SUPPORTED
GENERAL_FAILURE

Description:

This sets the IEEES02.5 functional address to the passed functional address. The adapter
will use the functional address to discern packets intended for it. For more information on
functional addresses see the IEEE 802.5 specification.

The functional address buffer contains only the bytes of the new functional address bit
pattern. It represents the logical OR of all functional addresses to be registered with the
adapter. The length of the functional address buffer is 4 bytes.

Multiple protocols can set or reset their functional address bit if required by each protocol
by first reading the current functional address DWORD bit pattern Prom the MAC service
characteristics table, then ORing in or ANDing out the required functional bit and passing
the new functional address pattern in this command.

I
I
I
I
I
I
I

SetLookahead
Purpose: Set length of lookahead information for ReceiveLookahead.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

I
ProtID • Module ID of Protocol I
ReqHandle ~ Unique handle for this request or 0
Length ; Minimum length of lookahcad info
0 ; Pad parameter- must be 0 []
14 ; Set Lookabead Request []
MACDS ; DS of called MAC module

Returns: 0x0000
0x0002
0x0007
0x00FF

SUCCESS
REQUEST_QUEUED
INVAIJD_PARAMETER
GENERAL_FAILURE

Description:

Page 5-20

This request sets the minimum length in bytes of lookahead information to be returned in a
Receive Lookahead indication. Until SctLookahead is initially called, a value of 64 bytes is
assumed for the lookahead length. When first called, SctLookahead sets the lookahead
length value equal to the Length.parameter of the request. After the first SctLookahead
request, the lookahead length is changed only if the value of the Length parameter is larger
than the current lookahead length. If the length parameter value is smaller, the current
Lookahcad length remains unchanged and SUCCESS is returned. SetLookahcad may be
called at any time and the lookahead length is preserved during a reset. The maximum
value for the lookahead length is 256 bytes. MAC's which never call Receive Lookalaead
or always return lookahead information of length greater than or equal to 256 bytes may
return SUCCESS without any internal action. MAC's must support 256 bytes of
lookahead data if requested.

General Request Confirmation
Purpose: Confirm completion of a previous General Request.

PUSH WORD ProtlD
PUSH WORD MACID
PUSH WORD ReqHandle
PUSH WORD Status
PUSH WORD Request
PUSH WORD ProtDS
Call RequestConfirm

; Module ID of Protocol
; Module ID of MAC
; Unique handle of original request
; Final status of original request
; Original Request opcode
; DS of called Protocol module

Returns: OxO000
0x0006
0x0007
0X0024
0x00FF

SUCCESS
OUT_ OF_RESOURCE
INVALID_PARAMETER
HARDWAR.I~FAILURE
GENERAL_FAILURE

Description:

Notify a protocol that an asynchronous MAC control Request has completed after previous
Request had returned a REQUEST_QUEUED. It is possible that a RequestConfirm can be
returned to the protocol before the protocol's corresponding Request function has
completed.

The ProtID parameter must be the value passed by the protocol on the previous general
request to identify the requestor.

If a protocol had made a general MAC request when executing its InitiateBind startup
function and the MAC returned REQUEST_QUEUED, the protocol must wait for the
corresponding RequestConfirm to be returned before exiting from the InitiateBind function.

Status Indications
Status indications are spontaneous calls from a MAC to a protocol, typically at interrupt
time. They inform the protocol of changes in MAC status.

All status indications have the following common calling convention:

Page 5-21

I

PUSH WORD MACID
PUSH WORD Paraml
PUSH LPBYTE Indicate
PUSH WORD Opcode
PUSH WORD ProtDS
Call Status

; Module ID of MAC
; Opcode dependent word parameter or 0
; Virtual address of indicate flag
; Opcode of status indication
; DS of called Protocol module

Indicate is the virtual address of the indication flag byte. This byte is set to 0xFF by the
MAC prior to this call. If the protocol clears the byte to zero prior to returning then
indications will be left disabled until IndicationOn is called from IndicationComplete.

I
I
I
I

RingStatus
Purpose: Return a change in ring status...

PUSH WORD MACID
PUSH WORD Status
PUSH LPBYTE Indicate
PUSH WORD 1
PUSH WORD ProtDS
Call Status

; Module ID of MAC
; New Ring Stares
; Virtual address of indicate flag
; Ring Status Indication
; DS of called protocol module

Returns: 0x0000 SUCCESS

Description:

Called by 802.5-style MAC drivers to indicate a change in ring stares. The status codes for
802.5-sttyle drivers are encoded as a 16-bit mask, where the bits in the mask are defined as
follows:

Bit Meaning

I
I
I
I
I
I

15 Signal Loss ~
14 Hard Error •
13 Soft Error
12 Transmit Beacon []
11 Lobe Wire Fault I
10 Auto-Removal Error 1
9 Reserved I I

8 Remove Received •
7 Counter Overflow •

6 Single Station
5 Ring Recovery ~
4-0 Reserved •

For certain ring status changes, the adapter may already have been removed from the ring.
The protocol driver must check whether the adapter has been closed (by examining bit 4 fo
the MAC status field in the MAC service-specific status table). For additional information,
consult the IBM Token Ring Technical Reference Manual If the slams condition caused
the adapter to close, the MAC must remm confirmations with non-SUCCESS slams codes
for all pending TransmitChain and general requests.

I
I
I

Page 5-22 I

AdapterCheck
Purpose: Return hardware status.

PUSH WORD MACID
PUSH WORD Reason
PUSH LPBY'rE Indicate
PUSH WORD 2
PUSH WORD ProtDS
Call Status

; Module ID of MAC
; Reason for Adapter Cheek
; Virtual address of indicate flag
; Adapter Check Indication
; DS of called protocol module

Returns: 0x0000 SUCCESS

Description:

Called to indicate a fatal adapter error. If this function is called the protocol must issue a
ResetMAC call (if supported) before communications can resume. Note that a MAC may
choose to tolerate some number of errors before issuing an AdaperCheck indication. For
example, a MAC may want to accept the occasional receive DMA overrun, and only issue
the AdapterCheck for this condition if it occurs excessively.

For 802.5 MAC's the Reason code ~is defined as follows (NOT a bit mask):

0x8000
0xl000
0x0800
0x0400
0x0100
0x0080
0x0040
0x0020
0x0010
0x0008
0x0004
0x0003
0x0002
0x0001

Adapter Inoperative
Illegal Opcode
Local Bus Parity Error
Parity Error
Internal Parity Error
Parity.Error, Ring Transmit
Parity Error, Ring Receive
Transmit Overrun
Receive Overrun
Unrecognized Interrupt
Unrecognized Error Interrupt
Adapter Detected No PC System Service
Unrecognized Supervisory Request
Program Request

All 802.5 values not defined above are reserved.

The MAC must always return confirmations with non-SUCCESS status codes for all
pending TransmitChain and general requests.

Page 5-23

For 802.3 MACs the Reason code is dcf'med as follows (NOT a bit mask):

0xS000

0x4000

0x2000

0xl000

0x0800
0x0400
0x0020

0x0010

Adapter Inoperative (Adapter did not respond to command or
could not be found)
Conmmnd Tuned Out (Adapter did not complete command
within acceptable time interval)
SQE Test Failure (No heartbeat detected on previous
transmission)
Excessive Collisions (Transmission failed due to excessive
collisions)
Lost Carrier Sen~ (Adapter lost carrier during transmission)
TDR Failure (TDR test detected a short or open on the link)
Transmit Undermn (DMA undemm occurred on.
transmission)
Receive Overran (DMA overrun occurred on xcception)

All 802.3 values not defined above arc reserved.

StartReset
Purpose: Imply that adapter has star~cd a reset. •

PUSH WORD MACK)
PUSH WORD 0
PUSH LPBYTE Indicate
PUSH WORD 3
PUSH WORD Pror.DS
C.ali Status

; Module ID of MAC
; Pad parameter must be zero
; Virtual address of indicate flag
; Start Reset Indication
; DS of called protocol module

Returns: 0x0000 SUCCESS

Description:

Called to indicate that the adapter has sta~,cl a reset. This will generally be duc to a call to
ResetMAC (perhaps by another protocol driver in a VECTOR configm'afion) but can be
unsolicited. The protocol must assume when it gets this indication that all requests
outstanding to the MAC have been discarded without notification. The end of the reset will
bc signalled by an EndResct indication. The reset process may take a significant amount of
time. While it is in progress, the MAC may reject any requests it cannot handle with
INVALID_FUNCTION (0x0008). As with any other indication, StanResct is entered with
indications implicitly disabled. To protect itself from other indications the protocol may
choose to modify the Indic, am flag to kccp indications disabled on return. This will not
prevent the EndResct indication from being generated however,

StartReset is affected by IndicationOn and IndicationOff.

Page 5-24

I
I
I
I

EndReset
Purpose: Imply that adapter has finished a reset.

PUSH WORD MACID
PUSH WORD Status
PUSH LPBYTE Indicate
PUSH WORD 5
PUSH WORD ProrDS
Call Status

; Module ID of MAC
; MAC error information
; Virtual address of indicate flag
; End Reset Indication
; DS of called protocol module

Returns: 0x0000
0x0008

SUCCESS
INVALID_FU'NCq'ION

Description:

Called to indicate that the adapter has finished a reset and follows the StartReset indication.
The protocol may return INVALID_FUNCI'ION if it was written to the 1.0.1 version of
this specification, where it assumes end of reset on IndicationCompletc. To ensure
compatibility with 1.0.1 protocol drivers, the MAC must ensure the IndicationComplete is
called after EndReset and before any other indications.

EndReset will pass up a success/fail code for ResetMAC in the Status parameter.

0x0000
0x0024
0x002A
0x00FF

SUCCESS
HARDWARE_ERROR

' NE'IWC'ORK_MAY_NOT_B E_CONNE CFED
GENERAL_FAILURE

As with any other indication, EndReset is entered with indications implicitly disabled. To
protect itself from other indications the protocol may choose to modify the Indicate flag to
keep indications disabled on return. MAC drivers must be prepared for the possibility that
both StartReset and EndReset allow the protocol to modify this flag.

EndReset is not affected by IndicadonOn and IndicationOff. In other words, if the
protocol modifies the indicate flag during StartReset to disable indications, this will not
prevent the EndReset indication from being generated.

If both StartReset and EndReset disable indications, the IndicationOff depth is 2, requiring
two calls to IndieationOn in order to enable indications. For example, if protocol A
disables indications during StartReset and protocol B disables indications during EndReset,
both protocols must issue IndieationOn before indications are re-enabled. The same is tn~e
if the same protocol issues IndicationOff twice.

Interrupt
Purpose: Imply that an interrupt has oocurred as the result of a interrupt request.

PUSH WORD MACID
PUSH WORD 0
PUSH LPBYTE Indicate
PUSH WORD 4
PUSH WORD ProtDS
Call Indication

; Module ID of MAC
; Pad parameter must be 0
; Virtual address of indicate flag
; Interrupt indication
; DS of called protocol module

Page 5-25

I

I
Returns: 0x0000 SUCCESS

Description:

The MAC calls this function to indicate to a protocol that an interrupt requested by an
Interrupt request has occurred. Since this indication may be deferred by disabling
indications, a protocol may use this mechanism to implement a simple scheduling scheme
to allow it to regain control once outside of a critical code region. The MAC may at its
discretion suppress the generation of this indication if there is another indication pending
which may be issued in place of the Interrupt smms indication.

System Requests
All MAC and protocol modules implement a set of system request functions that support
module-independent functions such as binding. The caller of these functions is usually the
Protocol Manager. The entry point for system requests is defined in the common
characteristics table for the module. All system re, quests are implemented synchronously.
Note that all pointers in system requests are Ring 0 GDT virtual addresses.

All system requests have the following common calling convention:

PUSH DWORD
PUSH DWORD
PUSH WORD
PUSH WORD
PUSH WORD
Call System

InitiateBind
Purpose: Instruct a module to bind to anothex module.

PUSH DWORD 0
PUSH LPBUF CharTab
PUSH WORD LastBind
PUSH WORD I
PUSH WORD ProtDS
CALL System

I
I
I
I
I
I

Paraml ; Request dependent dword parameter or 0 I
Pararn2 ; Request dependent dword parameter or 0
Param3 ; Request dependent word parameter or 0
Opcode • Opcode of request I
TargetDS i DS of called module

!

I ; Pad parameter must be 0
; Characteristics of module to bind
; Non-zero if last InitiateBind
; Initiate Bind Request
; DS of called Protocol module

Returns: 0x0000
0x0008
Ox0021
0x0022
0x0023
0x0024
0x0025
0x0026
0x0027
0x0028
0x002A
Ox002B
Ox00FF

SUCCESS
INVALID_FUNCnON
INCOMPI-~TE_BINDING
DRIVER_NOT_INITIAl -rZl~T~
HARDWARE_NOT_FOUND
HARDWARE_FAK,URE
CONFIGURATION_FAILURE
INTERRUPT_CONFLICt
INCOMPATIBI I:~MAC
INITIALIZATION...FAI'~ .~_r~
NEINVORK_MAY_NOT_BE_CONNECrED
INCOMPATIBLE_OS_VERS ION
GENERAL_FAILURE

Page 5-26

Description:

This call is°issued by the Protocol Manager to an upper protocol module. It passes the
address of the characteristics table of the lower module that the upper module must issue a
Bind call to. If the upper module specified a BindingsList including more than one lower
module, then InitiateBind's will be issued for those modules in the order the lower modules
are listed in the BindingsList structure. LastBind is used to indicate the last Initiate Bind
request so the module may perform any final initialization prior to returning. In the static
default binding ease of one static protocol and one MAC, the Protocol Manager will issue
an InitiateBind passing the characteristics table of the MAC even if no bindings list was
specified. In this case LastBind will be non-zero. In the non-default ease if a module other
than a MAC does not have lower bindings (having a Bindlist with a NumBindings count =
0), the Protocol Manager will still issue an Initiate Bind to the module to allow final
initialization. In this case CharTab will be NULLandLastBind will be non-zero.

If the Bind operation fails then the Initiate Bind operation must also fail returning the same
return code as the failing Bind call.

If a module returns a non-SUCCESS code on InitiateBind, in the dynamic mode the
Protocol Manager will automatically deregister that module and remove all reference to it in
its bind tables. In particular any other module that had registered (via RegisterModule) its
intention to bind with the failed module will get an InitiateBind call with the "CharTab"
pointer far NULL and "LastBind" non-zero. A module that has lower bindings and
receives an InitiateBind with a NULL bind "CharTab" must generate a non-SUCCESS
return code in order to force the Protocol Manager to deregister it. In DOS it is
recommended that a dynamic module that failed its bind deinstall itself. In OS/2 it is
recommended that the dynamic driver that failed its bind leave its dynamic segments
unlocked.

Bind
Purpose: Exchange module characteristic table information.

PUSH LPBUF CharTab
PUSH LPBUF TabAddr

PUSH WORD 0
PUSH WORD 2
PUSH WORD TargetDS
CALL System

; Pointer to caller's table
; Address where to return a pointer
; to called module's characteristics
; Pad parameter must be zero
; Bind Request
; DS of called module

Returns: 0x0000
0x0008
0x0022
0x0023
0x0024
0x0025
0x0026
0x0027
0x0028
0x002A
0x002B
0x0OFF

SUCCESS
1NVALID_FUNC~ITION
DRIVER_NOT_IN1TIALI771~D
HARDWARI~NOT_FOUND
HARDWARI~FAILURE
CONFIGURATION_FAILURE
INTERRUPT_CONFLICT
INCOMPATIBLE_MAC
INITIAI..IZATION_FA ~ .~
NET~VORK_MAY_NOT_B E_CONNECTED
INCOMPATIBLE_OS_VERS ION
GENERAL_FAILURE

Page 5-27

Description:

Used by one module to bind to another. It exchanges pointers to characteristics tables
between the two modules. A MAC will accept only one bind and will not accept additional
bind attempts.

For compatibility with Remote Initial Program Load, MAC drivers must not manipulate the
network adapter at IN1T time. The MAC driver is free to determine ff the network adapter
is present, but must leave any hardware manipulation to Bind time processing.

InitiatePrebind (0S/2 only)
Purpose: In OS/2 dynamic.bind mode instruct, a module to restart-its prebind initialization.

PUSH DWORD 0
PUSH LPBUF 0
PUSH WORD 0
PUSH WORD 3-
PUSH WORD ProtDS
CAIL System

; Pad parameter (must be zero)
; Pad parameter (must be zero)
; Pad parameter (must be zero
; Initiate Prcbind Request
; DS of called protocol module

Returns: OxO000
OxOOFF

SUCCESS
GENERAL_FAILURE

Description:

In the OS/2 dynamic mode, this call is issued by the Protocol Manager to a dynamically
loadablc protocol driver when the Protocol Manager InitAndRegister is called. This
function is available for the protocol driver to restart its prebind initialization when it is
dynamically reloaded.

An 0S/2 dynamic protocol driver is assumed to be made up of static and transient
segments. When the protocol is not needed, the transient segments are unlocked (using the
DevHlp Unlock corranand) to allow them to be swapped out When the protocol is needed
again, InitiatePrebind is issued. During InitiatePrebind, the driver needs to Lock down its
dynamic segments (using the DevHlp Lock command, type 1) to force them back into
memory and make them addressable again. The protocol must save the lock handle
returned by this call for later Unlock'ing. Also, the prebind initialization sequence is
initiated in this call and consists of re-reading the PROTOCOL.INI memory image,
configuration initialization, prebind memory allocations, and registration with the Protocol
Manager. The protocol module typically carries out here the same functions that are
performed by a static protocol module when a strategy routine INIT command is given.

InitiateUnbind
Pro'pose: Instruct a module to unbind from another module.

PUSH DWORD 0
PUSH LPBUF CharTab
PUSH WORD LastUnbind
PUSH WORD 4
PUSH WORD ProtDS
CALL System

; Pad parameter (must be zero)
; Char's of module to unbind
; Non-zero if last InifUnbind
; Initiate Unbind Request
; DS of called protocol module

Page 5-28

I
I
I
I
I
I
I
I
I

Returns: 0x0000
0x00FF

SUCCESS
GENERAL_FAILURE

Description:

This call is issued by the Protocol Manager in dynamic mode to an upper protocol module.
It passes the address of the characteristics table of the lower module that the upper module
must issue an Unbind command to (this would be an entry into the VECTOR if the lower
module is a MAC). LastUnbind is used to indicate the last InitiateUnbind request, so the
module may perform any final cleanup before returning.

If a protocol module does not have lower bindings (having a BindingsList with a
NumBindings count = 0), InitiateUnbind will still be issued with CharTab set to NULL
and LastUnbind set to non-zero in order.to allow the module to terminate..

Unbind
Purpose: An unbind request from an upper protocol module to a lower module.

PUSH LPBUF CharTab
PUSH DWORD 0
PUSH WORD 0
PUSH WORD 5
PUSH WORD TargetDS
CALL System

; Caller's characteristics table
; Pad parameter (must be zero)
; Pad parameter (must be zero)
; Unbind Request
; DS of called module

Returns: 0x0000
0x0008
0x00FF

SUCCESS
INVALID_FUNCTION
GENERAL_FAILURE

Description:

Used by one protocol module to unbind from another. The caller's characteristics table is
passed to permit the called module to identify the upper module. If the Unbind is to a
MAC, the VECTOR does the Unbind cleanup on behalf of the MAC. Thus MAC drivers
themselves do not need to support this call.

Protocol Manager Primitives
Since the Protocol Manager primitives may be accessed via an IOUFL in OS/2, a request
block is defined as follows:

struct ReqBlock
!

unsigned Opcode;
unsigned Status;
char far *Pointer 1;
char far *Pointer2;
unsigned Word 1;

};

/*Opcode for Protocol Manager request */
/*Status at completion of request */
/*First parameter Ring 0 GDT pointer */
/*Second parameter Ring 0 GDT pointer */
/*Parameter word */

Page 5°29

I
!

Direct calls are made to the Protocol Manager with a pointer to the ReqBlock on the stack.
For IOCTL requests, the parameter buffer contains a pointer to the ReqBlock. The direct
calling sequence is as follows: ~

•

PUSH LPBUF ReqBlock ; Ring 0 GDT Address of ReqBlock
PUSH WORD TargetDS ; DS of Protocol Manager I
Call ProtManEnny |

Note that under OS/2 the direct entry cannot be used at CONFIG.SYS initialization time
since the driver is still in Ring 3 context.

Note also that if the Protocol Manager is in dynamic mode, these primitives can be invoked
by other modules after system initialization. Dynamic OS/2 Ring 0 device drivers issuing
these primitives post INIT ~rnc must use the direct entry interface since the IOCrL interface
is illegal at this time.

GetProtocolManagerlnfo
Purpose: Ren'ieve pointer to configuration image.

I
I
I

Opcodc - 1

Status - On return contains request status

Pointerl - On return contains a FAR pointer to structure memory image representing
the parsed user configuration file PROTOCOL.INI. For static OS/2 device
drivers, the selector of the pointer returned here is valid only at device INIT
time. For dynamic OS/2 device drivers, the selector returned is always
valid and will be a valid LDT selector for the process under which this
primitive is called. For DOS this is a segment:offset pair.

Pointer2 - Unused

Word 1 - On return contains the BCD-encoded major (low byte in memory) and
minor (high byte in memory) version of the specification on which this
Protocol Manager driver is based. (2.0 for this specification)

Returns:

Description:

0x0000
0X0(X~8
0x0002F
0x00FF

SUCCESS
INVALID_FUNCTION
IN]O_NOT_FOUND
GENERAL_FArLURE

This request is used by a module to obtain the configuration information parsed from the
user-defined protocol configuration file PROTOCOI..INI. Modules invoke this function
during device driver initialization to obtain this information for initializing configuration
variables and making dynamic memory allocations and to determine their inter-module
bindings.

In DOS dynamic mode, INFO_NOT_FOUND is returned if the Protocol Manager detects
that the snmctured memory image is not valid. This can occur if prior to loading a dynamic
module the structured configuration memory image was not registered with the Protocol
Manager via a RegisterProtocolManagerInfo command or if the memory image .got
corrupted between registering it and getting it via the current primitive. The corrupnon

Page 5-30

!
!

1
w

might occur if another DOS program is loaded between the memory image registrations and
the memory image read operation by a dynamic protocol invoking the
GetProtocolManagerlnfo primitive.

This request is valid in both the static and dynamic modes of Protocol Manager operation,
In the static mode, this request is only valid prior to binding and starting. Invoking this
primitive in static mode after all modules are bound and started will cause
INVALID_FUNCTION to be returned by Protocol Manager.

RegisterModule
Purpose: Register a module and its bindings.

Opcode - 2

S t r a t u s - On return contains request status

Pointerl - Contains a FAR pointer to the module's common characteristics table.
The module must have all information in that table filled in except for the
Module ID which is filled in by the Protocol Manager on return.

Pointer2 -Contains a FAR pointer to a BindingsList structure of the modules to
which this module wishes to be bound to. The Protocol Manager will use
only the information passed in the BindingsList to determine the relevant
module bindings. This pointer can be FAR NULL to indicate that this
module will not currently bind to any module." This latter option is useful
for dynamic OS/2 modules that need to register their module name with the
Protocol Manager but do not wish to remain fully resident (and therefore
bind) at the current, time. This non-bindable registration permits the
dynamic driver to reregister with a BindingsList when it is later reloaded
and made operational.

Word 1 -Unused

Returns: 0x0000
0x0008
0x002C
0x00FF

SUCCESS
INVALID_FUNCTION
ALREADY_REGISTERED
GENERAL_FAILURE

Description:

This request is used by a driver or dynamically loadable executable to identify one of its
contained modules to the Protocol Manager. After calling RegisterModule, a static driver
must remain installed and respond to system requests. A dynamic OS/2 driver must leave
its system entry function code permanently locked in memory. A dynamic DOS module
must remain installed and respond to system requests until it is unbound and unloaded.
This registration is accomplished by passing a pointer to the module's characteristics table
to the Protocol Manager. The driver also passes a bindings list requested by the module.
The bindings list contains the one or more module names which the module wishes to bind
to as a client. This bindings information is later used by the Protocol Manager to determine
the necessary sequence of InitiateBind commands to issue. This bindings list must persist
while the protocol is operational. In the static default bindings case of one static protocol
and one MAC, the bindings list pointer provided in this request can be NULL indicating
that a protocol module by default will bind to the single underlying MAC. Otherwise in the

Page 5-31

I

I non-default bindings case, a NULL bindings list pointer provided in this request will
indicate that this module will .not bind to any other module at the current time and is not
ready to initialize. In this latter case the Protocol Manager will not call the module's ~
InitiateBind system function. A NULL binding list pointer is particuarly useful for •

dynamic 05/2 drivers that register their module name at IN1T time, but are not to remain
fully resident at starmp time. This is called a non-bindable registration. A protocol module I
can also pass a non-NULL bindings list with a 0 number of bindings count. In the default |
bindings case, this is interpreted by the Protocol Manager to bind the protocol to the single
underlying MAC. In the non.default bindings configuration this means that a protocol is
registering without any lower bindings, but is required to be initialized by an InitiateBind •
call. II~

A driver which contains multiple modules can call RegislerModule multiple times, once for
each module. The Protocol Manager responds to each request by assigning each module a
module ID. The module ID isretumed in the module's characteristics table on completion
of the RegisterModule request.

If a module name is currendy registered with the Protocol Manager, an attempt to register
the same module name will fail and a status code of ALREADY_REGISTERED will be
rretumed. A dynamic 05/2 driver is considered currently registered if it had previously
registered with a non-NULl, bindings list indicating a requirement to bind and/or start and
it had not yet unbound. Thus a dynamic 0S/2 driver can reregister with the Protocol
Manager under the same module names if it either had unbound or had not previously made
a bindable regiswation.

This request is valid in both the static and dynamic modes of Protocol Manager operation.
In the static mode, this request in only valid prior to binding and starting. Invoking this
primitive in static mode after all modules are bound and started will cause INVALID
FUNCTION to be returned by the Protocol Manager. A registration of a dynamic module
(bit 2 set of the "module function flags" in the Common Characteristics table) in static
Protocol Manager mode is invalid and will generate INVALID_FUNCTION. It is
mandatory that all static DOS and static and dynamic OS/2 device drivers invoke this
function at least once at INIT time.

BindAndStart
Purpose: Initiate the binding process.

(~ o d e - 3

Stares - O n ~ n . r m contains request status

Pointerl - Caller's virtual address of FailingModules swactm~. This structure in the
caller's address space is filled in by the Protocol Manager prior to
returning from BindAndStart. If BindAndStart reports an error, it contains
the module names in ASCIIZ format of the upper module and lower
module (may be a NULL string) reporting the error. If BindAndStart is
successful then both are NULL s~ngs.

slruct FailingModules {

};

I
I
I
I
I
I
I
I
I
I
I

char UpperModuleName[16];/* Upper failing module */ I
char LowerModuleName { 16};/* Lower failing module ~/

!
Page 5-32

Pointer2 - Unused

Wordl - Unused

Returns: 0x0000
0x0007
0x0008
0x0020
0x0021
0x0022
0x0023
0x0024
0x0025
0x0026
0x0027
0x0028
0x0029
0x0002D
0x0002E
0x00FF

SUCCESS
INVALID_PARAMETER
INVALID_FUNCTION
ALREADY_STARTED
INCOMP! -I:.-TI~_BINDING
DRIVER_NOT_IN1TIALrZ~D
HARDWARI~NOT_FOUND
HARDWARI~FAILURE
CONFIGURATION_FAILURE
INTERRUP'ILCONFLICT
INCOMPATIBLI~MAC
INITIALIZATION_FArL~D
NO_BINDING
PATH_NOT_FOUND
INSUFFICIENT_MEMORY
GENERAL_FAILURE

Description:

This is used to trigger the Protocol Manager bind and start sequence. This permits an
application program (e.g., executing from a DOS batch or OS/2 command file) to trigger
the bind sequence. The bind sequence is invoked by the Protocol Manager's Calling each
module's inter-module InitiateBind function. If an InitiateBind fails then BindAndStart will
fail with same return code as the failing InitiateBind.

In the static mode of Protocol Manager operation, this request can be invoked only once to
bind and start all static drivers. Successive invocations return INVALID_FUNCTION.

In the dynamic mode, this command tells the Protocol Manager to issue the IntitiateBind
primitive to all dynamically loaded protocol drivers that have registered since the last
InitiateBind (or since the beginning of time for the first call).

In DOS, the caller is required to invoke this primitive via the direct entry point rather than
the DOS IOCTL method. The Protocol Manager will generate an INVALID_FUNCTION
error if this function is invoked by an IOCTL. This will permit the protocol modules to
make DOS function calls during their bind and start sequence initiated by this primitive
(when the Protocol Manager calls the InitiateBind system entry point of the protocol). If
the IOCTL were used, the bind/start sequence would be carried out inside of a DOS call
and protocols would not be able to make further DOS calls within their initialization
sequence in order to prevent DOS reentrancy.

In DOS the Protocol Manager loads PROTMAN.EXE to execute this commnad. The caller
must have previously guaranteed that at least 20k of memory is available to load
PROTMAN.EXE prior to invoking the BindAndStart primitive. In static VECTOR
configurations (Chapter 7) PROTMAN.EXE will remain resident after BindAndStart
completes. In such cases it is strongly recommended that the caller fr~ as much memory/
as possible prior to calling BindAndStart so the PROTMAN.EXE will reside in the lowest
memory possible. This will prevent large unusable gaps in DOS memory when the calling
function terminates.

Page 5-33

I

A utility, NETBIND.EXE, that invokes the BindAndStart primitive is provided with the
Protocol Manager and is described in Appendix E.

G e t P r o t o c o l M a n a g e r L i n k a g e
Purpose: Ren-ieve Protocol Manager Dispatch and DS Value,

S t a t u s - On return contains request status

POinterl - On return contains the Protocol Manager Dispatch point.

P o i n t e r 2 - Unused

Wordl - On return contains the Protocol Manager DS.

Rcmms:

Description:

Ox0000
Ox0008
Ox00FF

SUCCESS
INVALID_FUNCTION
GENERAL_FAILURE

This request is used by a module to obtain the dispatch entry point and DS of the Protocol
Manager. Direct calls may then be made by DOS & OS/2 Ring 0 drivers and DOS utilities
to the dispatch entry point.

All dynamically reloaded 05/2 protocol drivers must issue this command to the Protocol
Manager at CONFIG.SYS INIT time using the IOCTL mechanism and must save the Ring
0 Protocol Manager dispatch entry point and DS. When the driver subsequently re-
registers with the Protocol Manager on reload at post IN1T time, it must do so via the direct
entay interface using the saved entry point and DS (since an IOCTL would be illegal at that
time).

Any DOS utility that intends to invoke the BindAndStart or UnbindAndStop Protocol
Manager primitives must f'n'st invoke this primitive to get the Protocol Manager's direct
entry point.

This request is valid in both the static and dynamic modes of Protocol Manager operation.
I n the static mode, this request is only valid prior to binding and starting. Invoking this
primitive in static mode after all modules are bound and started will cause
INVALID_FUNCFION to be returned by the Protocol Manager.

G e t P r o t o c o i l n i P a t h
Purpose: A command to obtain the path to the PROTOCOL.INI file read by the

Protocol Manager when it initialized.

Opcode - 5

Status - On remm contains request smms

Poimcrl - The virtual FAR pointer w a buffer, which will contain the returned
PROTOCOL.INI pathname in ASCIIZ format on completion.

Page 5-34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l

Pointer2 - Unused

Wordl - The length of the provided buffer on input.

Returns: 0x0000
0x0007
0x0008

SUCCESS
INVALII~PARAMErER
INVALID_FUNCTION

Description:

This primitive can be called by an application program or dynamically loadable protocol that
will read and parse the PROTOCOL.INI file to obtain the original location of the
PROTOCOL.INI file used by the Protocol Manager when it initialized. This permits such a
program to use the same file read by the Protocol Manager. The Protocol Manager returns
only the pathname to the subdirectory containing the PROTOCOL.INI file, excluding the
string "~PROTOCOL.INI", which may be up to 60 characters in length. This string will
include the drive identifier and be fully qualified relative to the root. The buffer must be
large enough to hold the returned string. If not, the contents of the buffer are undefined
and the INVALII~PARAMETER error returned.

This request is valid in both the static and dynamic modes of Protocol Manager operation.
In the static mode, this request is only valid prior to binding and starting. Invoking this
primitive in static mode after all modules are bound and started will cause
INVALII~FUNCTION to be returned by the Protocol Manager.

RegisterProtocolManagerlnfo
Purpose: A command valid only in the dynamic mode to register the current starting

address of the PROTOCOL.INI memory image with the Protocol Manager.

Opcode - 6

Status - On return contains request status

Pointerl - The virtual FAR pointer to the structured memory image representing the
parsed user configuration file, PROTOCOL.INI.

Pointer2 - Unused

Word1 - Length of smactured memory image

Returns: 0x0000
0x0008

SUCCESS
INVALID_FUNCTION

Description:

In dynamic mode, this command registers with the Protocol Manager the address of the
PROTOCOL.INI memory image. It is assumed that prior to dynamically loading a
protocol module, the PROTOCOL.INI file is re-read and re-parsed in some memory image.
The pointer to the memory image is given to the Protocol Manager, so that it is available for
the "GetProtocolManagerlnfo" primitive of the dynamic initializing module that reads its
configuration parameters.

Page 5-35

I

In static mode, this command is illegal and the INVALID_FUNCTION error code is
returned.

A utility, READPRO.EXE, that reads and parses the PROTOCOLINI file into a memory
image and registers this with the Protocol Manager is provided with the Protocol Manager
and is described in Appendix E.

InitAndRegister
Propose: An optional dynamic OS/2 command to dynamically restart the prebind

initialization of a dynamically reloadable protocol driver.

S t a t u s - On return conchs request stares

Pointerl - Unused

Pointer2 - FAR virtual pointer to an ASCIIZ buffer containing the name of the
module to be prebind initialized.

Wordl - Unused

Returns: 0x0000
0x0007
0x0008
0x00FF

S U C C E S S
INVALID_PARAMETER
INVALID_FUNCTION
GENERAL_FAILURE

Description:

In OS/2 dynamic mode, this reactivates the transient portions of a protocol driver
previously statically loaded at system startup, but for which the transient portions of the
driver were not locked down. The command causes the Protocol Manager to invoke the
system entry point of the specified module with the function"InitiatePrebind" in order for
the driver to restart its prebind initialization. The prebind initialization functions are driver
specific. However, it is expected that such functions might include

locking down its dynamic scgrnents using the DcvHlp I.ock command (lock type
1) and saving the returned lock handle.

getting its PROTOCOL.INll configuration information

doing its prebind initialization,

and finally, re-registering with the Protocol Manager.

In static mode,, this command is illegal and the INVALID_FUNCITON ¢rror code is
returned.

UnbindAndStop
Purpose: A dynamic binding command to terminate a wansicnt previously

dynamically bound protocol module and to terminate its bindings.

Page 5 -36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Opcode - 8

Status - On return contains request status

Pointerl - Failing modules as for the "BindAndStart" command

Pointer2 - If non-NULL, FAR virtual pointer to an ASCIIZ buffer containing the
name of the module to be unbound.

If NULL, then t=-minates a set of previously dynamically bound protocol
modules as defined below. Valid only for DOS.

Wordl - U n u s e d

Returns: 0x0000
0x0007
0x0008
0x0002D
0x0002E

SUCCESS
INVALI1~PARAMETER
INVALID_FUNCTION
PATH_NOT_FOUND
INSUFFICIENT_MEMORY

Description:

This is used in the dynamic mode to tenTfinate either a specific protocol module or a set of
previously dynamically bound protocol modules and to terminate their binds. A "set" is the
collection of protocol modules previously loaded or reloaded between two successive
"BindAndStart" calls or between the last "BindAndStart" and this call. Successive
"UnbindAndStop" commands with NULL Pointer2 arguments terminate protocol sets in
the reverse order in which they were bound. The Protocol Manager removes reference to
the protocols from its VECTOR (for MAC unbindings) table and general binding tables.
The Protocol Manager issues an "InifiateUnbind" command to each protocol to be unbound
so that the protocol can issue an "Unbind" command to the modules it is bound to. For
MAC unbindings, the "Unbind" is issued back to the Protocol Manager VECTOR. The
NULL Pointer2 option is used in DOS environments for TSR protocol modules in which
the unbind sequence usually proceeds in reverse order of the bind sequence. The non-
NULL Pointer2 option must be used in OS/2 environments. The NULL Pointer2 option is
invalid for OS/2.

In DOS, the caller is required to invoke this primitive via the dirvct entry point method
rather than the DOS IOCTL method. The Protocol Manager will generate an
INVALID_FUNCTION error if this function is invoked by an IOCrL. This will permit
the protocol modules to be terminated to make DOS function calls during their unbind/stop
sequence initiated by this primitive (when the Protocol Manager calls the InitiateUnbind
system entry point of the protocol). If the IOCTL were used, the unbind/stop sequence
would be cat~i'ied out inside of a DOS call, and protocols would not be able to make further
DOS calls within their" termination sequence in order to p~vent DOS re~ntrancy.

In DOS the Protocol Manager loads PROTMAN.EXE to execute this command. The caller
must have previously guaranteed that at least 20K of memory is available to load
PROTMAN.EXE prior to invoking the UnbindAndStop primitive.

A utility, UNBIND.EXE, that invokes the UnbindAndStop primitive is provided with the
Protocol Manager and is described in Appendix E.

Page 5-37

I

In static mode, this command is illegal and the INVALID_FUNCTION error code is
returned.

BindStatus
Purpose: A command to obtain information from the Protocol Manager about the

current set of bound modules.

Stams - On return contains request stares

Pointer l - On input, under OS/2 only, if the caller is in Ring 3, this must be a FAR
virtual poinmr m a buffer wher¢ the returned information, will be stored.

- On input, under DOS or in OS/2, if the caller is in Ring 0, this pointer
must.be ~

- On output, PoMmrl points to the root tree.

Pointer2 - NULL

Wordl - only used in 05/2
- Length of buffer (input) and bytes copied (output).

Returns:

D~scripfion:

0x0000
0 x 0 0 0 8
Ox000D

SUCCESS
INVALID_FUNC'rION
BUFFER_TOO_SMALL

If enabled by the Protocol Manager's BINDSTATUS=YES parameter in PROTOCOLINI,
this command can be called at any time to obtain information from the Protocol Manager
about the current set of bound modules. If this command is disabled, an attempt to invoke
this command will return INVALID_FUNCTION.

The following characteristics tables are returned for the modules which qualify:

Common Characteristics

Service-Specific Characteristics (including the Multicast Address List for MAC
modules)

Service-Specific Status

Media-Specific Statisdcs (for MAC modules only)

The tables are linked wgether inw a bind nee using a new s~rucvae:

srruct BindNode {
s~u~ cctable far *commonpcr;
scruct BindHode far *down;
slruc~ Bind~ode far *right

};

NO'IT: Tbere may be additionM fields added to Bind~odes in the fumr~, so do not rely on
i ~ exact size.

Page 5-3g

I
I
I

I
I

I

I
I
I
I
I
I
I
I
I
I
I
I

A BindNode is linked to its Common Characteristics Table (CCT) by the CommonPtr field.
The CCTs are then linked into a bind tree using the Right and Down pointers. Down
points to the first BindNode bound below this one, and Right points to the next. At the top
of the tree (the uppermost level), the Right pointers also link together the BindNodes as if
they are bound to a virtual root BindNode.

A simple example might help illustrate this better:

Protocol
/ \

MAC! MAC2

which would be represented by the following bind tree:

Protocol
I
V

MACI ~ - > MAC2

where the BindNodes have been hidden to keep the diagram simple--only their Down and
Right pointers are shown. The remaining Down and Right pointers would be NULL.

One option when making this call is to pass a NULL buffer pointer (in Pointerl), in which
case the root BindNode pointer will be returned in Pointerl. The Protocol Manager uses
BindNodes internally to build the bind tree. The caller can then run the current bind tree to
obtain information. This is the only method supported under DOS. Under OS/2, this
method will only work for Ring 0 drivers.

Under OS/2, Ring 3 programs must use a second method by providing a pointer to a buffer
(in Pointerl) of a specified size (in Wordl) to copy the characteristics tables into. In this
case, the Protocol Manager will copy the qualifying tables into the buffer provided. The
first entry in the buffer will be the root BindNode. The order of the remaining BindNodes
and tables within the buffer is undefined. The BindNodes and their various tables are
linked together by pointers which will be fixed up by the Protocol Manager to use the same
selector as the buffer itself (i.e., Ring 3 if the buffer is Ring 3). Specifically, the Protocol
Manager will fixup the following entries:

BindNode:
CommonPtr
Down
Right

Common Characteristics:
Pointer to service-specific characteristics
Pointer to service-specific status

Service-Specific Characteristics
Pointer to multieast address list (MAC's only)

Service-Specific Status
Pointer to media-spe~.'fic statistics (MAC's only)

The remaining pointers (e.g., dispatch tables and entry points) will be in an undefined state
and must not be relied upon.

Page 5-39

If the buffer was too small, BUFFER_TOO_SMALL will be returned, the pointers to
tables which were not copied will be NULL, and the bytes copied return parameter
(Word1) will indicate where the information was truncated.

The information returned is merely a snapshot at a particular point of time. The Protocol
Manager will disable interrupts while copying individual status and media-specific statistics
tables to guarantee their internal integrity. The caller cannot assume that all tables were
copied in the sarnc atomic operation however.

In the case of 05/2, if two or more modules are bound to the same lower module, the
lower module's table is duplicated in the tree. Therefore, the Ring 3 caller will have to
provide larger amount of buffer space for the returned information.

The number of nodes in the bind nee does not necessarily reflect the number of modules
bound.

RegisterStatus
Purpose: A command to query whether a specific logical module is cun, cntly

registered with the Protocol Manager.

Opcode: - OxOA

Status: - On rcmm contains request status

Pointerl - NULL

Pointer2 - FAR virtual pointer to a 16-byte ASCIIZ module name

Wordl - NULL

Returns:

Description:

- 0 x 0 0 0 0
0x0008
0x002C

SUCCESS
INVALID_FUNCtION
ALREADY_REGISTER Fr~

This command can be called in either the static or dynamic mode t o determine whether a
specific logical module is currently registered with the Protocol Manager. This can be used
by the caller to dcterrnine whether a specified module has ah'eady registered with the
Protocol Manager m prevent duplicate registration. A SUCCF.$S stares returned means
that the specified module is not currently registered with the Protocol Manager. An
ALREADY~,.EGISTERED status means thai the module is curamdy registered.

In the static mode, this request is only valid prior to binding and starting. Invoking this
primitive in static mode after all modules are bound and started will cause
INVALID_FUNCTION to be returned by the Protocol Manager.

Page 5-40

I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 6 - Protocol Manager

Protocol Manager Initialization
The Protocol Manager is loaded and initialized in both the OS/2 and DOS environment via
the operating system CONFIG.SYS INIT sequence. It must be loaded before any protocol
or MAC driver is loaded. In DOS, the Protocol Manager will be provided in a file called
PROTMAN.DOS. For OS/2, the file is PROTMAN.OS2. The device name for the
Protocol Manager is PROTMAN$ under DOS and kDEVkPROTMAN$ under OS/2 (the
XDEV format is required by versions 1.2 and later of OS/2).

In DOS to save memory; an additional dynamically loadable component of the Protocol
Manager called PROTMAN.EXE is provided. This file must reside in the same directory
as the staile device driver component, PROTMAN.DOS, itself. This file is called for
execution by the Protocol Manager device driver component whenever the Protocol
Manager primitives BindAndStart and UnbindAndStop are to be executed. In the static
VECTOR mode (Chapter 7) PROTMAN.EXE will remain resident after BindAndSta.rt
executes.

The Protocol Manager reads the PROTOCOL.INI file at INIT time and parses it to create
the configuration memory image passed to the protocol modules. The file is located in the
XLANMAN directory of the boot drive or the directory given by the/I: parameter on the
DEVICE=PROTMAN.xxx line in CONFIG.SYS. Under DOS, this image is relocated to
just below the memory ceiling, where it must remain untouched until all binding has
completed. The Protocol Manager computes a checksum of this image and checks it at bind
time to guarantee that the image has not been modified in the interim. Note that this
memory is not reserved by the Protocol Manager.

If the Protocol Manager CONFIG.SYS initialization is successful.it is re/tdy to support the
initialization of the other drivers. However the initialization can be aborted for either of the
following reasons:

. The Protocol Manager did not have enough memory to hold the PROTOCOL.INI
configuration memory image.

. The Protocol Manager encountered a syntax error while parsing the
PROTOCOL.INI file. This could have been an illegal hex or decimal parameter
value, an overflow condition (numeric value could not fit into 32 bits) was
encountered or a string was encountered with missing end quotes.

These conditions are flagged as fatal errors t o prevent erroneous configuration parameters
from propagating to the drivers for their" operation.

Static Binding Sequence
The Protocol Manager can be configured to operate either in the static binding mode or in
the dynamic binding mode. In the static binding mode, only statically loadable device
drivers can be loaded and bound once at system initialization time. In the dynamic binding
mode, dynamically loadable protocol drivers can be loaded and dynamically bound and
unbound during system operation on a demand basis. Static drivers can also be loaded at

Page 6-1

INIT time in dynamic mode. The static binding sequence is described in this section. The
dynamic binding sequence is described in Chapter 7, "VECTOR and Dynamic Binding."

To determine the binding sequence, the Protocol Manager builds a tree representing the
bindings for all the modules in the system. MAC drivers are at the bottom, and the highest
level (for example, NetBIOS) protocol layers at the top. It then binds module pairs
together from the bottom up. To do this, it issues an InitiateBind to the upper module in
the pair, passing it the characteristics table of the lower module. .The upper module is
expecmd to issue a Bind to the lower module (if it is acceptable) and return. This continues
with the next higher up module. If there is a module which is not bound to anything else, it
receives an InitiateBind with a NULL characteristics table pointer.

To be more formal, the definitions listed below are required:

A MAC driver is a protocol module with an upper layer interface .level of one
(MAC layer) and a lower layer interface level of zero (physical). It must support
binding at its upper boundary.

A MAC-layer entity is a protocol module with both upper and lower layer interface
levels of one. It must support binding at its lower boundary.

A standalone protocol module is one which has a lower layer interface level of zero
and which does not support binding at its upper boundary.

The Protocol Manager builds a tree with multiple branches. Each MAC driver is at the base
of a branch, with the protocol layers bound to it above it. Standalone modules are also
considered branches by themselves. The left-to-right order is defined by the order in which
the modules register with the Protocol Manager. The Protocol Manager does a pre-order
transversal of the tree, issuing InitiateBinds to all of the nodes except the MAC drivers.

An important aspect of the binding scheme is that it allows for modules to specify that they
only do binding from above or below. This is a requirement in eases where a monolithic
module exposes several interfaces, such as a NetBIOS, TLI, and DLC. The TLI could be
presented as a logical module.that had an upper interface (the TLI) but no lower interface
(since it uses a private internal interface to its DLC). Such a module would have a
characteristics table with the following settings:

DWORD

BYTE

BYTE

BYTE

BYTE

LPBUF
LPBUF

Module function flags, a bit mask (hints only):
Bit 0 - set (binds at upper boundary)
Bit I - dear (doesn't bind at lower boundary)

Protocol level at upper boundary of module:
4 - Transport

Type of interface at upper boundary of module:
I => TLI

Protocol level at lower boundary of module
-I - Not specified

Type of interface at lower boundary of module:
For any level: 0 => private (ISV definnd)
Pointer to upper dispatch table
Pointer to lower dispatch table (NULL)

Sequence for non-VECTOR configurations:

Page 6-2

I
|

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

. Protocol Manager driver (PROTMAN.OS2 for OS/2 or PROTMAN.DOS for DOS)
is loaded during CONFIG.SYS initialization. The Protocol Manager must be
configured ahead of any MAC or protocol drivers in CONFIG.SYS.

. Protocol Manager initializes and reads PROTOCOL.INI to build the configuration
memory image.

. MAC and protocol drivers are loaded by the operating system. During its
initialization processing, each driver optionally does the following:

a. Open the PROTMAN$ device

b. Invoke the GetProtocolManagerlnfo primitive to PROTMAN$ to get a pointer
to the configuration memory image.

C. Read configuration parameters from the image and use these to finish
initialization and build characteristics tables.

d. Use the RcgisterModule function once for each module to be defined to the
Protocol Manager.

4. CONFIG.SYS processing ends and applications are started.

. An application opens the PROTMAN$ device and issues the BindAndStart IOCTL.
Such an application utility called NETBIND.FEXE is provided with the Protocol
Manager driver and is defined in Appendix E.

. The Protocol Manager uses information passed on previous RegisterModule calls to
determine the module binding hierarchy.

. Proceeding from bottom to top of the binding hierarchy, the Protocol Manager uses
InitiateBind to cause each module to bind to the module below it in the hierarchy.
Each module getting this call responds by issuing a Bind call to the module specified
by the Protocol Manager on lnitiateBind.

. When all modules have been bound, the Protocol Manager returns from
BindAndStart.

The system is now fully operational. Vector configurations are similar, with the VECI'OR
being automatically inserted between layers one and two, if necessary (on top of the MAC
driver as well as any MAC-layer entities which arc present).

0S/2 Calling Convention
All of the Protocol Manager requests are supported by a single OS/2 IOCTL function. The
services arc dcmultiplcxed via a function code specified in the RcqBlock structure.

This IOCTL has the following IOCTL request packet parameters:

I. Block Device Unit Code: Undefined since the Protocol Manager is a character
device.

2. Command Code: 16 for Generic IOCTL.

Page 6-3

. Status: If the. IOC~L corresponds to one of the Protocol Manager commands then the
status field is returned with the ERR bit cleared signifying IOC~L successful
completion. However the final status of the cornrnand is returned in the "status" field
of the ReqBlock buffer as defined below. Note that if the command is recognized the
ERR bit is always cleared regardless of the stares returned in "status". However if
the command is not recognized an IOCTL status UNKNOWN_COMMAND (3) is
returned with the ERR bit set. Finally all of the commands return with the status
"DON" bit set.

4. Category code: 0xS1 which is the LAN Manager category code.

5. Function code: 0x.58 for Protocol Manager command type.

6. Parameter buffer. Pointer to ReqBlock structure.

7. Data buffer. Unused and therefore the pointer is NULL,

By using the GetProtocolManagerLinkage request a module may obtain the Protocol
Manager dispatch point and DS. Once a module obtains the Protocol Manager's entry point
and data segment it passes the a request to the Protocol Manager via the following function
call:

int (far pascal *ProtManEntry)(ReqBlockPtr, DataSeg);
SlrUCt ReqBlock far *ReqBlockPtr;
unsigned DataSeg;

where:

ReqBlockPtr = a FAR pointer to the request block

DataSeg = the Protocol Manager's data segment base.

The Protocol Manager returns in AX the .same return code that is
returned in the ReqBlock "status".

DOS Calling Convention
All of the Protocol Manager requests are supported by a single DOS IOCTL function. The
services are demultiplexed via a function code specified in the ReqBlock. This IOC'FL
should be requested via Interrupt 21 with general registers loaded with the following
contents:

AH = ,~I4H for IOCTL re, quest
AL = 02H for device input
DS:DX = Pointer to ReqBlock stracture
CX = 14 for the size of the ReqBlock structure
BX = Handle from DOS Open of"PROTMAN$"

This IOCTL generates the following IOCTL request packet parameters:

I. Block Device Unit Code: Undefined since the Protocol Manager is a character device.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Page 6-4

Q

3.

4 .

5.

6.

7.

Command Code: 3 for IOCUI'L input.

Status: If the IOCTL corresponds to one of the Protocol Manager commands then the
status field is returned with the ERR bit cleared signifying IOCTL successful
completion. However the final status of the command is returned in the "status" field
of the ReqBlock buffer as defined below. Note that if the command is recognized the
ERR bit is always cleared regardless of the status returned in "status". However if
the command is not recognized an IOCTL status UNKNOWN_COMMAND (3) is
returned with the ERR bit set. Finally all of the commands return with the status
"DON" bit set.

Media Descriptor Byte: Unused

Transfer Address: Pointer to ReqBlock structure.

Byte/Sector Count: 14

Starting Sector Number. Unused

By using the GetProtocolManagerLinkage request a module or application may obtain the
Protocol Manager dispatch point and DS. It then makes a request to the Protocol Manager
via the same direct calling mechanism as OS/2.

Page 6-5

Chapter 7 - VECTOR and Dynamic
Binding
In static mode, the VECTOR is a function that is implemented within the Protocol Manager
that allows more than one protocol stack to drive a single MAC. In this mode, the Protocol
Manager uses the VECTOR function only if it detects that more than one protocol is using
the same MAC. If more that one MAC is attached to multiple protocol stacks, then an
instanfiation of the VECTOR is created for each MAC so attached.

In dynamic mode, the VECTOR function is always present unconditionally for
protocol/MAC interrnodule communications. There can be zero, one, or more protocol
stacks that bind to a MAC, but the VECTOR function is still present. There can be zero
protocols if there is only .one.dynamic,protocol stack being used in the system and that
stack is not currently loaded. In the dynamic mode, the VECTOR shields all staile binding
MACs from the interactions of dynamic binding and unbinding protocol modules.

Static VECTOR Binding
The Protocol Manager will modify the normal binding process if it detects that multiple
protocols have requested the use of the same MAC in the PROTOCOL.INI file,

. At INIT time from RegisterModule the Protocol Manager has determined the bind
hierarchy and has found some MACs that bind to 2 or more protocols, signaling the
insertion of VECTOR.

. To a MAC that will support multiple protocol stacks, the Protocol Manager issues
Bind passing a Protocol Manager characteristics table with entry points into the
VECTOR module. The MAC starts itself and returns, passing back to the Protocol
Manager a pointer to the MACs characteristic table.

. For a protocol that is part of a multiple protocol stack binding to the single MAC
that was issued the previous Bind command, the Protocol Manager issues
InitiateBind passing as the bind inter-module entry point, an entry point within the
VECTOR module inside of the Protocol Manager.

. The protocol module responds by issuing a Bind request back to the Protocol
Manager through its VECTOR entry point. The protocol module passes its
characteristics table to the Protocol Manager VECTOR. The Protocol Manager
returns a characteristics table within the VECTOR which is copied from the
associated MAC's characteristics tables, substituting the VECTOR entry points for
the real MAC's entry points.

5. The protocol starts itself and returns from InitiatcBind.

. The Protocol Manager then issues subsequent InitiateBind's to other protocol
modules as described above. If these other protocols arc bound to a MAC through
the VECTOR, the VECTOR procedure is repeated. Otherwise the non-VECTOR
procedure is used.

Page 7-1

I

At the conclusion of the binding process the VECTOR is in a position to filter calls as
appropriate going in either direction across the MAC/protocol interface.

Dynamic VECTOR Binding
A dynamic protocol module can be loaded and bound after system initialization dme on a
demand basis. This dynamic loading and binding takes place in three phases:

I. The PROTOCOL.INI file is re-read.

. The dynamic protocol module does some prebind initialization including getting its
PROTOCOL.INI configuration parameters and registering with the Protocol
Manager.

I
I
I
I
I

. The dynamically loaded protocol module dynamically binds to other modules given
in its bind specification. If these other modules are MACs, the bind takes place
through the Protocol Manager VECTOR facility.

At some point the dynamic protocol module is no longer r~quh'ed. The protocol module
unbinds itself, terminates, and unloads itself from memory.

The mechanisms for dynamically binding and unbinding are carried out somewhat
differently between DOS and OS/2. The procedures are briefly desoribed below.

I
I
I

Dynamic Binding/Unbinding in the DOS
Environment

.

.

.

I
In dynamic mode, both static and dynamic protocol modules can be supported. At
startup time, the Protocol Manager performs initialization and binding of static
modules as described in section "Static Binding Sequence." However, in the
dynamic mode, the VECTOR function is always inserted.

At some point after system startup, a dynamic loadable protocol module (that can be
a transient application program or a TSR) is demand loaded. For the dynamic []
protocol module to have its configuration parameters at initialization, the |
PROTOCOL.INI file must be re-read. Either an application program or the
protocol module itself reads and parses the PROTOCOL.INI file into the
configuration memory image. It is suggested that the application or protocol ~
module obtain the location of the PROTOCOL.INI file using the "GetProtocoIIni" 1

primitive. A pointer to this memory image is passed to the Protocol Manager via
the "RegisterProtocoIManagerlnfo" primitive. This is required since the ~
configuration memory image created by the Protocol Manager at INIT time is not
valid at post INIT time. An application utility, PREADPRO.EXE, that reads and
parses PROTOCOL.INI is provided with the Protocol Manager and is described in
Appendix E.

After loading, the protocol module initializes. Minimally, the protocol gets its
PROTOCOL.INI configuration information from the Protocol Manager via
"GetProtocoIManager Info," does its prebind initialization, and registers with the
Protocol Manager via "RegisterModule."

Page 7-2

.

.

6 .

Either an application or the dynamic protocol module itself requests that the
Protocol Manager initiate the binding sequence via the "BindAndStart" primitive.
This causes the bind sequence described in steps 3 to 5 of the section "Static
VECTOR Binding" to be executed. After the bind, the dynamic protocol is ready
for use. An application utility, NETBIND.EXE, to initiate the binding sequence is
provided with the Protocol Manager and is described in Appendix E.

During operation, all protocol commands to the MAC go through the VECTOR

When the dynamic protocol module is ready to terminate, either it or an application
program issues the "UnbindAndStop" command to the Protocol Manager. This
causes the Protocol Manager to call the protocol's "InitiateUnbind" system entry
point. In turn, this allows the protocol to issue "Unbinds" to other modules it was
bound to and to do final cleanup before terminating. On return from the
"UnbindAndStop" command, the protocol can be removed from memory. An ~
application utility, UNBIND.EXE, to initiate the unbinding sequence is provided
with the Protocol Manager and is described in Appendix E.

Dynamic Binding/Unbinding in the 0S/2
Environment

. In OS/2, all dynamic protocol modules are multi-segment OS/2 device drivers. A
dynamic OS/2 protocol differs from a static one in that the dynamic module has
code and/or data segments that may be swapped out of virtual memory when not
needed. These extra code and data segments must be specified with IOPL in the
module's .DEF file so that they are marked as movable/swappable and not
discardable by OS/2. In a static protocol module all segments are permanently
locked in memory. A dynamic protocol module uses the OS/2 DevHlp Lock and
Unlock calls (using a lock type of 1) to lock and free its code and/or data segments
as needed. A dynamic protocol module is able to re-register multiple times with the
Protocol Manager and to dynamically bind with other configured modules. When
no longer required, the dynamic module can unbind and the dynamic memory
segments can be Unlock'ed to free up the memory. Static OS/2 protocol modules
register and bind only at system initialization time. They do not unbind.

. Since all OS/2 dynamic protocol modules are OS/2 device drivers they may perform
some INIT time initialization. The protocol must always register at INIT time with
the Protocol Manager via "RegisterModule". A protocol that is not required at
system startup must still register with the Protocol Manager at INIT time passing a
NULL BindingsList pointer in the "RegisterModule" primitive. This is called a
non-bindable registration. In this case the protocol need not lock down its extra
code and data segments. It does, however, need to save the selector values for its
dynamic code and data segments. The device driver's device header, strategy
routine, and the NDIS system entry routine must reside in the driver's main code
and data segments (the first ones in the driver) which are permanently locked down.
A driver required at system startup must pass a non-NULL BindingsList pointer if
it has modules it is required to bind to (a bindable registration). A driver required at
system startup must go ahead and DevHlp Lock its other segments at INIT time,
making sure to save the lock handle returned by the call. Also at INIT time, the
protocol module must invoke the "GetProtocolManagerLinkage" primitive to get
and save the Protocol Manager's Ring 0 direct entry point and DS.

Page 7-3

I

.

.

.

.

Assuming that the protocol was not required at system startup time, at some point in
time later it needs to be dynamically bound. At this point the module needs to get
its PROTOCOL.INI configuration parameters, lock down its code and data
segments, and perform its bindings. If the configuration parameters arc not
retained in the base data segment, the protocol must re-read the PROTOCOL.INI
file. This is done in a similar fashion to that described for DOS. The
"InitAndRegister" primitive is the standard facility that lets the Protocol Manager
request the protocol to reload its dynamic segments and perform its prebind
initialization. Upon receiving the "InitAndRegister" primitive, the Protocol
Manager calls the protocol driver's system entry point with "InitiatePrebind",
allowing the protocol to perform its prebind initialization. The protocol module
uses this opportunity to issue DevHlp Lock calls (lock type 1) on it's dynamic
segments to bring them back into memory. The handle returned from the Lock call
must be saved for later unlocking. Also at this juncture, the protocol can get its
PROTOCOL.INI memory image from the Protocol Manager via the direct entry
point "GetProtocolManagerlnfo" function. It may also do other prebind
initialization and finally register with the Protocol Manager via the direct entry point
"RegisterModule" function. If the protocol module had previously made a non°
bindable registration at system startup, then the current registration affords it the
opportunity to specify its bindings to the Protocol Manager.

The bind and postbind initialization step is similar to that described for DOS.
Again, any protocol binds to MACs are performed through the VECTOR.

During protocol operation, any protocol commands to a MAC go through the
VECTOR.

When the protocol is no longer required, an application or the protocol itself can
issue the "UnbindAndStop" command to the Protocol Manager. The sequence is
similar to that described for DOS. The OS/2 driver, however, issues DevHlp
Unlock commands against all of its dynamic segments so that these may be
swapped out from memory. The previously saved Lock handle is required on this
call.

VECTOR Demultiplexing
The Vector dispatches incoming frames to protocol stacks using either a preprogrammed
default or user statically defined priority polling mechanism. The default mechanism is
based on the "Interface Flags" variable in the protocol's lower dispatch table. These flags
describe the protocol according to the kinds of frames it handles. Protocols that handle:

Non-LLC frames
LLC frames with specific LSAPs
LLC frames with non-specific LSAPs

I
I
I
I
I
I
I
I
I
I
I
I
I
I

According to default dispatch priority, VECTOR polls
that order, in the order they registered) until it
FRAME_NOT_RECOGNIZED or FORWARD_FRAME in the indication. For specific
protocols, this default may be overridden by sp~ifying the bracketed name of the protocol
with the Protocol Manager PROTOCOL.INI keyword PRIORITY. Protocols with static
priorities specified in this manner are polled by the VECTOR before any protocol not so
specified. Protocols with static priorities are themselves polled in the order in which their
bracketed names appear in the PRIORITY keyword parameter lisL Of course, a protocol

tocols in that order (and within I
nds one that does not return

!
!

Page 7 4

appearing in the static list is only polled if it is registered with the Protocol Manager and has
bound to the MAC offering up the frame.

Page 7-5

Appendix A - System Return Codes
This appendix lists return codes used in this version of the NDIS specification. Note that
new error codes may be added in the future. Both protocol and MAC driver developers
must design their code to allow for this.

0x0000 SUCCESS: The function completed successfully.

0x0001 WAIT_FOR_RELEASE: The ReceiveChain completed successfully but the
protocol has retained control of the data buffer. ReeeiveRelease will be called to release the
data buffers.

0x0002 REQUEST_QUEUED: The current request has been queued. If the request
handle is non-zero the module will call TransmitConfwm or RequestConfirrn when the
request completes.

0x0003 FRAM]~NOT_RECOGNIZED: Returned from the protocol when a MAC does an
Indication and the frame does not make sense to the protocol. This will be interpreted by
the VECTOR to mean that the next protocol in line ought to be called with the Indication.

0x0004 FRAMI~REJECTED: A received fmrne was recognized but it was discarded. The
buffer may be immediately re-used.

0x0005 FORWARD_FRAME: A protocol wishes the received frame to be offered to other
protocols but wishes to receive an IndicationComplete. This will be interpreted by the
VECTOR to mean that the next protocol in line ought to be called with the Indication.

0x0006 OUT_OF_RESOURCE: The module is in a transient out of resource condition.
The current request was not completed.

0x0007 INVALID_PARAMETER: One or more parameters was invalid.

0x0008 INVALID_FUNCTION: A command function was requested when it was not
legal to do so or a invalid request was made.

0x0009 NOT_SUPPORTED: A valid request which is not supported by the Module was
issued.

0x000A HARDWARE_ERROR: A hardware error occurred during the execution of this
request. The request was not completed successfully and this can be considered non-fatal.

0x000B TRANSMrI~ERROR: The packet was not transmitted. May indicate a local
resource problem, excessive collisions, or a remote resource problem. On Token Ring
networks, this would be returned if the destination address was recognized but the receiver
was out of buffers. This is a non-fatal error and can be taken as a hint that the packet
should be rewansmitted.

0x000C NO_SUCH_DESTINATION: The destination address was not recognized by any
adapter on the local ring. This error is Token Ring specific and can be interpreted to mean
that source muting must be invoked to reach the destination.

0x000D BUFFER_TOO_SMALL: The buffer provided was too small for the information
being returned. Some commands may still remm partial infonTmtion.

Page A-I

0x0020 ALREADY_STARTED: The Protocol Manager has already started the network
drivers. This error occurs when BindAndStart is called more than once.

0x0021 INCOMPLETE_BINDING: This bind-time error occurs when the Protocol cannot
complete all of the bindings described in the bindings list, most probably due to missing
modules.

0x0022 DRIVER_NOT_INITIALIZED: This bind-time error occurs when the MAC does
not initialize properly during system boot, and a subsequent request is made to the MAC.

0x0023 HARDWARE_NOT_FOUND: This bind-time error occurs when the network
adapter is not found by the MAC.

0x0024 HARDWARE_FAILURE: This error occurs in the following cases: network
adapter reset failed, network, adapter diagnostics'failed;network adapter is not responding,
network adapter is not found by the MAC. This error can be considered fatal.

0x0025 CONFIGURATION_FAILURE: This bind-time error occurs when the
configuration is unacceptable to the network adapter.

0x0026 INTERRUPT_CONFLICT: This bind-time error occurs in 05 /2 only, when an
interrupt from some other device in the computer conflicts with the network adapter's.

0x0027 INCOMPATIBLE_MAC: This bind-time error occurs when a Protocol deterrnines
a MAC is not compatible for the binding operation. Thus, binding cannot proceed.

0x0028 INITIALIZATION_FAILED: This bind-time error occurs when a Protocol fails its
initialization.

0x0029 NO_BINDING: This bind-time error occurs to indicate that the binding was not
performed. This error can occur if a protocol driver took an error exit during its
initialization or if a protocol driver has its upper level incorrectly specified as a MAC.

0x002A NE'I3,VORK_MAY_NOT_BE_CONNECFED: This bind-time error indicates that
the adapter may not be connected to a network. Intended to be suggestive of corrective
action by the user.

0x002B INCOMPATIBLE_O$_VERSION: This bind-time error indicates that a protocol
or MAC driver does not support the version of DOS or OS/22 being used.

0x002C ALREADY_REGISTERED: This error is returned by the Protocol Manager ff an
attempt is made to register a module with a module name already registered with the
Protocol Manager. It is also returned from a "RegisterStatus" primitive to indicate that the
name is already registered.

0x002D PATH_NOT_FOUND: This error is returned by the DOS Protocol Manager if
PROTMAN.EXE could not be found when attempting to execute a BindAndStart or
UnBindAndStop command.

0x002E INSUFFICIENT_MEMORY: This error is returned by the DOS Protocol
Manager ff PROTMAN.EXE could not be loaded due to insufficient DOS memory when
attempting to execute a BindAndSta_n or UnbindAndStop command.

I
I
I
I
I
I
I
I
I

Page A-2

0x002F INFO_NOT_FOUND: This error is returned by the DOS Protocol Manager in a
GetProtocolManagerlnfo command if the PROTOCOL.INI structured configuration
memory image is not present or previously invalidated due to being overwritten or
corrupted.

0x00FF GENERAL_FAILURE: Unspecified failure during execution of the function

0xF000-0xFFFF: Reserved forvendordefinederrorreturns. These erro~are~eatedas
GENERAI~FAILURE.

PageA-3

A p p e n d i x B - Reference Material
OS/2 Device Drivers Guide

DOS Technical Reference

ANSI/II~I~ standard 802.2 - 1985 (ISO/DIS 8802/2) Logical link control standard.

ANSI/IEEE standard 802.5 - 1985 (ISO/DIS 8802/5) Token ring local area network
standard.

ANSI/IEEE standard 802.3 - 1985 (ISO/DIS 8802/3) Carrier Sense Multiple Access with
Collision Detection local area network standard.

The Ethernet. A Local Area Network. Data Link Layer and Physical Layer Specifications,
V2.0, November 1982. Also known as the "Ethernet Blue Book"

IBM Token Ring Network PC Adapter Technical Reference (69X7830)

IBM Token Ring Network Architecture Reference - November 1985 (6165877)

Information processing systems - Open Systems Interconnection - Basic Reference Model,
(ISO 7,498) The OSI reference model.

Page B- 1

Appendix C-802.3 Media Specific
Statistics
MEDIA SPECIFIC STATISTICS TABLE STRUCTURE:

The 802.3 media specific statistics structure is defined as follows:

Statistics in bold are manditory, all others are strongly recommended.
Reserved slots should return as 0xl-q-'l-l-t'-t-t"l ~- (unsupported).

WORD
WORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Length of 802.3 statistics structure, including this field
802.3 statistics structure version level (1)
Total frames with alignment e r ro r
Reserved (Obsolete statistic)
Total frames with overrun error
Reserved (Obsolete statistic)
Total frames transmitted after deferring
Total frames not transmitted - max (16) collisions
Reserved (Obsolete statistic)
Total late (out of window) collisions
Total f rames t ransmi t ted af ter exactly one(l) collision
Total f rames t ransmit ted af ter mult iple collisions
Total frames transmitted, CD heartbeat
Reserved (Obsolete statistic)
Total carrier sense lost dm'ing transmission
Reserved (Obsolete statistic)
Total number of underruns (V2.0. I and later)

When updating the statistics counters, a frame is counted in all the supported counters that
• apply.

Examples:

(a) A 'Multicast frame received ok' is counted in the the following statistics counters:

Total multicast frames received ok

•

(b)

Total frames received ok

A 'Transmit Broadcast frame with one collision' is counted in all the foliowing
statistics counters :

Frames transmitted with only one collision.

Total broadcast frames wansmitted.

• Total frames transmitted ok.

MEDIA S P E C I F I C STATISTICS DEFINITIONS:

Frames received with a l ignment e r ro r
(NumberOfFramesReceivedWithAlignmentErrors)

Page C-1

This contains a count of frames that are not an integral number of bytes in length
and do not pass FCS check. Reports on alignments errors "as the station sees it".

Frames received with overrun errors

This contains a count of frames which could not be accepted due to a DMA overrun
er ro r .

Frames t ransmi t ted af ter deferring
(N u m b e r O f F r a m e s W i t h D e f e r r e d T r a n s m i s s i o n)

This counter does not includeframes involved in colfisions.

Frames not t ransmi t ted . max collisions execeeded.
(Nu mber O fF ramesAbor t edDueToExcess iveCol l i s ion)

This contains a count of the frames that are not transmitted successfully due to
excessive collisions.

Frames t r ansmi t t ed with late (out-of.window) collision.
(N u m b e r O f L a t e C o l l i s i o n s)

This contains a count of frames that are involved in a out.of-window collision.

Frames t ransmi t ted af ter exactly one collision
(N u m b e r O fS ing leCo l l i s i onFrames)

This contains a count of frames that are transmitted after exactly one collision.

Frames t ransmi t ted af ter multiple collisions
(N u m b e r O f M u l t i p l e C o l l s i o n F r a m e s)

This conatins a count of frames that are transmitted after multiple number of
collisions.

Frames t ransmi t ted , CD heartbeat
(N u m b e r O t S Q E T e s t E r r o r s)

This contains a count of frames transmitted with CD(collision detection) signal
missing.

Frames with ca r r i e r sense lost during transmission
(N u m b e r O f C a r r i e r S e n s e E r r o r s)

This contains a count of frames that experienced carrier sense lost(carrier sense
signal not present at the receive pair of the comroller) during transmission.

I
!

I
I
I
I
I
i

Page C-2

I

I
I

I

I
I

I
I
I

I
I

Frames t ransmit ted with underrun e r ror (V2.0.1 and later)

This contains a count of frames which could not be transmitted due to a DMA
underrun error.

Page C-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix D - 802.5 Media Specific
Statistics
MEDIA SPECIFIC STATISTICS TABLE STRUCTURE:

The 802.5 media specific statistics structure is defined as follows:

Statistics in bold are mandatory, all others are strongly recommended.
Reserved slots should return as 0xtq~-t-tq-tq-,t ~ (unsupported).

WORD
WORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Length of 802.5 Statistics structure, including this field
802.5 Statistics structure version level (1)
F C S or code violations .detected. in repeated frame
Reserved (Obsolete statistic)
Number of 5 half-bit time wansition absences detected
A/C errors
Frames transmitted with abort delimiter
Frames transmitted that failed to re turn
Frames recognized, no buffer available
Frame copied errors
Number of frequency errors detected
Number of times active monitor regenerated
Reserved
Reserved
Reserved
Reserved (Obsolete statistic)
Number of underruns

When updating the statistics counters, a frame is counted in all the supported counters that
apply.

MEDIA S P E C I F I C STATISTICS DEFINITIONS:

FCS or code violations detected in repeated frame

This counter is incremented for every repeated frame that has a code violation or
fails the Frame Check Sequence (FCS) cyclic redundancy check.

Number of $ half-bit time transition absences detected

Also known as Burst Error, this counter is incremented every dmc 5 half-bit time
wansitions are not detected between SDEL and EDEL in a repeated frame.

A/C errors

Also known as ARI /FCI set error , this counter is incremented when a station
receives more than one AMP or SMP MAC frames with AC (ARI/FCI) equal to
zero without first receiving an intervening AMP MAC frame. This counter

Page D-1

indicates that the upsn'eam Adapter is unable to set its AC (ARI/FCI) bits in a frame
that it has copied.

Frames transmitted with abort delimiter

This ~ounter is incremented each time the Adapter transmits an abort delimiter. This
indicates that the frame was aborted in mid-transmission.

Frames transmitted that failed to re turn

This counter is incremented when a transmitted frame fails to return from around
the ring due to time-out or the reception of another frame.

Frames recognized, no buffer available

Also known as Receiver congestion, this counter is incremented when a ring
station is receiving/repeating a frame and recognizes a frame addressed to it, but has
no buffer space available for the flame.

Frame copied e r r o r s

This counter is incremented when a ring station receives or repeats a frame from the
ring with the ring stations's individual address, but with A -- C = 1, indicating a
possible duplicate address.

Number of f requency errors detected

This counter is incremented when a ring stations detects a signal frequency
problem.

I
I
I
I
I
I
I
I
I

[]

Number of times active monitor regenerated

This counter is incremented each time the active monitor is lost and regenerated.

Number of underruns

This counter is incremented each time a DMA underrun is detected.

Page D-2

Appendix E - Utilities Provided with
the Protocol Manager
To save system integrators the effort to read and parse the PROTOCOL.INI file, m register
it with the Protocol Manager, to invoke the binding and unbinding Protocol Manager
primitives, and to report various Protocol Manager error conditions, 3 utilities are provided
with the Protocol Manager in both the DOS and OS/2 environments and one utility is
provided exclusively for the OS/2 environment:

1. NETBIND.EXE- Initiates the binding and operational startup of a set of modules
previously loaded. It issues to the Protocol Manager the
BindAndStart primitive and reports to the console any
binding/initialization errors detected by the modules bound.
This utility can be used in either the static or dynamic. Protocol
Manager modes of operation. In the static mode it should be
invoked after all device driver modules are loaded (e.g. from
AUTOEXEC.BAT in DOS or STARTUP.CMD in OS/2). In
the dynamic mode it can be invoked either at system startup time
as in static mode or after a set of dynamically loadable modules
have been loaded and are ready to be run. There are no
command line parameters associated with this utility.

2. UNBIND.EXE- Initiates the unbinding and termination sequence of a set of
dynamically loadable modules previously loaded and bound. It
issues to the Protocol Manager the UnbindAndStop primitive
and reports to the console any unbinding/termination errors
detected by the modules being unbound. The utility can be used
only in the dynamic Protocol Manager mode of operation.
Invocation in the static mode will generate an error. It should be
invoked when it is desired to terminate (and release from
memory) a set of dynamically loadable modules that have been
previously loaded and bound. In DOS each invocation will
terminate and unbind the last set of modules previously bound
via the NETBIND.EXE utility. Modules can be bound and
unbound in groups if required by invoking NETBIND.EXE for
each group of modules to be bound together and later invoking
UNBIND.EXE. UNBIND.EXE will unbind the groups only
in the reverse order in which the groups were previsoulsy
bound. If protocols arc implemented so that they free
thcmslcves from memory at the end of the unbind sequence,
then this utility will free up the memory of all such protocols
unbound. This utility has no effect on MAC drivers which are
always static device drivers. In OS/2 the utility takes an
argument string specifying the name of the module being
unbound. In DOS there arc no command line parameters
associated with this utility.

3. READPRO.EXE- Reads the PROTOCOL.INI file, parses it into a memory image
and registers this memory image with the Protocol Manager so
that the image is available to dynamically loadable protocols
when they request their configuration memory image
information. By invoking the GetProtocolIniPath Protocol

Page E- 1

I

4. RELOAD.EXE.-

Manager primitive, this utility assures that the PROTOCOL.INI
file is read from the same subdirectory as that used by the
Protocol Manager when it had initialized. The memory image is
registered with the Protocol Manager via the
RegisterProtocolManagerInfo primitive. This utility can be used

I
I

only in the Protocol Manager dynamic mode of operation. The
utility reports any detected error condtions on the console. It ~
should be invoked prior to the loading of any dynamic modules. •
There are no command line parameters associated with this

u~,. I Initiates the prebind initialization of an 0S/2 dynamically
loadablc module. It issues to the Protocol Manager the
lnitAndRegister primitive containing the module name that was
given as a command line parameun'. The Protocol Manager calls
the system entry point of the named module with the
InitiatePrebind system function. The modules is required to
reinitialize, which may include locking down swappable
segments, requesting and parsing the PROTOCOL.IN.I image,
and reregistering with the Protocol Manager in preparanon for a
subsequent NETBIND.EXE invocation. This utility reports any
detected error to the console. It applies.only to OS/2.

I
I
I

If the system integrator requires more functionality than that provided by these utilities, the
in~grator can write an application ufili~ directly ~ha~ performs the desired functionality and
invokes ~he required Protocol Manager primitives described in Chapter 5. For example if
in DOS a more flexible unbind facilitT to unbind in a user specified order is required,
UNBIND.EXE can be replaced by a us.or wriuen utility that invokes the UnbindAndStop
primitive in which Poimer2 poin~ to the name of the module to be unbound.

Page E-2

I The 3Corn Technical Journal

ISSN1061-96~7

NDIS CONCEPTS

'Ihe following article originally appeared in the
Winter 1991 Issue of 3TECH, The 3Corn Technical
Journa/.

3TECH is published quarterly by 3Corn Corporation,
Santa Clara, CA 95052.

Subscriptiom to to 3TECH arc available at a rote of
$35 per calendar year. To order subscriptions to
3TECH write to 3TECH Jounml, 3Corn, P.O. Box
58145, Santa Clam, CA 95052-9953. All orders
must be p~paid and reference 3C2869.

~TF~-I, 3~n's Tedn~tUo~aL i~
~e~ ~e~ ~ ~co~ c.~,r0~r~o~,
Smm Clam, CA 9~062.
Off--s: L. Wnl~n Krame~ Ch~rnmn; Er~
~ ~ ~ ~ d ~
~ B~ F ~ , ~ e Vi~
~ ~ ~ ; ~ S .
~ , ~ ~ ~ ~ d F ~
~ ~ ~ ~
~ ~ ; ~ v ~ v ~
~ ~ ~ M ~ , N ~
~ ~ ~ H ~ v ~ ~ t
~ ~ T ~ ~ .

S m m

Su~cdpfianr~m: ~35 ix~calmd~ryear. To
~ ~ ~ f ~ , ~ ~ a
~ o f ~ ~ m ~ ~
~ P . O . ~ ~145, ~ ~ C A
~ 2 ~ 3 , A ~ : ~ ~ ~
m ~ ~ ~ ~ ~ . S ~
~ m ~ ~ ~ ~
~ ~ ~ ~ ~ ~
m:~ U ~ ~

oa~r mm=ixmdm~ should l~ addressed m
3T~CH's Edimz: Mmimn~ C~m, ~Oxn
Qxl~xmiond~00 B~yfnx~ I~. Smm
~ ~2~145. ~ h ~
~ ~ ~ ~ ~
~ , ~ ~ - ~ ~
~ ~ ~ - ~ ~ ~
m ~ m ~ ~ ~ -
~ ~ ~

co~,y,~ © ~ ~ . ~ c ~ . a u a ~
~ ~lm~t~imi~ ~t~ol~ ~i~ ~ ~i~ho~
~mi~i~ i~aaa~,a . ~ ~ ~
~ ~ ~ ~ ~
~ ~ ~ ~ ~ . ~
~ ~

The Network Driver Interface SpecO~cation (NDIS) is a
standardiw.d interface for 05/2 or DOS nezwork platforms.
NDI$ provides acc~s to network services at the Data Link
layer and is especially useful ~ d~e access must be shared.
Software developers who need to employ their own network
protocol implementations can program to the NDI5
interface and utilize NDIS-compliant drivers procided by
network hardw~e vendors. This frees the protocol
developer from programming d~'ectly to various network
interface cards and solves contpatibility problems on
machines with multiple protocols.

This article explains why the Network Driver Interface
Spec~cation was developed, and describes its organization
and operation. Some of the informatkm is general and will
be of interest to a broad ~roup of people involved with
networks. A good deal of the information is quite detailed
and technical. It b intended primarily to give network
programmo's an overview of NDl$ and what is involved in
binding a protocol to a vendor.supplied MAC driver for a
network adt~pter board.

The Old Way

Traditionally, network software vendors for the MS-
DOS environment have esed ad hoe methods to imple-
ment the protocols and drives that link applicatims to
their ~sident network hardware~ ~ne entity that per-
fc~ms these network functions and pmvides c~mnunica-
tion between applicaficms is usually referred to as a
protocol stack. In the OSI Reference M~xkl, the stack
woeld correspond to the Data Link, Network, Tr~sport,
and Se~icm laye~, with s~xne stacks po~b~y inclndi~g
higher layers. At lhe stack's top end is a user interface

iiii TECHT LK

NDIS Concepts

~ some type of a p p ~ prog~mming interface
(APD and, at the bottom end., are the interfacing nmtines
that cram31 the netwo~ _ ~ t e r hardware. In implem-
entafim, a stack might consist of one system driver,
multiple drivels, a program, or a combination of drivers
and programs.

Pigme 1 shows thn~e alternative stacks that could be
used to perform equivalent network functions. In a
typical implement~tiou (for example, NetBIOS over
XNS in Pigme 1), the Data Link, Network, and Tram-
pon layers might be implemented as thn~e separate
system driven, and the Session layer implemented as a
TSR program. The interface between ~he layers would
usually be accomplished through a pn3prietary/nterface
developed by the vendor, and the application would
o~nmunicate ~ NetBIOS via software interrupts. This
works well in a homogeneees network environment but,
as networks grow more complex, it is becoming desir-
able to have the flexibility to ~i~h,J~ mixtuzes of diffenmt
pmu~cols, applicafim inteff'a_~_, and network media.

The Problem to Be Solved

C v m p ~ T issues b~w~cn various v~wor~ng
~ m p i c m ~ , ~ ~ make ~ ~ ~ ~ ~
~ ~ ~ ~ y ~ p l e ~ ~ ~ ,
~ e ~ we ~ e ~ ~ ~ ~ ~ ~
~ o f ~ ~ ~ ~ ~ ~ ~
~ ~ N ~ I O S ~ ~ ~ ~ y ~ , ~ ~
~ r ~ a ~ ~ l ~ a ~ y ~
~ m ~ .

~ T~z$~omT~.tmimlAmmal Wim~r 1991 I

~:iiii;ii!i!iiii T E C H T A L K N D ~ S C o / ~

F'gure L Typical Protocol Implemeatafious Without NDIS

OSl
Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

NetBIOS
over
XNS

Application

NetBIOS

SPD

IDP

Driver

H/W
Media

Sockets
over

TCP/ IP

Application

BSD
Socket • '

TCP

IP

Driver

H/W
Media

NetBIOS
over

TCP/ IP

Application Applications
~ Software

- - API NetBIOS I) ro,ooo,
Driver l - - Adapter Driver

I ' H/W '"
Media

We would like to write a program to run on a worksta-
• rich that can copy a file from the t i l t server to u'~e
seared. In this example, let's say we have two sets of
softwan~ f:rom two vendors ~hat are designed to commu-
nicate wi~h each of lhe servers, and that the vendo~ have
defined a programmer's interface that stmuld allow us to
w ~ e a program that talks to the two stacks. Assuming
that we have enough memory to load both stacks at one
time, we will prot~ ly find that our biggest cc~figura-
tic~ problem occurs at a'~e bottom of the mzcks.

At the Data Link layer, each of the vmdms has supplied
us wilh a driver for use with their protocol stack that can
cc~m~l the EtherLink H adapter board that we have in
our stafim. Most likely, we w~l find that e ~ h of these
drivers expects to have exclusive ownership and cmn'ol
o~ ~be E~herLink H. A~ o ~ of ~ dfiv¢~ w i g m comml
~h~ board, i~ imermp~ or cormp~s ~h~ funcfiom bdng
. ~ m p ~ d by ~h~ o~hcr drive'. Wha~is n~d~d is ~
drive" lha~ can cor~ol the adap~cr and b~ ~h ,~d by ~
two protocols.

In May 1988, 3Corn and M i c r o s ~ ~_eased NDIS,
which was jointly ¢kveloped in conjunction with LAN
Manager. The N'DIS s p e e i ~ d ~ , is a standard de-
signed to a l l e v ~ compatibility issues for b o ~ OS/2

and DOS network platforms. The NDIS specification
should be beneficial to both the protocol-level network
software developer, who now has a standard interface
available, and the user, who gains from the flexibility
and inte~Ol:erabilJty advantages of protocols ~_t~ing
NDIS .

NDIS Organization
All network software ccmpmmts compliant with NDIS
definitions are dfive~s. These driven ~ ~
~ ~ : ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~
m ~ ~ ~ ~ o r ~ ~ ~
~ , ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~
~ ~ l ~ d ~

The MAC ddver forms the bolmm layer of the stack and
is the driver that directly centrals the netwmk hardware.
The remaining higher layers of the protocol stack are
imp~.~,, .~e4/n m e or men: protocol ddven.

The MAC layer is a sublayer within the OSI Data Link
~ayer that ~s deened by n ~ S02 ~ p e ~ . T~s

2 Wbslzr l~l ~ TA~e$~T~ecA~Jm~w~z~

NDZS C ~ !!~ili~i" T EC H T , I . K

layer is the ~ point for a driver that manages
the network hardware and implements the tra-.~ni~¢on
and:receptim of network a ~ packets. NDIS M A C
drive~ a¢ provided by 3Corn and many other network
hardware vendors (see Table I for a pan:ial fist) and can
be used with any vendor's NDIS-compliant protocol
ddvers.

NDIS Stacks

All NDIS ddvers, bo~h MAC ancl pmt~x:ol, share a
c~rnmqtl mo~_ ,lift ~ F.Ach driver has an upper
and lower boundary. The drivers are linked m form a
stuck I~ cm~ct ing , or binding, ~h~ upper boundary of
m e driver to the lower boundary of another driver
¢k=ing the binding portion of ¢Uiver initiatization. This

' l~nding process can ~ ~ a t e d multiple times, linking.
several ¢kivem, daisychain fashion, to fomt the stack.
The MAC ddver at the bottom of the stack always has
~ lower b o ~ , y ¢mnected to the physical layer--the
network hardware,

The simplest configuration of ddvem ~s one MAC driver
supporting one network adapter card Ix~m~ to a single
pmtcx~ol driver spanning from the MAC layer to the
Session layer (see Pigure 2). " I ~ forms a single
pn~ocol stack o f two drivers. Optionally, the protocol

F ' ~ ' e 2. NDIS- -S i~ le Protocol, Single MAC

Table L Companies Supporting NDIS

Comparlieswith NDIS MAC Drivers

Nine: The ~ ; ~ , ls~ of ~ompanies ~ NDIS MAC drivers is
m long lot ~his ar~ide, but indudes:

3Com Irmdan
ASTRe, se~,,,~ Pmtson
AT&T T m
c o m ~ Ur~emam.~,~e
~ Wes~,xn[:~

C, ompam~ w~h O S m A I ~ ~ NBS

AT&T - - LAN Mansger
Banyan - - Vines (worksta~on)
DB; - - LANWorks
FTP - - PC/TCP
IBM - - LANSe~ ' , OS/2 E x l ~ d
Microsoft - - LAN Manager
Pacer - - Pamrlink
~un - - PC-NFS

part of this stack might be made using two or more
protocol drivers to form a single stack of three or more
dfivem. NDIS also allows us to have two comple~c!y
parane~ stacks in me machiue, each with its own adapter
ca~l and MAC driver, to implement two diffenmt
protocols.

OSI
Reference

Model - -

~....:.:~:~iNi~i!~:~i~i~: iii~iii
~i~i#ii~i~?~iiii~i~ iiii~.:~i ~~~N~
:....,::.:.:.~.:.:::::..~.:...?~:.. ~:.:.,:..
~ % ~ ~
~ ~ N
:::::::::::::::::::::::::::::::: :e ::::.::

~ ~ ~
~ ~ ~
~N~N~;~N ~}~:
;~;;?;?il;~;;;;~ ~ ;;:?;;
~ ~ ~ : " ==================================== ~:~:~

: i : ~ : : ~ : : : e : ~ : s : : N ~

Data Link

~ ~ s ~ #

IEEE
Model

/ i i ~ ~ i /
Medl | Access : • Gonlrol (MAGI ~

802.3 or 802.5)
~ ~)!:i:i:~Si:~: :::: :i::: :~:: :i:!~'~:iS~: :i ~ :.. • .:.:~;......< .:..: :. ~<::~:~:~.~ ~ : ~ : ~ ~

~ : ~ : : . . : : ~:~. : ~ : ~ : ~ : ~ :
:: ~

Using
NDiS

ABG
Protocol

Driver
NDIS

MAC Driver

NDIS
~,,,,,lflterface

• - ; : ~ ~

3TECH T~$GomT~c.k,.~-,.U,o~'a~d W/am,1991 ~

~!i:~!!iiii::!:,il T e C H T A L K ND,~'Co~:zJpI~ I

More i m ~ y , N'DIS lets you have just one nd%nter
card and a single MAC driver with the MAC driver
bound to ~wo separate pnxocol drive~ (see Hgure 3).
T h e r e f o r e , two protocols (for insl:ance, XNS and T C P /

IP) can share the same MAC ddver and adapter card.
This configurati__on solves the problem discmsed eadier
in whiccb ~ e s need to be copied f ~ n two s u v c ~
nmning Oi.ff=ent lamOCOlS.

To complete the pictme, we can also have two adaixer
ca,-ds and MAC drivers, with both the MAC drivers
txxmd m ore protocol driver ~.gure 4). This configora-
fion coald ~ used to crease a network bridge with one
protocol cm~ected m ~wo r ~ o r k s .

FIBre 3. NDlS--Mu~tip~e Protocds, Singk M A C

OSl
Reference

Model
~ii::~i~]i~::i::iii::!! :~%:i~!::~%i::: ~. .~.:..::. ~l~i~i

~i~i~i~i~i~i~i~i~i~i~i
i i ~ i i i ~ N
:'.:'N :.:.:.::':!~ ~]~.~} .~:::'.i:':'~: f !:':':~:!:~ -..:.:

~i~)N ~:~ ~:~:~:~:~:~:~ ~i~ ~ i~i~:i ~~ ~ i~i
: ~ : : : + . , . . : . . : . : : ~ : : : i:~:~:~:~:~:~:~:~:;:~

Data L i d

~ [~ :~ ;~ [~ :~#~
~ ~ ~ ~ : ~ : ~

IEEE
Model

. ~.~
~i~.~...:.~.~..~;::::! _

/ ~ ~;~i"":":~ !~i:.'ii!ili

~ I ~ i i ~ - :~:~!~f:.:.:/i:i:!:~:~:~:..':/:.::~:~!:)i:i:!:i:~:::~:!

Using
NDIS

ac I xYz I
Io¢oi | Proto¢oll NDIS

NDIS I -.~
. . . .

~ii~i~ii~ii[ii::iiiiiiiiii#iii~ii~i#~ii

N ~ ~ I ~ . . . ~ . L . ' . . ~ N

~[~

I

m

F I B r e 4. NDIS--Single Protocol, Multiple MACs

OSI
Reference

Model

~~i~:~i~ii~:~:~i~:~:'..::'.::~i~:::'::
~ ~!i~,.~i~i..'.':~:i~:'.."~i~!~i
~..::.:i~::::~::~ii~i~.:'~ii~ii ~ ~
~;~N~!~i~i~i~i~i~i~
~i~:"...:.".'ii~
!.g;.:..:.~[....~g~ N ..:..~g~..:~.~ ! :..~.-~.:~
N ~.~N.:."~."..~.-'."l.:.-"!i~!~}i~!~ N~.".'.".".~.":..~e ~ :::: ,.%'::.:::~:~e.:~:.::::: • . ~ / ~ ~::'::::::::::.:::.::::
/:~"-~:~:..:.:~:i:~ ~:: :~:~:~F.::::~:~:: ~:~L-:..:..~..:.:.:.:.:.:.:.. -::.:::::::~
~ N ~ i ~ !.::'.::J~:':'~L:L.':'~.:~

Data Link

:~:~: :~:~:~i~: :~i:~$~:~:i:::::: ::~---~ -..-~:~ii:::
~ ~ i ~ ~ ! ~.~!::~!i!i ~ t

IEEE
Model

I Cootfol (MAC~
, J$02.3 or ~02.5
- .L.:.:..::.:~...~i~i~.~
~ ~ ~ ~ : ~ : : :

~: [~
~.' ~:~::~:~::

Using
NOIS

. o , s t a L t - - - . r ; ;~; ' l
Interlace | Protocol L-".4Manager ~
~ ~ : " i v % . , r ~ : : l _ L , ~ .

. , , "~ i ,~l~ I-- N O ~ I
/ ! ~ ° " " ' 1 " ~ o,,,., j r ~ ~ ~

NN~ r~ ~ :N N - , e , . ~ . . ~

4 W b s w 1 9 9 1 ~ Tk~$ComT~k'¥"'/,/~lmat

, : . : . : , : . : . : . : . :

N D I S C ~ ' .::~.:~:~ T E c H T A L g

Driver Structures
The cldve~ ~ommunimte with each other by a defined
set of Wimitives. The NDIS ckx~ument has dearly
specified a set of primitives for the interface between lhe
MAC driver and protocol ddver and for managing the
NDIS driver binding precess. Althtxtgh it ~s po~,~-ih]e to
implement a protocol stack with multiple proUx:ol
drivers, currently no primitives are defined by NDIS for
these upper l a y e r This is not a ~rious linfitatim,
because a stack with mnhiple protocol drivers,would. •

gen~rally have all of the protocol driven cemmon to one
vendor. There is less need for a standardized interface
between protocol drivers ~ them is at the MAC layer
where sharing resources and multiple vendors a~ mow
likely.

Each driver contains a series of m o d u l e ~ c
data structm~ that provide informatim about n3e
purlx3se and capabili~es of the ckiver, and that manage
the linkage and operation of the driver duf i~ and after
~ o n .

The main stmanre is called the Common Chara~ristics
table and ccr~ains the name of the ¢kiver and version
information. This is the highest-level table for a ¢kiver,
other types of characteristics tables are located from
pointers in this table. The Common (2~-actefistics uthle
also cemains basic informatim about what type of
binding is supported at the upper and lower boundaries
ofthe driver. The binding information is in the fonzt of
a byte identifying abe OSI layer that is supported for the
boundary. Ttds byte can be examined by other ddvers
to detemdae if it is appmpdate to bind to the driver.

The Common ~ table c o t ~ pointe~ to
tlze or.bin" module eh~ __~___qiSfiCS tables--the Sezvice-
Specific (]mraczedsdcs table, Sewic~ Spcd6c S~-,~
table., az=:! TJpper and Lowcz'DJst:m,~h tabl.es. These
tables ~ve sped6c izfformation zela=d to the service
that the ddver perfomts, manage its operatim, and
~ecord linkage points to other drive~s after the driver
is bound.

Managing Binding and Initialization
To form the tmrax~ s t a g from fl~e individual drivers
we need to get the right drlvers cmnected in the desinxt
sequence This is acc~nplished in the ~ m and
binding process. ~ ccxntxx=nts are used to manage
and control the process PROTOCOLINI (an ASCII
¢x~gurafion parameter file), PROTMAN.DOS or
PROTMAN.OS2 (the pma~o! manager--a special
driver), and NE'I'BIND.EXE (a program ~h~t_ i n ~ r i ~ the
finat dr/vet bind/rig process.) '

The init i~]i~on and binding process is essentially Ihe
same whether the operating system is DOS or OS/2.
Same minor adjustments need to be made (for instance,
se lec~g either PROTMANJ3OS or PROTMAN.OS2)
and some diffen~ paramete~ may be n x l u h ~ but the
discussion that follows applies to either environment.

The ASCII file PROTOCOL.INI c, or~n.~ the instal-
lions for assembling Ihe prolxx~l suck or stacks from
the NDIS network drivers. It also cantains param~__~rs
that are needed to configure the individual drivem At
CONFIG.SYS initi_'_~liT~tion time, the Protocol Manager
Driver reads this file. The file is crated--muds as
CONFIG.SYS is cn~e~l~ei~er directly, by the admin-
Buatm" typing the informatim with an editor, or by same
type of installaficm program. The PROTOCOL.INI
infotmatim is grouped into a number of logical sections
of lhe form:

[m~xlule name]
parameter=value

The module name is the name of the NDIS driver as
cmlained in the C~mmm Characteristics table for the
driver. There will be one m c x l ~ section for e a ~ of the
NDIS drivers that de sc r i~ the driver's c~figuration.
~ : ~ semicm can have multiple parametem, bus must
have ax least one, the DRIVERNAME.

~gure 5 illumates the ccxa~s of a ~ p l e
PROTOCOL.IN file that has entries for ttuee drivers.
The fu-st is Protocol Manager, the ~ driver that
cemmls the binding process--more about ~ ~
latH.. In PROTOCOLINI the Pmtcx~ Manager entry is
ctwnmliy optional but it may be n~luix~ in the f u m ~

~ T ~ $ G o m T ~ . / ~ W ~ . ~ I ~

iiiiiii!ii!iiiiil T ~ ¢ . T s L K NDL~C~nc~v~
.:~i!i~i~i~iiiii:. I

so it's a g~xxt idea to include it. The second module
section is for the EtherIAnk H adapter's MAC driver,
and the last secfi~m is for an arbitrary pnXocol driver.

Notice that in each section, the lust parameter is DRIV-
ERNAMF~. This param~_~'_ must be included and must
specify a name that uniquely defines ~he NDIS module.
In most cases, it will be the driver name that the driver
regist to the operat g system ,ku on.
The driver detezmims the name that must be used,
because it uses the DRIVERNAME entry as a key when
searching PROTOCOL.INI ~t~ for its relevant module
section.

F'q~ure $. PROTOCOLJNI F~e Contenls

; K w . ~ p l e PROT~OL. ~ f i l e

•

[PROTMGR]
DRIVERNAME=PRO~AN$

[ETHERLINKII]
DR~VERNAME=ELNKI I $
INTERRUPT=3
TRANSCEIVER=EXTERNAL

[PROTOTST]
DRIVERNAME=PROTO$
BUFFSIZE=2048
BINDINGS=ETHERLINKII

Any n m n b e r o f ~ oOftmalpar~.eterent~es
can be included in a module section. One propose of
these pammele~ is to allow comn31 of the ~ con-
figuration. A set of valid configm-aticm ~ w ~ be
defmed fur any pa~o~]m" d~.x. In the case ofthe
ETHEI~T-~NK H section in Hgure 5, we have selected
two ofthe ix~ssible options for this d~iver. INTER-
RUPT=3 tells the driver to use hardware interrupt
channel 3, and TRANSCEIVER=EXTERNAL tells the
&tver t~ cmfigere the adapter for its external tram-
ceiver. In the PROTOTST protocol driver, the BUFF-
srT~ parameter migl~t di~ct a p~-~tocol to use a particu-
lar size for its imemal buffe~.

6 Wimer1991

The BINDINGS= parameter is a special parameter that
is valid only for p m m ~ drivers and specifies the
module name of the driver ~ which the protocol
should attempt to Hnd on its lower b0nnd~ry. ~
parameter determines which drivers ~ be bound
together to form the stack or stacks. In Hgure 5,
PROTO'IST is boend to the ErHEI~[-gNKII driver.

As mmfioned eadier, the c~xnpment of the NDIS
envixnnent that manages the binding process is the
Protocol Manager, which has lhe f~e name
PROTMAN.DOS or PROTMAN.OS2. Protocol
Manager has two main functims: it keeps and manages
~'m'~m~l l r'i~tn for the NDIS driven, and it controls the
binding sequence. FumXicms of ~ e l ~ o c o l M E a g e r
are needed by the NDIS dfivet~ du~ng their system level
~ so the Protocol Manager driver must be
loaded in CONFIG.SYS before any of lhe other NDIS
drivers.

The Pmex~ Manager driver was written by 3Corn and
is av'ai]*hle from both 3Ccxn and ~ficmsofl. Protocol
Manager or NETBIND.HXH is available for any vendor
for use in the inifi~ization of their network softwme
products. They ate also a standa~l pan of LAN Man-
ager as shipped by 3Ccm and IVficrosoft.

Driver Initialization

The Protocol Manager gathers NDIS-~I~terl information
daring the system CONFIG.SYS ~ of the
d~v~. De~ng i n i ~ n , the ~otocol Mamger
driver ~ads the PROTOCOI.ANI file and parses the
infonnatim into a set of structures, called lhe Cmfigura-
~ion Memory Image, which is ~cce~s,'~ by the ether
NDIS drivers. Because other NDIS dfive~s use this
infonnafim, the Protocol Manager must be the fn~t to
initi~liT~.

AS CONHG.Y processing c c ~ t ~ , the opeming
system directs the other dfive~s to initialize. Dmiag ini-
~izaticn, they mest open the Protocol Manager device
0'ROnVXAm) and thin isme a Mamser-
 nfo p mittve to obtain a partier t0 the Cmesemion
Memory Image (the PROTOCOL JIG data). The d~vers
find Ihe section of this data that pemdns to them and use
any parameters foend then~ ~ adjust their ~ z a t k m

3TE~I Tht 3 ~ m T~A~slcaiJourn~l

I
I
m

. =

ND= ~ !ii!iiii!iiii!!! T E O H T A L K

I process. One ~esult of this is that drivem may modify
their loaded size., basra1 on pamm~rr r~quimm~ms, to
optimize host memory consumption. If the driver is a
protocol and R finds a BINDINGS= parameter, it will

I assess whether or not this binding is valid. Finally, the
driver must issue a Registe~odule primitive to the
Protocol Mamger to ¢gister gsel~. During t i n R~ster,

I tke driver passes a lx~iamr to its Coming C~az'act~dsdcs
table aad, for a laOaX~Ol driver, a list of modales to
wkich it warns to bind, based on the BINDIhTGS=

I parameter.

A~er CONFIG.SYS processing completes, the l~xocol
i Manager has a list of the active NDIS drivers, their

characteds~ Ctwlud~ entry points), and the desired

I
Driver Binding

I The actual binding of NDIS drivers stms ~ some
program issues the BindAndStan primitive call to the
PROTMAN$ clm, i~. For all curr~m Microsoft OS im-

I plementations, this call wRl come from the execution of
• NETBIND.EXE within a BAT or CMD file.

After receiving the BindAndStart diccfive, Proto~
Manager will take the binding information from ~he
module regiswatiom and build a binding hierarchy tree.
Stoning at the lxxtom of ~his tree (the MAC end), the
Pmmc~ Manager works up the tree and issues an
InitiateBind primitive to each l.~.OCO1 mcxtale that
reeds addvertxamdenitslowerlxxmdary. Aspanof '
tb¢ Inirintegiwi call ~ driver is passed a poimer to the
Common C~aractcristics table of the module to be
Ixxmd. The protocol driver that was imtracted to
i~i~i,~ tin bind will tl~m issue a Bind primitive dixectly
to tla~ driver that R wislm to biad. Wlca the bind
cemplete¢ eada ddve~ will have a poiat= m ~ Com-
moa C~aramdaics of the o a r , aad t~mfcm~ toits
carry poims.

ARerthcPaXocolManagerbaspmcessedallofl]~
biadiag tree, all tt~ appropr~*~ ~work ddvem vaX1 b~
bound to each o¢¢r. TIc pmtcx~ol stack is tbm fully
operaticmZ, aad t ie ddve~s can ac=ss ,~'h ot~r" by
caring tin dispamh retry txdats for ¢ommanic.nti~,
FigRre 6 Sa~rnmari~m the ~ lmtX~SS.

.rEECH Tke3CcmT~mk~dm~l~

Figure £ InJthdization and Bindh~ Process

A. CONFIG.SYS Ir~Ja~za~onbegJr~.

1. Protocol Manager ddver does ~s
in~~

a. Protocol Manager reads the
PROTOCOL. INI fi~ arKI

Z Other NDIS drivers do their initializalion.

a. Open the z~gOTmmS device.

b. IssueGetg=ot:ocoLHanage=Znfo
t_O ggin access to ProtMan
C~guration Image.

c..Read confi~ pac.mete~s from ~he
.I .~.~nU. se mern to complete

d. Issue Regi~ te.rM, odu.le_ tO reg~ter
charactddstics info ~th P~mocm
Ma.ager

B. CONFXG. SYS processinge.ds.

C. Binding prcx~ess.starts when l h e ~ X N Z b gxg
program ~pens me PROTMpJ~S ~e~ce ano
ssues a Ba.ncUmdSt~art: ~O Protocol Manager.

1. Protocol Manager builds a binding tree from
Regis terModule irlio.

Z Protocol Manager stars at the bottom and
calm drivers with InitiateBinct

a. Each called ddver issues ~:Lnd tO the
specified module to complete binding.

D. When all modules are bound, Protoool Manager
reKlrns from BindAndSt art.

Om mote factor is iavoived in the binding process if
morn thaa em laoaxolis to be txxmd to a MAC driver.
MAC ddvem caa rely have om biadiag at tl~ir upper
txamdary. To liak om MAC to maltip~ pr0mcoL~ t ~
Pmmcol Mamger imerts a comtxm=¢ called Vemor,
bem,~n ~i,~ MAC md ~i~ protocols (s~ ~gur~ 3).
vectm.is pan of the PmmcolMam~r a~! willbe
Ixmnd l~twe~n gx~ MAC and __~_ of ~I~ imxc¢ols. To
do ~his. tl~ Pnxocol Mamger ffim~ him:Is ~I~ MAC dd~r
~o Vemor by issuinga Bind call ~o ~ MAC ddvm'. ~

' R issues an InitiamBiml call ~o each of tl,~ prmocols
d L ~ g tlaaa to biacl to a Vector entry ~ r - than to
tke MAC retry.

w ~ . ~ 7

iii i!l!i!! TM °

The basic function of Vector is m mum ~
packets I~tw~a ~ p r a t e . Wl~n a l:~k~t is
~ by a ~ C ~ , 2 ~ ~ a m ~ ~ of
~ ~ m ~ r ~ . ~ v ~ h ~ -
v ~ v ~ ~ p ~ ~ ~ m ~ , ~ m
~ ~ ~ ~ ~ ~ ~ e ~
~ ~ e ~ ~ ~ ~ ~ ~
~ y ~ y , ~ ~ ~ ~ ~ C , ~ t
~ ~ of ~ g ~ ~ ~ y m ~ ~ -
~ m ~ e ~ ~ m ~ ~ C

M A C - t o . P r o t o c o l I n t e r f a c e

a n d Operation
The main propose of the NDIS interface is m let the
bound drivers c~nmunicate with each other. To that
end, NDIS specification is largely ccm~emed with
defining a set of functims that d i c t~ how the MAC
driver w~l cornm~m~'~ with the pmttx:o1 bonnO on its
upper layer. Table 2, NDIS Primitives, lists the p~ml-
rives that are defined for l~ds MAC-to-Protocol cnmmu-
nication. All communication between the MAC and its
bound ~ wm be accompnshed u s a mese
p~itives.

In Table 2, fixJividual prinTirives are gmutx~d into the
main functional categories that they perfcmn. In the first
group ate ~ for the transmission of network
packets f~m the protocol through the MAC and onto the
network, and for the receptim of packets in the reverse
direction. In the Cmtrolgroup am allthe functions that
the pmux~ uses to ca~aml or modify the operation of
the ~ . r and MAC driver. The A s y a c ~ m ~ Stems
gnmp contaim funetiom that the MAC uses to xeport
events to the pmmc~ Hnally, the Binding guup has

• the f~iem used m accemi~igh rbe d~ver l~oding
prcx=ss. Tlx~ most impomm of these Im, e alzeady bern
describecL The mmainder are extemicms m Mlow
binding and unbinding of dynamicany ~o~tae prom-
cds. More m mi~ subject later.

The.center column of the Wimitlve table has a symbol
that ~nd~cates the d~ection ~n which the pdndttve cans
are pessecL To submit a pdmitive, the caller driver
pushes a series of panuneters on the system stack and
calls an entry poim in the called driver. The enn~, points

axe known tolhe calling driver as a result of the binding
process. The Common Characteristics table, whose
admess was pamd dudng binding, has V~pet~h tables
chained offofit. The defined retry points for the driver
are in a IX~t~ch table.

The MAC driver's Upper Dispatch table and the ad-
dresses it contains are shown below:

MAC Upper Dispatch Table
c c ~

TransferData
R,~veRelease
IndicationOn
IndicaticnOff

These are enuy points that the protocol driver w'lql callto
request primitive execution by the MAC. All except
GeneralRequest are called direct primitives because they
serve only one primltlve funcfim. The GenemlRequest
entry seres ~e remainder of the primitive _~n~, other
than Binding, that are passed to the MAC. In Table 2,
the GenemlRequ~ primitives me all the pdmiXives in
the group labeled CONTROL, except IndicateOn and
IndicateOff, which have their own direct enuies.

The Direct Primitives have their own enuy points
bec=,~e they are perfonnance-cdtical functims. The
pr~,~ves employing the GenmXP.eques~ entry, which
are less critical, c ~ share a common enl~y. "I'ne
GmeralRequests identify themselves by passing an
opcxx,le as ooe of their parameters.

table defines the entry poims fixxn the MAC to the
protocol The ruble and its mntmts are as follow,:

Pmmcot Lower ~ Table
G e n e ~ ~ - e n .
~ r m
I tmdveLeolml~*
IndicafimComplete
ReceiveChain*
S e A *

8 Wbm~, 1991 ~ T~3ComT~:k~:~Jb~nm~

,ND~S C ~ i:iiiiii!iiiiii! T E C H T A L K
?~:!:i;i:~:i:!

Table :2,. NDIS Prbnifives

W A N D IqEG~NE

Trm'mmilGheln
TrmllmilGimll'm

T r ' m l l m

R~cmveQ~in
Rl~mPa~lmm

m ~m, mmlsslm ~ a Imms
~ m ~ m m s W
Imllml~ m o~ mm~o~ ~om~ md o~e~ Io~m~ood ~lala
R,~lms~ m m m r ~ mm~e,:l Imm. ~n~m MAC m i m e ~ .
.A~w i m m m m ~¢o ~m.lmmmln~ ~nn Imkmlm
Ore:ms m c e ~ m ~ a ~mm~ ~ ~ mnaOo~ ~ o r ~
Rmum ~'mm, Imllm' Iv ~ M~d~ t~a~ otwm Ix

Di~aM~ m Imm ~'~, IdA~
Ennbm m Imm lh~ MAG
~mt M ~ m ~iaorm~m
~ m ~ ~
~ ~ ~
~ ~ m ~ ~
~ ~ m ~ ~
~ ~ ~ ~
~ ~ ~ ~ ~
~ ~ ~ ~
~ ~ ~ ~ ~
~ ~ ~ ~
~ m m ~ ~
~ ~ ~ ~ ~
~ ~ m ~ ~ ~
~ ~ ~ ~
~ , , , ~ ~ ~ ~
{ ~ ~ ~ }

ASYNGHI:~_'~ 5TATIJS

on~cm~ a ~mno~ ~n ~ 0 m~Js
lndlce~ m ~em a~Iolm~
ln~co~ --~'t. ." hes tuned a msut
ln~cms a~emo~ ~as c~n~ms~ ms~t
M~,. nmmmm a m m ~,um,nJpW~,~,~,J,~,~

k

r . ~ . ~ - - - - - - ..,d- ~

unmn~mn~sm~

n e ~ m , ' s - * , -

In~ucx m mm:lul. I~ tdml I~ ~n~lher mm:lule
E,m:~lll~, Ghmmmmtllc~ T ~ lIMIT qldm mi l le r mm:lule
In O , ~ ~m~n¢ blncl mm:l~, In~'m:~ ~ mmlule m
~ ~ ~
~ m ~ ~ ~ ~
~ ~ ~ ~
~ ~ m ~ ~
~ ~ ~ ~ ~ ~
~ ~ ~
~ ~ ~ ~
~ ~ ~ ~
~ ~ , ~ ~ ~
~ ~ ~ ~ ~
~ m . ~ m a m
~ ~ ~
~ a ~ ~ m ~

. . ~ m ~

v - W m w m m ~
~ * Pmxml Mnnm~sr m ~Id~r ~,~,~,,~I~
~ * ~Mmr ram:ram m Pnm~x~/Msns~m'
~ - ~ m ~ ~ ~ ~ ~ ~
~ - ~ m ~ m ~ m ~ , ~ ~

~ T A ~ 3 C ~ T e ~ A ~ e ~ t I ~ W'~ ' IPPl ~

:ii!i:i!~ii:iiiiii T s c H T A C K ND41~ ' ~l'l~:~.jl~
;iii:.:;i~i~!!i:i: I

I
All of ttese entries except Sr~_,s are direct. Status is the
entry for the A~aclmmcms Status group in ~e primitive
table, and these primitive ¢~Is also have an opcode that
identifies the type so they can shan~ one enlry. In a
seine, GeneralRequestCecfum can also be viewed as a
s h a d entry. 1here is only one primitive for _thi.~ enmy,
but ix is genen¢~ by the MAC at the end of any of the
GenemlRequests m the MAC., and contains tt~ request
Imndle of the original primitive request ~o the MAC.
Tl~refom, it is shined f~ally in respome to all of

 ves.

Some of the retries in this list are mazked with an
asterisk to show that they are Indications. Indications
are a special class of requests that imply some special
~ ~n implementation, they ate usu~Uy asux:iatezl
with ~ : a t i c m m the protocol ~hat am made fixxn the
MAC while/t is in/nmrmpt co.ext. Because of~his,
the pnxocc//s required ~o handle IndicaTions as effi-
ciently as possible. For example, it might put the
received frame on a queue. A/~r ~he protocol pnx:esses
the indle~_~m; it n~tms control to lhc caller, the MAC.
The MAC will enable as much imermpt processing as
possible and then call IndicationC~nplete to give the
protocol an ~ to perform more prot~ssing m
the Indication in a less critical mode (eng., to decode Ihe
pt~'v/ously queued receive frame).

Transmit and Receive

The information in Table 2 identifies the basic ~
of each NDIS Prlmi~ve. Of ~hese, transmit and receive
are the key ftm~cms at the MAC-to-protocol interface
level, m let's examine the primitives serving these func-
t iom/n a bit morn de, taiL

Netwozk pazkets, or frames, are the d~t~ units that ate
transferred between the MAC and the Womcol by ~he
transm~ md raceme l,~ve~ The ~ackets inc~e
all. ~ ~n.fonnafion~ oO~er than hardwam-m~ ~t,~l ~
fions such as preamble and ccbecksun~ that w i l l be seat
out on the netwodc meclium. As a mmlt. tl~e prmoco~
m uansndt, must build the enti~ packet, including Data
Link fields inch as source and ~ ' ¢ m addresses.
~ on receive, the pmux~l must lm3Ce~ the
paget down to these levels.

The passing of packet a~t~ across the imerface between
the protocol and MAC is accomplished, whenever
possible, by exchanging pointers to buffers or to a de-
s p o t ~ in U.lm, poil~lgS m ~v~,] . cloth b i l l ~
~ e ~ m ~ d ~ , f i m e ~
~ of ~ ~ ~ .

In uansmit, the padder d in ixtffem are owned by the
host system and managed by the protocol chiver. NDIS
defines a s t recn~ the T r m ~ t Data Buffer Descdtxor,
that allows the packet O~,~t~ t~ be cmtained either in one
buffer ~ in a sedes of chained b u g . To initiate a
uammit~ the protocol assembles the packet data into
buffers, puts ~he b u r r ~OOresses/n the buffer descdptor
structure, and c~"~ the MAC with the T i ~ , n
primitive. The primitive cmtains a pc/nter to the buffer
descr/ptor.

The MAC has two op~ons for ~ ~he transmit.
It will choose one or the other at its own discretion~ the
protocol must be capable of handling ei~herr. In the lust.
caned synctnmms transmissim, the MAC copies an the
packet ~t_~ ancl returns m the proux:ol with a code
signifying that the data buffers are free and the transmit
Js ccgnplete. Optionally, the MAC can return with a
~ S i ~ Ihat ~ trar~mit is qufued (this is ¢~led
asyn~moes uamm~.~m). It/mplies that the buffer
are not f~e and the u-ansmit has net yet complete~
Later, after the MAC has copied all the trammit , t ~ it
will call the p m t o ~ with a TranmfitCmfixm I~mitive
(the mynzht~ou~ respome) to/nform tie pmtocol t~at
~he buffem are now free and the transmit is complete..

An addifimal feature avail~e in trammit is immediate
~ ~ ~ ~ ~ o f ~ ~
~ ~ M ~ ~ o f ~ ~ ~
~ ~ ~ . ~ ~ ~ ~ ~ ~
~ ~ ~ ~ C m ~ y ~ ~ y
~ ~ ~ g ~ ~ ~
~ ~ ~ y ~ ~ ~ .
~ ~ ~ ~ ~ ~ n ~ ~ . ~ ~
m ~ e a ~ , ~ y ~ ~ ~ ~ ~
m ~ v ~ ~ ~ ~ ~ ~ A
~ ~ ~ f ~ ~ ~ ~
~ ~ ~ f ~ ~ ~ n ~ . ~
~ , ~ ~ ~ ~ ~

m

.

10 Wk~e~ l ~91 ~ Fh~ 3~mT~.h-~"-a ~o~rn~l

NDL~ ~ ..!!i!:i!:.~ T s c H T ~ L x
" :.:::i:.':.:"

For receiving packets, the process can work in one of
two ways: using ReceiveLookahead and TransferData
p~mitives or n~qg the ReceiveC~ain primitive. The
method ttm is used is determined by the MAC, depend-
ing on how the MAC and adapter can lmndle data
buffeting. It is generally a function of wbether the
~an.rr, er has on-board receive buffers that use FO or
DMA to transfer the O~t~; or whether lbe adalxer buffers
are memory-mapped and accessible din~ctly by the host.

For buffers on lhe ~ ,~ te r that use programmed FO or
DMA to transfer the a~t~ the reception process ~ ~
a R ~ v ~ ~ ~ T ~ e ~ p ~ of p ~ -
~ . ~ e ~ C ~ ~ v ~ a ~ ~
w ~ w ~ w ~ p ~ ~ ~ ~ s by
~ m n g ~ ~ e ~ ~ p ~ e of ~ e ~
~ ~ ~ ~ ~ a ~ m a ~
~ m of ~ 0nta ~ ~ ~ n g of ~ ~ L ~
~ a l l y m ~ ~ ~ ~ C m ~ ~ v e ~ D ~ ' ~
~ 1 ~ ~ ~ m m a ~ e r ~ ~ ~

At thix point, the pmtcr.d driver can examine the
lookabead data to deterrnir¢ f l i t wants the pacgeL In
some cases the p~ket may not be of interest to the
protocoL If the packet is not needed, the protocol can
remm to the MAC indicating a reject and stating that u'~e
receive is complete. If the packet is needed, the protocol
calls the TransferData primitive of the MAC, which
~mlts in the MAC transferring the remainder of the data
m a Wotocol buffer.

The purpose of the Receive Lookabead implementzfion
is m avoid ~ dnt~ transfers between ~ e MAC
and the Wotcc~ This tectmique improves the efficiency
of the network stack.

Iftbe adatxer has receive buffers that are accessible as
host memory, receive will be implemented with the
ReceiveChain primitive. For U'xis type of buffering, the
MAC witl own and manage the receive buffers. For
flexibility, this mode has a ReceiveC~in buffer descrip-
tor smcmm, similar to tbe uansmit mucuue, that lets
multiple separate buffets be joined for m e packet
transfer. When ~ MAC has a received packet to
present m tbe protocol, it builds a buffer descriptor for
the packet and cans tbe protocot wiu~ Rece~veChain.

Wben the pmtcr~ gets ~ e Rec~veChain Indication, it
has two options. In the simplest case, the Wuttxol can
copy all of the packet data and mmm to the MAC speci-
fying that the receive is cc~nplete and ~ e buffers are
free. In the.cxber case, the protocol can defer copying
the buffers and return to the MAC specifyi~ that tbe
buffers are stitl in use. The protocol will later complete
the copying oftbe buffers and tben call the MAC with a
ReceiveRelease primitive to indicate that the buffers are
now free and the receive is done.

In all of these receive scem_rios, the primitive calls
issued to |he protocol are indications. This means that
the protocol drivers need to observe cerm~ rules and
that the MAC must issue an IndicationComplete call to
the protocol as pan of the process. For more information
about these indication issues, refer to the NDIS specifi-
cation document.

Dynamic Binding
As mentioned eadier, some l~imitives are provided to
support Dynamic Binding. Dynamic Binding is a new
concept that has been added in Ve~ion 2.0.1 of the
NDIS document. It allows a protocol to be added to or
m o v e d from an existktg network configuration after
lhe i#ti~l~7~tion process has completed. The dynamic
protocol driv~ must be wdtten for this purpose ~
normally will be implemented as a TSR or transiem
progr-,an module.

The main advantage of Dynamic Binding is freeing
system memory until it is ac~mily needed for a particular
protocol. This is most useful in the DOS envinmment
wix~r¢ ~ is a 640K m e m o r y limit aIld it is ~ to
have m u l t i # protocol stacks loaded simultaneously.

DOS Versus OS/2
NDIS has all the feavaes needed to allow wri the
network ddvers that will nm in eitber the DOS or the
OS/2 environment. A ¢kiver can only be used with one
of these opeming systems (the same driver can't be used
for bouh), but the strtmmm of the driver can be identical
for both environments. We have found that one set of

~ 17~.~o~l"~.tmimlJo~rnal Wint~r1991 11

i!i~iii!ili.!:!i!i T ~ c . T A ~ ~ N D ~ Coa,:q~:,~
:i,'.'::i:.:.',:: I

source code can be used to make ve~ons for both DOS
and 0S/2. Where different techniques are required, a
~ ~ o f ~ ~ ~ ~ ~ ~
~ e ~ ~ y ~ ~ ~ r ~ e ~ o v e ~ .
~ ~ of m ~ a ~ e ~ ~ ~ a ~ ~
~ ~ ~ ~ ~ t 21h ~ a ~ S - ~ ~ e r ,
v e ~ m I ~ ~ f ~ O S ~ A ~ ~ ~
of a ~ w ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ e r .
~ ~ p ~ ~ r ~ e r ~ ~ ~ ~
~ ~

Netwcnk device clfive~s are not very different in stmc-
tree from other types of device drivers. The device
driver must be written to conform m the architecture in
which it will run--DOS or OS/2. All of the normal
issues a l~y in writing NDIS drivex~ for both of these
environments. Several books and artieles are av~lable
that explain general d.liver develolanent issues. See the
list of references atthe end of this article for suggested
re~ing.

Summary
One of the main goals of the Network Ddvex Interface
Specification is to save network software developers
from "reinventing the wheel." for each new versiou of
network a_dapter han~lwan~. A protocol that is written
with an NDIS interface atits base should be able to
functiou unchanged with many diffenmt types of adapter
hardware. In addition, the manufaaurcrs of the network
hardwa~ should be in the best position to write efficient
and bug-free MAC drivers for their own boards. 3Corn
and many other venciom have NDIS MAC drive~s
available to support their network hardware.

Using the star~n~_'7~l NDIS interface allows a new
level of ~ of network resources in a machine.
Multiple pmtocois and multiple hardware ~ p t e m can
coexig ~-wenthosefrcmdiffaentvenckas. I .nputwas
sought from many leadem in the network industry to
guarantee that the specification is flexible enough to
meet most networking needs. Further, 3Corn carefully
defined the functicm so that performance was not
mcrmced for this f l ~ .

If you are a sof~are developer who would like to
evaluate NDIS for your specific needs, the next step is to
obtain a copy of the Network Driver ~ Specifica-
lion. The NDIS document can be obtained from 3Corn
by writing to the foIlowing addre~;:

SCom Corporatkal
Network Adapter Division
S o f t w ~ Product Marketing
5400 Bayfront Plaza
P.O. Box 58145
Santa Clara, CA, 95052-8145 •

Rex Allers is a Systems Engineer in the Technical
Services Organization at 3Corn, spec~ql_i_,~ng in support
for developers. Rex ha$ worked in engineoqng and
support in the computer industry for longer than he
cares :o admR, and has been at 3Com s~nce 1986.

Suggested Reading:
1. Microsofl/3Com LAN Manager Network Ddver

I merf ace Spec~ca~ion, 3C~m/b/fi~msoft, 1990

2. The Open Book, Marshall Rose, Prentice Hall, 1990

3. Advanced MS-DOS, Ray Duncan, Nficmsoft Press,
1986

4. Writing MS-DOS Device Drivers, Robert S. L ~
Addison-Wesley, 1987

5. 0S/2 Progrcomner' s Gugde, Ed Iacobucci, McGmw-
I4i11; 1988

6. Wria'ng 0S/2 Device Drivers, Raymond Westwater,
Addisou-Wesley, 1989

I

12 W ~ ' I ~ ~ 7:~3ComT,~cJm/c~dJ'our~mr

