3Com/Microsoft LAN Manager
- Network Driver Interface Specification

NRUS
Version 2.01 (FINAL

Published § October 1990. Printed in the US.A.

Copyright 1988, 1989, 1990 3Com Corporation/Microsoft Corporation

NOTICE
This specification is intended for use by those developing or using networking products. -
This specification may be copied freely for that purpose as long as copyright notice is
preserved on all copies of the specification. No fee or royalty is required by either 3Com
Corporation or Microsoft Corporation to develop products which use the information
contained within this specification. Information contained in this specification may be
included in documents, presentations, or products of third parties; however, authorship
must be atributed jointly to 3Com Corporation and Microsoft Corporation, and appropriate
copyright notices must be placed in any such documents or presentations. Additional
copies of this specification may be obtained from 3Com Corporation or Microsoft
Corporation. :

Table of Contents

Chapter 1 - Introduction

Definition of TErMScouiiiiiiinriniruiiniiiieeireetereerenerenseensnsencnnnes 1-1
Scope of this Documentcccccovuevneenencenreanennnnn. eeereretesraraenraaraans 1-1
Changes for this Versioncceeveniuieeieiieiieeeeeeneeeeeereeeennenseeneennns 1-2
Chapter 2 - Configuration and Binding
Configuration and Binding Process.....ccceuvueeeeeeieeecececiocreieecenanennnennns 2-1
Chapter 3: Protocol to MAC Interface Descnpt:on
TranSMISSION. ccuiieiiaieiiieeicieiiee e cetcce et reeeenerenerna s ennennsnes 3-1
RECEPHON. ..cetetaenrntiieieitieeia it e reeeeeeneeeneeaensnenasasensanenannnsnns 3-1
Non Host-Buffered Adapter..........cooiuiiiiiiiiiiiiiiiiiieiiiicineeeeenannn. 32
Host-Buffered Adaptercooiaiiiiniiiiiiiiiiiii e e eiienieerieereeenenaanes 3-2
Indication Control.........ccciuiniuiiiiiiiiiieiee et rr e reee e eaaaneaaanaas 3-3
Status IndiCatioN.coeuiieiiiiiic it ere e e e e 3-3
General REqQUESTS......cvuiiuiieiieeianiieiieeeneeeieceereeeeenaearrseneaanaennnnns 3-4
SyStem ReQUESES «...ouueniiiinieiiieiie et eeeie e e eenenennene e nnenaeans 34
Protocol Manager Primitives.........cccoeviieiiniiiniinanans eereeeeten e araneaann 34

Chapter 4 - Data Structures

Module CharacteristiCs. .cccoeremuiiimuierimnrirenerenrierrnnreeeaanenaeenaernnnns 4-1
Common CharacteriStiCs. .. eviiuiiiiiinieiiietteeeerentieeerereeeesennnesnnnnnns 4-1
MAC Service-Specific CharacteriStics ..cveeerernrieieenraierieenanrnreneanenennnns 4-3
MAC Service-Specific Status Table......c..oooiiiiiiiiiiiiiiiiieeeeeee 4-7
MAC Upper Dispatch Table.....cccooiiiiiiimiieiiiiiiieiieeeceeeereeeee e eeeeees 4-10
Protocol Service-Specific Characteristic Table.....cocevvvecreeceencereceecnnenanne 4-11
Protocol Lower Dispatch Table........ccoiiiiiiiiiiiiiiiiiiiieeeeeeae 4-11
Characteristic Tables for NetBIOS Drivers.......ccccccvveereveeereeeneeeenvnennne. 4-11
Frame Data Description.......ccceeeeimiiiiiuieriniiiieiieeieie e eneienenenenes 4-13
Transmit Buffer DesCriptor.....cccccvciiiiiiciicciireicecreeneeeeeeerenen. 4-13
Transfer Data Buffer Descriptor.........coeiiiieiiiiiniiiiiieieienenne 4-14
Receive Chain Buffer Descriptor.......ccocciiiiiiiaiiinirnenenereennennns 4-14
PROTOCOLUINI.......eiiiiniiieieeeeieieeiineetenceeeeenesnreecseenescncnenenes 4-15
Configuration Memory Imagec.cccvvininieiniiiiniiieenenena 4217
ConfigMemoryImagecociiiiiiiiiiiiiiiirieieeeecrereeeeneanans 4-17
ModuleConfigccoeneiiieiiiiiiiiiiiecrereereeerteaeeereaenees 4-18
KeyWordEntyc.oeiiiiiiiiii it ee e 4-18
Paramo e aeas 4-19
BindingsListcoueiiiiaiiiii e 4-20
Chapter 5 - Specification of Primitives
1971{-01 8 3 o 11 1111 1Y TN 5-3
TransmitChainccoceiniiiiiiiiiiiiiiiii e vee e e 53
TransmitConfimm......cciiiniiitiiiiiiiiii i eeeeeee e aeaes 5-4
ReceiveLookaheadcoieimiiiiiiiiiiiiiiieceeeeeaas 5-5
TransferDataocouiiiiiiiiiiii e eae 5-6

ReceiveChaincccenneiiniiiiiiiiiitirtcc e et 5-8

ReCEIVEREICASEc..eeeieeiieneiiieiiciecieerienriceeacrenessrnssnranes 59
1T 111167, 10) 3 SN 5-9
IndicationOn eeteccessennccescsnransseasessoacenassenrtcesancanntnn 5-10
General REQUESES. ...c.ceieereieinienereeieeereeeresaseeeessesssocaneesssasensencnses 5-11
InitiateDIagnosStCS. ... ovunruereeienircarirnaraocecoscnsserescesarsersscssoones 5-11
ReEAAEITOTLOB. .ccocuunitreiiirrnrireeniertncccnscsncnsssnssaesecsnssssessansns 5-12
SetStAtONAAAIESS.....cuceeeceiatrieeeeeiereceeseonsncesasensessssansensases 5-12
OPENAdapLEr.....couiuiinieiniieinncanstreecassescsacsosssosescossssnssossone 5-13
O [TV 1 01 {5 O 5-14
ReESEIMARC. ... e reeeeeerenerecceensenscosereesasesensnnsnras 5-15
SetPacKetFIter. ... o e eeeecceiciiceeeeceretrcceencnccerancaccrsnasesnsnenan 5-16
AddMulticastAddress....cccccceiieeneceeiecnreassccrescassessccesoscesascnns 5-17
DeleteMulticastAdAress....cveeeeererrieeeceereenecracencansossasesssnssansn 5-18
UpdateStatistiCs. .cocieiemiianiineinniinionrieieoenseecccanscessescscenesanns 5-18
ClearSIatiSHCS. ceeutrneeeeencteenceerncecarenssssnssasecnresssscsensresancases 5-19
INterTUPtREQUESEcc.vuciieeiiiiiiiiiatiereceseeccecsenccnssusasenenons 5-19
SetFUNCtioNalAdATESsS. .. cueeieeeceeeiienceeereeenceenrnenancncensancnnns 5-20
Setlookahead.cc.cociieiiiiiieieireeriereeenreeerescnesassrecnncenes 5-20
General Request Confirmation........c.cceeeeeeereeeecrenenncsecssoeseennes 5-21
Status INdiCatIONS. cciiuiirieicnirreneenreneinrierecseserencressosesessanseressssnnees 5-21
RiINESAtUS.ccvueiiiieiiiiiiiiiniciirctitceencececeesnaesasesmosessenans 5-22
AdapIeTCRECK. ...cveeiiiiiiiciieceecrerceeereessssnscnsesssscscncnnnnes 5-23
Y€ 49311 SO U UN 5-24
ENARESCT ...t eireiieeeceiieeieeeensenceessrsenssseesssenssnsonenne 5-25
INEEITUPL . e ceeiiiiiiiiiiii it e creeascnreccecsntaacsncscsassannsnne 5-25
SyStermn REQUESTSvieeniniiiiiiiiiiiiiieiiieriirncsonecraresnsssescacosssssnsnns 5-26
InitateBind. ..cceeieieiiiii i eiiceirrreerreceerercrr e rnenecnnnenne 5-26
Bind.....ceiiiiiiiiiiiiiiiietttttieerrereeeesnveenrecentoncensearseanasnne 5-27
InitiatePrebind (OS/2 0nlY) e icirmeeceeeeececriecnraecreccrnonccaaes 5-28
InitiateUnbind........cuveiientieieeieieicieeeereecenrerscenacnecrennasnns 5-28
UNDINA. eniiiiiiiiiierieiiiieeiicecescseesseeesscsnsscesscsssesssrensesances 5-29
Protocol Manager Primitives..........cccceeuveneennenenn. ceetessseseressestassanncanne 5-29
GetProtocolManagerInfo.......ccceveeiiiireiomeniietacenncncecassenncnse 5-30
RegisterModule........ccouiiiiiiiiiiiiniiiiieciiicicocssnncierneccesaees 5-31
BIndANRASIartocniiiiiciiieicieeeerieecerecresasecsncessesnnnene 5-32
GetProtocolManagerLinkage......cccceceeueecmeecconnccanccnnneeacesacanene 5-34
GetProtocolIniPath.coiieieiieneiiiieiieeiereeeencrsecescessosenscsnns 5-34
RegisterProtocolManagerInfo.........ceeeeeeaenenasnecocecsencenncroanes 5-35
INitANAREGISIET . c.oceeieiaieiiiniiieiacariierececercscnceencocessescsncannsanes 5-36
UnbindANAStOP . ccuiciiiiieiiieeieieecreteenerececeraccsescsenossnnsncnsens 5-36
BindStatus. ... e cianieieieiieecrecieneensesnsens ceesseccseracsnneenncsesnses 5-38
RegiSIErSLatUS. ..ccuiviaiiiiicnineienirecnecsacnsensnesoceesecnsssasnnasasne 5-40
Chapter 6 - Protocol Manager
Protocol Manager Initializationccceeieieriarenciniccrocancnceneecncacsonss 6-1
Static Binding Sequence.ccuiimeiiiiiiciriiiianctertcctenececrncensnccsanes 6-1
0S/2 Calling CONVENtON.....ccccenrirrerieeicniresesiaserescscssosnranssosscsasencs 6-3
DOS Calling ConVeNtioNccvtieiterercerescstesscassocsoscsssenssnassonsasesess 6-4

Chapter 7 - VECTOR and Dynamic Binding
Static VECTOR Binding.......cccecciiruirmmeeiioniicnsonniennenancenneceesosssses 7-1

Dynamic VECTOR Binding.......ccccceieureiememmmmimnicaniiiienniiiciineiennens
Dynamic Binding/Unbinding in the DOS Environment

Dynamic Binding/Unbinding in the OS/2 Environmentc...c.cocoeeeee.
VECTOR Demultiplexing

ooo

Appendix A - System Return Codes
Appendix B - Reference Material

Appendix C - 802.3 Media Specific Statistics
Appendix D - 802.5 Media Specific Statistics

Appendix E - Utilities Provided with the Protocol Manager

Chapter 1 - Introduction

This document describes the LAN Manager network driver architecture and interfaces that
let 2 DOS or OS/2 system support one or more network adapters and protocol stacks. This
architecture provides a standardized way for writing drivers for network adapters and
communications protocols. It also solves the problem of how to configure and bind
multiple drivers into the desired set of layered protocol stacks.

Drivers written to the interfaces defined here will function concurrently in a system with
other networking and protocol drivers, and will operate correctly with the LAN Manager
software for DOS and OS/2.

Definition of Terms

To simplify the job of supporting multiple adapters and protocols, the architecture defines
four kinds of drivers.

. Media Access Control (MAC) drivers, which provide low-level access to network
adapters. The main function of a MAC driver is to support transmitting and
receiving packets, plus some basic adapter management functions. MAC drivers
are device drivers that are loaded during system initialization and remain
permanently in memory. Since they cannot be unloaded, they are called "static".

. Protocol drivers, which provide higher-level communication services from data link
to application (depending on the driver). An example is a NetBIOS driver that
provides a NetBIOS interface at the top and talks to a MAC driver at the bottom.
Protocol drivers can be device drivers, TSRs, or transient DOS applications. A
protocol driver is called “static” if it cannot be unloaded. A protocol driver is called
"dynamic” if it can be loaded and unloaded on demand.

. MAC-layer entities, which bind to real MAC drivers and expose a new MAC-like
layer interface on top. Possible examples are MAC bridges, test tools, or interface
mappings which change the NDIS interface to meet some environment-specific
administrative requirement.

. The Protocol Manager driver. This is a special driver that provides a standardized

- way for multiple MAC and protocol drivers to get configuration information and

bind together into the desired protocol hierarchy. The Protocol Manager gets all
configuration information from a central file, PROTOCOL.INIL.

Scope of this Document

This document defines:

1. Protocol Manager functions and interfaces for configuration and binding of MAC
and protocol drivers.

2. The software interface between MAC and protocol drivers.

Separate documents will specify the configuration and interface details for other kinds of
protocol drivers, including data link and transport drivers.

Page 1-1

‘Changes for this Version

The major highlights of this version compared to the last (1.0) are:

1.

10.
11.

12.

13.
14.

Support for dynamic binding/unbinding of protocol modules, allowing protocols to
be swapped in and out of memory as needed. No changes are required of MAC
drivers to support the dynamic bind/unbind features. In particular NDIS 1.0.1
conformant MACs will support dynamically binding protocol modules.

Additional Protocol Manager functions to support dynamic bmdmg and future
administrative requirements.

Some adjustments to the Reset MAC function, StartReset, and EndReset primitives
were made to correct some inconsistencies-and keep-the logic out of the criticial
paths.

Additional fields were added to certain tables to provide additional information.
The presence or absence of these fields can be determined by examining the length
field in each table.

Some new recommendations and clarifications on such issues as double-word
alignment of data blocks, the use of the permanent station address, the copying of
DS and enuy points, the use of 80386 32-bit registers, the release of internal
resources before confirmations, the handling of 0 length data blocks, the formatting
of MAC headers, the use of zero handles, new transmit error codes for Token Ring
to support source-routing, and various other points that needed additional
clarifications.

A standard for protocol service-specific characteristics tables.

The inclusion of additional 802.3 and 802.5 specific information and added
statistics definitions.

Additional information and caveats to help developers.:

The Protocol Manager now has a transient component (in some configurations)
called PROTMAN.EXE. This is now described with cerwain restricitions imposed
on Protocol Manager primitives.

Some new error response codes were defined.

A new appendix, Appendix E, was added to dcscnbe some helpful bind and
configuration management utilities provided with Protocol Manager.

Selected statistics designated as manditory for both service-specific and media
specific statistics(802.3 and 802.5).

Extended 802.3 statistics to include Number_of_Underruns.

OpenAdapter function expanded to permit driver return of vendor specxﬁed warning
errors and/or hardware error codes.

Page 1-2

It is not expected that any of these changes will result in incompatibilities with protocol and
MAC drivers written to previous versions of this specification. Great care was taken to -
avoid creating incompatibilities. It is the protocol's responsibility to identify and
interoperate with older NDIS version driver implementations that may not have
implemented support for statistics. Older network drivers will co-exist with network
drivers written to this specification. However, to take advantage of new features (such as
dynamic binding), developers may wish to update their protocol drivers to be NDIS 2.0.1
compliant. '

Page 1-3

Chapter 2 - Configuration and Binding

A network server or workstation includes at least one Media Access Control (MAC) and
one protocol driver, plus the Protocol Manager driver. More complex configurations may
have multple MAC and protocol drivers.

The Protocol Manager is always defined in CONFIG.SYS to load before any MAC or
protocol drivers. Its job is to read the configuration information out of the
PROTOCOL.INI file and make this available to MAC and protocol drivers which load
later.

MAC and protocol drivers use this information to set initialization parameters and allocate
memory appropriately. For example, a NetBIOS driver may use the configuration
information provided by the Protocol Manager to determine its maximum number of names
and sessions.

As each driver configures and initializes itself, it identifies itself to the Protocol Manager
using a driver-defined “module name” and *“characteristics table”. The module name
defines a kind of logical name for the communication service provided by the driver. The
characteristics table provides specific parameters about the service and the set of entry
points the driver uses to communicate with other drivers. A single driver may identify
itself to the Protocol Manager as multiple logical modules if, for example, it implements
more than one layer of protocol interface (such as transport and data link).

Before two modules can communicate, they must be bound together. Binding is the
process of two modules exchanging characteristics tables so that they can access each
other’s entry points. This establishes the linkage they need to make requests of one another
and indicate asynchronous request completion. Binding is controlled by the Protocol
Manager based on information from PROTOCOL.INI. Binding can be either static or
dynamic for protocol drivers. If a protocol driver is static, then its binding is static. Ifitis
dynamic, then its binding is dynamic. A dynamic protocol driver can be unbound from its
bound drivers prior to unloading itself from memory. This unbinding process is also
controlled through the Protocol Manager.

Configuration and Binding Process

In the typical case of a system with one MAC driver and a NetBIOS driver, the set of
drivers load and initialize as follows:

1. Protocol Manager loads, initializes, and reads PROTOCOL.INL

2. MAC driver loads. It calls GetProtocolManagerinfo to get any needed
configuration information, like its DMA channel.

3. MAC driver initializes and calls RegisterModule to identify itself as the module
named e.g. “ETHERCARD.” This call passes ETHERCARD’s characteristics table
to Protocol Manager.

4. NetBIOS driver loads. It calls GetProtocolManagerinfo to get any needed
configuration information, like the maximum number of names, sessions, and
commands to support.

Page 2-1

S. NetBIOS driver initializes and calls RegisterModule to identify itself as the module
named “NetBIOS”. This call passes NetBIOS’s characteristics table to Protocol
Manager and indicates that NetBIOS wants to bind to ETHERCARD.

6. After all device drivers have loaded, Protocol Manager determines from the
information supplied on previous RegisterModule requests that NetBIOS must bind
to ETHERCARD. Using a defined dispatch address in the characteristics table for
NetBIOS, Protocol Manager calls NetBIOS and instructs it to bind to
ETHERCARD. The call, InitiateBind, includes the characteristics table for
ETHERCARD.

7. NetBIOS calls ETHERCARD, requesting to Bind. The modules exchange
characteristics tables with each other. They now have each other’s entry points and
are bound.

8. NetBIOS may now call ETHERCARD at its defined entry points for transmitting
and receiving packets (see next section).

If the example NetBIOS driver was dynamically loadable, the binding to the ETHERCARD

MAC would be done through the Protocol Manager's VECTOR facility (see Chapter 7).
The Vector shields the static MAC driver from the details of dynamic binding.

Page 2-2

Chapter 3: Protocol to MAC Interface
Description

The interface between a protocol and MAC driver provides for the transmission and
reception of network packets, called frames. The interface includes other functions for
controlling and determining the status of the network adapter controlled by the MAC.

To allow for efficient use of memory and to minimize buffer copies, frames being
transmitted and received are passed between protocol and MAC using a scatter/gather
buffer description convention. This passes an array of pointers/lengths called a frame
buffer descriptor. There are three types of these descriptors, one for describing frames
being transmitted (TxBufDescr) and two for frames being received (RxBufDescr and
TDBufDescr).

Overall, the calls at the protocol/mac interface are grouped into categories of transmission,
reception, indication control, status indications, and general requests. An additional
category of function, system requests, is generic to all dnvers.

Transmission

Transmitting data can work either synchronously or asynchronously, at the option of the
MAC. Protocols must be able to handle both cases. Primitives are TransmitChain and
TransmitConfirm.

Protocol MAC
Transmit Chain —CALL—> Call passes TxBufDescr and unique handle.
MAC may copy data now or later.
<—RETURN— Return indicates if data has been copied. If

not, MAC now owns frame data blocks and
will copy them asynchronously.

Later on, after data is copied by MAC:
TransmitConfirm <—CALL— Call supplies unique handle from Transmit.
—RETURN—> Data block ownership returned to protocol.

NOTE: If the MAC transmits the frame synchronously, it indicates this on the return from
TransmitChain and will not generate a TransmitConfirm.

Reception

Receiving data can work in either of two ways, depending on the MAC. Protocols must be
able to handle both cases.

. The MAC generates a ReceiveLookahead indication that points to part or all of the
received frame in contiguous storage. This is called the “lookahead” data. The
protocol may issue a TransferData call back to the MAC if it wants the MAC to
copy all or part of the received frame to protocol storage. The protocol may, of

Page 3-1

course, copy the look ahead data itself. In some implementations, this may be the
entire frame.

. The MAC generates a ReceiveChain indication that points to a RxBufDeéscr that
describes the entire frame received. The protocol may copy the data immediately or
later. If later, it releases the frame buffer areas back to the MAC via a call to
ReceiveRelease.

Generally, the first approach will be implemented by MAC drivers for non-host buffered
network adapters, while drivers for host buffered network adapters will implement the
second. Non-host buffered adapters that use programmed I/O or DMA will generally
provide a small leading portion of the received frame as look ahead data, whereas those
using a single memory mapped buffer will usually provide the whole frame.

In either case, the protocol must validate the received packet very rapidly (within a few
instructions) and to reject it if necessary. This is very important to performance in a multi-
protocol environment.

The following sectons illustrate the non host-buffered adapter versus host-buffered adapter
receive scenarios:

Non Host-Buffered Adaptek
MAC Protocol

Receivelookahead @ —CALL—> Call passes pointer to lookahead data.
Protocol examines this data.

If protocol wants the frame and look ahead wasn’t the whole frame, the protocol cag ask
MAC 1o tansfer the frame:

TransferData <—CALL— Passes TDBufDescr indicating where to put
the received data.
—RETURN—> '
<—~—RETURN—

Upon return from protocol, MAC re-enables the hardware.

IndicatdonComplete = —CALL—> MAC calls protocol to allow interrupt-time
post processing.
<—RETURN—

Host-Buffered Adapter
MAC Protocol

ReceiveChain —CALL—> Call passes pointer to RxDataDescr.

Page 3-2

<—RETURN— Return tells if protocol accepts the frame,
and if so, whether it copied the data. If
accepted but not copied, ownership of data
blocks passes to the protocol which copies
the data asynchronously.
IndicaionComplete = —CALL—> MAC calls protocol to allow interrupt-time

post processing.
<—RETURN—

Later, if protocol deferred copying the data (this may occur during IndicationCompiete)

<—CALL— ReceiveRelease. The call supplies the
unique handle from ReceiveChain.
—RETURN—> Data block ownership returned to MAC.

Indication Control

Two primitives let a protocol selectively control when it can be called with indications from
the MAC. These are IndicationOn and IndicationOff.

Before calling an indication routine, the MAC implicitly disables indications. This means,
for example, that if another frame arrives while the protocol is processing the indication for
the previous one, the protocol will not be reentered. Likewise, if the protocol issues a
TransmitChain for loopback data from within the ReceiveLookahead indication routine, it
will not be reentered to process the loopback data reception.

Protocols can re-enable indications upon returning from ReceiveLookahead, ReceiveChain
or Status indications or by calling IndicationOn within the IndicationComplete routine.

Status Indication

Status indications are calls from a MAC to protocol that convey a change in adapter or
network status.

A status indication works much like a reception indication. The status indication handler is
entered with indications disabled and there is a mechanism which will leave indications
disabled.

MAC Protocol

Status —CALL—> Call passes status type and information.
<—RETURN—

IndicationComplete —CALL—> MAC calls protocol to allow interrupt-time

post processing.
<-—~RETURN—

Page 3-3

General Requests

General requests are calls from a protocol to a MAC, asking it to do a general function such
as open or close the network adapter or change the station address.

General requests work much like a TransmitChain request, except the primitives arc
Request and RequestConfirm.

Protocol MAC
Request —CALL—> Issue request to MAC with unique handle.
<—RETURN— Return indicates if request completed.
Later, if request completed asynchronously:-
<—CALL— RequestConfirm. The call supplies unique
handle from Request.
—RETURN—>

. If the MAC satisfies the request synchronously, it indicates this on the return from Request
and will not generate a RequestConfirm.

System Requests

System requests support module binding and management functions. They are usually
made by the Protocol Manager to a MAC or protocol module, but can also be made by a
protocol to another protocol or MAC module.

System requests work much like general requests except that all are synchronous and the
requests are not module specific.

Upper Module Lower Module
System —CALL—> Issue request to lower module.
<—RETURN— Return indicates request completed.

Protocol Manager Primitives

Protocol Manager primitives are requests from protocol or MAC modules to the Protocol
Manager for various Protocol Manager services. These requests are always synchronous.

Protocol or MAC Protocol Manager

Module

Primitive —CALL—> Issue request to Protocol Manager
<—RETURN— Return indicates request completed

Page 34

Chapter 4 - Data Structures

Module Characteristics

Protocol and Media Access Control (MAC) modules are described by a data structure called
a characteristics table. Each characteristics table consists of several sections: a master
section called the common characteristics table and four subtables. The common
characteristics table contains module-independent information, including a dispatch address
for issuing system commands like InitiateBind to the module. The four module-specific
subtables are chained off the common characteristics table. These define module-specific
parameters and the entry points used for inter-module communication (such as the
MAC/protocol interface functions). When two modules bind together, they exchange
pointers to their common characteristics tables, so that each gets access to the other’s
descriptive information and entry points.

NOTE: NDIS drivers must copy the Module DS and entry point addresses (from the
Common Characteristics and Upper/Lower Dispatch Tables) to their local data segment at
Bind time. In future versions of this specification, this information may be volatile.
Having this information directly accessible will also improve performance. This
information must not be copied prior to the Bind call and must not be used unless the Bind
completes successfully.

NOTE: The information in the characteristics table for a module is primarily
informational, in support of network management and configuration tools. Upper modules
binding to lower ones will NOT need to parse this information to adapt their behavior at the
interface. They will generally just use the information to validate that they have been bound
to the correct type of module. Most of the other information is provided in the structure to
support information utilities.

Some new fields have been added to some of the characteristics tables for V2.0.1. The

size/length fields at the start of the tables can be checked to see if the new fields are
available in the table.

Common Characteristics

The format of this information is identical for all modules. Note that all information in this
section of the table is static.

WORD Size of common characteristics table (bytes)

BYTE Major NDIS Version (2 BCD digits - 02 for this version)
BYTE Minor NDIS Version (2 BCD digits - 00 for this version)
WORD Reserved

BYTE Major Module Version (2 BCD digits)

BYTE Minor Module Version (2 BCD digits)

DWORD Module function flags, a bit mask :
0 - Binding at upper boundary supported
1 - Binding at lower boundary supported
2 - Dynamically bound (i.e., this module can be swapped out)
3-31 - Reserved, must be zero
BYTE[16] Module name - ASCIIZ format

Page 4-1

BYTE Protocol level at upper boundary of module:
1-MAC
2 - Data link
3 - Network
4 - Transport
5 - Session
-1 - Not specified
BYTE Type of interface at upper boundary of module:
For MAC'’s: 1=>MAC
For Data Links: To be defined
For Transports: To be defined
For Session: 1=>NCB
For any level: 0 => private (ISV defined)
BYTE Protocol level at lower boundary of module
0 - Physical
1-MAC
2 - Data link
3 - Network
4 - Transport
5 - Session
-1 - Not specified
BYTE Type of interface at lower boundary of module:
For MAC: 1=>MAC
For DataLink: To be defined
For Transport: To be defined
For Session: 1=>NCB
For any level: 0 => private (ISV defined)

WORD Module ID filled in by Protocol Manager on return from RegisterModule
WORD Module DS _

LPFUN System request dispatch entry point

LPBUF Pointer to service-specific characteristics (NULL if none)

LPBUF Pointer to service-specific status (NULL if none)

LPBUF Pointer to upper dispatch table (see below; NULL if none)
LPBUF Pointer to lower dispatch table (see below; NULL if none)
LPBUF Reserved for future expansion, must be NULL

LPBUF Reserved for future expansion, must be NULL

NOTE: LPSZ Long pointer 1o an ASCIIZ string
LPBUF Long pointer to a data buffer
LPFUN Long pointer to a function

In V1.0.1, the 2 bytes after the first WORD were required to be set to 0. For compatibility
with V1.0.1, an NDIS spec major version number of 00 is interpreted the same as major
version number 0O1.

The module function flags bit mask must accurately specify the capabilities of the module.
The Protocol Manager uses these fields; e.g. the "Dynamically bound” (bit 2) flag when set
indicates that this module is a dynamically loadable and unloadable module. Such a module
can only be used in the Protocol Manager dynamic mode.

The upper and lower boundary protocol level and interface type bytes must accurately
specify the protocol level and interface type. The Protocol Manager uses these fields. If an
interface does not support NDIS bindings or a protocol level is undefined at the interface, a
value at OxFF must be used. In this case the corresponding interface type is undefined.

Page 4-2

In addition to the above common characteristics table, a given module will typically have a
set of sub-tables that are chained off the common table:

. Service-specific characteristics table:
This table contains descriptive information and parameters about the module.

. Service-specific status table:
This table contains runtime operating status and statistics for the module.

. Upper dispatch table:
This table contains dispatch addresses for the upper boundary of the module —
i.e., the entry points it exports as a service provider.

. Lower dispatch table:
This table contains dispatch addresses for the lower boundary of the module —
i.e., the entry points it exports as a service client.

NOTE: Under OS/2 dispatch addresses and data segments are Ring 0 selectors. This field
" is usually set at Ring 3 INIT time even though the selector set must be Ring 0.

MAC Service-Specific Characteristics

All MAC’s use the following format for this table. This table contains volatile information
(like the current station address) which may be updated by the MAC during the course of
operation. Other modules may read this table directly during execution.

WORD Length of MAC service-specific characteristics table
BYTE [16] ’I‘ypg (;12ame of MAC, ASCIIZ format:
3

802.4

802.5

802.6

DIX

DIX+802.3

APPLETALK

ARCNET

FDDI

SDLC

BSC

HDLC

ISDN v
WORD Length of station addresses in bytes
BYTE [16] Permanent station address
BYTE [16] Current station address
DWORD Current functional address of adapter (0 if none)
LPBUF Multicast Address List (structure defined below)
DWORD Link speed (bits/sec) '
DWORD Service flags, a bit mask:

0 - broadcast supported

1 - multicast supported

2 - functional/group addressing supported

3 - promiscuous mode supported

Page 4-3

4 - software settable station address
5 - statistics are always current in service-specific status table
6 - InitateDiagnostics supported
7 - Loopback supported
8 - Type of receives
0 - MAC does primarily ReceiveLookahead indications
1 - MAC does primarily ReceiveChain indications
9 - IBM Source routing supported
10 - Reset MAC supported
11 - Open / Close Adapter supported
12 - Interrupt Request supported
13 - Source Routing Bridge supported
14 - GDT virtual addresses s .
15 - Multiple TransferDatas permitted during a single indication (V2.01

and later) -
16 -lal\;l;c): normally sets FrameSize = 0 in ReceiveLookahead (V2.01 and
17-31 - Reserved, must be 0
WORD Maximum frame size which may be both sent and received
DWORD Total wransmission buffer capacity in the driver (bytes)
WORD Transmission buffer allocation block size (bytes)
DWORD Total reception buffer capacity in the driver (bytes)
WORD Reception buffer allocation block size (bytes)
CHAR|3] IEEE Vendor code
CHAR Vendor Adapter code
LPSZ Vendor Adapter description
WORD IRQ Interrupt level used by adapter (V2.0.1 and later)
WORD Transmit Queue Depth (V2.0.1 and later)
WORD Maxlimum number of data blocks in buffer descriptors supported (V2.0.1
and later)

Remaining bytes in table (based on Length) are vendor-specific

In interpreting these tables the implementer must always bear in mind that additional
functions may be added to future MAC’s and that the support of functions that the protocol
does not need must not prevent the protocol from accepting a bind for the MAC.

The type name describes to the protocol the type of MAC protocol header that the MAC
driver supports. In general, protocol stacks must be prepared to support the types "802.3",
"802.5", "DIX" and "DIX+802.3". If the native media of the MAC is not one of these
types (for example, ARCNET) then it is recommended that the MAC developer must
consider claiming support for one of the above types and doing a transparent internal
mapping between the private header format of the media and the public header format being
claimed. Without support for one of the above header formats, general protocol
compatibility cannot be guaranteed. The list specified above is not exhaustive. New names
may be added in the future or a vendor may provide special MAC type names for use with
protocols that interoperate with special MACs provided by that vendor. In the latter case it
is recommended that a vendor use a MAC type name that does not start with an
alphanumeric character to avoid conflicts with NDIS MAC type names that might be
specified in future versions of this specification.

The normal type name of an ethernet MAC would be “DIX+802.3.” See Appendix B for
references on IEEE 802.3 and DIX. _ .

Page 4-4

In the various parts of this specification, all station and multicast addresses for a given
MAC have the length specified in the "Length of Station Address" field. :

The permanent station address must be obtained from the hardware if at all possible, as it
may be used by LAN Manager for security or administrative purposes. If a
PROTOCOL.INI entry is used to override the current station address, the permanent station
address must not be affected. Only if there is no hardware based addressing scheme will it
be possible to override the permanent station address by configuration parameters. The
current station address will always reflect the current address as set via parameter or by
calling Request SetSetationAddress.

The functional address DWORD represents the functional address bit pattern present in the
last 4 bytes of an IBM compatible functional address. This excludes the first 2 bytes 0xCO,
0x00. The functional address DWORD represents the logical OR of all functional
addressess currently registered to the adapters.

Multicast Address List is a buffer formatted as follows:

WORD Maximum number of multicast addresses
WORD Current number of multicast addresses
BYTE[16] Multicast address 1

BYTE[16] Muldcast address 2

BYTE[16] Multicast Address N

The Multicast Address List is kept packed by the MAC so that the current multicast
addresses occur first in the list.

Service flags indicate which optional functions are supported by an NDIS driver. If a
particular function bit is set, that function is supported. When attempts are made to invoke
unsupported functions, NDIS MAC drivers must respond properly by returning
INVALID_FUNCTION (0x0008).

If loopback is supported in the network adapter hardware, then bit 7 of the MAC service
flags must be set.

If loopback is not supported in hardware (bit 7 of the MAC service flags is not set), the
protocol driver must handle this function itself by some loopback delivery of the frame to
be ransmitted.

The following criteria must be met for loopback:

1. The destination address is the same as the local station's current station
address or the destination is a broadcast, multicast or functional address
which would have been received by this station if sent by another.

2. The frame must qualify for reception according to the current packet filter.

The loopback mechanism must cause the Receive indication to occur at interrupt time (and it
must be delayed by IndicationOff)

If IBM source routing is used (bit 9 is set) it is the protocol module’s responsibility to
encode and interpret appropriate source routing information. This bit merely implies that

Page 4-5

the device is capable of sending packets with the “source routing bit” set in the source
address so that a protocol may recognize such a packet.

While the ResetMAC function (bit 10) is optional, it is strongly recommended that those
implementing the NDIS MAC driver support this function. Some protocol drivers may rely
on this function to recover from hardware error conditions.

If the service flags indicate that OpenAdapter is supported (bit 11 is set), then the protocol
driver must ensure that the adapter is open. The open status of an adapter can be
determined by examining bit 4 of the MAC status in the MAC service-specific status table.
If the adapter is not open, then the protocol must issue an OpenAdapter Request (normally
during bind-time processing).

If Source Routing Bridge is set (bit 13) then it is implied that the MAC is capable of
receiving all packets on the network which have the source routing bit set..

If GDT virtual addresses are supported (bit 14 is set) then Ring 0 GDT virtual addresses
may be used to describe frames. All MAC’s must support the use of physical addresses to
describe frames; however, for some MAC's it is preferable to supply a GDT address if one
is re&dxAlé available. The GDT address must remain valid throughout the scope of its use by
the

If bit 16 of the service flags field is set, then the MAC driver does not normally provide the
total frame size of received data. In this case the MAC normally calls RecieveLookahead
with the FrameSize parameter equal to 0. Setring this bit is optional. It is left to the MAC
implementor to determine how frequently returning FrameSize equals 0 constitutes
sufficient grounds to set this bit. However, this bit must be reset if the MAC always calls
ReceiveLookahead with the FrameSize parameter non-zero or if a 0 FrameSize parameter is
returned only for intermittent erroneous packet reception. For V1.0.1 compatibility, bit 16
reset gives no indication whether the MAC will return a zero FrameSize parameter or not.
Some MAC and higher layer protocols do not support "length” fields within their encoding.
Such protocols rely on knowing the size of valid frame data received at the MAC interface
and then deduce the amount of data at their layer by stripping off the lower layer protocol
headers. This bit warns such protocols that the required received frame size is not normally
available at the MAC interface and that receive frames might not be able to be processed.
Such protocols can refuse to bind to such MACs. .

The maximum frame size must reflect the maximurm size packet that can be both transmitted
and received by the MAC client. This size must reflect only the bytes which actually cross
the NDIS boundary. For Ethernet, this value is typically 1514, since the client does not
specify the CRC bytes. Token Ring values vary but do not include the non-data SD, ED
and FS bytes or the FCS.

The network adapter RAM is characterized by four parameters. The first is the number of
bytes available for storing packets to be transmitted, usually one or two full-size packets in
size. The second parameter is the allocation granularity, typically about 256 byztes,
indicating how much memory would be occupied by a one byte packet pending
transmission. The next two parameters are the number of bytes available for storing
received packets and the receive packet granularity. Often these parameters will be affected
by PROTOCOL.INI keywords (for example, specifying two transmit buffers rather than
one), and it is required that these numbers accurately reflect the current adapter
configuration. Protocol drivers may use these numbers to determine reasonable window
sizes, and incorrect values may impact performance.

Page 4-6

The intent of the IEEE Vendor and Vendor Adapter Codes is that, when used in
combination, they uniquely identify this MAC driver for this adapter. The IEEE Vendor
Code uniquely defines the vendor providing the MAC driver. The use of the [EEE Vendor
Code avoids the need for any global registry of Vendor Adapter Codes. The IEEE Vendor
Code is assigned by the IEEE and becomes the first three bytes of a six-byte IEEE 802
address. The Vendor Adapter Code specifies a particular MAC driver provided by the
Vendor for an adapter. If the IEEE Vendor Code is assigned to the Vendor, the Vendor
assigns a unique Vendor Adapter Code to each MAC driver provided. For those without
an IEEE Vendor Code, a value of OXFFFFFF is required. In this case, the Vendor Adapter
Code is undefined.

The Vendor Adapter description string is an ASCIIZ string containing a description of the
adapter that could be used to format an error message (for example, "3Com EtherLink II
Adapter”).

The transmit queue depth specifies the maximum number of TransmitChain requests the
MAC can buffer internally. This number must be set to one if the TransmitChain
implementation in the MAC is synchronous. Each queued TransmitChain request requires
that the MAC driver copy at least the chain descriptor and immediate data, so this parameter
is generally configurable through a PROTOCOL.INI keyword called MAXTRANSMITS.
The protocol driver can use this queue depth to compute the amount of time a transmit
might be queued up within the MAC.

The maximum number of data buffer blocks is the maximum number of blocks supported
in Transmit, TransferData, and ReceiveChain buffer desciptors. For V1.0.1 backward
compatibility this must be a minimum of 8. For V1.0.1 compatible MACs for which this
field is absent, the maximum number assumed is 8.

The size of the NDIS defined part of the MAC specific characteristics table may increase in
subsequent versions of the specification. If vendor specific information follows the NDIS
defined information, a protocol using it must check the NDIS spec version number in the
Common Characteristics table to determine where the NDIS specified information ends and
the vendor specified information begins.

MAC Service-Specific Status Table

The MAC service-specific status and media-specific statistics tables provide information
about the status of and traffic through a MAC. Since these tables can be updated by the
MAC driver at interrupt time, a protocol must ensure that these tables are read with
interrupts disabled. The MAC must update this table (and the media-specific statistics table
if present) atomically.

WORD Length of status table
DWORD Date/time when diagnostics last run (OXFFFFFFFF if not run). Format is
seconds since 12:00 Midnight January 1, 1970
DWORD MAC status, a 32-bit mask:
0-2 - Opcoded as follows:
0 - Hardware not installed
1 - Hardware failed startup diagnostics
2 - Hardware failed due to configuration problem
3 - Hardware not operational due to hardware fault
4 - Hardware operating marginally due to soft faults
5-6 Reserved

Page 4-7

7 - Hardware fully operational
3 - If set, MAC is bound, else not bound
4 - If set, MAC is open, else not open (if adapter doesn’t support
open/close function, set to 1 if hardware is functional)
5 - If set, adapter diagnostics are in progress (V2.0.1 and later)
6-31 - Reserved, must be zero
WORD Current packet filter, a bit mask:
0 - directed and multicast or group and functional
1 - broadcast
2 - promiscuous
3 - all source routing
4-15 - Reserved, must be zero

Statistics for MAC’s ‘
Statistics in bold are mandatory, all others are strongly recommended.
OxFFFFFFFF means not supported.

Reserved slots should return as OXFFFFFFFF (unsupported).

LPBUF Pointer to media specific statistics table (may be NULL)

DWORD Date/time when last ClearStatistics issued (OxFFFFFFFF if not kept) format
is seconds since 12:00 Midnight January 1, 1970

DWORD Total frames received OK

DWORD Total frames with CRC error

DWORD Total bytes received

DWORD Total frames discarded - no buffer space

DWORD Total multicast frames received OK

DWORD Total broadcast frames received OK

DWORD Reserved (Obsolete statistic)

DWORD Reserved (Obsolete statistic)

DWORD Reserved (Obsolete statistic)

DWORD Reserved (Obsolete statistic)

DWORD Reserved (Obsolete statistic)

DWORD Total frames discarded - hardware error

DWORD Total frames transmitted OK

DWORD Total bytes transmitted OK

DWORD Total multicast frames transmitted

DWORD Total broadcast frames transmitted

DWORD Reserved (Obsolete statistic)

DWORD Reserved (Obsolete statistic)

DWORD Total frames not transmitted - time-out

DWORD Total Frames not transmitted - hardware error -

Remaining bytes (based on Length) in table are vendor specific.

All statistics counters are 32-bit unsigned integers that wrap to zero when the maximum
count is reached after which the counters will continue to count. When updating these
counters, a frame is counted in all the supported counters that apply. The case of an
unsupported counter (OXFFFFFFFF) can be distinguished from the situation wherby a
counter is about the wrap around if the values of the counters are checked at bind times. If
the initial value of the counter is OXFFFFFFFF, then the counter is not supported.
Otherwise the counter is supported and OxXFFFFFFFF at a later time means the counter is
about to wrap around.

SERVICE SPECIFIC STATISTICS DEFINITIONS:

Page 4-8

Total frames received ok
(NumberOfFramesReceivedOK) - corresponding 802.3 statistics

This contains a count of frames that are successfully received. It does not include
"frames with errors”, as listed in non-media specific statistics item 7.
Frames received with CRC error
(NumberOfFramesReceivedWithFrameCheckSequenceErrors)

This contains a count of frames that are an integral number of bytes in length and do
not pass the FCS check. Reports on CRC errors "as the station sees it".

Total bytes received ok
This contains a count of bytes in frames that are successfully received. It includes
bytes from received multicast and broadcast frames. This number should include

everything, starting from destination address up to but excluding FCS. Source

address destination address, length (or type) and pad are included. It should
exclude FCS and the preambles.

According to this definition, this NDIS statistics is not exactly the same as 802.3's

NumberOfBytesReceivedOK, which does not include the octets in the address and
length/type fields.

Frames discarded - no buffer space

Frames discarded by MAC driver due to a lack of buffer space.

Multicast frames received ok.
(NumberOfMulticastFramesReceivedOK)

This includes all of the multicast frames the MAC driver received successfully.

It does not include "frames with errors” as listed in non-media specific statistics
item 7.

Broadcast frames received ok.
(NumberOfBroadcastFramesReceivedOK)

This includes all of the broadcast frames the MAC driver receives successfully.

It does not include "frames with errors” as listed in non-media specific statistics
item 7.

Frames discarded - hardware error

Frames discarded due to hardware error.

Page 4-9

Definition of this statistic should be adapter specific.
Total frames transmitted ok.
(NumberOfFramesTransmittedOK)

Total number of frames transmitted successfully.

Total bytes transmitted ok.
Total number of bytes transmitted successfully.
This number should include everything, starting from destination address up to but

excluding FCS. Source address destination address, length (or type) and pad are
included. It should exclude FCS and the preambles.

Multicast frames transmitted ok.
(NumberOfMulticastFramesTransmittedOK)

Number of frames transmitted successfully to non-broadcast group address.
Broadcast frames transmitted ok.
(NumberOfBroadcastFramesTransmittedOK)

Number of frames transmitted successfully to broadcast address.

Frames not transmitted - time-out

This contains a count of frames that could not be transmitted due to the hardware
not signaling transmission completion for an excessive period of time.

Frames not transmitted - hardware error

This contains a count of frames that could not be transmitted due to a hardware
error. This count should exclude DMA underrun error which itself is a separate
counter (Frames transmitted with underun). Definition of this statistic should be

adapter specific.
MAC Upper Dispatch Table

The number and meaning of dispatch addresses provided here apply to the boundary
between a MAC and a protocol. This may differ at other protocol boundaries. Note that
each upper/lower module binding may have its own unique set of dispatch addresses that is
set up when the modules exchange characteristics tables. This can be achieved by
exchanging copies of the common characteristics table, where the copy has the desired
pointers to the specific dispatch tables for the binding.

LPBUF Back pointer to common characteristics table

Page 4-10

LPFUN Request address
LPFUN TransmitChain address
LPFUN TransferData address
LPFUN ReceiveRelease address
LPFUN IndicationOn address
LPFUN IndicationOff address

NOTE: No dispatch address is allowed to be NULL.

Protocol Service-Specific Characteristic Table

For compatibility with future versions of this specification, all protocols must provide a
protocol service-specific characteristics table which starts with the following fields:

WORD Length of protocol service-specific characteristics wable
BYTE [16] Type name of protocol, ASCIIZ format:
WORD Protocol type code

This may be followed by protocol-specific information.

The protocol type name will be used in future versions of this specification. Specific type
names for different protocol types will be defined later. Protocol type codes will also be
defined later. For the moment these two fields are simple place holders and must be set to
null string and zero respectively.

Protocol Lower Dispatch Table

The protocol lower dispatch table is specified in the characteristics table for the protocol
binding to the MAC. The characteristics table for the MAC actually does not supply a
lower dispatch table (the pointer to it is NULL).

LPBUF Back pointer to common characteristics table

DWORD Interface flags (used by Vector frame dispatch):
0 - Handles non-LLC frames
1 - Handles specific-LSAP LLC frames
2 - Handles non-specific-LSAP LLC frames
3-31 - Reserved must be zero

LPFUN RequestConfirm address

LPFUN TransmitConfirm address

LPFUN ReceiveLookahead indication address

LPFUN IndicationComplete address

LPFUN ReceiveChain indication address

LPFUN Status indication address

NOTE: No dispatch address is allowed to be NULL.

Characteristic Tables for NetBIOS Drivers

NetBIOS drivers written to the existing LAN Manager Ring0 NetBIOS specification can be
adapted to fit into the Protocol Manager structure by defining a common characteristics
table for them shown below. Note that such a NetBIOS driver must still respond to the

Page 4-11

existing LAN Manager NetBIOS Linkage binding mechanism; these drivers will only use
Protocol Manager binding at their lower boundary (to the MAC). A variant kind of
NetBIOS module will be defined in the future that takes advantage of Protocol Manager
binding at both boundaries.

Common characteristics for NetBIOS drivers:

WORD Size of common characteristics table (bytes)
BYTE Major NDIS Version (2 BCD digits)

BYTE Minor NDIS Version (2 BCD digits)
WORD Reserved

BYTE Major Module Version (2 BCD digits)
BYTE Minor Module Version (2 BCD digits)

DWORD Module function flags, 0x00000002 (binds lower) -
BYTE[16] NetBIOS Module name
BYTE Protocol level at upper boundary of module: 5 = Session

BYTE Type of interface at upper boundary of module: 1 =LANMAN NCB
BYTE Protocol level at lower boundary of module: 1 = MAC

BYTE Type of interface at lower boundary of module: 1 = MAC

WORD NetBIOS Module ID

WORD NetBIOS Module DS

LPFUN System request dispatch entry point

LPBUF Pointer to service-specific characteristics (see below)
LPBUF Pointer to service-specific status, must be (NULL)
LPBUF Pointer to upper dispatch table (see below)

LPBUF Pointer to lower dispatch table (see below)

LPBUF Reserved, must be NULL

LPBUF Reserved, must be NULL

Upper dispatch table for a NetBIOS module:

LPBUF Back pointer to common charactensncs table
LPFUN Request address
LPFUN NetBIOS NCB handler (LANMAN calling conventions)

Lower dispatch table for a NetBIOS module:

LPBUF Back pointer to common characteristics table

DWORD Interface flags (used by Vector frame dispatch):
0 - Handles non-LLC frames
1 - Handles specific-LSAP LLC frames-
2 - Handles non-specific-LSAP LLC frames
3-31 - Reserved must be zero

LPFUN RequestConfirm address

LPFUN TransmitConfirm address

LPFUN ReceiveLookahead indication address

LPFUN IndicationComplete address

LPFUN ReceiveChain indication address

LPFUN Status indication address

Service-specific characteristics for 2 NetBIOS module:
WORD Length of NetBIOS module service-specific characteristics table
BYTE[16] Type name of NetBIOS module, ASCIIZ format:

Page 4-12

WORD NetBIOS module type code
This may be followed by module-specific information.

The protocol type name will be used in future versions of this specification. Specific type
names for different protocol types will be defined later. Protocol type codes will also be
defined later. For the moment these two fields are simple place holders and must be set to
null string and zero respectively.

Frame Data Description

The MAC describes frame data with a data structure called a buffer descriptor. The
descriptor is composed of pointers and lengths which describe a logical frame. Buffer
descriptors are ephemeral objects. A descriptor is valid only during the scope of the call
that references it as a parameter. The called routine must not modify the descriptor in any
way. If the called routine needs to refer to the described data blocks after returning from
the call, it must save the information contained in the descriptor.

Data blocks described by descriptors are long-lived. Ownership of the data blocks is
implicitly passed to the module that is called with the descriptor. The called module
relinquishes ownership back to the caller either via setting a return argument, or by later
issuing a call back to the supplying module. Under OS/2, some pointers may be either
GDT virtual addresses or physical addresses. In this case the pointer has an associated
pointer type opcoded field. Defined values are 0 for physical address and 2 for GDT
virtual addresses. GDT virtual addresses may be supplied to the MAC only if bit 14 of the
service flags in the MAC service specific characteristics table is set. The GDT address
must remain valid throughout the scope of its use by the MAC.

Under DOS there is no distinction between physical and virtual addresses. All addresses in
this case are segment: offset. Care must be taken to ensure that the segment offset plus data

length do not exceed the 64K segment boundary. The pointer type field if present is
always encoded as a 0.

For performance reasons.it is recommended that data blocks used for transmission and
reception be double-word aligned where possible. Both MAC and protocol NDIS drivers
may choose to perform byte, word or dword memory movement without first ensuring
proper alignment. This will result in reduced performance in combination with drivers
which do not guarantee such alignment.

A buffer descriptor may contain one or more data blocks of length zero. In this case the
other fields in the data block (Data Ptr and Data Type) may not be valid and must be
ignored.

Transmit Buffer Descriptor

All transmit data is passed using a far pointer to a transmit buffer descriptor, TxBufDescr.
The format of this descriptor is:

WORD TxImmedLen ;Byte count of immediate data; max is 64
LPBUF TxImmedPu ; Virtual address of immediate data
WORD TxDataCount ;Count of remaining data blocks; max is configurable

Followed by TxDataCount instances of:

Page 4-13

BYTE TxPuType ; Type of pointer (0=Physical, 2=GDT)

BYTE TxResByte ;Reserved Byte (must be 0)
WORD TxDatalen ;Length of data block
LPBUF - TxDataPr ;Address of data block

In a TxBufDescr structure, the immediate data described by the first two fields is ephemeral
and may be referenced only during the scope of the call that supplies it. Such immediate
data is always transmitted before data described by TxDatal.en and TxDataPtr pairs. If the
called routine needs to refer to the immediate data after returning from the call, it must copy
the data. The maximum size of immediate data is 64 bytes. For V2.0.1 MACS or later the
maximum TxDataCount is specified in the MAC specific characteristics table. For V1.0.1
MAC:s the maximum count is 8.

Transfer Data Buffer Descriptor

Transfer data can be described by a far pointer to a transfer data buffer descriptor,
TDBufDescr. Transfer data buffer descriptors have the following format:

WORD TDDataCount ; Count of transfer data blocks; max is configurable
Followed by TDDataCount instances of:

BYTE TDPuType ;Type of pointer (0=Physical, 2=GDT)
BYTE TDResByte ;Reserved Byte (must be 0)

WORD TDDataLen ;Length of data block

LPBUF TDDataPr ;Address of data block

For V2.0.1 MAGC: or later the maximum TDDataCount is specified in the MAC specific
characteristics table. For V1.0.1 MACs the maximum count is 8.

Receive Chain Buffer Descriptor

Receive chain data can be passed by a far pointer to a receive chain buffer descriptor,
RxBufDescr. Receive chain buffer descriptors have the following format:

WORD RxDataCount ;Count of receive data blocks; max is configurable
Followed by RxDataCount instances of:

WORD RxDatalen ;Length of data block
LPBUF RxDataPtr ; Virtual address of data block

For V2.0.1 MAC:s or later the maximum receive data block count is specified in the MAC
specific characteristics table. For V1.0.1 MACs the maximum count is 8.

For received frames that are larger than 256 bytes, the first data block of the frame must be

at least 256 bytes long. Frames less than or equal to 256 bytes will be passed up with
RxDataCount equal to 1.

Page 4-14

PROTOCOL.INI

The PROTOCOL.INI file stores configuration and binding information for all the protocol
and MAC modules in the system. The file uses the same general format as the
LANMAN.INI file. It consists of a series of named sections, where the section name is in
fact the module name from a module characteristics table. Below the bracketed module
name is a set of configuration settings for the module in name=value format. For example:

[MYNetBIOS]
Drivername = NetBIOS$
Bindings = ETHERCARD

MaxNCBs = 16
MaxSessions = 32
MaxNames = 16

The rules for PROTOCOQL.INI contents are:

. Bracketed module name. Must be the name of a protocol or MAC module, e.g.
[MYNetBIOS]. This is the name of the module as defined in that module’s
characteristics table. The name must be 15 characters or less (not counting the
brackets). Mixed case may be used but the Protocol Manager will convert it to
uppercase when it reads the file into memory.

o Drivername = <device driver name>. This parameter is required for all device
driver modules. It defines the name of the OS/2 or DOS device driver that the
module is contained in. Note that a single device driver name may be mentioned by
several sections of the PROTOCOL.INI file, if the driver contains multiple logical
modules. The Drivername parameter is the recommended method by which a
module searches for its module section in the PROTOCOL.INI file to get its
configuration parameters. This allows the module to find all relevant module
sections based on a single name intrinisic to the module independent of the
particular bracketed module name used in the PROTOCOL.INI file. This keyword
is also required for DOS dynamic modules like TSRs or transient application
modules. Although there is no driver name instrinsically assigned to such modules
it is required that a unique name be assigned to this keyword for such modules
anyway. In this way the same search mechanism used by device drivers can be
used by dynamic DOS modules to find their relevant module sections in
PROTOCOL.INL

. Bindings = <module name> | <module name>,<module name>, ... This parameter
is optional for protocol modules. It is not valid for MAC modules. If present, itis
used by the protocol module to determine what MAC modules it will ask to bind to.
(In other words, changing this parameter in the PROTOCOL.INI file can
reconfigure a protocol to bind to a different MAC.). The Bindings parameter may
be omitted if the protocol driver software is preconfigured to bind to a particular
MAQ, or if the system will only contain one MAC and one static protocol module.
In the latter case (only in static mode), the Protocol Manager by default will ask the
one static protocol to bind to the one MAC.

. Other keywords and parameters. Any other keyword = value statements are

module specific. Keyword names must be 15 characters or less. They may be
mixed case but are converted to uppercase when read by the Protocol Manager.

Page 4-15

Note that keyword names are unique within the scope of each <module name>
section and can appear within the section in any order.

. Whitespace around the equals sign is not significant, nor is trailing white space on
* the line. Except for this leading and trailing white space, all other characters of the
value string are taken verbatim.

. A list of 0 or more parameters can appear to the right of the equals sign. If there are
no parameters the equals sign can be optionally omitted. A parameter is terminated
by a space, tab, comma, or semicolon. No parameters are interpreted by the
Protocol Manager.

. A parameter can either be up to a 31-bit signed numeric value or a string of any

length.

. A numeric parameter can be expressed either in decimal or hexadecimal format. All
numeric parameters must start with the characters ‘0’ through ‘9’ or by a + or -
followed by the ‘0’ 10’9 character. A hexadecimal parameter must start with ‘Ox’
or ‘0X’ and use valid hexadecimal digits. A non-hexadecimal numeric parameter is
treated as decimal integer. A parameter not surrounded by quotes and starting with
0 to 9 or + and - followed by O to 9 will be assumed to be a numeric parameter.

. A string is a parameter which either starts with a non-numeric character or is
surrounded with quotes (“...."”). The string is preserved in the memory image as it
appears in PROTOCOL.INL

. A line starting with a semicolon in column 1 is a comment and is ignored. Blank
lines are ignored too.

. Lines may be as long as required. Continuation lines are not supported. Lines end
with CR LF. .

. Tabs, formfeeds, and spaces are considered to be white space.

The Protocol Manager supports an optional section with optional keywords defined below:

[PROTMAN]
Drivername = PROTMANS

ic = YES or NO
PRIORITY = protl, prot2, ...
Bindstatus = YES or NO

The bracketed module name can be any valid name as long as it is unique within this
PROTOCOL.INL Drivername is required and must be assigned PROTMANS, identifying
the section as belonging to the Protocol Manager. None of the entries are case-sensitive.

The DYNAMIC keyword is optional. It defaults to NO if not present. If set to NO, the
Protocol Manager operates only in the static mode and does not support dynamic protocol
drivers. If set to YES, the Protocol Manager operates in the dynamic mode and supports
both static and dynamic binding.

The PRIORITY keyword is optional. If absent, then the VECTOR uses default

demultiplexing priority if multiple protocol drivers are bound to the same MAC (see Vector
Demultiplexing in Chapter 7). If present, the parameters on the right-hand side are

Page 4-16

presumed to be a list of protocol module names, highest priority first. The VECTOR
prioritizes protocol drivers for demultiplexing (if necessary) according to their order in the
list, and packets are offered to the first protocol driver listed first. Protocol drivers not .
listed are assigned default priority AFTER those listed. It is not necessary that a protocol
driver ever bind for it to be listed here.

The BINDSTATUS keyword is optional. If absent, then the BindStatus command is not
supported by the Protocol Manager. If set to YES, then BindStatus is supported by the
Protocol Manager. The default disable condition is a memory optimization feature
primarily for DOS environments.

When syntax errors are detected in processing the PROTOCOL.INI commands, by
convention, all NDIS drivers should:

1) Display a error message detail exact syntax problem.
2) Assume some non-fatal - value for the parameter associated with the error
and complete processing.

Configuration Memory Image

When the Protocol Manager initializes, it reads PROTOCOL.INI and parses it into a
memory image that it makes available to MAC and protocol modules via the Get Protocol
Manager Info call. The parsed image is formatted to make it easy for run-time modules to
interpret. All information contained in PROTOCOL.INI is present in the memory image in
the same order as in the file. (Comments and white space are of course not present in the
image). Note that in static mode the image is only available during device driver
initialization time. In dynamic mode the image may additionally be created by a utility
which then registers it with the Protocol Manager.

The structure definitions defined below do not conform rigorously to C language syntax.
They provide a pseudo C-like language to define the data structures encoded in the
configuration memory image.

ConfigMemorylmage

The ConfigMemoryImage data structure defines the complete memory image for all logical
devices read from the PROTOCOL.INI configuration file. It is a doubly linked list of
ModuleConfig structures. Each ModuleConfig structure corresponds to one module. The
ConfigMemorylmage structure is defined as follows:

struct ConfigMemoryImage

{
struct Module Config(1) Module(1);
struct Module Config(2) Module(2);

} struct ModuleConfig(N) Module(N);

where:

N=the number of modules encountered by the Protocol Manager when parsing the
configuration file PROTOCOL.INL

Page 4-17

ModuleConfig

The ModuleConfig(i) structure defines the memory image for configuration parameters
corresponding to one (bracketed name) module. For the (i)th module specified in
PROTOCOL.INI it is defined as follows:

.vitmct ModuleConfig(i)
struct ModuleConfig(i+1) far *NextModule;
struct ModuleConfig(i-1) far *Prev Module;
unsigned char Module Name [16];
struct KeywordEntry(1) KeywordEntry(1);
struct KeywordEntry(2) KeywordEntry(2);

| struct KeywordEntry(N) KeywordEntry(N);

where:

N;l ‘:lhe number of keyword entries encountered in the PROTOCOL.INI file for this
module.

NextModule = a FAR pointer to the next module configuration structure. NULL if this is
the structure for the last module. For OS/2 the selector is a Ring 3 selector. For DOS the
pointer is a segment:offset pair.

PrevModule = a FAR pointer to the previous module configuration structure. NULL if this
is the structure for the first module. For OS/2 the selector is a Ring 3 selector. For DOS
the pointer is a segment:offset pair.

ModuleNarne = array containing the characters of the module name (given in brackets in the
configuration file). This is an ASCIIZ string consisting of a maximum of 15 non-null
uppercase characters.

KeywordEntry

For each keyword line in the configuration file for the module a memory image structure is
created specifying the keyword and the parameter values. The (j)th keyword encountered
in the PROTOCOL.INI file for the module is defined as follows:

struct KeywordEntry(j)

{
struct KeywordEntry(j+1) far *NextKeywordEntry;
struct KeywordEntry(j-1) far *PrevKeywordEntry;
unsigned char Keyword[16];
unsigned NumParams;
struct Param(1) Param(1);
struct Param(2) Param(2);

;t;i;ct Param(N) Param(N);

where:

Page 4-18

N = the number of parameters entered with the keyword. If N =0 the parameters are not
present.

NextKeywordEntry = a FAR pointer to the next keyword entry structure in the memory
image. NULL if this is the last keyword entry. For OS/2 the selector is a Ring 3 selector.
For DOS the pointer is a segment:offset pair.

PrevKeywordEntry = a FAR pointer to the previous keyword entry structure in the
memory image. NULL if this is the first keyword entry. For OS/2 the selector is a Ring 3
selector. For DOS the pointer is a segment:offset pair.

Keyword = the array containing the characters of the keyword found in the configuration
file. This is an ASCIIZ string consisting of a maximum of 15 non-null characters. The
case of alphabetic characters will be uppercase in the memory image.

NumParams = the number (N) of parameters entered with the keyword each parameter
described by a param structure. The value is O if no parameters were present.

Param(k) = the (k)th parameter structure to specify the value of one parameter in a list of
parameters for a keyword. “Param(k+1)” follows Param(k) in sequence within the
memory image. Each parameter is delimited by a length field for the parameter. It is
assumed that a keyword’s fields will be parsed sequentially.

Param

For the (k)th parameter defined in a parameter list for a specific keyword the following
stucture defines its value and attributes:

struct Param(k)

unsigned ParamType;
unsigned ParamLen;
union ParamValue

long Numeric;
} unsigned char String[STRINGLEN];
B ’

where:

STRINGLEN = length of the ASCIIZ parameter string (including the terminating NULL)
for string parameters.

ParamType = The type of parameter. The following types are supported:
0 - signed integer supporting up to 31 bits least significant byte first.
1 - a string of characters.

Paramlen = The length of the parameter value. The length could be one of the
following either be 4 for numeric parameters or STRINGLEN for string
parameters where STRINGLEN is the length of the string (including the
terminating NULL).

Numeric = a 31-bit signed numeric value.

Page 4-19

Sting = an ASCIIZ character string. The case of alphabetic characters in the
string is preserved from that in PROTOCOL.INI.

The size of the Param (k) structure is thus ParamLen + 4.

BindingslList

For each module that registers with the Protocol Manager a BindingsList structure may be
given to the Protocol Manager specifying the set of modules that the given module wishes
to bind to. The current module will require services from these other modules. This
structure is defined as follows:

?tmct BindingsList
unsigned NumBindings;
struct Module
char ModuleName[16]);

} BoundDriver[NUMBINDINGS]};

M
where:

NumBindings = the number (NUMBINDINGS) of modules that the specified module
wants to be bound to it from below. In the static default binding mode of one static
protocol and one MAC, a value of 0 in this field means for the protocol that it will bind to
the MAC. Otherwise in the non-default binding mode, a value of 0 in this field means that
the module has no lower bindings.

ModuleName = an ASCIIZ string specifying the logical name of a module which the
current module wishes to have bound to it from below. Maximum of 15 non-null
characters. The Protocol Manager will convert all alphabetic characters to uppercase.

BoundDriver = an array of NUMBINDINGS module names specifying the list of modules
to which the current module wants to be bound.

The order of the modules in the list is significant in that InitiateBind requests will be issued
to the protocol module in this order.

Page 4-20

Chapter 5 - Specification of
Primitives
Implementers should obey the following general guidelines: '

. All primitives specified in this section can be called in protected mode in either -
interrupt or task context under OS/2. Since any primitive may be called in interrupt
context it is illegal to block during the execution of a primitive.

. All routines must run (as much as possible) with interrupts enabled. Interrupt
handlers must dismiss the interrupt at the 8259 as soon as possible.

. An indication handler will normally be entered with interrupts enabled. The handler
may enable or disable interrupts if it chooses and on return the MAC must assume
that the interrupt state may have been changed.

. Under MS-DOS indication handlers must assume they have only 200 bytes of stack
space. If more stack space is needed then the handler must supply a stack.

. Confirmation and IndicationComplete handlers must be fully re-entrant and are
always entered with interrupts enabled. Under DOS Confirmation and
IndicationComplete handlers must assume they are entered on whatever stack the

interrupt occurred on.

. A confirmation handler may be entered with the confirmation for a request before
the request has returned.

. It is recommended that 2 MAC release the internal resources associated with either

TransmitChain or a request before calling the confirmation handler. This allows the
protocol to submit a new TransmitChain or request from the confirmation handler.
Failing to do so may have a significant impact on performance.

. A protocol must assume whenever it gives control to a MAC that interrupts may be
enabled by the MAC unless otherwise explicitly specified.

. When passing a virtual address to one of these primitives under OS/2 the address
must be a Ring 0 GDT address unless otherwise specified. The interrupt service
routine portion of the MAC must handle the fact that this address may not be valid if
an interrupt occurs in real mode.

. All primitives have a set of specific error codes defined. In general, MAC’s and
protocols must return these specific codes. However it is acceptable to return
GENERAL_FAILURE for any non-recoverable failure. NDIS developers must be
z;lvi/are ;hatdr:pw error codes may be added in the future and must design their code to

ow for this.

. If a particular entry point or function is not supported by an NDIS protocol or MAC
driver, the entry point must still be exposed and an error ANVALID_FUNCTION
0x0008) returned if it is called. Crashing when an unsupported request is made is
unacceptable.

Page 5-1

Parameters are passed on the stack compatible with Microsoft C FAR Pascal calling
conventions. On entry to any routine the called module must save the caller’s DS
before setting its DS from the “dataseg™ parameter. At exit the caller’s DS must be
restored. Furthermore the called module must follow standard Microsoft C
conventions about saving “register variable™ SI and DI registers if these are used.
Modules which use the 80386 registers EDI, ESI and EBP must preserve these
registers also. The direction bit is assumed to be clear on entry and must be clear
upon exit. These conventions apply for calls in both directions across the NDIS
MAC interface.

Direct calls return in AX a return code specifying the status of function invocation.
Those functions specified as using IOCTLs return this in the status field of the
request block.

Before calling a module in OS/2 it is the caller’s responsibility to ensure that it is
currently executing in protected mode. If it is running in real mode it must do an
0S/2 “RealToProt” DevHIp call before calling the inter-module interface function.
Furthermore in OS/2 the inter-module call can only be made at post CONFIG.SYS
INIT time since all selectors are Ring O selectors. :

A MAC starts with packei reception disabled. A protocol must call SetPacketFilter
to enable reception of packets.

It is recommended that the number of Request commands which can be
simultaneously queued by the MAC be configurable. The suggested keyword in
the configuration file is “MaxRequests.” The recommended default is 6. The
suggested range is 1 to 10.

The number of TransmitChain commands which can be simultaneously queued by
the MAC must be configurable. The suggested keyword in the configuration file is
“MaxTransmits”. The recommended default is 6. The suggested range is 1 to 50.

On a DIX or 802.3 network, packet buffers received may have been padded to the
minimum packet size for short packets. It is the responsibility of the MAC client to
examine the length field if present and strip off the padding.

For DIX or 802.3 networks the MAC client can transmit a buffer with packet length
smaller than the minimum. It is the responsibility of the MAC to provide the
required padding bytes before transmission on to the wire. The content of the
padding bytes is undefined. :

Protocol drivers conforming to this specification are expected to format and
interpret MAC headers for the MAC driver types supported. Generally, protocols
are expected to support 802.3, DIX, and 802.5 MAC headers. It is recommended
that MAC drivers for other media types consider claiming to be one of the above
types and doing a transparent internal mapping between that and its own private
MAC header format. In doing so, the MAC will be able to claim interoperability
(assuming the appropriate testing is done) with most protocol drivers developed for
LAN Manager.

In the absence of any such conversion, the MAC header is passed protocol-to-MAC
or MAC-to-protocol in exactly the format in which it exists on the medium. The
CRC and non-data fields are not passed across this boundary. Therefore the
Ethernet CRC and the Token Ring SD, FCS, ED and FS fields are not passed and

Page 5-2

will not be included in the packet length. The protocol must convert header fields
found in the header buffer passed up to whatever format is required to conveniently
store them in local memory. For example multi-byte fields (e.g., 802.3 length)
may not be received in the byte order that is normally used by the CPU for storing
multi-byte parameters. For exact format of the MAC header refer to the appropriate
standards document (see Appendix B).

. For performance reasons, it is recommended that PhysToGDT be used whenever
possible instead of PhysToVirt.

. Commonly Used Parameters

MACID

ReqHandle

ProtDS

MACDS

The unique module ID of the protocol, assigned at bind time by the Protocol
Manager.

The unique module ID of the MAC, assigned at bind time by the Protocol
Manager.

A handle assigned by the protocol to identify this request. If the request is
implemented asynchronously by the MAC driver in question, this handle is
returned on the confirmation call used to indicate completion of the request.
A RegHandle of 0 indicates that the confirmation be unconditionally
suppressed. For example, the request may still be handled asynchronously
but there will be no notification of completion. A ReqHandle of 0 must not
change the immediate return code.

DS value for called protocol module, obtained from the module’s dispatch
table at bind time.

DS value for called MAC module, obtained from the module’s dispatch
table at bind time.

Direct Primitives

TransmitChain
Purpose: Initiate transmission of a frame
PUSHWORD ProtID ;Module ID of protocol
PUSHWORD RegHandle ;Unique handle for this request or 0
PUSHLPBUF TxBufDescr ;Pointer to framebufferdescriptor
PUSHWORD MACDS ;DS of called MAC module
CALL TransmitChain
Rewumns: 0x0000 SUCCESS

0x0002 REQUEST_QUEUED

0x0006 OUT_OF_RESOURCE

0x0007 INVALID_PARAMETER

0x0008 INVALID_FUNCTION

0x000A HARDWARE_ERROR

0x000B TRANSMIT_ERROR

0x000C NO_SUCH_DESTINATION

Page 5-3

O0x00FF GENERAL_FAILURE
TxBufDescr Far pointer to the buffer descriptor for the frame.
Description:

This call asks the MAC to transmit data. The MAC may either copy the data described by
TxBufDescr before returning, or queue the request for later (asynchronous) processing.
The MAC indicates which option it is taking by setting the appropriate return code.

In the asynchronous case, ownership of the frame data blocks passes to the MAC until the
transmission is complete; the protocol must not modify these areas until then. Ownership
of the data blocks is returned to the protocol when the MAC either returns a status code
which implies completion of the original request or calls its TransmitConfirm entry with the
RegHandle from TransmitChain. If a request handle of zero was used and therefore
TransmitConfirm will not be called, then ownership must not be considered returned until
the protocol receives a message that implies the transmission has occurred (e.g., receiving
an ACK to the transmitted message).

Note that when doing asynchronous transmission, the MAC must retain any needed
information from TxBufDescr, since the pointer to that structure becomes invalid upon
returning from TransmitChain. Also, if the TxXImmedLen of the descriptor is non-zero, the
MAC must retain a copy of the immediate data at TxImmedPtr, since the immediate data
area becomes invalid upon retumning from TransmitChain. .

The MAC header must fit entirely in the immediate data, if present, or in the first non-
immediate element described in TxBufDescr if there is no immediate data.

A MAC must be prepared to handle a TransmitChain request at anytime, including from
within interrupt-time indication routines.

The return code REQUEST_QUEUED will cause a TransmitConfirm to be called from the
MAC back to the protocol if the ReqHandle on the TransmitChain call is not 0. All other
return codes from TransmitChain imply that no TransmitConfirm will occur.

The TRANSMIT_ERROR and NO_SUCH_DESTINATION error codes are intended to
allow a protocol to recreate the frame status byte on a Token Ring network. Thus,
NO_SUCH_DESTINATION implies that the address recognized bits were not set (and
therefore the frame was not copied), while TRANSMIT_ERROR merely means that the
frame was not copied. Protocols which make use of Source Routing may need the
NO_SUCH_DESTINATION error code to be completely conformant. Token Ring MAC
driver writers must make every attempt to return these error codes properly.

TransmitConfirm
Purpose: Imply the completion of transmitting a frame.
PUSH WORD ProtID ;Module ID of Protocol

PUSH WORD MACID ;Module ID of MAC

PUSH WORD RegHandle ;Unique handle from TransmitChain
PUSH WORD Status ;Status of original TransmitChain
PUSH WORD ProtDS ;DS of called protocol module
CALL TransmitConfirm

Page 54

Returns: 0x0000 SUCCESS
0x0007 INVALID_PARAMETER
0x00FF GENERAL_FAILURE

Description:

This routine is called by a MAC to indicate completion of a previous TransmitChain. The
purpose of this is to return ownership of the transmitted data blocks back to the protocol.

The ProtID parameter must be the value passed by the protocol on the previous
TransmitChain to identify the requestor.

The ReqHandle is the value passed by the protocol on the previous TransmitChain which
identifies the original request.

TransmitConfirm does not necessarily imply that the pécket has been transmitted, though it
generally will have been (with the exception of some intelligent adapter implementations).
If the packet has been transmitted, Status must indicate the final transmit status:

0x0000 SUCCESS

0x000A HARDWARE_ERROR
0x000B TRANSMIT_ERROR
0x000C NO_SUCH_DESTINATION
0xO0FF GENERAL_FAILURE

See TransmitChain for more details.

ReceiveLookahead

Purpose: Indicate arrival of a received frame and offer lookahead data.

PUSH WORD MACD ;Module ID of MAC

PUSH WORD FrameSize ;Total size of frame (0 if not known)
PUSH WORD BytesAvail ;Bytes of lookahead available in Buffer
PUSH LPBUF Buffer ;Virtual address of lookahead data
PUSH LPBYTE Indicate ;Virtual address of indicate flag

PUSH WORD ProtDS ;DS of called protocol module

CALL ReceiveLookahead
Retumns: 0x0000 SUCCESS

0x0003 FRAME_NOT_RECOGNIZED
0x0004 FRAME_REJECTED

0x0005 FORWARD_FRAME

0x0006 OUT_OF_RESOURCE
0x0007 INVALID_PARAMETER

0x00FF GENERAL_FAILURE

FrameSize The total size, in bytes, of the received frame. A value of 0 indicates that
the MAC does not know the total frame size at this time.

BytesAvail The number of bytes available in the lookahead buffer. This is guaranteed
to be at least as large as the lookahead size established with the
Setlookahead request. For frames which are smaller than the lookahead
size, the lookahead buffer will contain the whole frame.

Page 5-5

Buffer Virtual address of contiguous lookahead buffer. The buffer contains the
leading BytesAvail octets of the frame. This buffer is ephemeral; it is
addressable to the protocol only during the scope of the Receive call.

Indicate Virtual address of indication flag byte. This byte is set to OxFF by the MAC
prior to this call. If the protocol clears the byte to zero prior to returning
then indications will be left disabled until IndicationOn is called from
IndicationComplete.

Description:

This routine is called by a MAC to indicate reception of a frame and to offer frame
lookahead data. The protocol is expected to inspect this information very rapidly to
determine if it wants to accept the frame or not. If it wants to accept the frame, it may call
TransferData to ask the MAC to copy the frame data to a specified buffer described by a
TDBufDescr. The protocol can indicate that it is rejecting or does not recognize the frame
by returning an appropriate error code. Note that the frame not recognized error has special
significance to the Vector function. If the protocol is accepting the frame and if the
lookahead buffer contains the whole frame, the protocol can simply copy the data itself
before returning from Receive. The protocol may determine that it has the whole frame if
BytesAvail equals FrameSize, or if the lookahead information includes a protocol header
with the frame length, and this matches BytesAvail.

It is strongly recornmended that MACs provide a non-zero FrameSize whenever possible.
Some protocols might not be able to process frames unless the frame size given by this
parameter is known. A MAC can optionally indicate that it does not normally provide a
non-zero frame size by setting bit 16 of the service flags in the MAC specific characteristics
table.

The MAC implicitly disables indications (IndicationOff) before calling Receive Lookahead.
The Indicate flag byte instructs the MAC on whether to reenable indications or leave them
disabled on the return. If the protocol chooses to leave indications disabled, it can enable
them within IndicationComplete by calling IndicationOn.

The protocol must absolutely minimize its processing time within the ReceiveLookahead
handler. This is necessary to let certain MAC’s re-enable the hardware to avoid loss of
incoming frames. Shortly after returning from ReceiveLookahead, the MAC will call the
protocol back at its IndicationComplete entry point. The protocol can do any needed post-
processing of the received frame at that ime. The MAC does not guarantee to provide one
IndicationComplete call for each indication. It can choose to issue a single
IndicadonComplete for several indications that have occurred. :

TransferData

Purpose: Transfer received frame data from the MAC to a protocol.

PUSH LPWORD BytesCopied ;Number of bytes copied

PUSH WORD FrameOffset ;Starting offset in frame for transfer
PUSH LPBUF TDBufDescr ;Virtual address of transfer data description

PUSH WORD MACDS ;DS of called MAC module
CALL TransferData

Returns: 0x0000 SUCCESS

Page 5-6

0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0x00FF GENERAL_FAILURE

BytesCopied Virtal address of buffer for returning number of bytes copied during
transfer data operation.

FrameOffset Starting offset in received frame where data transfer must start. The
value of FrameOffset must be less than or equal to the value of
BytesAvail from the corresponding ReceiveLookahead.

TDBufDescr Virtual address of transfer descriptor describing where to store the frame
data.

Description:

A protocol calls this synchronous routine from within its ReceiveLookahead handler before
return, to ask the MAC to transfer data for a received frame to protocol storage. The
protocol can specify any starting frame offset and byte count for the transfer, so long as
these don’t exceed the frame’s length. If bit 15 of the MAC service flags is set, multiple
TransferDatas may be called during a single ReceiveLookahead indication. If this bit is
reset, only one TransferData per ReceiveLookahead indication is permitted. In the latter
case subsequent calls within the same indication will return an error.

For MACs with bit 15 of the MAC service flags reset, a protocol intending to call
TransferData must do so only if it has decided to accept the incoming packet. Since the
MAC driver may be shared by multiple protocols, a protocol's failure to follow this
restriction in this case jeopardizes other coexisting protocol drivers from receiving these
packets. When a protocol is bound to a MAC with bit 15 set, this restriction does not
apply as a mandatory requirement. However, it is still recommended in such cases for
performance reasons that a protocol call TransferData only if it has decided to accept the
- incoming packet. A protocol module must set the Lookahead size large enough to
determine if the packet is intended for it by examining ony the Lookahead bytes presented
by ReceiveLookahead.

It is recommended that the multiple TransferData feature with bit 15 set be implemented in
MAC drivers whenever it is reasonable.to do so with the adapter hardware.

IndicationComplete
Purpose: Allow protocol to do post-processing on indications.
PUSH WORD MACID ;Module ID of MAC
PUSH WORD ProtDS ;DS of called protocol module
CALL IndicationComplete
Returns: 0x0000 SUCCESS

0x0007 INVALID_PARAMETER

O0xO0FF GENERAL_FAILURE
Description:
A MAC calls this entry point to enable a protocol to do post-processing after an indication.

The MAC will always generate an IndicationComplete subsequent to an indication

Page 5-7

regardless of the return code of the indication. Although still in interrupt context and
subject to the normal OS/2 guidelines for interrupt processing, the protocol is not under the
severe time constraints of the indication. The MAC must minimize stack usage before
callilzg this routine and, under DOS, must have swapped off of any special “interrupt”
stac - _

This routine is always entered with interrupts enabled and with the network adapter
interrupt dismissed from the interrupt controller. Therefore, it may be reentered at the
completion of another indication. Also no one-to-one correspondence is guaranteed
between indications and IndicationComplete. A MAC may generate one
IndicationComplete for several indications. A protocol may enforce a one-to-one
correspondence by leaving indications disabled until the return from IndicationComplete.

If indications are explicitly disabled by a protocol on.return from an indication, it is the
protocol’s responsibility to invoke IndicationOn as soon possible during
IndicationComplete.

MAC developers must avoid simply serializing each indication with IndicationComplete as
this can negatively affect performance. The MAC must be designed to allow an indication
to occur during IndicationComplete processing. Of course, if this occurs, another
IndicationComplete call will be necessary.

ReceiveChain
Purpose: Indicate reception of a frame in MAC-managed buffers.

PUSH WORD MACID ;Module ID of MAC

PUSH WORD FrameSize ;Total size of frame (bytes)

PUSH WORD RegHandle ;Unique handle for this request
PUSH LPBUF RxBufDescr ;Virtual address of receive descriptor
PUSH LPBYTE Indicate ;Virtual address of indicate flag
PUSH WORD ProtDS ;DS of called protocol module
CALL ReceiveChain

Returns: 0x0000 SUCCESS

0x0001 WAIT_FOR_RELEASE

0x0003 FRAME_NOT_RECOGNIZED

0x0004 FRAME_REJECTED

0x0005 FORWARD_FRAME

0x0006 OUT_OF_RESOURCE

0x0007 INVALID_PARAMETER

0x00FF GENERAL_FAILURE
FrameSize Total size of received frame, in bytes.

RxBufDescr Virtual address of receive descriptor describing the received frame.

Indicate Virtual address of indication flag byte. This byte is set to OxFF by the
MAC prior to this call. If the protocol clears the byte to zero prior to
returning then indications will be left disabled until IndicationOn is
called from IndicationComplete.

Description:

Page 5-8

A MAC calls this routine to indicate the reception of a frame in MAC-managed storage.
Ownership of this storage is implicitly passed to the protocol when this call is made. Atits
option, the protocol may copy the data right away and indicate this via the return code (in
which case ownership reverts to the MAC); or the protocol may queue the request and copy
the frame later, in which case it retains ownership of the frame’s storage until it calls
ReceiveRelease. Since the protocol may queue data received in this manner, it is possible
that the MAC may run low on available frame buffers. The MAC may elect to cail
ReceiveLookahead instead of ReceiveChain while it is low on frame buffers. This allows
the MAC to retain control of its remaining buffers until the protocol releases the buffers it is
holding.

Note that for frames longer than 256 bytes, the MAC must guarantee that the first data
block of the frame is at least 256 bytes long. Frames less than or equal to 256 bytes in
length must be completely specified with a single data block. This allows the protocol to
pgsg packet headers out of the first data block and greatly facilitates protocol processing
efficiency.

Like ReceiveLookahead, a protocol’s processing within ReceiveChain is time critical. At
some point after return from ReceiveChain the MAC will generate an IndicationComplete to
allow post-processing of the indication.

The MAC implicitly disables indications (IndicationOff) before calling ReceiveChain. The
Indicate flag byte instructs the MAC on whether to reenable indications or leave then
disable on the return. If the protocol chooses to leave indications disabled, it can enable
them within IndicationComplete by calling IndicationOn.

ReceiveRelease
Purpose: Return frame storage to the MAC that owns it.
PUSH WORD ReqHandle ;Unique handle from ReceiveChain
PUSH WORD MACDS ;DS of called MAC module
CALL ReceiveRelease
Returns: 0x0000 SUCCESS
0x0007 INVALID_PARAMETER
0x0009 NOT_SUPPORTED

OxO0FF GENERAL_FAILURE
Description:

A protocol uses this call after it has copied frame data provided by a ReceiveChain call.
ReceiveRelease returns ownership of the frame data blocks to the MAC.

IndicationOff
Purpose: Disable MAC indications
PUSH WORD MACDS ;DS of called MAC module
CALL IndicationOff
Returns: 0x0000 SUCCESS
0x0008 INVALID_FUNCTION

O0xO00FF GENERAL_FAILURE

Page 5-9

Description:

A protocol may use this call to prevent the generation of ReceiveLookahead, ReceiveChain
and Status indications from the MAC. This is similar in concept to disabling interrupts.
When indications are off, a MAC must queue events that would cause it to generate
indications to the protocol. A MAC implicitly disables indications just before calling the
ReceiveLookahead, ReceiveChain or Stams indication entry point of a protocol.

The only legal use of IndicationOff is to bracket a call or calls to the MAC. For example,
the following sequence is valid:

IndicationOff
TransmitChain
IndicationOn

In this situation the protocol must not block while indications are off and must call
IndicationOn as soon as possible. The protocol must ensure that all calls to IndicationOff
are paired up with a corresponding call to IndicationOn. If the protocol issues an
IndicationOff call from a timer tick handler, or from a ReceiveLookahead, ReceiveChain or
Status indication handler it must issue the IndicationOn call before returning.

Note that IndicationComplete may still occur even though indications are disabled.
Disabling indications has no effect on a MAC’s ability to call IndicationComplete.

This function always returns with interrupts disabled. It is the responsibility of the caller to
re-enable them.

IndicationOn

Purpose: Enable MAC indications

Called from protocol to MAC.

PUSH WORD MACDS ;DS of called MAC module
CALL IndicationOn

Retums: 0x0000 SUCCESS
0x0008 INVALID_FUNCTION
Ox00FF GENERAL_FAILURE

Description:
A protocol must use this call to re-enable indications after having disabled them. Note that
a MAC may optionally defer the actual re-enabling of indications.

It is possible that IndicationOff and IndicationOn pairs will nest. Therefore the MAC must
maintain a reference count to enable it to determine when to actually re-enable indications.
The protocol must not assume that a call to IndicationOn will immediately enable
indications.

IndicationOn may be called from an IndicationComplete handler after leaving indications

disabled on return from an indication handler. IndicationOn may also be used, paired with
IndicationOff, to bracket a call or calls to the MAC.

Page 5-10

This function always returns with interrupts disabled. It is the responsibility of the caller to
re-enable them. No indications will be generated until after the call has returned.

General Requests

General requests are commands from a protocol to a MAC directing it to do adapter
management operations like setting the station address, running diagnostics, and changing
operating parameters or modes. A MAC may choose to implement any of the Request
functions synchronously or asynchronously. A MAC returns the REQUEST_QUEUED
return code to inform the protocol that a given request will be processed asynchronously.
When this is the case, the MAC will call back to the protocol’s RequestConfirm entry point
to indicate when processing of the request is complete. If a request handle of zero is used
then the RequestConfirm call is suppressed.. It is the caller’s responsibility to make certain
that any data referenced by the request remains valid until the request is guaranteed to have
completed. If a protocol makes a general MAC request when executing its InitiateBind
startup function and the MAC returns REQUEST_QUEUED, the protocol must wait for the
correspondingRequestConfirm to be returned before exiting from the InitiateBind function.
Any other return code from a general request implies that no RequestConfirm will occur.

All general requests have the following common calling convention:

PUSH WORD ProtID ;Module ID of Protocol or O

PUSH WORD ReqHandle ;Unique handle for this request or 0
PUSH WORD Param1i ;Request dependent word parameter or 0
PUSH DWORD Param2 ;Request dependent dword parameter or O
PUSH WORD Opcode ;Opcode of request

PUSH WORD MACDS ;DS of called MAC moduie

Call Request

InitiateDiagnostics
Purpose: Start runtime diagnostics.

PUSH WORD ProtID ; Module ID of Protocol
PUSH WORD RegHandle ; Unique handle for this request or O
PUSH WORD 0 ; Pad parameter - must be 0
PUSH DWORD 0 ; Pad parameter - must be 0
PUSH WORD 1 ; Initiate Diagnostics Request
PUSH WORD MACDS ; DS of called MAC module
Call Request
Retumns: 0x0000 SUCCESS

0x0002 REQUEST_QUEUED

0x0006 OUT_OF_RESOURCE

0x0007 INVALID_PARAMETER

0x0008 INVALID_FUNCTION

0x0009 NOT_SUPPORTED
0x000A HARDWARE_ERROR
OxO0FF GENERAL_FAILURE

Description:

Page 5-11

Causes a MAC to run hardware diagnostics and update its status information in the MAC-
specific status section of the characteristics table. A MAC must return an error if it does not
support run time diagnostics. While the diagnostics are in progress, the MAC must set the
diagnostics in progress bit (bit 5) in the MAC status field in the MAC service-specific status
table. If HARDWARE_ERROR is returned, the protocol may examine the various fields in
the service-specific status table for an indication as to the cause of the problem.

ReadErrorlLog
Purpose: Return error log.

PUSH WORD ProtiD ; Module ID of Protocol

PUSH WORD RegHandle ; Unique handle for this request or 0
PUSH WORD Loglen.. ; Length.of log-buffer- -
PUSH LPBUF LogAddr ; Buffer for returning log

PUSH WORD 2 ; Read Error Log Request
PUSH WORD MACDS ; DS of called MAC module
Call Request

Returns: 0x0000 SUCCESS
0x0002 REQUEST_QUEUED
0x0006 OUT_OF_RESOURCE

0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0x0009 NOT_SUPPORTED

0x00FF GENERAL_FAILURE
Descripton:
Causes a read error log to be issued to adapter. This command is implemented on the IBM

token ring adapter and possibly other adapters. The format of the information returned is
adapter specific and not specified here.

SetStationAddress

Purpose: Set the network address of the station.

PUSH WORD ProtID ; Module ID of Protocol :
PUSH WORD ReqHandle ; Unique handle for this request or O
PUSH WORD 0 ; Pad parameter - must be 0

PUSH LPBUF AdaptAddr ; Buffer containing the adapter address
PUSH WORD 3 ; SetStationAddress Request

PUSH WORD MACDS ; DS of called MAC module

Call Request -

Returns: 0x0000 SUCCESS
0x0002 REQUEST_QUEUED
0x0006 OUT_OF_RESOURCE
0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0x0009 NOT_SUPPORTED
0x00FF GENERAL_FAILURE

Description:

Page 5-12

There is only a single station address. Each time it replaces the current station address in
the MAC service-specific characteristics table and will reconfigure the hardware to receive
on that address if required. The station will be initially configured with the address
specified in the permanent station address field of the MAC service-specific characteristics
table (which this call does not modify).

The adapter address buffer contains only the bytes of the address to be set. The length of
the address must be equal to the length specified in the MAC service characteristics table.

If the hardware does not support a mechanism to modify its station address then the current
station address buffer is not updated and this function returns INVALID_FUNCTION. In

this case the MAC continues to use the permanent station address to recognize incoming
directed packets.

If a MAC does not support the OpenAdapter and CloseAdapter commands (bit 11 of the
MAC service flags is reset), then the SetStationAddress command can be issued by the
protocol at any time. However, if the MAC supports the Open Adapter and CloseAdapter
commands (bit 11 of the MAC service flags is set), then this command is valid only either
during system initialization time or while the MAC is in a closed state. The protocol driver
must issue an Open Adapter call after issuing the SetStationAddress call for the
SetStationAddress command to take effect.

OpenAdapter

Purpose: Issue open request to network adapter.

PUSH WORD ProtID ; Module ID of Protocol

PUSH WORD ReqHandle ; Unique handle for this request or O

PUSH WORD OpenOptions ; Adapter specific open options

PUSH DWORD ExtendedRet ; Optional pointer to a DWORD extended return code
(vendor-specific or warning level)

PUSH WORD 4 ; Open Adapter Request
PUSH WORD MACDS ; DS of called MAC module
Call Request
Returns: 0x0000 SUCCESS

0x0002 REQUEST_QUEUED

0x0006 OUT_OF_RESOURCE

0x0007 INVALID_PARAMETER

0x0008 INVALID_FUNCTION

0x0009 NOT_SUPPORTED

0x0024 HARDWARE_FAILURE

0x002A NETWORK_MAY_NOT_BE_CONNECTED
O0x00FF GENERAL_FAILURE

Where:

Optional vendor-specific information can be returned through the ExtendedRet pointer. A
caller supporting this would push a pointer to a DWORD. The DWORD would have been
initialized to OxFFFFFFFF (unsupported). If there is any extended return information this
value would be changed. A caller not supporting this would simply push a NULL (0)
pointer. The OpenAdapter routine which supports this would verify the ExtendedRet

Page 5-13

pointer is not NULL (0) and then write the information. The OpenAdapter routine which
does not support this would simply ignore the pointer.

The purpose of ExtendedRet is to provide warning messages on a SUCCESS retumn
without requiring additional testing for those callers not supporting warnings, to provide
additional information on GENERAL_FAILURE and HARDWARE_FAILURE, and to
pass vendor-specific codes on any return to provide for active functional experimentation
and evolution without inconveniencing other vendor's components.

Description:

The purpose of the OpenAdapter function is to activate an adapter’s network connection.
This may involve making an electrical connection for some adapters like token ring
adapters. This also implies that a considerable delay may occur between submittal of this
request and its confirmation. If the MAC indicates that OpenAdapter is supported (by
setting bit 11 of the service flags in the MAC service-specific characteristics table), then the
protocol driver must ensure the adapter is open during bind-time processing. Since
OpenAdapter can only be called when the adapter is closed, even in a VECTOR
configuration, the protocol must first check if the adapter is already open by examining bit
4 of the MAC status in the MAC service-specific status table.

While an adapter is closed the following functions are guaranteed to operate:
SetLookahead, SetPacketFilter, SetStationAddress, Interrupt, Indicationoff, IndicationOn.

Since this function is adapter specific it is expected that any necessary parameters are either
known a priori by the MAC or can be recovered from the PROTOCOL.INI file. The
format of the information is highly adapter specific and left up to the implementer to define.

The OpenOptions parameter is adapter specific. For IBM TokenRing and compatible
adapters, these are defined in the IBM Token Ring Technical Reference Manual.

CloseAdapter

Purpose: Issue close request to network adapter.

PUSH WORD ProtID ; Module ID of Protocol

PUSH WORD RegHandle ; Unique handle for this request or 0
PUSH WORD 0 ; Pad parameter - must be 0

PUSH DWORD 0 ; Pad parameter - must be 0

PUSH WORD 5 ; Close Adapter Request

PUSH WORD MACDS ; DS of called MAC module

Call Request

Returns: 0x0000 SUCCESS
0x0002 REQUEST_QUEUED
0x0006 OUT_OF_RESOURCE
0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0x0009 NOT_SUPPORTED
0x00FF GENERAL_FAILURE

Description:

Page 5-14

This function closes an adapter. This causes it to decouple itself from a network so that
packets cannot be sent or received. CloseAdapter resets the functional or multicast
addresses currently set.

Since this function is adapter specific it is expected that any necessary parameters are either
already known by the MAC or can be recovered from the PROTOCOL.INI file. The
format of the information is highly adapter specific and left up to the implementer to define.

ResetMAC

Purpose: Reset the MAC software and adapter hardware.

PUSH WORD ProtID ; Module ID of Protocol

PUSH WORD ReqHandle ; Unique handle for this request or 0
PUSH WORD 0 ; Pad parameter - must be O .

PUSH DWORD 0 ; Pad parameter - must be 0

PUSH WORD 6 ; Reset MAC Request

PUSH WORD MACDS ; DS of called MAC module

Call Request

Returns: 0x0000 SUCCESS
0x0006 OUT_OF_RESOURCE

0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0x0009 NOT_SUPPORTED
0x0024 HARDWARE_FAILURE

0x002A NETWORK_MAY_NOT_BE_CONNECTED
0x00FF GENERAL_FAILURE

Description:

The function causes the MAC to issue a hardware reset to the network adapter. The MAC
may discard without confirmation any pending requests and abort operations in progress.
For compatibility with some current protocols which do not properly handle resets, it is
suggested the MAC complete pending requests, returning INVALID_FUNCTION on all
confirmations which result. The MAC must preserve the current station address,
LOOKAHEAD length, packet filter, multicast address list, functional address and
indication on/off state. .

For MAC’s that support the OpenAdapter function, the Reset MAC command leaves the
adapter in the opened state if it was opened prior to the reset. The adapter open parameters
that were in effect prior to the reset must be the same ones in effect after the reset.

When the reset is initiated, the MAC must generate a StartReset status indication back to the
protocol. For some MAC’s a considerable delay can elapse between the start of the reset
and its completion. All MAC’s must subsequently issue an EndReset indication when the
reset is complete. During the time between the StartReset indication and the corresponding
EndReset indication, the MAC must return INVALID_FUNCTION for any request it
receives while a reset is in progress. The EndReset indication notifies the protocol that the
MAC can handle new requests. As always, an IndicationComplete follows these
indications. MACs written to V1.0.1. of this spec will not issue the End Reset. They must
issue the IndicationComplete to signal the end of the reset.

Page 5-15

Note that the completion (i.e. the return from this command or the request confirm) of the
Reset MAC request itself does not signal the start or end of the reset.

There can be no guarantee that this function will succeed, though the NDIS MAC developer
must make every attempt. An error return from this call can be considered fatal. If the
reset fails, the adapter may no longer be in the same state. For example, if the adapter was
open before a failed ResetMAC, it may now be closed.

ResetMac must not be queued.

SetPacketFilter

Purpose: Select received packet general filtering parameters.
PUSH WORD ProtID s Module ID of Protocol

PUSH WORD ReqHandle ; Unique handle for this request or O
PUSH WORD FilterMask ; Bit mask for packet filter

PUSH DWORD 0 ; Pad parameter - must be 0
PUSH WORD 7 ; Set Packet Filter Request
PUSH WORD MACDS ; DS of called MAC module
Call Request

FilterMask bit
0 directed and multicast or group and functional
1 broadcast packets
2 any packet on LAN (promiscuous)
3 any source routing packet on LAN
4-15 Reserved, must be zero

Returns: 0x0000 SUCCESS
0x0002 REQUEST_QUEUED
0x0006 OUT_OF_RESOURCE
0x0007 = INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0x00FF GENERAL_FAILURE

Description:

This command tells the MAC which kinds of received packets must generate
indications to the protocol invoking this command. A FilterMask of 0
indicates that the MAC must not indicate received packets to that protocol.
If a FilterMask bit is set, then this indicates that the MAC must indicate
that type of packet to the protocol. Except for a 0 FilterMask, a filter bit of
0 does not require the MAC to suppress indications for that type of packet.
For example the FilterMask used by the MAC may or may not correspond to
the capabilities of the hardware adapter. For example a MAC may be
designed to receive multicast frames by promiscuously receiving all frames
and discarding those that do not match the filter. It is optional for the
MAC to support such software filtering. If the MAC can suppress such
" indications, it is strongly recommended that it do so. However, if the
MAC does not suppress such indications, then the protocol must be
prepared to receive these and discard the incoming packet if necessary.

Page 5-16

If this request returns SUCCESS, then the hardware is enabled to receive
the types of packets requested and will generate Indications to the protocol
for those types of packets.

If the MAC does not support the receiving of packets of the type specified,
then it will return GENERAL_FAILURE. In this case the FilterMask is left
in its previous state.

AddMulticastAddress
Purpose: Allow adapter to respond to a multicast address.
PUSH WORD ProtID ; Module ID of Protocol
PUSH WORD ReqHandle ; Unique handle for this request or 0
PUSH WORD 0 ; Pad parameter - must be 0
PUSH LPBUF MultiAddr ; Buffer containing multicast address
PUSH WORD 8 ; Add Multicast Address Request
PUSH WORD MACDS ; DS of called MAC module
Call Request
Rewrns: 0x0000 SUCCESS
: 0x0002 REQUEST_QUEUED

0x0006 OUT_OF_RESOURCE

0x0007 INVALID_PARAMETER

0x0008 INVALID_FUNCTION

0x0009 NOT_SUPPORTED

0xO00FF GENERAL_FAILURE
Description:

This function allows the addition of muiticast addresses. The term multicast address also
implies 802.5 group addresses. This function allows the addition of only one address at a
time but can be repeated to add more multicasts.

It is the MAC’s responsibility to return an error if too many multicast addresses have been
added (OUT_OF_RESOURCE or INVALID_FUNCTION) or if an address of the wrong
type has been added (INVALID_PARAMETER).

Multicast addresses are never over written and will return an error
(INVALID_PARAMETER) if they already exist no matter what their type. They must be
explicitly deleted.

The multicast address buffer contains only the bytes of the multicast address to be added.
The length of the multicast address must be equal to the length specified in the MAC service
characteristics table.

Page 5-17

DeleteMulticastAddress
Purpose: Forbid adapter to respond to a multicast address.

PUSH WORD ProtlD ; Module ID of Protocol

PUSH WORD RegHandle ; Unique handle for this request or 0
PUSH WORD 0 ; Pad parameter - must be 0

PUSH LPBUF MuliiAddr ; Buffer containing multicast address
PUSH WORD 9 ; Delete Multcast Address Request
PUSH WORD MACDS ; DS of called MAC module

Call Request

Retumns: 0x0000 SUCCESS
0x0002 REQUEST_QUEUED
0x0006 OUT_OF_RESOURCE.
0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0x0009 NOT_SUPPORTED
Ox00FF GENERAL_FAILURE

Description:

This function removes a previously added multicast address. The term multicast address
also implies 802.5 group addresses. INVALID_PARAMETER is returned if the address
was notin the table.

The muldcast address buffer has the same format as in the AddMulticastAddress command.

UpdateStatistics
Purpose: Cause MAC statistics to be updated.

PUSH WORD ProtID ; Module ID of Protocol

PUSH WORD ReqHandle ; Unique handle for this request or 0
PUSH WORD 0 ; Pad parameter - must be 0

PUSH DWORD 0 ; Pad parameter - must be 0

PUSH WORD 10 ; Update Statistics request

PUSH WORD MACDS ; DS of called MAC module

Call Request

Returns: 0x0000 SUCCESS
0x0002 REQUEST_QUEUED
0x0006 OUT_OF_RESOURCE
0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0xO0FF GENERAL_FAILURE

Description:
Causes the MAC 1o atomically update the statistics in its characteristics table. The requester
can then read the table when this operation is complete. Those statistics which are not

always current will remain the same until the next UpdateS:atistics call is performed. If all
of the statistics in the table are always current this function must return SUCCESS.

Page 5-18

ClearStatistics
Purpose: Cause MAC statistics to be cleared.

PUSH WORD ProtID ; Module ID of Protocol
PUSH WORD RegHandle ; Unique handle for this request or 0
PUSH WORD 0 ; Pad parameter - must be 0
PUSH DWORD 0 ; Pad parameter - must be 0
PUSH WORD 11 ; Clear Statistics request
PUSH WORD MACDS ; DS of called MAC module
Call Request
Retums: 0x0000 SUCCESS

0x0002 REQUEST_QUEUED

0x0006 OUT_OF_RESOURCE

0x0007 INVALID_PARAMETER

0x0008 INVALID_FUNCTION

0x00FF GENERAL_FAILURE
Description:

Causes the MAC to reset its statistics counters. This implies that all statistics must be reset
10 zero in an atomic operdtion.

InterruptRequest
Purpose: Request asynchronous indication.
PUSH WORD ProtID ; Module ID of Protocol
PUSH WORD 0 ; Pad parameter - must be 0
PUSH WORD 0 ; Pad parameter - must be 0
. PUSH DWORD 0 ; Pad parameter - must be 0

PUSH WORD 12 ; InterruptRequest
PUSH WORD MACDS ; DS of called MAC module
Call Request
Retums: 0x0000 SUCCESS

0x0006 OUT_OF_RESOURCE

0x0008 INVALID_FUNCTION

0x0009 NOT_SUPPORTED

0x00FF GENERAL_FAILURE
Description:

This function requests the MAC to generate an asynchronous Interrupt Status indication
back to the protocol. The protocol may control the generation of this Interrupt Status
indication by disabling and later enabling indications. The MAC may at its discretion
suppress the generation of this indication if there is another indication pending which may
be issued in place of the Interrupt status indication. This request is intended to be used for
MAC'’s which can generate a hardware interrupt on demand. This function must be
implemented if at all possible. Interrupt request will substantially improve the performance
of some protocols (particularly DLC).

Page 5-19

SetFunctionalAddress

Purpose: Cause adapter to change its functional address.

PUSH WORD ProtID
PUSH WORD RegHandle
PUSH WORD 0

PUSH LPBUF FunctAddr
PUSH WORD 13

PUSH WORD MACDS
Call Request

; Module ID of Protocol

; Unique handle for this request or 0

; Pad parameter - must be 0

; Buffer containing functional address
; Set Functional Address Request

; DS of called MAC module

Returns: 0x0000 SUCCESS

0x0002

REQUEST_QUEUED

0x0006 OUT_OF_RESOURCE
0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0x0009 NOT_SUPPORTED
Ox00FF GENERAL_FAILURE

Description:

This sets the IEEE802.5 functional address to the passed functional address. The adapter
will use the functional address to discern packets intended for it. For more information on

functional addresses see the IEEE 802.5 specification.

The functional address buffer contains only the bytes of the new functional address bit
pattern. It represents the logical OR of all functional addresses to be registered with the

adapter. The length of the functional address buffer is 4 bytes.

Multiple protocols can set or reset their functional address bit if required by each protocol
by first reading the current functional address DWORD bit pattern from the MAC service
characteristics table, then ORing in or ANDing out the required functional bit and passing

the new functional address pattern in this command.

Purpose: Set length of lookahead information for ReceiveLookahead.

SetlLookahead
PUSH WORD ProtD
PUSH WORD RegHandle

PUSH WORD Length
PUSH DWORD 0

PUSH WORD 14
PUSH WORD MACDS
Call Request

; Module ID of Protocol

; Unique handle for this requestor 0
; Minimum length of lookahead info
; Pad parameter - must be 0

; Set Lookahead Request

; DS of called MAC module

Retums: 0x0000 SUCCESS :
0x0002 REQUEST_QUEUED
0x0007 INVALID_PARAMETER
O0x00FF GENERAL_FAILURE

Description:

Page 5-20

This request sets the minimum length in bytes of lookahead information to be retuned ina -
Receive Lookahead indication. Until SetL.ookahead is initially called, a value of 64 bytes is
assumed for the lookahead length. When first called, SetLookahead sets the lookahead
length value equal to the Length parameter of the request. After the first Setl.ookahead
request, the lookahead length is changed only if the value of the Length parameter is larger
than the current lookahead length. If the length parameter value is smaller, the current
Lookahead length remains unchanged and SUCCESS is returned. SetLookahead may be
called at any time and the lookahead length is preserved during a reset. The maximum
value for the lookahead length is 256 bytes. MAC’s which never call Receive Lookahead
or always return lookahead information of length greater than or equal to 256 bytes may
return SUCCESS without any internal action. MAC's must support 256 bytes of
lookahead data if requested.

General Request Confirmation
Purpose: Confirm completion of a previous General Request.

PUSH WORD ProtID ; Module ID of Protocol
PUSH WORD MACIDD ; Module ID of MAC
PUSH WORD RegHandle ; Unique handle of original request
PUSH WORD Status ; Final status of original request
PUSH WORD Request ; Original Request opcode
PUSH WORD ProtDS ; DS of called Protocol module
Call RequestConfirm
Returns: 0x0000 SUCCESS

0x0006 OUT_OF_RESOURCE

0x0007 INVALID_PARAMETER

0X0024 HARDWARE_FAILURE
O0xO0FF GENERAL_FAILURE

Description:
Notify a protocol that an asynchronous MAC control Request has completed after previous
Request had returned a REQUEST_QUEUED. It is possible that a RequestConfirm can be

returned to the protocol before the protocol’s corresponding Request function has
completed.

The ProtID parameter must be the value passed by the protocol on the previous general
request to identify the requestor.

If a protocol had made a general MAC request when executing its InitiateBind startup

function and the MAC returned REQUEST_QUEUED, the protocol must wait for the
corresponding RequestConfirm to be returned before exiting from the InitiateBind function.

Stafus Indications

Status indications are spontaneous calls from a MAC to a protocol, typically at interrupt
time. They inform the protocol of changes in MAC status.

All status indications have the following common calling convention:

Page 5-21

PUSH WORD MACID ; Module ID of MAC
PUSH WORD Paraml ; Opcode dependent word parameter or 0
PUSH LPBYTE Indicate ; Virtal address of indicate flag
PUSH WORD Opcode ; Opcode of status indication
ajlfié WORD ProtDS ; DS of called Protoco! module
tatus

Indicate is the virtual address of the indication flag byte. This byte is set to OxFF by the
MAC prior to this call. If the protocol clears the byte to zero prior to returning then
indications will be left disabled until IndicationOn is called from IndicationComplete.

RingStatus

Purpose: Return a change in ring status. .

PUSH WORD MACIDD ; Module ID of MAC

PUSH WORD Status ; New Ring Status

PUSH LPBYTE Indicate ; Virtual address of indicate flag
PUSH WORD 1 ; Ring Status Indication

PUSH WORD ProtDS ; DS of called protocol module
Call Status

Returns: 0x0000 SUCCESS
Description:

Called by 802.5-style MAC drivers to indicate a change in ring status. The status codes for
802.5-style drivers are encoded as a 16-bit mask, where the bits in the mask are defined as
follows:

Bit Meaning

15 Signal Loss

14 Hard Error

13 Soft Error

12 Transmit Beacon

11 Lobe Wire Fault

10 Auto-Removal Error 1
9 Reserved
8 Remove Received
7 Counter Overflow
6 Single Station
5 Ring Recovery
4-0 Reserved

For cerrain ring status changes, the adapter may already have been removed from the ring.
The protocol driver must check whether the adapter has been closed (by examining bit 4 fo
the MAC status field in the MAC service-specific status table). For additional information,
consult the /IBM Token Ring Technical Reference Manual. If the status condition caused
the adapter to close, the MAC must return confirmations with non-SUCCESS status codes
for all pending TransmitChain and general requests.

Page 5-22

AdapterCheck

Purpose: Return hardware status.

PUSH WORD MACID ; Module ID of MAC

PUSH WORD Reason ; Reason for Adapter Check

PUSH LPBYTE Indicate ; Virtual address of indicate flag

PUSH WORD 2 ; Adapter Check Indication
.PUSH WORD ProtDS ; DS of called protocol module

Call Status

Returns: 0x0000 SUCCESS

Description:

Called to indicate a fatal adapter error. If this function is called the protocol must issue a
ResetMAC call (if supported) before communications can resume. Note that a MAC may
choose to tolerate some number of errors before issuing an AdaperCheck indication. For
example, a MAC may want to accept the occasional receive DMA overrun, and only issue
the AdapterCheck for this condition if it occurs excessively.

For 802.5 MAC's the Reason code js defined as follows (NOT a bit mask):

0x8000 Adapter Inoperative

0x1000 Illegal Opcode

0x0800 Local Bus Parity Error

0x0400 Parity Error

0x0100 Internal Parity Error

0x0080 Parity Error, Ring Transmit
0x0040 Parity Error, Ring Receive

0x0020 Transmit Overrun

0x0010 Receive Overrun

0x0008 Unrecognized Interrupt

0x0004 Unrecognized Error Interrupt
0x0003 Adapter Detected No PC System Service
0x0002 Unrecognized Supervisory Request
0x0001 Program Request

All 802.5 values not defined above are reserved.

The MAC must always return confirmations with non-SUCCESS status codes for all
pending TransmitChain and general requests.

Page 5-23

For 802.3 MAC's the Reason code is defined as follows (NOT a bit mask):

0x8000 Adapter Inoperative (Adapter did not respond to command or
could not be found)

0x4000 Command Timed Out (Adapter did not complete command
within acceptable time interval)

0x2000 SQE Test Failure (No heartbeat detected on previous
transmission)

0x1000 Excessive Collisions (Transmission failed due to excessive
collisions)

0x0800 Lost Carrier Sense (Adapter lost carrier during transmission)

0x0400 TDR Failure (TDR test detected a short or open on the link)

0x0020 Transmit Underrun (DMA underrun occurred on -
transmission)

0x0010 Receive Overrun (DMA overrun occurred on reception)

All 802.3 values not defined above are reserved.

StartReset

Purpose: Imply that adapter has started a reset. ’

PUSH WORD MACID ; Module ID of MAC

PUSH WORD 0 ; Pad parameter must be zero
PUSH LPBYTE Indicate ; Virtal address of indicate flag
PUSH WORD 3 ; Start Reset Indication

PUSH WORD ProtDS ; DS of called protocol module
Call Status

Retumns: 0x0000 SUCCESS

Description:

Called to indicate that the adapter has started a reset. This will generally be due to a call to
ResetMAC (perhaps by another protocol driver in a VECTOR configuration) but can be
unsolicited. The protocol must assume when it gets this indication that all requests
outstanding to the MAC have been discarded without notification. The end of the reset will
be signalled by an EndReset indication. The reset process may take a significant amount of
time. While it is in progress, the MAC may reject any requests it cannot handle with
INVALID_FUNCTION (0x0008). As with any other indication, StartReset is entered with
indications implicitly disabled. To protect itself from other indications the protocol may
choose to modify the Indicate flag to keep indications disabled on return. This will not
prevent the EndReset indication from being generated however.

StartReset is affected by IndicationOn and IndicationOff.

Page 5-24

EndReset
Purpose: Imply that adapter has finished a reset.

PUSH WORD MACID ; Module ID of MAC
PUSH WORD Status ; MAC error information
PUSH LPBYTE Indicate ; Virtual address of indicate flag
PUSH WORD 5 ; End Reset Indication
PUSH WORD ProtDS ; DS of called protocol module
Call Status
Returns: 0x0000 SUCCESS

0x0008 INVALID_FUNCTION
Description:

Called to indicate that the adapter has finished a reset and follows the StartReset indication.
The protocol may return INVALID_FUNCTION if it was written to the 1.0.1 version of
this specification, where it assumes end of reset on IndicationComplete. To ensure
compatibility with 1.0.1 protocol drivers, the MAC must ensure the IndicationComplete is
called after EndReset and before any other indications.

EndReset will pass up a success/fail code for ResetMAC in the Status parameter.

0x0000 SUCCESS

0x0024 HARDWARE_ERROR

0x002A 'NETWORK_MAY_NOT_BE_CONNECTED
OxOO0FF GENERAL_FAILURE

As with any other indication, EndReset is entered with indications implicitly disabled. To
protect itself from other indications the protocol may choose to modify the Indicate flag to
keep indications disabled on return. MAC drivers must be prepared for the possibility that
both StartReset and EndReset allow the protocol to modify this flag.

EndReset is not affected by IndicationOn and IndicationOff. In other words, if the
protocol modifies the indicate flag during StartReset to disable indications, this will not
prevent the EndReset indication from being generated.

If both StartReset and EndReset disable indications, the IndicationOff depth is 2, requiring
two calls to IndicationOn in order to enable indications. For example, if protocol A
disables indications during StartReset and protocol B disables indications during EndReset,
both protocols must issue IndicationOn before indications are re-enabled. The same is true
if the same protocol issues IndicationOff twice.

Interrupt

Purpose: Imply that an interrupt has occurred as the result of a interrupt request.
PUSH WORD MACID ; Module ID of MAC

PUSH WORD 0 ; Pad parameter must be 0

PUSH LPBYTE Indicate ; Virtual address of indicate flag

PUSH WORD 4 ; Interrupt indication

PUSH WORD ProtDS ; DS of called protocol module

Call Indication

Page 5-25

Retumns: 0x0000
Description:

The MAC calls this function

SUCCESS

to indicate to a protocol that an interrupt requested by an
Interrupt request has occurred. Since this indication may be deferred by disabling
indications, a protocol may use this mechanism to implement a simple scheduling scheme
to allow it to regain control once outside of a critical code region. The MAC may at its
discretion suppress the generation of this indication if there is another indication pending

which may be issued in place of the Interrupt status indication.

System Requests

All MAC and protocol modules implement a set of system request functions that support
module-independent functions such as binding. The caller of these functions is usually the
Protocol Manager. The entry point for system requests is defined in the common
characteristics table for the module. All system requests are implemented synchronously.

Note that all pointers in system requests are Ring 0 GDT virtual addresses.

All system requests have the following common calling convention:

PUSH DWORD Paraml
PUSH DWORD Param?2

; Request dependent dword parameter or O
; Request dependent dword parameter or O

PUSH WORD Param3 ; Request dependent word parameter or O
PUSH WORD Opcode ; Opcode of request

PUSH WORD TargetDS ; DS of called module

Call System

InitiateBind

Purpose: Instruct a module to bind to another module.

PUSH DWORD 0 ; Pad parameter must be 0

PUSH LPBUF CharTab ; Characteristics of module to bind
PUSH WORD LastBind ; Non-zero if last InitiateBind

PUSH WORD 1
PUSH WORD ProtDS
CALL System

Returns: 0x0000
0x0008
0x0021
0x0022
0x0023
0x0024
0x0025
0x0026
0x0027
0x0028
0x002A
0x002B
0x00FF

Page 5-26

o

; Initate Bind Request
; DS of called Protocol module

SUCCESS
INVALID_FUNCTION
INCOMPLETE_BINDING
DRIVER_NOT_INITIALIZED
HARDWARE_NOT_FOUND
HARDWARE FAILURE
CONFIGURATION_FAILURE
INTERRUPT_CONFLICT
INCOMPATIBLE_MAC
INITIALIZATION_FAILED
NETWORK_MAY_NOT_BE_CONNECTED
INCOMPATIBLE_OS_VERSION
GENERAL_FAILURE

Description:

This call is"issued by the Protocol Manager to an upper protocol module. It passes the
address of the characteristics table of the lower module that the upper module must issue a
Bind call to. If the upper module specified a BindingsList including more than one lower
module, then InitiateBind's will be issued for those modules in the order the lower modules
are listed in the BindingsList structure. LastBind is used to indicate the last Initiate Bind
request so the module may perform any final initialization prior to returning. In the static
default binding case of one static protocol and one MAC, the Protocol Manager will issue
an InitiateBind passing the characteristics table of the MAC even if no bindings list was
specified. In this case LastBind will be non-zero. In the non-default case if 2 module other
than 2 MAC does not have lower bindings (having a Bindlist with a NumBindings count =
0), the Protocol Manager will still issue an Initiate Bind to the module to allow final
initialization. In this case CharTab will be NULL and LastBind will be non-zero.

If the Bind operation fails then the Initiate Bind operation must also fail returning the same
return code as the failing Bind call.

If a module returns a non-SUCCESS code on InitiateBind, in the dynamic mode the
Protocol Manager will automnatically deregister that module and remove all reference to it in
its bind tables. In particular any other module that had registered (via RegisterModule) its
intention to bind with the failed module will get an InitiateBind call with the "CharTab"
pointer far NULL and "LastBind" non-zero. A module that has lower bindings and
receives an InitiateBind with a NULL bind "CharTab" must generate a non-SUCCESS
return code in order to force the Protocol Manager to deregister it. In DOS it is
recommended that a dynamic module that failed its bind deinstall itself. In OS/2 it is

recommended that the dynamic driver that failed its bind leave its dynamic segments
unlocked.

Bind
Purpose: Exchange module characteristic table information.

PUSH LPBUF CharTab ; Pointer to caller’s table

PUSH LPBUF TabAddr ; Address where to return a pointer
; to called module’s characteristics
PUSH WORD 0 ; Pad parameter must be zero
PUSH WORD 2 ; Bind Request
PUSH WORD TargetDS ; DS of called module
CALL System
Retums: 0x0000 SUCCESS
0x0008 INVALID_FUNCTION
0x0022 DRIVER_NOT_INITIALIZED
0x0023 HARDWARE_NOT_FOUND
0x0024 HARDWARE_FAILURE
0x0025 CONFIGURATION_FAILURE
0x0026 INTERRUPT_CONFLICT
0x0027 INCOMPATIBLE_MAC
0x0028 INITIALIZATION_FAILED
0x002A NETWORK_MAY_NOT_BE_CONNECTED
0x002B INCOMPATIBLE_OS_VERSION
0x00FF GENERAL_FAILURE

Page 5-27

Description:

Used by one module to bind to another. It exchanges pointers to characteristics tables
between the two modules. A MAC will accept only one bind and will not accept additional
bind attempts.

For compatibility with Remote Initial Program Load, MAC drivers must not manipulate the

network adapter at INIT time. The MAC driver is free to determine if the network adapter
1s present, but must leave any hardware manipulation to Bind time processing.

InitiatePrebind (OS/2 only) .
Purpose: In OS/2 dynamic bind mode-instruct a module to restart its prebind initialization.

PUSH DWORD 0 ; Pad parameter (must be zero)
PUSH LPBUF 0 ; Pad parameter (must be zero)
PUSH WORD 0 ; Pad parameter (must be zero
PUSH WORD 3 ; Initiate Prebind Request
PUSH WORD ProtDS ; DS of called protocol module
CALL System

Returns: 0x0000 SUCCESS
0x00FF GENERAL_FAILURE

Description:

In the OS/2 dynamic mode, this call is issued by the Protocol Manager to a dynamically
loadable protocol driver when the Protocol Manager InitAndRegister is called. This
function is available for the protocol driver to restart its prebind initialization when it is
dynarnically reloaded.

An OS/2 dynamic protocol driver is assumed to be made up of static and transient
segments. When the protocol is not needed, the transient segments are unlocked (using the
DevHlIp Unlock command) to allow them to be swapped out. When the protocol is needed
again, InitiatePrebind is issued. During InitiatePrebind, the driver needs to Lock down its
dynamic segments (using the DevHIp Lock command, type 1) to force them back into
memory and make them addressable again. The protocol must save the lock handle
returned by this call for later Unlock'ing. Also, the prebind initialization sequence is
initiated in this call and consists of re-reading the PROTOCOL.INI memory image,
configuration initialization, prebind memory allocations, and registration with the Protocol
Manager. The protocol module typically carries out here the same functions that are
performed by a static protocol module when a strategy routine INIT command is given.

InitiateUnbind

Purpose: Instruct a module to unbind from another module.

PUSH DWORD 0 ; Pad parameter (must be zero)
PUSH LPBUF CharTab ; Char’s of module to unbind
PUSH WORD LastUnbind ~ ; Non-zero if last Init'Unbind
PUSH WORD 4 ; Initiate Unbind Request
PUSH WORD ProiDS ; DS of called protocol module
CALL System

Page 5-28

Rewurns: 0x0000 SUCCESS
0x00FF GENERAL_FAILURE

Description:

This call is issued by the Protocol Manager in dynamic mode to an upper protocol module.
It passes the address of the characteristics table of the lower module that the upper module
must issue an Unbind command to (this would be an entry into the VECTOR if the lower
module is 2a MAC). LastUnbind is used to indicate the last InitiateUnbind request, so the
module may perform any final cleanup before returning.

If a protocol module does not have lower bindings (having a BindingsList with a
NumBindings count = 0), InitiateUnbind will still be issued with CharTab set to NULL
and LastUnbind set to non-zero in order to allow the module to terminate. . ‘

Unbind
Purpose: An unbind request from an upper protocol module to a lower module.
PUSH LPBUF CharTab ; Caller’s characteristics table
PUSH DWORD 0 ; Pad parameter (must be zero)
PUSH WORD 0 ; Pad parameter (must be zero)
PUSH WORD 5 ; Unbind Request
PUSH WORD TargetDS ; DS of called module
CALL System .
Returns: 0x0000 SUCCESS

0x0008 INVALID_FUNCTION

0x00FF GENERAL_FAILURE
Description:

Used by one protocol module to unbind from another. The caller's characteristics table is
passed to permit the called module to identify the upper module. If the Unbind is to a
MAC, the VECTOR does the Unbind cleanup on behalf of the MAC. Thus MAC drivers
themselves do not need to support this call.

Protocol Manager Primitives

Since the Protocol Manager primitives may be accessed via an IOCTL in OS/2, a request
block is defined as follows:

sEtruct RegBlock
unsigned Opcode; /*Opcode for Protocol Manager request */
unsigned Status; /*Status at completion of request */
char far *Pointerl; /*First parameter Ring 0 GDT pointer */
char far *Pointer2; /*Second parameter Ring 0 GDT pointer */
unsigned Wordl; /*Parameter word */

|5

Page 5-29

Direct calls are made to the Protocol Manager with a pointer to the RegBlock on the stack.
For IOCTL requests, the parameter buffer contains a pointer to the ReqBlock. The direct
calling sequence is as follows:

PUSH LPBUF RegBlock ; Ring 0 GDT Address of RegBlock
PUSH WORD TargetDS ; DS of Protocol Manager
Call ProtManEntry

Note that under OS/2 the direct entry cannot be used at CONFIG.SYS initialization time
since the driver is still in Ring 3 context.

Note also that if the Protocol Manager is in dynamic mode, these primitives can be invoked
by other modules after system initialization. Dynamic OS/2 Ring 0 device drivers issuing
these primitives post INIT time must use the direct entry interface since the IOCTL interface
is illegal at this time. o

GetProtocolManagerinfo
Purpose: Retrieve pointer to configuration image.

Opcode -1
Status - On return contains request status
Pointer1 - On retumn contains a FAR pointer to structure memory image representing

the parsed user configuration file PROTOCOL.INI. For static OS/2 device
drivers, the selector of the pointer returned here is valid only at device INIT
time. For dynamic OS/2 device drivers, the selector returned is always
valid and will be a valid LDT selector for the process under which this
primitive is called. For DOS this is a segment:offset pair.

Pointer2 - Unused

Word1 - On return contains the BCD-encoded major (low byte in memory) and
minor (high byte in memory) version of the specification on which this
Protocol Manager driver is based. (2.0 for this specification)

 Returns: 0x0000 - SUCCESS
0X0008 INVALID_FUNCTION
0x0002F INFO_NOT_FOUND
0x00FF GENERAL_FAILURE
Description:

This request is used by a module to obtain the configuration information parsed from the
user-defined protocol configuration file PROTOCOL.INI. Modules invoke this function
during device driver initialization to obtain this information for initializing configuration
variables and making dynamic memory allocations and to determine their inter-module
bindings.

In DOS dynamic mode, INFO_NOT_FOUND is returned if the Protocol Manager detects
that the structured memory image is not valid. This can occur if prior to loading a dynamic
module the structured configuration memory image was not registered with the Protocol
Manager via a RegisterProtocolManagerinfo command or if the memory image got
corrupted between registering it and getting it via the current primitive. The corruption

Page 5-30

might occur if another DOS program is loaded between the memory image registrations and
the memory image read operation by a dynamic protocol invoking the
GetProtocolManagerinfo primitive.

This request is valid in both the static and dynamic modes of Protocol Manager operation.
In the static mode, this request is only valid prior to binding and starting. Invoking this
primitive in static mode after all modules are bound and started will cause
INVALID_FUNCTION to be returned by Protocol Manager.

RegisterModule
Purpose: Register a module and its bindings.

Opcode -2
Status - On return contains request status

Pointerl - Contains a FAR pointer to the module’s common characteristics table.
The module must have all information in that table filled in except for the
Module ID which is filled in by the Protocol Manager on return.

Pointer2 -Contains a FAR pointer to a BindingsList structure of the modules to
which this module wishes to be bound to. The Protocol Manager will use
only the information passed in the BindingsList to determine the relevant
module bindings. This pointer can be FAR NULL to indicate that this
module will not currently bind to any module.’ This latter option is useful
for dynamic OS/2 modules that need to register their module name with the
Protocol Manager but do not wish to remain fully resident (and therefore
bind) at the current time. This non-bindable registration permits the
dynamic driver to reregister with a BindingsList when it is later reloaded
and made operational.

Wordl -Unused
Retumns: 0x0000 SUCCESS
0x0008 INVALID_FUNCTION

0x002C ALREADY_REGISTERED
0x00FF GENERAL_FAILURE

Description:

This request is used by a driver or dynamically loadable executable to identify one of its
contained modules to the Protocol Manager. After calling RegisterModule, a static driver
must remain installed and respond to system requests. A dynamic OS/2 driver must leave
its system entry function code permanently locked in memory. A dynamic DOS module
must remain installed and respond to system requests until it is unbound and unloaded.
This registration is accomplished by passing a pointer to the module's characteristics table
to the Protocol Manager. The driver also passes a bindings list requested by the module.
The bindings list contains the one or more module names which the module wishes to bind
to as a client. This bindings information is later used by the Protocol Manager to determine
the necessary sequence of InitiateBind commands to issue. This bindings list must persist
while the protocol is operational. In the static default bindings case of one static protocol
and one MAC, the bindings list pointer provided in this request can be NULL indicating
that a protocol module by default will bind to the single underlying MAC. Otherwise in the

Page 5-31

non-default bindings case, a NULL bindings list pointer provided in this request will
indicate that this module will not bind to any other module at the current time and is not
ready to initialize. In this latter case the Protocol Manager will not call the module's
InitateBind system function. A NULL binding list pointer is particuarly useful for
dynamic OS/2 drivers that register their module name at INIT time, but are not to remain
fully resident at startup time. This is called a non-bindable registration. A protocol module
can also pass a non-NULL bindings list with a 0 number of bindings count. In the defauit
bindings case, this is interpreted by the Protocol Manager to bind the protocol to the single
underlying MAC. In the non-default bindings configuration this means that a protocol is
Zea%listering without any lower bindings, but is required to be initialized by an InitiateBind

A driver which contains multiple modules can call RegisterModule multiple times, once for
each module. The Protocol Manager responds to each request by assigning each module a
module ID. The module ID is returned in the module’s characteristics table on completion
of the RegisterModule request.

If a module name is currently registered with the Protocol Manager, an attempt to register
the same module name will fail and a status code of ALREADY_REGISTERED will be
returned. A dynamic OS/2 driver is considered currently registered if it had previously
registered with a non-NULL bindings list indicating a requirement to bind and/or start and
it had not yet unbound. Thus a dynamic OS/2 driver can reregister with the Protocol
Manager under the same module names if it either had unbound or had not previously made
a bindable registration.

This request is valid in both the static and dynamic modes of Protocol Manager operation.
In the static mode, this request in only valid prior to binding and starting. Invoking this
primitive in static mode after all modules are bound and started will cause INVALID
FUNCTION to be returned by the Protocol Manager. A registration of a dynamic module
(bit 2 set of the "module function flags” in the Common Characteristics table) in static
Protocol Manager mode is invalid and will generate INVALID_FUNCTION. It is
mandatory that all static DOS and static and dynamic OS/2 device drivers invoke this
function at least once at INIT time.

BindAndStart

Purpose: Initiate the binding process.

Opcode -3
Status - On return contains request status

Pointer1 - Caller’s virtual address of FailingModules structure. This structure in the
caller’s address space is filled in by the Protocol Manager prior to
returning from BindAndStart. If BindAndStart reports an error, it contains
the module names in ASCIIZ format of the upper module and lower
module (may be a NULL string) reporting the error. If BindAndStart is
successful then both are NULL strings.

struct FailingModules {
char UpperModuleName[16]; /* Upper failing module */
char LowerModuleName{16}; /* Lower failing module */
) ‘ ,

Page 5-32

Pointer2 - Unused

Wordl - Unused

Retumns: 0x0000 SUCCESS
0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0x0020 AILREADY_STARTED
0x0021 INCOMPLETE_BINDING
0x0022 DRIVER_NOT_INITIALIZED
0x0023 HARDWARE_NOT_FOUND
0x0024 HARDWARE_FAILURE
0x0025 CONFIGURATION_FAILURE
0x0026 INTERRUPT_CONFLICT
0x0027 INCOMPATIBLE_MAC
0x0028 INITIALIZATION_FAILED
0x0029 NO_BINDING

0x0002D PATH_NOT_FOUND
0x0002E INSUFFICIENT_MEMORY
0x00FF GENERAL_FAILURE

Description:

This is used to trigger the Protocol Manager bind and start sequence. This permits an
application program (e.g., executing from a DOS batch or OS/2 command file) to trigger
the bind sequence. The bind sequence is invoked by the Protocol Manager’s calling each
module’s inter-module InitiateBind function. If an InidateBind fails then BindAndStart will
fail with same return code as the failing InitiateBind.

In the static mode of Protocol Manager operation, this request can be invoked only once to
bind and start all static drivers. Successive invocations return INVALID_FUNCTION.

" Inthe dynamic mode, this command tells the Protocol Manager to issue the IntitiateBind
primitive to all dynamically loaded protocol drivers that have registered since the last
InitiateBind (or since the beginning of time for the first call).

In DOS, the caller is required to invoke this primitive via the direct entry point rather than
the DOS IOCTL method. The Protocol Manager will generate an INVALID_FUNCTION
error if this function is invoked by an IOCTL. This will permit the protocol modules to
make DOS function calls during their bind and start sequence initiated by this primitive
(when the Protocol Manager calls the InitiateBind system entry point of the protocol). If
the IOCTL were used, the bind/start sequence would be carried out inside of a DOS call
and protocols would not be able to make further DOS calls within their initialization
sequence in order to prevent DOS reentrancy.

In DOS the Protocol Manager loads PROTMAN.EXE to execute this commnad. The caller
must have previously guaranteed that at least 20k of memory is available to load
PROTMAN.EXE prior to invoking the BindAndStart primitive. In static VECTOR
configurations (Chapter 7) PROTMAN.EXE will remain resident after BindAndStart
completes. In such cases it is strongly recommended that the caller free as much memory
as possible prior to calling BindAndStart so the PROTMAN.EXE will reside in the lowest
memory possible. This will prevent large unusable gaps in DOS memory when the calling
function terminates.

Page 5-33

A utility, NETBIND.EXE, that invokes the BindAndStart pnmmvc is provided with the
Protocol Manager and is described in Appendix E.

GetProtocolManagerLinkage
Purpose: Retrieve Protocol Manager Dispatch and DS Vaiue,

Opcode -4
Status - On return contains request status
Pointerl - On return contains the Protocol Manager Dispatch point.
Pointer2 - Unused
Word1 - On return contains the Protocol Manager DS.
Remms: - 0x0000 SUCCESS
0x0008 INVALID_FUNCTION
0x00FF GENERAL_FAILURE
Description:

This request is used by a module to obtain the dispatch entry point and DS of the Protocol
Manager. Direct calls may then be made by DOS & OS/2 Ring 0 drivers and DOS utilities
to the dispatch entry point.

All dynamically reloaded OS/2 protocol drivers must issue this command to the Protocol
Manager at CONFIG.SYS INIT time using the IOCTL mechanism and must save the Ring
0 Protocol Manager dispatch entry point and DS. When the driver subsequently re-
registers with the Protocol Manager on reload at post INIT time, it must do so via the direct
entry interface using the saved entry point and DS (since an IOCTL would be illegal at that
time).

Any DOS utility that intends to invoke the BindAndStart or UnbindAndStop Protocol
Manager primitives must first invoke this primitive to get the Protocol Manager's direct

entry point.

This request is valid in both the static and dynamic modes of Protocol Manager operation.
In the static mode, this request is only valid prior to binding and starting. Invoking this
primitive in static mode after all modules are bound and started will cause
INVALID_FUNCTION to be returned by the Protocol Manager.

GetProtocollniPath

Purpose: A command to obtain the path to the PROTOCOL.INI file read by the
Protocol Manager when it initialized.

Opcode -5
Status - On retumn contains request status
Pointerl - The virtual FAR pointer to a buffer, which will contain the returned

PROTOCOL.INI pathname in ASCIIZ format on completion.

Page 5-34

Pointer2 - Unused

Wordl - The length of the provided buffer on input.
Retums: - 0x0000 SUCCESS
0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
Description:

This primitive can be called by an application program or dynamically loadable protocol that
will read and parse the PROTOCOL.INI file to obtain the original location of the
PROTOCOL.INI file used by the Protocol Manager when it initialized. This permits such a
program to use the same file read by the Protocol Manager. The Protocol Manager returns
only the pathname to the subdirectory containing the PROTOCOL.INI file, excluding the
string "\PROTOCOL.INI", which may be up to 60 characters in length. This string will
include the drive identifier and be fully qualified relative to the root. The buffer must be
large enough to hold the returned string. If not, the contents of the buffer are undefined
and the INVALID_PARAMETER error returned.

This request is valid in both the static and dynamic modes of Protocol Manager operation.
In the static mode, this request is only valid prior to binding and starting. Invoking this
primitive in static mode after all modules are bound and started will cause
INVALID_FUNCTION to be returned by the Protocol Manager.

RegisterProtocolManagerinfo

Purpose: A command valid only in the dynamic mode to register the current starting
address of the PROTOCOL.INI memory image with the Protocol Manager.

Opcode -6

Status - On return contains request status
Pointerl - The virtual FAR pointer to the structured memory image representing the
parsed user configuration file, PROTOCOL.INL
Pointer2 - Unused
Wordl1 - Length of structured memory image
Returns: - 0x0000 SUCCESS
0x0008 INVALID_FUNCTION
Description:

In dynamic mode, this command registers with the Protocol Manager the address of the
PROTOCOL.INI memory image. It is assumed that prior to dynamically loading a
protocol module, the PROTOCOL.INI file is re-read and re-parsed in some memory image.
The pointer to the memory image is given to the Protocol Manager, so that it is available for
the "GetProtocolManagerinfo" primitive of the dynamic initializing module that reads its
configuration parameters.

Page 5-35

In statig mode, this command is illegal and the INVALID_FUNCTION error code is
returned.

A utility, READPRO.EXE, that reads and parses the PROTOCOL.INI file into a memory
image and registers this with the Protocol Manager is provided with the Protocol Manager
and is described in Appendix E.

InitAndRegister

Purpose: An optional dynamic OS/2 command to dynamically restart the prebind
initialization of a dynamically reloadable protocol driver.

Opcode -7

Status - On return contains request status

Pointerl - Unused

Pointer2 - FAR virtual pointer to an ASCIIZ buffer containing the name of the

module to be prebind inidalized.

Wordl - Unused

Retumns: - 0x0000 SUCCESS
0x0007 INVALID_PARAMETER
0x0008 INVALID_FUNCTION
0xO0FF GENERAL_FAILURE

Description:

In OS/2 dynamic mode, this reactivates the transient portions of a protocol driver
previously statically loaded at system startup, but for which the transient portions of the
driver were not locked down. The command causes the Protocol Manager to invoke the
system entry point of the specified module with the function"InitiatePrebind” in order for
the driver to restart its prebind initializadon. The prebind initialization functions are driver
specific. However, it is expected that such functions might include

. locking down its dynamic segments using the DevHlp Lock command (lock type
1) and saving the returned lock handle.

. getting its PROTOCOL.INI configuration information
. doing its prebind initialization,
. and finally, re-registering with the Protocol Manager.

In static mode, this command is illegal and the INVALID_FUNCITON error code is
returned.

UnbindAndStop

Purpose: A dynamic binding command to terminate a transient previously
dynamically bound protocol module and to terminate its bindings.

Page 5-36

Opcode -8

Status - On return contains request status
Pointerl - Failing modules as for the "BindAndStart” command
Pointer2 - If non-NULL, FAR virtual pointer to an ASCIIZ buffer containing the

name of the module to be unbound.

If NULL, then terminates a set of previously dynamically bound protocol
modules as defined below. Valid only for DOS.

Wordl - Unused
Returns: - 0x0000 SUCCESS
0x0007 INVALID_PARAMETER

0x0008 INVALID_FUNCTION
0x0002D PATH_NOT_FOUND
0x0002E INSUFFICIENT_MEMORY

Description:

This is used in the dynamic mode to terminate either a specific protocol module or a set of
previously dynamically bound protocol modules and to terminate their binds. A "set" is the
collection of protocol modules previously loaded or reloaded between two successive
"BindAndStart” calls or between the last "BindAndStart” and this call. Successive
"UnbindAndStop" commands with NULL Pointer2 arguments terminate protocol sets in
the reverse order in which they were bound. The Protocol Manager removes reference to
the protocols from its VECTOR (for MAC unbindings) table and general binding tables.
The Protocol Manager issues an "InitiateUnbind"” command to each protocol to be unbound
so that the protocol can issue an "Unbind" command to the modules it is bound to. For
MAC unbindings, the "Unbind" is issued back to the Protocol Manager VECTOR. The
NULL Pointer2 option is used in DOS environments for TSR protocol modules in which
the unbind sequence usually proceeds in reverse order of the bind sequence. The non-
NULL Pointer2 option must be used in OS/2 environments. The NULL Pointer2 option is
invalid for OS/2.

In DOS, the caller is required to invoke this primitive via the direct entry point method
rather than the DOS IOCTL method. The Protocol Manager will generate an
INVALID_FUNCTION error if this function is invoked by an IOCTL. This will permit
the protocol modules to be terminated to make DOS function calls during their unbind/stop
sequence initiated by this primitive (when the Protocol Manager calls the InitiateUnbind
system entry point of the protocol). If the IOCTL were used, the unbind/stop sequence
would be carrried out inside of a DOS call, and protocols would not be able to make further
DOS calls within their termination sequence in order to prevent DOS reentrancy.

In DOS the Protocol Manager loads PROTMAN.EXE to execute this command. The caller
must have previously guaranteed that at least 20K of memory is available to load
PROTMAN.EXE prior to invoking the UnbindAndStop primitive.

A utility, UNBIND.EXE, that invokes the UnbindAndStop primitive is provided with the
Protocol Manager and is described in Appendix E.

Page 5-37

In static mode, this command is illegal and the INVALID_FUNCTION error code is
returned.
BindStatus

Purpose: A command to obtain information from the Protocol Manager about the
current set of bound modules.

Opcode -9
Status - On return contains request status
Pointerl - On input, under OS/2 only, if the caller is in Ring 3, this must bc aFAR

virtual pointer to a buffer where the returned information will be stored.
- On input, under DOS or in OS/2, if the caller is in Ring 0, this pointer

must.be NULL.
- On output, Pointer] points to the root tree.
Pointer2 - NULL
Wordl - only used in OS/2
- Length of buffer (input) and bytes copied (output).
Returns: - 0x0000 SUCCESS
0x0008 INVALID_FUNCTION

0x000D BUFFER_TOO_SMALL
Description:

If enabled by the Protocol Manager's BINDSTATUS=YES parameter in PROTOCOL.INI,
this command can be called at any time to obtain information from the Protocol Manager
about the current set of bound modules. If this command is disabled, an attempt to invoke
this command will return INVALID_FUNCTION.

The following characteristics tables are returned for the modules which qualify:
Common Characteristics

Service-Specific Characteristics (including the Multicast Address List for MAC
modules)

Service-Specific Status
Media-Specific Statistics (for MAC modules only)
The tables are linked together into a bind tree using a new structure:

struct BindNode {
struct cctable far *commonptr;
struct BindNode far *down;
struct BindNode far *right;

);

NOTE: There may be additional fields added to BindNodes in the future, so do not rely on
its exact size.

Page 5-38

A BindNode is linked to its Common Characteristics Table (CCT) by the CommonPrr field.
The CCT's are then linked into a bind tree using the Right and Down pointers. Down
points to the first BindNode bound below this one, and Right points to the next. At the top
of the tree (the uppermost level), the Right pointers also link together the BindNodes as if
they are bound to a virtual root BindNode.

A simple example might help illustrate this better:

Protocol
/ \
MACI1 MAQ2

which would be represented by the following bind tree:

Protocol
|
v
MACI -—-->MAQC2

where the BindNodes have been hidden to keep the diagram simple--only their Down and
Right pointers are shown. The remaining Down and Right pointers would be NULL.

One option when making this call is to pass a NULL buffer pointer (in Pointerl), in which
case the root BindNode pointer will be retumed in Pointerl. The Protocol Manager uses
BindNodes internally to build the bind tree. The caller can then run the current bind tree to
obtain information. This is the only method supported under DOS. Under OS/2, this
method will only work for Ring O drivers.

Under OS/2, Ring 3 programs must use a second method by providing a pointer to a buffer
(in Pointerl) of a specified size (in Word1) to copy the characteristics tables into. In this
case, the Protocol Manager will copy the qualifying tables into the buffer provided. The
first entry in the buffer will be the root BindNode. The order of the remaining BindNodes
and tables within the buffer is undefined. The BindNodes and their various tables are
linked together by pointers which will be fixed up by the Protocol Manager to use the same
selector as the buffer itself (i.e., Ring 3 if the buffer is Ring 3). Specifically, the Protocol
Manager will fixup the following entries:

BindNode:

CommonPtr

Down

Right
Common Characteristics:

Pointer to service-specific characteristics

Pointer to service-specific status
Service-Specific Characteristics

Pointer to multicast address list (MAC's only)
Service-Specific Status

Pointer to media-specific statistics (MAC's only)

The remaining pointers (e.g., dispatch tables and entry points) will be in an undefined state
and must not be relied upon.

Page 5-39

If the buffer was too small, BUFFER_TOO_SMALL will be returned, the pointers to
tables which were not copied will be NULL, and the bytes copied return parameter
(Word1) will indicate where the information was truncated.

The information returned is merely a snapshot at a particular point of time. The Protocol
Manager will disable interrupts while copying individual status and media-specific statistics
tables to guarantee their internal integrity. The caller cannot assume that all tables were
copied in the same atomic operation however.

In the case of OS/2, if two or more modules are bound to the same lower module, the
lower module's table is duplicated in the tree. Therefore, the Ring 3 caller will have to
provide larger amount of buffer space for the returned information.

The number of nodes in the bind tree does not necessarily reflect the number of modules
bound.

RegisterStatus

Purpose: A command to query whether a specific logical module is currently
registered with the Protocol Manager.

Opcode: - 0x0A

Status: - On return contains request status

Pointerl - NULL '

Pointer2 - FAR virtual pointer to a 16-byte ASCIIZ module name

Word1 - NULL

Rewms: - 0x0000 SUCCESS

0x0008 INVALID_FUNCTION
0x002C ALREADY_REGISTERED
Description: :

This command can be called in either the static or dynamic mode to determine whether a
specific logical module is currently registered with the Protocol Manager. This can be used
by the caller to determine whether a specified module has already registered with the
Protocol Manager to prevent duplicate registration. A SUCCESS status returned means
that the specified module is not currently registered with the Protocol Manager. An
ALREADY_REGISTERED status means that the module is currently registered.

In the static mode, this request is only valid prior to binding and starting. Invoking this

primitive in static mode after all modules are bound and started will cause
INVALID_FUNCTION to be returned by the Protocol Manager.

Page 5-40

Chapter 6 - Protocol Manager

Protocol Manager Initialization

The Protocol Manager is loaded and initialized in both the OS/2 and DOS environment via
the operating system CONFIG.SYS INIT sequence. It must be loaded before any protocol
or MAC driver is loaded. In DOS, the Protocol Manager will be provided in a file called
PROTMAN.DOS. For 0S/2, the file is PROTMAN.OS2. The device name for the
Protocol Manager is PROTMANS under DOS and \DEV\PROTMANS under OS/2 (the
\DEYV format is required by versions 1.2 and later of 0S/2).

In DOS to save memory, an additional dynamically loadable component of the Protocol
Manager called PROTMAN.EXE is provided. This file must reside in the same directory
as the static device driver component, PROTMAN.DOS, itself. This file is called for
execution by the Protocol Manager device driver component whenever the Protocol
Manager primitives BindAndStart and UnbindAndStop are to be executed. In the static
VECTOR mode (Chapter 7) PROTMAN.EXE will remain resident after BindAndStart
executes.

The Protocol Manager reads the PROTOCOL.INI file at INIT time and parses it to create
the configuration memory image passed to the protocol modules. The file is located in the
\LANMAN directory of the boot drive or the directory given by the /I: parameter on the
DEVICE=PROTMAN.xxx line in CONFIG.SYS. Under DOS, this image is relocated to
just below the memory ceiling, where it must remain untouched until all binding has
completed. The Protocol Manager computes a checksum of this image and checks it at bind
time to guarantee that the image has not been modified in the interim. Note that this
memory is not reserved by the Protocol Manager.

If the Protocol Manager CONFIG.SYS initialization is successful it is ready to support the
inidalization of the other drivers. However the initialization can be aborted for either of the
following reasons:

1. The Protocol Manager did not have enough memory to hold the PROTOCOL.INI
configuration memory image.

2. The Protocol Manager encountered a syntax error while parsing the
PROTOCOL.INI file. This could have been an illegal hex or decimal parameter
value, an overflow condition (numeric value could not fit into 32 bits) was
encountered or a string was encountered with missing end quotes.

These conditions are flagged as fatal errors to prevent erroneous configuration parameters
from propagating to the drivers for their operation.

Static Binding Sequence

The Protocol Manager can be configured to operate either in the static binding mode or in
the dynamic binding mode. In the static binding mode, only statically loadable device
drivers can be loaded and bound once at system initialization time. In the dynamic binding
mode, dynamically loadable protocol drivers can be loaded and dynamically bound and
unbound during system operation on a demand basis. Static drivers can also be loaded at

Page 6-1

INIT time in dynamic mode. The static binding sequence is described in this section. The
dynamic binding sequence is described in Chapter 7, "VECTOR and Dynamic Binding."

To determine the binding sequence, the Protocol Manager builds a tree representing the
bindings for all the modules in the system. MAC drivers are at the bottom, and the highest
level (for example, NetBIOS) protocol layers at the top. It then binds module pairs
together from the bottom up. To do this, it issues an InitiateBind to the upper module in
the pair, passing it the characteristics table of the lower module. The upper module is
expected to issue a Bind to the lower module (if it is acceptable) and return. This continues
with the next higher up module. If there is a module which is not bound to anything else, it
receives an InitiateBind with a NULL characteristics table pointer.

To be more formal, the definitions listed below are required:

. A MAC driver is a protocol module with an upper layer interface level of one
(MAC layer) and a lower layer interface level of zero (physical). It must support
binding at its upper boundary.

. A MAC:-layer entity is a protocol module with both upper and lower layer interface
levels of one. It must support binding at its lower boundary.

. A standalone protocol module is one which has a lower layer interface level of zero
and which does not support binding at its upper boundary.

The Protocol Manager builds a tree with multiple branches. Each MAC driver is at the base
of a branch, with the protocol layers bound to it above it. Standalone modules are also
considered branches by themselves. The left-to-right order is defined by the order in which
the modules register with the Protocol Manager. The Protocol Manager does a pre-order
transversal of the tree, issuing InitiateBinds to all of the nodes except the MAC drivers.

An important aspect of the binding scheme is that it allows for modules to specify that they
only do binding from above or below. This is a requirement in cases where a monolithic
module exposes several interfaces, such as a NetBIOS, TLI, and DLC. The TLI could be
presented as a logical module.that had an upper interface (the TLI) but no lower interface
(since it uses a private internal interface to its DLC). Such a module would have a
characteristics table with the following settings:

DWORD Module function flags, a bit mask (hints only):
Bit O - set (binds at upper boundary)
Bit 1 - clear (doesn’t bind at lower boundary)

BYTE Protocol level at upper boundary of module:
4 - Transport
BYTE Type of %gfacc at upper boundary of module:
1=>
BYTE Protocol level at lower boundary of module
-1 - Not specified
BYTE Type of interface at lower boundary of module:

For any level: 0 => private (ISV defined)
LPBUF Pointer to upper dispatch table
LPBUF Pointer to lower dispatch table (NULL)

Sequence for non-VECTOR configurations:

Page 6-2

1. Protocol Manager driver (PROTMAN.OS2 for OS/2 or PROTMAN.DOS for DOS)
is loaded during CONFIG.SYS initialization. The Protocol Manager must be
configured ahead of any MAC or protocol drivers in CONFIG.SYS.

2. Protocol Manager initializes and reads PROTOCOL.INI to buiid the configuration
memory image.

3. MAC and protocol drivers are loaded by the operating system. During its
initialization processing, each driver optionally does the following:

a. Openthe PROTMANS device

b. Invoke the GetProtocolManagerInfo primitive to PROTMANS to get a pointer
to the configuration memory image.

¢. Read configuration parameters from the image and use these to finish
initialization and build characteristics tables.

d. Use the RegisterModule function once for each module to be defined to the
Protocol Manager.

4. CONFIG.SYS processing ends and applications are started.

5. An application opens the PROTMANS device and issues the BindAndStart IOCTL.
Such an application utlity called NETBIND.EXE is provided with the Protocol
Manager driver and is defined in Appendix E.

6. The Protocol Manager uses information passed on previous RegisterModule calls to
determine the module binding hierarchy.

7. Proceeding from bottom to top of the binding hierarchy, the Protocol Manager uses
InitiateBind to cause each module to bind to the module below it in the hierarchy.
Each module getting this call responds by issuing a Bind call to the module specified
by the Protocol Manager on InitiateBind.

8. When all modules have been bound, the Protocol Manager returns from
BindAndStart.

The system is now fully operational. Vector configurations are similar, with the VECTOR

being automatically inserted between layers one and two, if necessary (on top of the MAC
driver as well as any MAC-layer entities which are present).

0S/2 Calling Convention

All of the Protocol Manager requests are supported by a sihgle OS/2 IOCTL function. The
services are demultiplexed via a function code specified in the RegBlock structure.

This IOCTL has the following IOCTL request packet parameters:

1. Block Device Unit Code: Undefined since the Protocol Manager is a character
device.

2. Command Code: 16 for Generic IOCTL.

Page 6-3

3. Suatus: If the IOCTL corresponds to one of the Protocol Manager commands then the
status field is returned with the ERR bit cleared signifying IOCTL successful
completion. However the final status of the command is returned in the “status” field
of the ReqBlock buffer as defined below. Note that if the command is recognized the
ERR bit is always cleared regardless of the status returned in “status”. However if
the command is not recognized an IOCTL starus UNKNOWN_COMMAND (3) is
rgg?qedbwith the ERR bit set. Finally all of the commands return with the status
4 t4d it SCI.

4. Category code: 0x81 which is the LAN Manager category code.
5. Function code: 0x58 for Protocol Manager command type.
6. Parameter buffer: Pointer to ReqBlock structure.

7. Data buffer: Unused and therefore the pointer is NULL.

By using the GetProtocolManagerLinkage request a module may obtain the Protocol

Manager dispatch point and DS. Once a module obtains the Protocol Manager’s entry point
and data segment it passes the a request to the Protocol Manager via the following function
call:

int (far pascal *ProtManEntry)(ReqBlockPtr, DataSeg);
struct RegBlock far *RegBlockPtr;
unsigned DataSeg;

where:
RegBlockPtr = a FAR pointer to the request block
DartaSeg = the Protocol Manager’s data segment base.

The Protocol Manager returns in AX the same return code that is
returned in the ReqBlock “status™.

DOS Calling Convention

All of the Protocol Manager requests are supported by a single DOS IOCTL function. The
services are demultiplexed via a function code specified in the RegBlock. This IOCTL
should be requested via Interrupt 21 with general registers loaded with the following
contents:

AH = 44H for IOCTL request

AL = 02H for device input

DS:DX = Pointer to RegBlock structure

CX = 14 for the size of the ReqBlock structure
BX = Handle from DOS Open of “PROTMANS”

This IOCTL generates the following IOCTL request packet parameters:
1. Block Device Unit Code: Undefined since the Protocol Manager is a character device.

Page 64

(38

AN

7.

Command Code: 3 for IOCTL input.

Status: If the IOCTL corresponds to one of the Protocol Manager commands then the
status field is returned with the ERR bit cleared signifying IOCTL successful
completion. However the final status of the command is returned in the “status™ field
of the RegBlock buffer as defined below. Note that if the command is recognized the
ERR bit is always cleared regardless of the status returned in “status”. However if
the command is not recognized an IOCTL status UNKNOWN_COMMAND (3) is
rel;uomed with the ERR bit set. Finally all of the commands return with the status
“DON?” bit set.

Media Descriptor Byte: Unused
Transfer Address: Pointer to RegBlock structure.
Byte/Sector Count: 14

Starting Sector Number: Unused

By using the GetProtocolManagerLinkage request a module or application may obtain the
Protocol Manager dispatch point and DS. It then makes a request to the Protocol Manager
via the same direct calling mechanism as OS/2.

Page 6-5

Chapter 7 - VECTOR and Dynamic
Binding

In static mode, the VECTOR is a function that is implemented within the Protocol Manager
that allows more than one protocol stack to drive a single MAC. In this mode, the Protocol
Manager uses the VECTOR function only if it detects that more than one protocol is using
the same MAC. If more that one MAC is attached to multiple protocol stacks, then an
instantiation of the VECTOR is created for each MAC so attached.

In dynamic mode, the VECTOR function is always present unconditionally for
protocol/MAC intermodule communications. There can be zero, one, or more protocol
stacks that bind to a MAC, but the VECTOR function is still present. There can be zero
protocols if there is only one-dynamic protocol stack being used in the system and that
stack is not currently loaded. In the dynamic mode, the VECTOR shields all static binding
MAC:s from the interactions of dynamic binding and unbinding protocol modules.

Static VECTOR Binding

The Protocol Manager will modify the normal binding process if it detects that multiple
protocols have requested the use of the same MAC in the PROTOCOL.INT file.

1. At INIT time from RegisterModule the Protocol Manager has determined the bind
hierarchy and has found some MAC:s that bind to 2 or more protocols, signaling the
insertion of VECTOR.

2. To a MAC that will support multiple protocol stacks, the Protocol Manager issues
Bind passing a Protocol Manager characteristics table with entry points into the
VECTOR module. The MAC starts itself and returns, passing back to the Protocol
Manager a pointer to the MACs characteristic table.

3. For a protocol that is part of a multiple protocol stack binding to the single MAC
that was issued the previous Bind command, the Protocol Manager issues
InitateBind passing as the bind inter-module entry point, an entry point within the
VECTOR module inside of the Protocol Manager.

4. The protocol module responds by issuing a Bind request back to the Protocol
Manager through its VECTOR entry point. The protocol module passes its
characteristics table to the Protocol Manager VECTOR. The Protocol Manager
returns a characteristics table within the VECTOR which is copied from the
associated MAC's characteristics tables, substituting the VECTOR entry points for

the real MAC's entry points.
5. The protocol starts itself and returns from InitiateBind.
6. The Protocol Manager then issues subsequent InitiateBind's to other protocol

modules as described above. If these other protocols are bound to a MAC through
the VECTOR, the VECTOR procedure is repeated. Otherwise the non-VECTOR
procedure is used.

Page 7-1

At the conclusion of the binding process the VECTOR is in a position to filter calls as
appropriate going in either direction across the MAC/protocol interface.

Dynamic VECTOR Binding

A dynamic protocol module can be loaded and bound after system initialization time on a
demand basis. This dynamic loading and binding takes place in three phases:

1. The PROTOCOL.INI file is re-read.

2. The dynamic protocol module does some prebind initialization including getting its
ll:ll:(n)'l‘OCOL.INI configuration parameters and registering with the Protocol
ager. : .

3. The dynamically loaded protoco! module dynamically binds to other modules given
in its bind specification. If these other modules are MAC's, the bind takes place
through the Protocol Manager VECTOR facility.

At some point the dynamic protocol module is no longer required. The protocol module
unbinds itself, terminates, and unloads itself from memory.

The mechanisms for dynamically binding and unbinding are carried out somewhat
differently between DOS and OS/2. The procedures are briefly described below.

Dynamic Binding/Unbinding in the DOS
Environment

1. In dynamic mode, both static and dynamic protocol modules can be supported. At
startup time, the Protocol Manager performs initialization and binding of static
modules as described in section "Static Binding Sequence.” However, in the
dynamic mode, the VECTOR function is always inserted.

2. At some point after system startup, a dynamic loadable protocol module (that can be
a transient application program or a TSR) is demand loaded. For the dynamic
protocol module to have its configuration parameters at initialization, the
PROTOCOL.INI file must be re-read. Either an application program or the
protocol module itself reads and parses the PROTOCOL.INI file into the
configuration memory image. It is suggested that the application or protocol
module obtain the location of the PROTOCOL.INI file using the "GetProtocollni”
primitive. A pointer to this memory image is passed to the Protocol Manager via
the "RegisterProtocolManagerinfo” primitive. This is required since the
configuration memory image created by the Protocol Manager at INIT time is not
valid at post INIT time. An application utility, READPRO.EXE, that reads and
parses PR%TOCOL.INI is provided with the Protocol Manager and is described in
Appendix E.

3. After loading, the protocol module initializes. Minimally, the protocol gets its
PROTOCOL.INI configuration information from the Protocol Manager via
"GetProtocolManager Info," does its prebind initialization, and registers with the
Protocol Manager via "RegisterModule.”

Page 7-2

Either an application or the dynamic protocol module itself requests that the
Protocol Manager initiate the binding sequence via the "BindAndStart” primitive.
This causes the bind sequence described in steps 3 to 5 of the section "Static
VECTOR Binding" to be executed. After the bind, the dynamic protocol is ready
for use. An application utility, NETBIND.EXE, to initiate the binding sequence is
provided with the Protocol Manager and is described in Appendix E.

During operation, all protocol commands to the MAC go through the VECTOR

When the dynamic protocol module is ready to terminate, either it or an application
program issues the "UnbindAndStop" command to the Protocol Manager. This
causes the Protocol Manager to call the protocol's "InitiateUnbind" system entry
point. In turn, this allows the protocol to issue "Unbinds” to other modules it was
bound to and to do final cleanup before terminating. On return from the
"UnbindAndStop" command, the protocol can be removed from memory. An’
application utility, UNBIND.EXE, to initiate the unbinding sequence is provided
with the Protocol Manager and is described in Appendix E.

Dynamic Bmdmg/Unbmdmg in the 0OS/2
Environment

1.

In OS/2, all dynamic protocol modules are multi-segment OS/2 device drivers. A
dynamic OS/2 protocol differs from a static one in that the dynamic module has
code and/or data segments that may be swapped out of virtual memory when not
needed. These extra code and data segments must be specified with IOPL in the
module's .DEF file so that they are marked as movable/swappable and not
discardable by OS/2. In a static protocol module all segments are permanently
locked in memory. A dynamic protocol module uses the OS/2 DevHIp Lock and
Unlock calls (using a lock type of 1) to lock and free its code and/or data segments
as needed. A dynamic protocol module is able to re-register multiple times with the
Protocol Manager and to dynamically bind with other configured modules. When
no longer required, the dynamic module can unbind and the dynamic memory
segments can be Unlock'ed to free up the memory. Static OS/2 protocol modules
register and bind only at system initialization time. They do not unbind.

Since all OS/2 dynamic protocol modules are OS/2 device drivers they may perform
some INIT time initialization. The protocol must always register at INIT time with
the Protocol Manager via "RegisterModule”. A protocol that is not required at
system startup must still register with the Protocol Manager at INIT time passing a
NULL BindingsList pointer in the "RegisterModule” primitive. This is called a
non-bindable registration. In this case the protocol need not lock down its extra
code and data segments. It does, however, need to save the selector values for its
dynamic code and data segments. The device driver's device header, strategy
routine, and the NDIS system entry routine must reside in the driver's main code
and data segments (the first ones in the driver) which are permanently locked down.

A driver required at system startup must pass a non-NULL BindingsList pointer if
it has modules it is required to bind to (a bindable registration). A driver required at
system startup must go ahead and DevHIp Lock its other segments at INIT time,
making sure to save the lock handle returned by the call. Also at INIT time, the
protocol module must invoke the "GetProtocolManagerLinkage” primitive to get
and save the Protocol Manager's Ring 0 direct entry point and DS.

Page 7-3

3. Assuming that the protocol was not required at system startup time, at some point in
time later it needs to be dynamically bound. At this point the module needs to get
its PROTOCOL.INI configuration parameters, lock down its code and data
segments, and perform its bindings. If the configuration parameters are not
retained in the base data segment, the protocol must re-read the PROTOCOL.INI
file. This is done in a similar fashion to that described for DOS. The
"InitAndRegister” primitive is the standard facility that lets the Protocol Manager
request the protocol to reload its dynamic segments and perform its prebind
initialization. Upon receiving the "InitAndRegister” primitive, the Protocol
Manager calls the protocol driver's system entry point with "InitiatePrebind",
allowing the protocol to perform its prebind initialization. The protocol module
uses this opportunity to issue DevHIp Lock calls (lock type 1) on it's dynamic
segments to bring them back into memory. The handle returned from the Lock call
must be saved for later unlocking. Also at this juncture, the protocol can get its
PROTOCOL.INI memory image from the Protocol Manager via the direct entry
point "GetProtocolManagerinfo” function. It may also do other prebind
initialization and finally register with the Protocol Manager via the direct entry point
"RegisterModule” function. If the protocol module had previously made a non-
bindable registration at system startup, then the current registration affords it the
opportunity to specify its bindings to the Protocol Manager.

4. The bind and postbind initialization step is similar to that described for DOS.
Again, any protocol binds to MAC's are performed through the VECTOR.

S. During protocol operation, any protocol commands to a MAC go through the
VECTOR.

6. When the protocol is no longer required, an application or the protocol itself can

issue the "UnbindAndStop” command to the Protocol Manager. The sequence is
similar to that described for DOS. The OS/2 driver, however, issues DevHIp
Unlock commands against all of its dynamic segments so that these may be
s;vlilpped out from memory. The previously saved Lock handle is required on this
call.

VECTOR Demultiplexing

The Vector dispatches incoming frames to protocol stacks using either a preprogrammed
default or user statically defined priority polling mechanism. The default mechanism is
based on the "Interface Flags"” variable in the protocol's lower dispatch table. These flags
describe the protocol according to the kinds of frames it handles. Protocols that handle: -

. Non-LLC frames
LLC frames with specific LSAPs
LLC frames with non-specific LSAPs

According to default dispatch priority, VECTOR polls protocols in that order (and within
that order, in the order they registered) until it finds one that does not return
FRAME_NOT_RECOGNIZED or FORWARD_FRAME in the indication. For specific
protocols, this default may be overridden by specifying the bracketed name of the protocol
with the Protocol Manager PROTOCOL.INI keyword PRIORITY. Protocols with static
priorities specified in this manner are polled by the VECTOR before any protocol not so
specified. Protocols with static priorities are themselves polled in the order in which their
bracketed names appear in the PRIORITY keyword parameter list. Of course, a protocol

Page 7-4

appearing in the static list is only polled if it is registered with the Protocol Manager and has
bound to the MAC offering up the frame.

Page 7-5

Appendix A - System Return Codes

This appendix lists return codes used in this version of the NDIS specification. Note that
new error codes may be added in the future. Both protocol and MAC driver developers
must design their code to allow for this.

0x0000 SUCCESS: The function completed successfully.

0x0001 WAIT_FOR_RELEASE: The ReceiveChain completed successfully but the
protocol has retained control of the data buffer. ReceiveRelease will be called to release the
data buffers.

0x0002 REQUEST_QUEUED: The current request has been queued. If the request
handle is non-zero the module will call TransmitConfirm or RequestConfirm when the
request completes.

0x0003 FRAME_NOT_RECOGNIZED: Returned from the protocol when a MAC does an
Indication and the frame does not make sense to the protocol. This will be interpreted by
the VECTOR 1o mean that the next protocol in line ought to be called with the Indication.

0x0004 FRAME_REJECTED: A received frame was recognized but it was discarded. The
buffer may be immediately re-used.

0x0005 FORWARD_FRAME: A protocol wishes the received frame to be offered to other
protocols but wishes to receive an IndicationComplete. This will be interpreted by the
VECTOR to mean that the next protocol in line ought to be called with the Indication.

0x0006 OUT_OF_RESOURCE: The module is in a transient out of resource condition.
The current request was not completed.

0x0007 INVALID_PARAMETER: One or more parameters was invalid.

0x0008 INVALID_FUNCTION: A command function was requested when it was not
legal to do so or a invalid request was made.

0x0009 NOT_SUPPORTED: A valid request which is not supported by the Module was
issued.

0x000A HARDWARE_ERROR: A hardware error occurred during the execution of this
request. The request was not completed successfully and this can be considered non-fatal.

0x000B TRANSMIT_ERROR: The packet was not transmitted. May indicate a local
resource problem, excessive collisions, or a remote resource problem. On Token Ring
networks, this would be returned if the destination address was recognized but the receiver
was out of buffers. This is a non-fatal error and can be taken as a hint that the packet
should be retransmitted.

0x000C NO_SUCH_DESTINATION: The destination address was not recognized by any
adapter on the local ring. This error is Token Ring specific and can be interpreted to mean
that source routing must be invoked to reach the destination.

0x000D BUFFER_TOO_SMALL: The buffer provided was too small for the mformanon
being returned. Some commands may still return partial information.

Page A-1

0x0020 ALREADY_STARTED: The Protocol Manager has already started the network
drivers. This error occurs when BindAndStart is called more than once.

0x0021 INCOMPLETE_BINDING: This bind-time error occurs when the Protocol cannot
complete all of the bindings described in the bindings list, most probably due to missing
modaules.

0x0022 DRIVER_NOT_INITIALIZED: This bind-time error occurs when the MAC does
not initialize properly during system boot, and a subsequent request is made to the MAC.

0x0023 HARDWARE_NOT_FOUND: This bind-time error occurs when the network
adapter is not found by the MAC.

0x0024 HARDWARE_FAILURE: This error occurs in the following cases: network
adapter reset failed, network adapter diagnostics failed, network adapter is not responding,
network adapter is not found by the MAC. This error can be considered fatal.

0x0025 CONFIGURATION_FAILURE: This bind-time error occurs when the
configuration is unacceptable to the network adapter.

0x0026 INTERRUPT_CONFLICT: This bind-time error occurs in OS/2 only, when an
interrupt from some other device in the computer conflicts with the network adapter’s.

0x0027 INCOMPATIBLE_MAC: This bind-time error occurs when a Protocol determines
a MAC is not compatible for the binding operation. Thus, binding cannot proceed.

0x0028 INITIALIZATION_FAILED: This bind-time error occurs when a Protocol fails its
initialization.

0x0029 NO_BINDING: This bind-time error occurs to indicate that the binding was not
performed. This error can occur if a protocol driver took an error exit during its
initialization or if a protocol driver has its upper level incorrectly specified as a MAC.

0x002A NETWORK_MAY_NOT_BE_CONNECTED: This bind-time error indicates that
the adapter may not be connected to a network. Intended to be suggestive of corrective
action by the user.

0x002B INCOMPATIBLE_OS_VERSION: This bind-time error indicates that a protocol
or MAC driver does not support the version of DOS or OS/2 being used.

0x002C ALREADY_REGISTERED: This error is returned by the Protocol Manager if an
attempt is made to register a module with a module name already registered with the
Protocol Manager. It is also returned from a "RegisterStatus” primitive to indicate that the
name is already registered.

0x002D PATH_NOT_FOUND: This error is returned by the DOS Protocol Manager if
PROTMAN.EXE could not be found when attempting to execute a BindAndStart or
UnBindAndStop command. 4

0x002E INSUFFICIENT_MEMORY: This error is returned by the DOS Protocol

Manager if PROTMAN.EXE could not be loaded due to insufficient DOS memory when
artempting to execute a BindAndStart or UnbindAndStop command.

Page A-2

0x002F INFO_NOT_FOUND: This error is returned by the DOS Protocol Manager in a
GetProtocolManagerinfo command if the PROTOCOL.INI structured configuration
memory image is not present or previously invalidated due to being overwritten or
corrupted.

OxO0FF GENERAL_FAILURE: Unspecified failure during execution of the function

O0xF000 - OxFFFF: Reserved for vendor defined error returns. These errors are treated as
GENERAL_FAILURE.

Page A-3

Appendix B - Reference Material

0S/2 Device Drivers Guide

DOS Technical Reference

ANSI/IEEE standard 802.2 - 1985 (ISO/DIS 8802/2) Logical link control standard.

ANSV/IEEE standard 802.5 - 1985 (ISO/DIS 8802/5) Token ring local area network
standard.

ANSI/IEEE standard 802.3 - 1985 (ISO/DIS 8802/3) Carrier Sense Multiple Access with
Collision Detection local area network standard.

The Ethemnet. A Local Area Network. Data Link Layer and Physical Layer Specifications,
V2.0, November 1982. Also known as the “Ethernet Blue Book™

IBM Token Ring Network PC Adapter Technical Reference (69X7830)
IBM Token Ring Network Architecture Reference - November 1985 (6165877)

Information processing systems - Open Systems Interconnection - Basic Reference Model,
(ISO 7498) The OSI reference model.

Page B-1

Appendix C - 802.3 Media Specific
Statistics

MEDIA SPECIFIC STATISTICS TABLE STRUCTURE:
The 802.3 media specific statistics structure is defined as follows:

Statistics in bold are manditory, all others are strongly recommended.
Reserved slots should return as OxFFFFFFFF (unsupported).

WORD Length of 802.3 statistics structure, including this field
WORD 802.3 statistics structure version level (1)

DWORD Total frames with alignment error

DWORD Reserved (Obsolete statistic)

DWORD Total frames with overrun error

DWORD Reserved (Obsolete statistic)

DWORD Total frames transmitted after deferring

DWORD Total frames not transmitted - max (16) collisions
DWORD Reserved (Obsolete statistic)

DWORD Total late (out of window) collisions

DWORD Total frames transmitted after exactly one(l) collision
DWORD Total frames transmitted after multiple collisions
DWORD Total frames transmitted, CD heartbeat

DWORD Reserved (Obsolete statistic)

DWORD Total carrier sense lost during transmission

DWORD Reserved (Obsolete statistic)

DWORD Total number of underruns (V2.0.1 and later)

When updating the statistics counters, a frame is counted in all the supported counters that
-apply.

Examples:

(@) A ‘Multicast frame received ok’ is counted in the the following statistics counters:
. Total multicast frames received ok

. Total frames received ok

(b) A ‘Transmit Broadcast frame with one collision’ is counted in all the foliowing

statistics counters :
. Frames transmitted with only one collision.
. Total broadcast frames transmitted.
. Total frames transmitted ok.

MEDIA SPECIFIC STATISTICS DEFINITIONS:

Frames received with alignment error
(NumberOfFramesReceivedWithAlignmentErrors)

Page C-1

This contains a count of frames that are not an integral number of bytes in length
and do not pass FCS check. Reports on alignments errors "as the station sees it".
Frames received with overrun errors
This contains a count of frames which could not be accepted due to a DMA overrun
error.
Frames transmitted after deferring
(NumberOfFramesWnthDeferredTransmnssnon)
This counter does not include frames involved in collisions.
Frames not transmitted - max collisions execeeded.
(NumberOfFramesAbortedDueToExcessiveCollision)
This contains a count of the frames that are not transmitted successfully due to
excessive collisions.
Frames transmitted with late (out-of-window) collision.
(NumberOfLateCollisions)
This contains a count of frames that are involved in a out-of-window collision.

Frames transmitted after exactly one collision
(NumberOfSingleCollisionFrames)

This contains a count of frames that are transmitted after exactly one collision.
Frames transmitted after multiple collisions
(NumberOfMultipleCollsionFrames)

This conatins a count of frames that are transmitted after multiple number of

collisions.

Frames transmitted, CD heartbeat
(NumberOfSQETestErrors)

This contains a count of frames transmitted with CD(collision detection) signal

missing.

Frames with carrier sense lost during transmission
(NumberOfCarrierSenseErrors)
This contains a count of frames that experienced carrier sense lost(carrier sense

signal not present at the receive pair of the controller) during transmission.

Page C-2

Frames transmitted with underrun error (V2.0.1 and later)

This contains a count of frames which could not be transmitted due to a DMA
underrun error.

Page C-3

Appendix D - 802.5 Media Specific
Statistics

MEDIA SPECIFIC STATISTICS TABLE STRUCTURE:
The 802.5 media specific statistics structure is defined as follows:

Statistics in bold are mandatory, all others are strongly recommended.
Reserved slots should return as OxFFFFFFFF (unsupported).

WORD Length of 802.5 Statistics structure, including this field
WORD 802.5 Statistics structure version level (1)

DWORD FCS or code violations detected in repeated frame
DWORD Reserved (Obsolete statistic)

DWORD Number of 5 half-bit time transition absences detected
DWORD A/C errors

DWORD Frames transmitted with abort delimiter

DWORD Frames transmitted that failed to return
DWORD Frames recognized, no buffer available

DWORD Frame copied errors

DWORD Number of frequency errors detected

DWORD Number of times active monitor regenerated

DWORD Reserved

DWORD Reserved

DWORD Reserved '

DWORD Reserved (Obsolete statistic)

DWORD Number of underruns

When updating the statistics counters, a frame is counted in all the supported counters that
. apply.

MEDIA SPECIFIC STATISTICS DEFINITIONS:

FCS or code violations detected in repeated frame

This counter is incremented for every repeated frame that has a code violation or
fails the Frame Check Sequence (FCS) cyclic redundancy check.

Number of § half-bit time transition absences detected

Also known as Burst Error, this counter is incremented every time S half-bit time
transitions are not detected between SDEL and EDEL in a repeated frame.

A/C errors
Also known as ARI/FCI set error, this counter is incremented when a station

receives more than one AMP or SMP MAC frames with AC (ARI/FCI) equal to
zero without first receiving an intervening AMP MAC frame. This counter

Page D-1

indicates that the upstream Adapter is unable to set its AC (ARI/FCI) bits in a frame
that it has copied.

Frames transmitted with abort delimiter
This counter is incremented each time the Adapter transmits an abort delimiter. This
indicates that the frame was aborted in mid-transmission.

Frames transmitted that failed to return
This counter is incremented when a transmitted frame fails to return from around
the ring due to time-out or the reception of another frame.

Frames recognized, no buffer available
Also known as Receiver congestion, this counter is incremented when a ring
station is receiving/repeating a frame and recognizes a frame addressed to it, but has
no buffer space available for the frame.

Frame copied errors
This counter is incremented when a ring station receives or repeats a frame from the
ring with the ring stations's individual address, but with A = C = 1, indicating a
possible duplicate address.

Number of frequency errors detected
This counter is incremented when a ring stations detects a signal frequency
problem.

Number of times active monitor regenerated

This counter is incremented each time the active monitor is lost and regenerated.

Number of underruns

This counter is incremented each time a DMA underrun is detected.

Page D-2

Appendix E - Utilities Provided with
the Protocol Manager

To save system integrators the effort to read and parse the PROTOCOL.INI file, to register
it with the Protocol Manager, to invoke the binding and unbinding Protocol Manager
primitives, and to report various Protocol Manager error conditions, 3 utilities are provided
with the Protocol Manager in both the DOS and OS/2 environments and one utility is
provided exclusively for the OS/2 environment:

1. NETBIND.EXE -

2. UNBIND.EXE -

3. READPRO.EXE -

Initiates the binding and operational startup of a set of modules
previously loaded. It issues to the Protocol Manager the
BindAndStart primitive and reports to the console any
binding/initialization errors detected by the modules bound.
This utility can be used in either the static or dynamic- Protocol
Manager modes of operation. In the static mode it should be
invoked after all device driver modules are loaded (e.g. from
AUTOEXEC.BAT in DOS or STARTUP.CMD in 0S/2). In
the dynamic mode it can be invoked either at system startup time
as in static mode or after a set of dynamically loadable modules
have been loaded and are ready to be run. There are no
command line parameters associated with this utility.

Initiates the unbinding and termination sequence of a set of
dynamically loadable modules previously loaded and bound. It
issues to the Protocol Manager the UnbindAndStop primitive
and reports to the console any unbinding/termination errors
detected by the modules being unbound. The utility can be used
only in the dynamic Protocol Manager mode of operation.
Invocation in the static mode will generate an error. It should be
invoked when it is desired to terminate (and release from
memory) a set of dynamically loadable modules that have been
previously loaded and bound. In DOS each invocation will
terminate and unbind the last set of modules previously bound
via the NETBIND.EXE utility. Modules can be bound and
unbound in groups if required by invoking NETBIND.EXE for
each group of modules to be bound together and later invoking
UNBIND.EXE. UNBIND.EXE will unbind the groups only
in the reverse order in which the groups were previsoulsy
bound. If protocols are implemented so that they free
themsleves from memory at the end of the unbind sequence,
then this utility will free up the memory of all such protocols
unbound. This utility has no effect on MAC drivers which are
always static device drivers. In OS/2 the utility takes an
argument string specifying the name of the module being
unbound. In DOS there are no command line parameters
associated with this utlity.

Reads the PROTOCOL.INI file, parses it into a memory image
and registers this memory image with the Protocol Manager so
that the image is available to dynamically loadable protocols
when they request their configuration memory image
information. By invoking the GetProtocolIniPath Protocol

Page E-1

4. RELOAD.EXE.-

Manager primitive, this utility assures that the PROTOCOL.INI
file is read from the same subdirectory as that used by the
Protocol Manager when it had initialized. The memory image is
registered with the Protocol Manager via the
RegisterProtocolManagerinfo primitive. This uality can be used
only in the Protocol Manager dynamic mode of operation. The
utility reports any detected error condtions on the console. It
should be invoked prior to the loading of any dynamic modules.
Thﬁrc are no command line parameters associated with this
udlity.

Initiates the prebind initialization of an OS/2 dynamically
loadable module. It issues to the Protocol Manager the
InitAndRegister primitive containing the module name that was
given as a command line parameter. The Protocol Manager calls
the system entry point of the named module with the
InitiatePrebind system function. The modules is required to
reinitialize, which may include locking down swappable
segments, requesting and parsing the PROTOCOL.INI image,
and reregistering with the Protocol Manager in preparation for a
subsequent NETBIND.EXE invocation. This utility reports any
detected error to the console. It applies only to OS/2.

If the system integrator requires more functionality than that provided by these utilities, the
integrator can write an application utility directly that performs the desired functionality and
invokes the required Protocol Manager primitives described in Chapter 5. For example if
in DOS a more flexible unbind facility to unbind in a user specified order is required,
UNBIND.EXE can be replaced by a user written utility that invokes the UnbindAndStop
primitive in which Pointer2 points to the name of the module to be unbound.

Page E-2

ISSN1051-9637

3TECH

The 3Com Technical Journal

NDIS CoNCEPTS

The following article originally appeared in the
Winter 1991 Issue of 3STECH, The 3Com Technical
Journal.

3TECH is published quarterly by 3Com Corporation,
Santa Clara, CA 95052.

Subscriptions to to 3TECH are available at a rate of
$35 per calendar year. To order subscriptions to
3TECH write to 3TECH Joumal, 3Com, P.O. Box
58145, Santa Clara, CA 95052-9953. All orders
must be prepaid and reference 3C2869.

3TECH, 3Com's Technical Joumal, is
published quarterly by 3Com Corporation,
Santa Clara, CA 95052,

Officers: L. William Krause, Chairman; Eric
A. Benhamou, President and Chief Executive
Officer; Bob Finnochio, Executive Vice
President, Field Operations; Christopher B.
Paisley, Vice President and Chief Financial
Officer; Debra Engel, Vice President,
Corporate Services; Andy Verhalen, Vice
President and General Manager, Network
Adapter Division; John Hart, Vice President
and Chief Technical Officer.

SUBSCRIPTIONS

Subscription rate: $35 per calendar year. To
order subscriptions for 3TECH, or toreporta
change of address, write to 3TECH Journal,
3Com, P.O. Box 58145, Santa Clara CA
95052-9953, ATTN: Dept. CSL. All orders
must be prepaid and reference 3C2869. Sub-
scriptions may be entered or cancelled by
3Com employees by sending e-mail requests
to: MPS USER:FO:3Com

SuBMISSIONS

M st submissions. inquiries. and all
other correspondence should be addressed to
3TECH’s Editor: Marianne Cohn, 3Com
Carporation, 5400 Bayfront Plaza, Santa
Clara CA 95052-8145. Articles in 3STECH

. | areprimarily authored by 3Com employees,

however, articles from non-3Com anthors
dealing with 3Com-related research or
solutions to technical problems are encour-
aged for publication.

Copyright © 1991 3Com Corporation. All rights
reserved; reproduction in whole or in pert without
permission is prohibited. The information and
opinions within are based on the best infarmation
available, but compieteness and accuracy cannot
beguaranteed.

The Network Driver Interface Specification (NDIS) is a
standardized interface for OS/2 or DOS network platforms.
NDIS provides access to network services at the Data Link
layer and is especially useful if the access must be shared.
Software developers who need to employ their own network
protocol implementations can program to the NDIS
interface and utilize NDIS-compliant drivers provided by
network hardware vendors. This frees the protocol
developer from programming directly to various network
interface cards and solves compatibility problems on
machines with multiple protocols.

This article explains why the Network Driver Interface
Specification was developed, and describes its organization
and operation. Some of the information is general and will
be of interest to a broad group of people involved with
networks. A good deal of the information is quite detailed
and technical. It is intended primarily to give network
programmers an overview of NDIS and what is involved in
binding a protocol to a vendor-supplied MAC driver for a
network adapter board.

The Old Way

Traditionally, network software vendors for the MS-
DOS environment have used ad hoc methods to imple-
ment the protocols and drivers that link applications to
their resident network hardware. The entity that per-
forms these network functions and provides communica-
tion between applications is usually referred to as a
protocol stack. In the OSI Reference Model, the stack
would correspond to the Data Link, Network, Transport,
and Session layers, with some stacks possibly including
higher layers. At the stack’s top end is a user interface

3TECH The3Com TechnicalJournal

NDIS Concepts

By Rex Allers

or some type of applications programming interface
(API) and, at the bottom end, are the interfacing routines
that control the network adapter hardware. In implem-
entation, a stack might consist of one system driver,
multiple drivers, a program, or a combination of drivers
and programs.

Figure 1 shows three alternative stacks that could be
used to perform equivalent network functions. Ina
typical implementation (for example, NetBIOS over
XNS in Figure 1), the Data Link, Network, and Trans-
port layers might be implemented as three separate
system drivers, and the Session layer implemented as a
TSR program. The interface between the layers would
usually be accomplished through a proprietary interface
developed by the vendor, and the application would
communicate to NetBIOS via software interrupts. This
works well in 2 homogeneous network environment but,
as networks grow more complex, it is becoming desir-
able to have the flexibility to utilize mixtures of different
protocols, application interfaces, and network media.

The Problem to Be Solved

implementations can make it difficult or impossible to
accomplish some seemingly simple tasks. For example,
assume that we have an Ethemnet network that has two
types of file servers attached. One server runs an XNS
protocol with NetBIOS at the Session layer, the other
server runs a TCP/IP protocol with a Berkeley Socket
Session interface.

Winter 1991 1

Figure 1. Typical Protocol Implementations Without NDIS

osl NetBIOS Sockets NetBIOS
Model over over over
XNS TCP/IP TCPNP
Application
S L T A t
_ Application Application Application sga&":re'“s
Presentation
Session NetBIOS BSD NetBIOS |— API
Socket
Transport SPD TCP TCP
Protocol
Network IDP P 1P
Data Link Driver Driver Driver — Adapter Driver
H/W H/W H/W
Physical Media Media Media

NDIS Concepts

We would like to write a program to run on a worksta-

- tion that can copy a file from the first server to the
second. In this example, let’s say we have two sets of
software from two vendors that are designed to commu-
nicate with each of the servers, and that the vendors have
defined a programmer’s interface that should allow us to
wiite a program that talks to the two stacks. Assuming -
that we have enough memory to load both stacks at one
time, we will probably find that our biggest configura-
tion problem occurs at the bottom of the stacks.

At the Data Link layer, each of the vendors has supplied
us with a driver for use with their protocol stack that can
control the EtherLink II adapter board that we have in
our station. Most likely, we will find that each of these
drivers expects to have exclusive ownership and control
of the EtherLink II. As one of the drivers tries to control
the board, it interrupts or corrupts the functions being
_attempted by the other driver. What is needed is one
driver that can control the adapter and be shared by the
two protocols.

In May 1988, 3Com and Microsoft released NDIS,
which was jointly developed in conjunction with LAN
Manager. The NDIS specification is a standard de-
signed to alleviate compatibility issues for both OS/2

2 Winter 1991

and DOS network platforms. The NDIS specification
should be beneficial to both the protocol-level network
software developer, who now has a standard interface
available, and the user, who gains from the flexibility
and interoperability advantages of protocols using
NDIS.

NDIS Organization

All network software components compliant with NDIS
definitions are drivers. These drivers can be classified
into two types: protocol drivers, and Media Access
Control (MAC) drivers. NDIS allows protocol drivers
to be device drivers, TSRs, or DOS applications;
however, in this discussion, it is assumed that all NDIS
common implementation.

The MAC driver forms the bottom layer of the stack and
is the driver that directly controls the network hardware.

The remaining higher layers of the protocol stack are
implemented in one or more protocol drivers.

The MAC layer is a sublayer within the OSI Data Link
layer that is defined by IEEE 802 specifications. This

3TECH The3Com Technical Josernal

NDIS Concepts

ECHTALK

layer is the appropriate point for a driver that manages
the network hardware and implements the transmission
and reception of network data packets. NDIS MAC
drivers are provided by 3Com and many other network
hardware vendors (see Table 1 for a partial list) and can
be used with any vendor’s NDIS-compliant protocol
drivers.

NDIS Stacks

All NDIS drivers, both MAC and protocol, share a
common modular structure. Each driver has an upper
and lower boundary. The drivers are linked to form a
stack by connecting, or binding, the upper boundary of
one driver to the lower boundary of another driver
during the binding portion of driver initialization. This
' binding process can be repeated multiple times, linking .
several drivers, daisychain fashion, to form the stack.
The MAC driver at the bottom of the stack always has
its Jower boundary connected to the physical layer—the
network hardware,

- The simplest configuration of drivers is one MAC driver
supporting one network adapter card bound to a single
protocol driver spanning from the MAC layer to the
Session layer (see Figure 2). This forms a singie
protocol stack of two drivers. Optionally, the protocol

Figure 2. NDIS—Single Protocol, Single MAC

Table 1. Companies Supporting NDIS

Companies with NDIS MAC Drivers

Note: The entire list of companies shipping NDIS MAC drivers is
oo long for this article, but includes:

3Com ineran
ASTResearch Proteon

AT&T Tara
Compeq Ungermann-Bass
Exelan Westemn Digital
IBM

Companies with OS or Applications Supporting NDIS

3Com - LAN Manager

ATET -~ LAN Manager

Banyan -~ Vines (workstation)

DEC ~ LAN Works

FIP — PC/TCP

1BM — LANServer, OS/2 Extended
Microsoft — LAN Manager

Pacer -~ Paceriink

Sun — PC-NFS

part of this stack might be made using two or more
protocol drivers to form a single stack of three or more
drivers. NDIS also allows us to have two completely
parallel stacks in one machine, each with its own adapter
card and MAC driver, to implement two different
protocols.

oSl
Reference
Model

Data Link

)

Control (MAC/
8 5

Protocol
Manager

3TECH The 3Com Technical Journal

Winter 1991 3

NDIS Concepts

TechALx

More importantly, NDIS lets you have just one adapter
card and a single MAC driver with the MAC driver
bound to two separate protocol drivers (see Figure 3).
Therefore, two protocols (for instance, XNS and TCP/
IP) can share the same MAC driver and adapter card.
This configuration solves the problem discussed eardier
in which files need to be copied from two servers
nunning different protocols.

Figure 3. NDIS—Mutltiple Protocols, Single MAC

To complete the picture, we can also have two adapter
cards and MAC drivers, with both the MAC drivers
bound to one protocol driver (Figure 4). This configura-
tion could be used to create a network bridge with one
protocol connected to two networks.

OS1
Reference
Model

1EEE
Model

Maedia Access
Contro! (MAC/
802.3 or 802.5)

- 1 M

¢+]Protocoil
Manager

Figure 4. NDIS—Single Protocol, Muitiple MACs

[o}]]
Reference
Model

{EEE
Model

Media Access
Control (MAC/
802.3 or 802.5)

Using
NDIS

Protocol
JManager

4 Winter 1991

3TECH The 3Com Techrical Josrnal

NDIS Concepts

TecuTaLk

Driver Structures

The drivers communicate with each other by a defined
set of primitives. The NDIS document has clearly
specified a set of primitives for the interface between the
MAC driver and protocol driver and for managing the
NDIS driver binding process. Although it is possible to
implement a protocol stack with multiple protocol -
drivers, currently no primitives are defined by NDIS for
these upper layers. This is not a serious limitation,
because a stack with multiple protocol drivers would - -
generally have all of the protocol drivers common to one
vendor. There is less need for a standardized interface
between protocol drivers than there is at the MAC layer
where sharing resources and multiple vendors are more
likely.

Each driver contains a series of module-characteristic
data structures that provide information about the
purpose and capabilities of the driver, and that manage
the linkage and operation of the driver during and after
initialization.

The main structure is called the Common Characteristics
table and contains the name of the driver and version
information. This is the highest-level table for a driver;
other types of characteristics tables are located from
pointers in this table. The Common Characteristics table
also contains basic information about what type of
binding is supported at the upper and lower boundaries
of the driver. The binding information is in the form of
a byte identifying the OSI layer that is supported for the
boundary. This byte can be examined by other drivers
to determine if it is appropriate to bind to the driver.

The Common Characteristics table contains pointers to
the other module characteristics tables—the Service-
Specific Characteristics table, Service Specific Status
table, and Upper and Lower Dispatch tables. These
tables give specific information related to the service
that the driver performs, manage its operation, and
record linkage points to other drivers after the driver
is bound.

3TECH The 3Com Technical Journal

Managing Binding and Initialization

To form the protocol stacks from the individual drivers
we need to get the right drivers connected in the desired
sequence. This is accomplished in the initialization and
binding process. Three components are used to manage
and control the process—PROTOCOL.INI (an ASCII
configuration parameter file), PROTMAN.DOS or
PROTMAN.OS2 (the protocol manager—a special
driver), and NETBIND.EXE (a program that initiates the
final driver binding process.) -

The initialization and binding process is essentially the
same whether the operating system is DOS or OS/2.
Some minor adjustments need to be made (for instance,
selecting either PROTMAN.DOS or PROTMAN.OS2)
and some different parameters may be required, but the
discussion that follows applies to either environment.

The ASCII file PROTOCOL..INI contains the instruc-
tions for assembling the protocol stack or stacks from
the NDIS network drivers. It also contains parameters
that are needed to configure the individual drivers. At
CONFIG.SYS initialization time, the Protocol Manager
Driver reads this file. The file is created—much as
CONFIG.SYS is created——either directly, by the admin-
istrator typing the information with an editor, or by some
type of installation program. The PROTOCOL.INI '
information is grouped into a number of logical sections
of the form:

[module name]
parameter=value

The module name is the name of the NDIS driver as
contained in the Common Characteristics table for the
driver. There will be one module section for each of the
NDIS drivers that describes the driver’s configuration.
Each section can have multiple parameters, but must

~ have at least one, the DRIVERNAME.

Figure 5 illustrates the contents of a simple
PROTOCOL.INI file that has entries for three drivers.
The first is Protocol Manager, the special driver that
controls the binding process—more about its purpose
later. In PROTOCOL.INI the Protocol Manager entry is
currently optional, but it may be required in the future,

Winter 1991 5

TEcHTALK

NDIS Concepts

so it’s a good idea to include it. The second module
section is for the EtherLink I adapter’s MAC driver,
and the last section is for an arbitrary protocol driver.

Notice that in each section, the first parameter is DRIV-
ERNAME-=. This parameter must be included and must
specify a name that uniquely defines the NDIS module.
In most cases, it will be the driver name that the driver
registers to the operating system during initialization.
The driver determines the name that must be used,
because it uses the DRIVERNAME entry as a key when
searching PROTOCOL.INI data for its relevant module
section.

Figure 5. PROTOCOL.INI File Contents

ek AREARAKXRXRXRAR AR I kAR kkrkhkh

; Example PROTOCOL.INI file

e RRAAXNARARARN A RRAEA AR A KX A hX

[PROTMGR]
DRIVERNAME=PROTMANS

[ETHERLINKII]
DRIVERNAME=ELNKIIS
INTERRUPT=3
TRANSCEIVER=EXTERNAL

{PROTOTST]
DRIVERNAME=PROTO$
BUFFSIZE=2048
BINDINGS=ETHERLINKII

Any number of additional, optional parameter entries
can be included in 2 module section. One purpose of
these parameters is to allow control of the driver con-
figuration. A set of valid configuration options will be
defined for any particular driver. In the case of the
ETHERLINK II section in Figure S, we have selected
two of the possible options for this driver. INTER-
RUPT=3 tells the driver to use hardware interrupt
channel 3, and TRANSCEIVER=EXTERNAL tells the
driver to configure the adapter for its external trans-
ceiver. In the PROTOTST protocol driver, the BUFF-
SIZE parameter might direct a protocol to use a particu-
lar size for its internal buffers.

6 Winter 1991

The BINDINGS= parameter is a special parameter that
is valid only for protocol drivers and specifies the
module name of the driver with which the protocol
should attempt to bind on its lower boundary. This
parameter determines which drivers will be bound
together to form the stack or stacks. In Figure S,
PROTOTST is bound to the ETHERLINKII driver.

As mentioned earlier, the component of the NDIS
environment that manages the binding process is the
Protocol Manager, which has the file name
PROTMAN.DOS or PROTMAN.OS2. Protocol
Manager has two main functions: it keeps and manages
common data for the NDIS drivers, and it controls the
binding sequence. Functions of the Protocol Manager
are needed by the NDIS drivers during their system level
initialization, so the Protocol Manager driver must be
loaded in CONFIG.SYS before any of the other NDIS
drivers.

The Protocol Manager driver was written by 3Com and
is available from both 3Com and Microsoft. Protocol
Manager or NETBIND.EXE is available for any vendor
for use in the initialization of their network software
products. They are also a standard part of LAN Man-
ager as shipped by 3Com and Microsoft.

Driver Initialization

The Protocol Manager gathers NDIS-related information
during the system CONFIG.SYS initialization of the
driver reads the PROTOCOL.INI file and parses the
information into a set of structures, called the Configura-
tion Memory Image, which is accessible by the other
NDIS drivers. Because other NDIS drivers use this
information, the Protocol Manager must be the first to

As CONFIG.SYS processing continues, the operating
system directs the other drivers to initialize. During ini-
tialization, they must open the Protocol Manager device
(PROTMANS) and then issue a GetProtocolManager-
Info primitive to obtain a pointer to the Configuration
Memory Image (the PROTOCOL.INI data). The drivers
find the section of this data that pertains to them and use
any parameters found there to adjust their initialization

3TECH The 3Com Technical Jouwrnal

NDIS Concepts

EcHTALK

process. One result of this is that drivers may modify
their loaded size, based on parameter requirements, to
optimize host memory consumption. If the driveris a
protocol and it finds a BINDINGS= parameter, it will
assess whether or not this binding is valid. Finally, the
driver must issue a RegisterModule primitive to the
Protocol Manager to register itself. During this register,
the driver passes a pointer to its Common Characteristics
table and, for a protocol driver, a list of modules to
which it wants to bind, based on the BINDINGS=
parameter.

After CONFIG.SYS processing completes, the Protocol
Manager has a list of the active NDIS drivers, their
characteristics (including entry points), and the desired
bindings.

Driver Binding

The actual binding of NDIS drivers starts when some
program issues the BindAndStart primitive call to the
PROTMANS device. For all current Microsoft OS im-
plementations, this call will come from the execution of
. NETBIND.EXE within a BAT or CMD file.

After receiving the BindAndStart directive, Protocol
Manager will take the binding information from the
module registrations and build a binding hierarchy tree.
Starting at the bottom of this tree (the MAC end), the
Protocol Manager works up the tree and issues an
InitiateBind primitive to each protocol module that

needs a driver bound on its lower boundary. Aspartof

the InitiateBind call, the driver is passed a pointer to the
Common Characteristics table of the module to be
bound. The protocol driver that was instructed to
initiate the bind will then issue a Bind primitive directly
to the driver that it wishes to bind. When the bind
completes, each driver will have a pointer to the Com-
mon Characteristics of the other, and therefore to its
entry points.

After the Protocol Manager has processed all of the
binding tree, all the appropriate network drivers will be
bound to each other. The protocol stack is then fully
operational, and the drivers can access each other by
calling the dispatch entry points for communication.
Figure 6 summarizes the binding process.

3TECH The 3Com TechnicalJowrnal

Figure 6. Initialization and Binding Process

A. CONFIG.SYS Initializationbegins.
1. Protocol Manager driver does its
initialization

a. Protocol Manager reads the
PROTOCOL . INI fileand
m:‘aﬂg% the Configuration Memory

2 Other NDIS drivers do their initialization.
a. Open the PROTMANS device.
b. IssueGetProtocolManagerInfo
rotMan

10 gain access to P
Configuration Image.

?ﬁ.gdag cgl'r}?use them?oscfsronmp&%

d. IssueRegisterModule toregister
characteristics info with Protocol
Manager
B. CONFIG.SYS processingends.
C. Binding process starts when the NETBIND . EXE
program opens the PROTMANS device and
issues a BindAndStart to Protocol Manager.

1. Protocol Manager builds a binding tree from
RegisterModule info.

2ProtocglMana%erstansatmebonomand
calisdnverswith InitiateBind

a. Each called driver issues Bind tothe
specified module to complete binding.

D. When all modules are bound, Protocol Manager
relums fromBindandStart.

One more factor is involved in the binding process if
more than one protocol is to be bound to a MAC driver.
MAC drivers can only have one binding at their upper
boundary. To link one MAC to multiple protocols, the
Protocol Manager inserts a component, called Vector,
between the MAC and the protocols (see Figure 3).
Vector is part of the Protocol Manager and will be
bound between the MAC and each of the protocols. To
do this, the Protocol Manager first binds the MAC driver
to Vector by issuing a Bind call to the MAC driver, then

it issues an InitiateBind call to each of the protocols

directing them to bind to a Vector entry rather than to
the MAC entry.

Winter 1991 7

TecHuTarLKk

NDIS Concepts

The basic function of Vector is to route incoming
packets between the protocols. When a packet is
received by a MAC driver, it will issue a notification of
the event 1o its upper boundary. When vector is in-
volved, it will pass this notification, first to one, then to
the other protocol, until one protocol accepts the packet
or all have rejected it. Other functions can be passed,
essentially directly, between protocols and the MAC, but
this vectoring of incoming packets is key to implement-
ing multiple protocols on one MAC.

MAC-to-Protocol Intetface
and Operation

The main purpose of the NDIS interface is to let the
bound drivers communicate with each other. To that
end, NDIS specification is largely concemed with
defining a set of functions that dictate how the MAC
driver will communicate with the protocol bound on its
upper layer. Table 2, NDIS Primitives, lists the primi-
tives that are defined for this MAC-to-Protocol commu-
nication. All communication between the MAC and its
bound protocol will be accomplished using these
primitives.

In Table 2, individual primitives are grouped into the
main functional categories that they perform. In the first
group are functions for the transmission of network -
packets from the protocol through the MAC and onto the
network, and for the reception of packets in the reverse
direction. In the Control group are all the functions that
the protocol uses to control or modify the operation of
the adapter and MAC driver. The Asynchronous Status
group contains functions that the MAC uses to report
events to the protocol. Finally, the Binding group has

. the functions used to accomplish the driver binding
process. The most important of these have already been
described. The remainder are extensions 1o allow
binding and unbinding of dynamically loadable proto-
cols. More on this subject later.

The center column of the primitive table has a symbol
are passed. To submit a primitive, the caller driver
pushes a series of parameters on the system stack and
calls an entry point in the called driver. The entry points

8 Winter 1991

are known to the calling driver as a result of the binding
process. The Common Characteristics table, whose

address was passed during binding, has Dispatch tables
chained off of it. The defined entry points for the driver

are in a Dispatch table.

The MAC driver’s Upper Dispatch table and the ad-
dresses it contains are shown below:

MAC Upper Dispatch Table
GeneralRequest
TransmitChain
TransferData
ReceiveRelease
IndicationOn
IndicationOff

These are entry points that the protocol driver will call to
request primitive execution by the MAC. All except
GeneralRequest are called direct primitives because they
serve only one primitive function. The GeneralRequest
entry serves the remainder of the primitive calls, other
than Binding, that are passed to the MAC. In Table 2,
the GeneralRequest primitives are all the primitives in
the group labeled CONTROL, except IndicateOn and
IndicateOff, which have their own direct entries.

The Direct Primitives have their own entry points
primitives employing the GeneralRequest entry, which
are less critical, can share a common entry. The
GeneralRequests identify themselves by passing an
opcode as one of their parameters.

On the protocol driver side, the Protocol Lower Dispatch

table defines the entry points from the MAC to the
protocol. The table and its contents are as follows:

3TECH The 3Com Technical Journal

NDIS Concepts

TECHTALK

Table 2. NDIS Primitives

TRANSMIT AND RECEIVE

TransmitChain v Initiate ransmission of a frame

TransmitContirm A imply compietion of frame transmit
ReceivelLookahead . indicate arrival of received frame and offer jociahead data
TransterData v Request transier of received frame from MAC to protocol
indicationCompiete A Aliow protocal 10 do post-processing on indication
ReceiveChain A Indicate reception of a frame in MAC managed bufiers
RecsiveRelease v Retum frame bufier 10 the MAC that owns it
CONTROL

IndicationOff v Disable incications from the MAC

indicationOn v Enabie indications fram the MAC

InitateDiagnostics v Start MAC runime diagnosiics

ReadEmrariog v Getemror iog info from MAC

SetStatonAddress v Set nework address of the station

OpenAdapter v lssue open request 1o network adapter
CloseAdapier v Issue cose request I Network adapier

ResstMAC v Resst MAC sofware and adaper hardware
SetPacketFiter v Specily fitering params for received packets
AddMulticastAddress v Specify muiticast acidress for adapter
DeistaMulticastAddress v Remove proviously added muiticast address
UpdamStatistics v Cause MAC 10 updaw statistics courtors
ClearStatistics v Cause MAC 10 clear stanisics counters
IntervuptRequest v Protocol requests later async indication from MAC
SefFunctionalAddress v Cause adapier © change its junctional address
Set.ookahead v Set length of visibie data for Receivel.ookahead
GeneralRequesiConfirmation . Confirm cormpletion of previous General Request

(see taxt for more expianation)

RingStatus A Indicate a change in ring status
AdapterCheck A Indicate error from adapter
StrtReset b indicate adapter has startod a reset
EndReset A indicate adapter has completed reset
Interrupdndication . MAC response due to interruptRequest
BINDING
InitiataBind pom instruct 2 module 10 tind 1 ancther module
Bind mm Exchange Characterisic Table info with another module
InitiatePrebind p>m in OS2 dynamic bind mode, instuct a mocle 1
rostart its prebind initisiizason

InittateUnbind p>m Instuct a module 1 unbind from another module
Unbind mm Delete linkmge info with another module
GetProtocolManagerinio mp Retrieve painier 10 Configuration image
RegisterMaodule mep Register Characwristics and Bindiist with Protocol Manager
BindAndStart ep Initiate the binding process
GeiProwcoiManagerlinkage mp Get entry point for Protocol Manager
GetProtocoliniPath d>p Get Sle path for the PROTOCOL.INI file
RegisterProtocoiManagerinfo d>p Dynamic mode, register new Configuration tmage
InitAndRegismr p Dymamic mode OS/2, restrt prebind initiaiization
UnbindAndSiop p Dynamic made, Unbind and terminste a module
BindStatus op Retrieve info on rrent bindings
RegisterSiatus op Query if a spedific module is registered
KEY MAC 1 protocol

protocol to MAC

8238

Proeol Manager © driver mocule

driver module 10 Protocol Manager

- ? 1 Prowocol Maneger; 7 is normally an executabie program
- dynamic proocol or control program 1 Protocol Manager

3TECH The 3Com Technical Journal

Winter 1991 9

: TECHTALK

NDIS Concepts

. All of these entries except Status are direct. Status is the
entry for the Asynchronous Status group in the primitive
table, and these primitive calls also have an opcode that
identifies the type so they can share one entry. Ina
sense, GeneralRequestConfirm can also be viewed as a
shared entry. There is only one primitive for this entry,
but it is generated by the MAC at the end of any of the
GeneralRequests to the MAC, and contains the request
handle of the original primitive request to the MAC.
Therefore, it is shared functionally in response to all of
the GeneralRequest primitives.

Some of the entries in this list are marked with an
asterisk to show that they are Indications. Indications
are a special class of requests that imply some special
handling. In implementation, they are usually associated
with notifications to the protocol that are made from the
MAC while it is in interrupt context. Because of this,
the protocol is required to handle Indications as effi-
ciently as possible. For example, it might put the
received frame on a queue. After the protocol processes
the indication, it retumns control to the caller, the MAC.
The MAC will enable as much interrupt processing as

. possible and then call IndicationComplete to give the
protocol an opportunity to perform more processing on
the Indication in 2 less critical mode (e.g., to decode the
previously queued receive frame).

‘Transmit and Receive

The information in Table 2 identifies the basic purpose

of each NDIS Primitive. Of these, transmit and receive
are the key functions at the MAC-to-protocol interface

level, so let’s examine the primitives serving these func-
tions in a bit more detail.

Netwotk packets, or frames, are the data units that are
transferred between the MAC and the protocol by the
all the information, other than hardware-related func-
tions such as preamble and checksum, that will be sent
out on the network medium. As a result, the protocol,
on transmit, must build the entire packet, including Data
Link fields such as source and destination addresses.
Likewise, on receive, the protocol must process the
packet down to these levels.

10 Winter 1991

The passing of packet data across the interface between
the protocol and MAC is accomplished, whenever
possible, by exchanging pointers to buffers or to a de-
scriptor that in tum, points to several data buffers. The

objective is to avoid unnecessary, ume-conannmg
copying of data between buffers.

In transmit, the packet data buffers are owned by the
host system and managed by the protocol driver. NDIS
defines a structure, the Transmit Data Buffer Descriptor,
that allows the packet data to be contained either in one
buffer or in a series of chained buffers. To initiate a
transmit, the protocol assembles the packet data into
buffers, puts the buffer addresses in the buffer descriptor
structure, and calls the MAC with the TransmitChain
primitive. The primitive contains a pointer to the buffer
descriptor.

The MAC has two options for processing the transmit.
It will choose one or the other at its own discretion; the
protocol must be capable of handling either. In the first,
called synchronous transmission, the MAC copies all the
packet data and retums to the protocol with a code
signifying that the data buffers are free and the transmit
is complete. Optionally, the MAC can retumn with 2
code signifying that the transmit is queued (this is called
asynchronous transmission). It implies that the buffers
are not free and the transmit has not yet completed.
Later, after the MAC has copied all the transmit data, it
will call the protocol with a TransmitConfinm primitive
(the asynchronous response) to inform the protocol that
the buffers are now free and the transmit is complete.

An additional feature available in transmit is immediate
data. The protocol has the option of beginning the
transmit buffers with up to 64 bytes of immediate data.
This immediate data, if present, is always the first data to
be transmitted. The MAC must fully process or copy
this data before retuming from the TransmitChain call,
even if it will asynchronously process any remaining -
data buffers for the call. This feature allows the protocol
to have a small, locally managed buffer that only needs
to be valid during the TransmitChain primitive call. A
protocol might use this for building packet header
information, or for entire small protocol-generated
packets, such as acknowledgements.

3TECH The 3Com Technical Journal

NDIS Concepts

:TECHTALK

For receiving packets, the process can work in one of
two ways: using ReceiveLookahead and TransferData
primitives or using the ReceiveChain primitive. The
method that is used is determined by the MAC, depend-
ing on how the MAC and adapter can handle data
buffering. Itis generally a function of whether the
adapter has on-board receive buffers that use I/O or
DMA 10 transfer the data, or whether the adapter buffers
are memory-mapped and accessible directly by the host.

For buffers on the adapter that use programmed I/O or
DMA to transfer the data, the reception process will use
a ReceiveLookahead and TransferData pair of primi-
tives. When the MAC has received a packet that it
wants to present to the protocol, it indicates this by
calling the ReceiveLookahead primitive of the protocol.
The ReceiveL.ookahead call contains a pointer to a short
portion of the data at the beginming of the packet. This
usually means that the MAC must have first DMA’ed
this lookahead data to a buffer in the host.

At this point, the protocol driver can examine the
lookahead data to determine if it wants the packet. In
some cases the packet may not be of interest to the
protocol. If the packet is not needed, the protocol can
return to the MAC indicating a reject and stating that the
receive is complete. If the packet is needed, the protocol
calls the TransferData primitive of the MAC, which
results in the MAC transferring the remainder of the data
to a protocol buffer.

The purpose of the Receive Lookahead implementation
is to avoid unnecessary data transfers between the MAC
and the protocol. This technique improves the efficiency
of the network stack.

If the adapter has receive buffers that are accessible as
host memory, receive will be implemented with the
ReceiveChain primitive. For this type of buffering, the
MAC will own and manage the receive buffers. For
flexibility, this mode has a ReceiveChain buffer descrip-
tor structure, similar to the transmit structure, that lets
multiple separate buffers be joined for one packet
transfer. When the MAC has a received packet to
present to the protocol, it builds a buffer descriptor for
the packet and calls the protocol with ReceiveChain.

STECH The3Com Technical Journal

When the protocol gets the ReceiveChain Indication, it
has two options. In the simplest case, the protocol can
copy all of the packet data and retum to the MAC speci-
fying that the receive is complete and the buffers are
free. In the other case, the protocol can defer copying
the buffers and retumn to the MAC specifying that the
buffers are still in use. The protocol will later complete
the copying of the buffers and then call the MAC with 2
ReceiveRelease primitive to indicate that the buffers are
now free and the receive is done.

In all of these receive scenarios, the primitive calls
issued to the protocol are indications. This means that
the protocol drivers need to observe certain rules and
that the MAC must issue an IndicationComplete call to
the protocol as part of the process. For more information
about these indication issues, refer to the NDIS specifi-
cation document.

Dynamic Binding

As mentioned earlier, some primitives are provided to
support Dynamic Binding. Dynamic Binding is a new
concept that has been added in Version 2.0.1 of the
NDIS document. It allows a protocol to be added to or
removed from an existing network configuration after
the initialization process has completed. The dynamic
protocol driver must be written for this purpose and
normally will be implemented as a TSR or transient
program module.

The main advantage of Dynamic Binding is freeing
system memory until it is actually needed for a particular
protocol. This is most useful in the DOS environment
where there is 2 640K memory limit and it is difficult to
have muitiple protocol stacks loaded simultaneously.

DOS Versus 0S/2

NDIS has all the features needed to allow writing
network drivers that will run in either the DOS or the
OS/2 environment. A driver can only be used with one
of these operating systems (the same driver can’t be used
for both), but the structure of the driver can be identical
for both environments. We have found that one set of

Winter 1991 11

NDIS Concepts

"TECHTALK

source code can be used to make versions for both DOS
and OS/2. Where different techniques are required, a
small piece of code can be selected via conditional
compile or assembly statements for the two versions.
An example of such a difference is that a certain call
might need to use Interrupt 21h in a DOS-based driver,
versus an IOCTL call for OS/2. A conditional selection
of a few lines of code can implement one or the other.
The make process for the driver will select the correct
environment.

Network device drivers are not very different in struc-
ture from other types of device drivers. The device
driver must be written to conform to the architecture in
which it will nm—DOS or OS/2. All of the normal
issues apply in writing NDIS drivers for both of these
environments. Several books and articles are available
that explain general driver development issues. See the
list of references at the end of this article for suggested
reading.

Summary

One of the main goals of the Network Driver Interface
Specification is to save network software developers
from “reinventing the wheel” for each new version of
network adapter hardware. A protocol that is written
with an NDIS interface at its base should be able to

function unchanged with many different types of adapter

hardware. In addition, the manufacturers of the network
hardware should be in the best position to write efficient
and bug-free MAC drivers for their own boards. 3Com
and many other vendors have NDIS MAC drivers
available to support their network hardware.

Using the standardized NDIS interface allows a new
level of sharing of network resources in amachine. -
Multiple protocols and multiple hardware adapters can
coexist—even those from different vendors. Input was
sought from many leaders in the network industry to
guarantee that the specification is flexible enough to
meet most networking needs. Further, 3Com carefully
defined the functions so that performance was not
sacrificed for this flexibility.

12 Winter 1991

If you are a software developer who would like to
evaluate NDIS for your specific needs, the next step is to
obtain a copy of the Network Driver Interface Specifica-
tion. The NDIS document can be obtained from 3Com
by writing to the following address:

3Com Corporation

Network Adapter Division
Software Product Marketing
5400 Bayfront Plaza

P.O. Box 58145

Santa Clara, CA, 95052-8145®

Rex Allers is a Systems Engineer in the Technical
Services Organization at 3Com, specializing in support
for developers. Rex has worked in engineering and
support in the computer industry for longer than he
cares to admit, and has been at 3Com since 1986.

Suggested Reading:

1. Microsoft'3Com LAN Manager Network Driver
Interface Specification, 3Com/Microsoft, 1990

2. The Open Book, Marshall Rose, Prentice Hall, 1990

3. Advanced MS-DOS, Ray Duncan, Microsoft Press,
1986

4. Writing MS-DOS Device Drivers, Robert S. Lai,
Addison-Wesley, 1987

5. 0812 Programmer' s Guide, Ed Iacobucm, McGraw-
Hill, 1988

6. Writing OS/2 Device Drivers, Raymond Westwater,
Addison-Wesley, 1989

3TECH The 3ComTechnical Journal

