

PCI/EISA Bus-Master Adapter Driver
Technical Reference

Members of the 3Com EtherLink® III and Fast EtherLink families of adapters

For 3Com User Group Information
1-800-NET-3Com
or your local 3Com office

Manual Part Number 09-0681-001B
Printed May 1995. Printed in the U.S.A.

3Com Corporation
5400 Bayfront Plaza
Santa Clara,
California, USA
95052-8145
ii
© 3Com Corporation, 1995. All rights reserved. No part of this documentation may be reproduced in any form or by any means or
used to make any derivative work (such as translation, transformation, or adaptation) without permission from 3Com Corporation.

3Com Corporation reserves the right to revise this documentation and to make changes in content from time to time without
obligation on the part of 3Com Corporation to provide notification of such revision or change.

3Com Corporation provides this documentation without warranty of any kind, either implied or expressed, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. 3Com may make improvements or
changes in the product(s) and/or the program(s) described in this documentation at any time.

UNITED STATES GOVERNMENT LEGENDS:
If you are a United States government agency, then this documentation and the software described herein are provided to you
subject to the following restricted rights:

For units of the Department of Defense:
Restricted Rights Legend: Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c) (1) (ii) for restricted Rights in Technical Data and Computer Software clause at 48 C.F.R. 52.227-7013. 3Com Corporation,
5400 Bayfront Plaza, Santa Clara, California 95052-8145.

For civilian agencies:
Restricted Rights Legend: Use, reproduction or disclosure is subject to restrictions set forth in subparagraph (a) through (d) of the
Commercial Computer Software - Restricted Rights Clause at 48 C.F.R. 52.227-19 and the limitations set forth in 3Com Corporation’s
standard commercial agreement for the software. Unpublished rights reserved under the copyright laws of the United States.

Unless otherwise indicated, 3Com registered trademarks are registered in the United States and may or may not be registered in
other countries.

3Com and EtherLink are registered trademarks of 3Com Corporation.

Contents

Chapter 1 Introduction
Summary of Features 1-1

PCI/EISA Bus-Master Adapter Features 1-2
Nomenclature 1-2
Typographic Conventions 1-3

Register Definitions Legend 1-3

Chapter 2 PCI/EISA Bus Master Versus PIO
Functional Differences from PIO 2-1

Data Transfer Modes 2-1
Extra Register Window 2-1
Statistics Registers 2-1
Large Packet Support 2-2
Media-Related Functions 2-2
Station Address Masking Function 2-2
New Registers 2-3
Commands Not Supported 2-3
New Interrupt Bit 2-3
Miscellaneous Details 2-3

Differences Between PCI and EISA Bus Master Adapters 2-3
PIO/Bus Master Nomenclature 2-4

Chapter 3 Adapter Operation
Basic Operational Concepts 3-1

Register Windows 3-2
Bit-Widths of Register Accesses 3-2
Command Register 3-2
Command Summary 3-3
IntStatus Register 3-4
Optimized Adapter Operations 3-4
Timer Register 3-4
Data Transfer Modes 3-4

Programmed I/O 3-4
Bus Master 3-5

BIOS ROM 3-5
Configuration and Initialization 3-6
iii

System Reset 3-6
Forced Configuration 3-6
Global Reset 3-6
PCI Adapter Configuration 3-7
EISA Adapter Configuration 3-7
Adapter Initialization 3-7

Serial EEPROM 3-8
Selecting the Media Port 3-8
ResetOptions 3-9
Setting the RAM Partition 3-9
Station Address 3-9
Broadcast Address 3-9
Multicast Addresses 3-9
Capabilities Word 3-9

Frame Transmission 3-10
Frame Transmission Model 3-10
Transmit Data Writes 3-10

Programmed I/O 3-10
Bus Master 3-10

Frame Start Header 3-11
Completing a Transmit Frame Download 3-12

Padding to a Dword Boundary 3-12
Issuing a TxDone Command 3-12

Padding to Minimum Frame Length 3-12
Initiating Frame Transmission 3-12
Transmission Completion 3-13
Updating the Status 3-13
Multiple Transmit Completions 3-13
Frame Transmission Errors 3-13
Optimized Transmit Operations 3-14

Early Transmission Start 3-14
Frame Reception 3-14

Frame Reception Model 3-14
Top Frame 3-15

Normal Frame Reception 3-15
Receive Data Reads 3-15

Programmed I/O 3-15
Bus Master 3-15
RxStatus and RxError 3-16
Discarding the Top Frame 3-16
Queued Receives 3-16
Receive Frame Size Limits 3-16

Optimized Frame Reception 3-16
Early Receive Indications 3-16
Discarding a Frame During Reception 3-17

Interrupts and Indications 3-18
Interrupts Versus Indications 3-18
Determining the Cause of an Interrupt 3-18

IntStatus 3-18
iv

Interrupt Acknowledgment 3-18
Interrupt and Indication Enable Mechanisms 3-18

Statistics 3-20
Transmit Statistics 3-20
Receive Statistics 3-21

Chapter 4 Register Listings
I/O Model 4-1
Register Definitions 4-3

AddressConfig (EISA Only) 4-3
Definition 4-3

BadSSD 4-5
Definition 4-5

BytesRcvdOk 4-5
Definition 4-5

BytesXmittedOk 4-6
Definition 4-6

CarrierLost 4-6
Definition 4-6

Command 4-7
Definition 4-7
Command Register Format 4-7
Supported Commands 4-8
Reserved Command Codes 4-13

ConfigControl (EISA Only) 4-14
Definition 4-14

EepromCommand 4-15
Definition 4-15

EepromData 4-17
Definition 4-17

FifoDiagnostic 4-18
Definition 4-18

FramesDeferred 4-19
Definition 4-19

FramesRcvdOk 4-19
Definition 4-19

FramesXmittedOk 4-20
Definition 4-20

IndicationEnable 4-20
Definition 4-20

InternalConfig 4-21
Definition 4-21

InterruptEnable 4-23
Definition 4-23

IntStatus 4-24
Definition 4-24

LateCollisions 4-26
Definition 4-26
v

MacControl 4-26
Definition 4-26

ManufacturerId (EISA Only) 4-28
Definition 4-28

MasterAddress 4-28
Definition 4-28

MasterLen 4-29
Definition 4-29

MasterStatus 4-30
Definition 4-30

MediaStatus 4-31
Definition 4-31

MultipleCollisions 4-33
Definition 4-33

Network Diagnostic 4-34
Definition 4-34

OtherInt 4-36
Definition 4-36

PhysicalMgmt 4-36
Definition 4-36

ProductId (EISA Only) 4-37
Definition 4-37

ResetOptions 4-38
Definition 4-38

ResourceConfig (EISA Only) 4-40
Definition 4-40

RomControl (EISA Only) 4-41
Definition 4-41

RxData 4-42
Definition 4-42

RxEarlyThresh 4-43
Definition 4-43

RxError 4-45
Definition 4-45

RxFilter 4-46
Definition 4-46

RxFree 4-47
Definition 4-47

RxOverruns 4-47
Definition 4-47

RxStatus 4-48
Definition 4-48

SingleCollisionFrames 4-49
Definition 4-49

SqeErrors 4-49
Definition 4-49

StationAddress 4-50
Definition 4-50

StationMask 4-50
vi

Definition 4-50
Timer 4-51

Definition 4-51
TxAvailableThresh 4-51

Definition 4-51
TxData 4-52

Definition 4-52
Padding to Double-Word Boundary 4-52

TxFree 4-53
Definition 4-53

TxStartThresh 4-53
Definition 4-53

TxStatus 4-54
Definition 4-54

UpperFramesOk 4-55
Definition 4-55

VcoDiagnostic 4-55
Definition 4-55

Chapter 5 Adapter Configuration
PCI Configuration Overview 5-1

PCI Configuration Registers 5-2
VendorId 5-2
DeviceId 5-2
PciCommand 5-3
PciStatus 5-3
ClassCode 5-4
LatencyTimer 5-4
HeaderType 5-4
IoBaseAddress 5-5
BiosRomControl 5-5
InterruptLine 5-5
InterruptPin 5-5
MinGnt 5-6
MaxLat 5-6
ResetOptions 5-6
InternalConfig 5-6

EISA Configuration Overview 5-7
EISA Configuration Registers 5-8
EEPROM Data Format 5-8

PCI Data Format 5-8
EISA Data Format 5-9
Data Field Details 5-10

3Com Node Address 5-10
DeviceId (PCI Only) 5-10
ProductId (EISA Only) 5-10
Manufacturing Data - Date 5-10
Manufacturing Data - Division 5-10
vii

Manufacturing Data - Product Code 5-10
ManufacturerId 5-11
PciParm (PCI Only) 5-11
RomInfo (PCI Only) 5-11
OEM Node Address 5-11
AddressConfig (EISA Only) 5-11
ResourceConfig (EISA Only) 5-12
Software Information 5-12
Compatibility Word 5-12
Capabilities Word 5-13
InternalConfig 5-14
Software Information 2 5-14
Checksum 5-14

Appendix A Errata List and Software Solutions
Introduction A-1
PCI Adapters (3C590 and 3C595): A-1
EISA Adapters (3C592 and 3C597): A-1
All Adapters A-2
Useful Tips A-3
viii

Figures

1-1. Register Bit Map Legend 1-3
3-1. Interrupt and Indication Enable Mechanisms 3-19
4-1. Register Bit Map Legend 4-3
4-2. RxData Example 4-42
4-3. TxData Example 4-52
5-1. PCI Configuration Registers 5-2
ix

x

Tables

4-1. ROM Configuration Table 4-4
4-2. Loopback Modes with Values for NetworkDiagnostic, MacControl, and
PhysicalMgmt Registers 4-35
5-1. PCI EEPROM Data Format 5-8
5-2. EISA EEPROM Data Format 5-9
5-3. Code Numbers for 3Com 3C Numbers 5-10
xi

xii

Chapter 1
Introduction

This manual defines the programming interface supported by first-generation bus mastering
adapters for the PCI and EISA buses running at speeds of 10 or 100 Mbps.

This manual is for software engineers and test engineers to use as a reference in writing device
drivers, diagnostics, and production test software. PCI and EISA bus master adapters share many
of the same characteristics. In this manual, differences are clearly indicated as “PCI Only” or
“EISA Only.” If there is no such indication, the information is valid for either type of adapter.

Summary of Features
PCI/EISA bus master adapters are based upon the EtherLink® III adapter architecture. PCI/EISA
bus master adapters have a programming interface similar to that of the first-generation
programmed input/output (PIO) and later adapters, augmented by a single-fragment bus master
data transfer mode.

The PCI/EISA bus-master bus architecture adds specifications for several optional extensions to
the PIO architecture. Bus master adapters indicate their support for these extensions to the
software via a new Capabilities Word in the EEPROM.

The PCI/EISA bus master adapter architecture includes support for the 100BASE-TX/FX
100 Mbps signaling standard and the three 10 Mbps Ethernet signaling standards: 10BASE-T,
10BASE2, and 10BASE5. The PCI/EISA bus master architecture can also support other 10 Mbps
and 100 Mbps signaling schemes (such as 100BASE-T4) using the Media Independent Interface.
Adapters based upon the PCI/EISA bus master architecture will include various combinations of
these media ports. Drivers may be written to support all combinations of these available media
ports automatically.

New features supported by all PCI/EISA bus master adapters are CRC passthrough, the TxDone
command, large packet handling, an extended deference mechanism, and individual address bit-
masking.

PCI/EISA bus master adapters support a variable amount of packet buffer RAM. Since different
adapters have differing amounts of RAM installed, drivers written for these adapters must allow
for different amounts. The allocation of RAM between the receive and transmit functions is
configurable through the InternalConfig register.

1-2 Introduction

Nomenclature

PCI/EISA Bus-Master Adapter Features
PCI/EISA bus master architecture uses EtherLink III PIO architecture with fragment bus master
extensions. To support bus master operations, a number of registers have been added in Window 7.

This architecture supports the following:

■ 100 Mbps signaling standard (100BASE-TX)

■ 10 Mbps signaling standards (10BASE-T, 10BASE2, and 10BASE5)

■ 100BASE-T4 signaling standard through the Media Independent Interface (MII)

■ Up to 128 KB of packet buffer RAM, which can be divided 1:1, 3:1, or 5:3 between the
receive and transmit functions

■ Packet sizes up to 4490 bytes

■ CRC passthrough for bridging applications, via a static configuration option on receive and
a frame-by-frame basis on transmit

■ The TxDone command, to eliminate the need to dword pad the transmit data

■ 8 K, 16 K, 32 K or 64 K BIOS ROM

Nomenclature
The following nomenclature is used throughout this manual:

Indications The reporting of any interesting event on the adapter. Any indication
may be configured to cause an interrupt.

Interrupts The actual assertion of the host machine’s interrupt signal.

Download The process of transferring transmit data from system memory to the
adapter.

Upload The process of transferring receive data from the adapter to system
memory.

Byte An 8-bit wide quantity of data.

Word A 16-bit wide quantity of data (2 bytes).

Double Word (dword) A 32-bit wide quantity of data (4 bytes).

Introduction 1-3

Typographic Conventions

Typographic Conventions
The following typefaces are used to distinguish between object types.

Register Definitions Legend
The figure below provides a legend for interpreting the register bit map diagrams.

Figure 1-1. Register Bit Map Legend

Object Type Example Typeface

Register Name RxStatus Helvetica bold font; first character and
embedded words capitalized

Signal or Register Field Name txComplete Times italic font, first character lower case,
embedded words capitalized

Code or Command Name RxEnable Courier font, first character and embedded
words capitalized

31 08 7 630 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 5 4 3 2 19

00 00 00 00 00 00 00 00 00 0

Most Significant Word Least Significant Word

Most Significant Byte Least Significant Byte

These bits disregard data written
to them, and return zeroes when read.

Active register bits

Drivers should write zeroes to these bits
to ensure compatibility with future
hardware.

Chapter 2
PCI/EISA Bus Master Versus PIO

This chapter lists the ways in which PCI/EISA bus master adapters differ programmatically from
PIO adapters. It also explains the few differences between PCI and EISA bus master adapters.
Refer to the next chapter for an introduction to adapter operation.

Functional Differences from PIO
This section lists the major differences between PCI/EISA bus master and PIO adapters.

Data Transfer Modes
PCI/EISA adapters support fragment-based bus master transfer. The MasterStatus register
provides transfer-complete bits that can be used for polling. A transferInt bit is included in
IntStatus so that interrupts can be generated upon the completion of bus master transfers.

Extra Register Window
PCI/EISA bus master adapters implement Window 7, which contains the MasterStatus,
MasterAddress, and MasterLen registers to support bus master operations.

Statistics Registers
On PCI/EISA bus master adapters, some of the statistics registers have been increased in size to
support the higher data rate required by 100 Mbps operation. The registers and their sizes for PIO
adapters and bus master adapters are shown below.

Register Name
PIO Adapter
Size (bits)

Bus Master Adapter
Size (bits)

BytesXmittedOk 16 16

BytesRcvdOk 16 16

FramesDeferred 8 8

FramesRcvdOk 8 10

FramesXmittedOk 8 10

RxOverruns 8 8

LateCollisions 8 8

SingleCollisionFrames 6 8

MultipleCollisions 6 8

SqeErrors 4 4

CarrierLost 4 4

2-2 PCI/EISA Bus Master Versus PIO

Functional Differences from PIO

FramesRcvdOk and FramesXmittedOk are 10 bits wide, yet reside in 8-bit wide register
spaces, so their high-order bits are made visible in a new register called UpperFramesOk.

SqeErrors and CarrierLost stick at 0xf, to prevent the host from reading a zero from them as
they roll over.

All statistics registers have been redesigned so there is no longer any need to disable statistics
collection when registers are read. This prevents statistics events from being lost at 100 Mbps.

Large Packet Support
PCI/EISA bus master adapters support “large” packets, up to 4,494 bytes each, including the
Frame Check Sequence (FCS). To accommodate this, all threshold registers have been increased
to 13 bits wide. Since commands still only have an 11-bit parameter, all threshold-setting
commands write the 11-bit parameter into the upper 11 bits of the threshold registers; the lower
two bits are always zero. This has the side effect of scaling all threshold values by a factor of four
when PIO code is running on PCI/EISA bus master adapters.

Receive frames are truncated at 1,792 bytes or 6 KB, depending upon the value of
allowLargePackets in MacControl. Errors of the type oversizedFrame are flagged at either
greater than 1,514 bytes or greater than 4,494 bytes, depending upon the value of
allowLargePackets.

The RxStatus register functionality has been split into two registers, RxStatus and RxError. The
error codes from PIO have been replaced with a bit-per-error condition.

Large packet support affects bit-field widths in the following registers: RxStatus, MasterStatus,
TxStartThresh, TxAvailableThresh, and RxEarlyThresh.

Media-Related Functions
Several functions have been added to support the 100 Mbps data rate and extended deference
modes.

The MacControl register contains bits to allow setting of transmit deference options.

The PhysicalMgmt register allows control over the Management Interface portion of the
Media Independent Interface.

Station Address Masking Function
The StationMask register provides the ability to treat individual bits in StationAddress as
unimportant when address comparisons on receive frames are performed.

PCI/EISA Bus Master Versus PIO 2-3

Differences Between PCI and EISA Bus Master Adapters

New Registers
New registers added to PCI/EISA bus master adapters versus those supported on PIO adapters
are as follows:

StationMask, PhysicalMgmt, MacControl, MasterLen, MasterAddress, MasterStatus,
OtherInt, ResetOptions, RxError, UpperFramesOk, BadSSD

Commands Not Supported
This generation of adapters does not support the power management commands implemented
on PIO adapters.

New Interrupt Bit
The transferInt bit has been added to IntStatus to support transfer complete interrupts.

Miscellaneous Details
Full duplex operation is enabled by setting fullDuplexEnable in MacControl, instead of
externalLoopback in NetworkDiagnostic.

The busMasterInProgress bit has been added to IntStatus. The otherInt and transferInt bits in
IntStatus are swapped relative to PIO adapters.

Differences Between PCI and EISA Bus Master Adapters
ProductId, AddressConfig, ConfigControl, EthernetControllerStatus, and
ResourceConfig are not supported by PCI adapters. Most of the functions in these registers have
been moved to PCI configuration registers. PCI adapters are configured with special registers in
the PCI configuration space.

EISA bus master adapters still support ProductId, AddressConfig, ConfigControl, and
ResourceConfig.

EISA adapters are configured using the registers in Windows 0, which are mapped into the EISA
slot-specific I/O space. Refer to Chapter 5 for more detail.

For both EISA and PCI adapters, the Power-on Reset bits (POR) have been moved into the new
register ResetOptions at Window 3, offset 8. The transceiver select bits, autoSelect and romSize,
have been moved to InternalConfig.

2-4 PCI/EISA Bus Master Versus PIO

PIO/Bus Master Nomenclature
PIO/Bus Master Nomenclature
This manual introduces new naming conventions to make names more meaningful.
The following table lists the resulting inconsistencies between the PCI/EISA bus master
documents and the PIO adapter documents.

Refer to the section “Typographic Conventions” on page 1-3 for an explanation of the meaning of
the typefaces used here.

Bus Master Adapter Name PIO Adapter Name Type

InterruptEnable InterruptMask Register

IndicationEnable ReadZeroMask Register

RxData RxPioDataRead Register

TxData TxPioDataWrite Register

Frame start header Transmit preamble Data structure

hostError adapterFailure IntStatus bit

interruptRequested interruptOnSuccessfulTransmissionRequested TxStatus bit

txFatalError txResetRequired NetworkDiagnostic bit

forcedConfig TST EepromCommand bit

eepromBusy EBY EepromCommand bit

eepromAddress/eepromOpcode EEPROM COMMAND EepromCommand field

Chapter 3
Adapter Operation

This chapter contains the following PCI/EISA bus master adapter topics:

■ Basic operational concepts

■ Configuration and initialization

■ Frame transmission

■ Frame reception

■ Interrupts and indications

■ Statistics

PCI and EISA bus master adapters share many of the same characteristics. In this manual,
differences are clearly indicated as PCI or EISA. If there is no such indication, the information is
valid for either type of adapter.

Basic Operational Concepts
This section contains information about the following basic concepts:

■ Register windows

■ Bit-widths of register accesses

■ Command register

■ Command summary

■ IntStatus register

■ Optimized adapter operation

■ Timer register

■ Data transfer modes

■ Support for multiple signaling standards

■ BIOS ROM

3-2 Adapter Operation

Basic Operational Concepts
Register Windows
The host interacts with the adapter mostly through I/O mapped registers. The I/O registers are
grouped into eight 16-byte “windows.”

The adapter occupies 32 bytes in the host computer’s I/O space. The first 16 bytes look essentially
like the first-generation PIO adapter programming model. At any given time, one of eight possible
register windows is visible in this space.

The upper 16 bytes are a fixed window into the Window 1 registers. This fixed window is
provided as an aid to writing drivers to operate in multiprocessor environments. When the driver
code is split among multiple processors, the critical-path data transfer code always has access to
the key data transfer registers.

A register’s location is specified by its window number and its offset within the window.
For instance, information about transmit frames is available in the TxStatus register at Window 1,
offset b and Window 7. Some registers appear in more than one window.

In general, registers are grouped together in a window because they are used together to perform a
major adapter function. For instance, Window 0 registers are used for adapter configuration, and
Window 1 registers are used for PIO data transfer.

The window currently visible in the first 16 bytes of I/O space is changed by issuing a command
to the adapter. Commands are described in the section “Command Summary” on page 3-3.

Bit-Widths of Register Accesses
In general, I/O registers must be accessed with instructions that are no larger than the bit-width of
that register. For instance, even though the BytesRcvdOk, UpperFramesOk, and
FramesDeferred registers all appear in the double word at offset 8 in Window 6, it is not legal to
read all three registers with a single 32-bit I/O read instruction.

Additionally, StationAddress and StationMask must be accessed with no larger than word-
wide (16-bit) cycles because of internal architecture limitations.

Some registers cannot be accessed with cycles narrower than the register. These restrictions are
detailed in the individual register definitions.

Command Register
Many of the driver’s interactions with the adapter are performed using a command structure.
Commands are codes, sometimes including a parameter, written to the adapter to perform some
action. For instance, the RxEnable command causes the adapter to start accepting receive
frames from the medium.

Commands are written to the Command register. The write-only Command register is unusual in
that it appears in every window. It resides at offset e.

Adapter Operation 3-3

Basic Operational Concepts
Command Summary
The commands are listed here for reference. Refer to the Command register definition in
Chapter 4, “Register Listings,” for complete definitions of these commands.

GlobalReset Perform an overall reset of adapter

SelectRegisterWindow Change the visible window

EnableDcConverter Enable the 10BASE2 DC-DC converter (10 Mbps only)

RxDisable Disable frame reception

RxEnable Enable frame reception

RxReset Reset the receive logic

TxDone Signal that a transmit frame has been downloaded to the
transmit FIFO

RxDiscard Discard the top receive frame from the adapter

TxEnable Enable frame transmission

TxDisable Disable frame transmission

TxReset Reset the transmit logic

RequestInterrupt Cause the adapter to generate an interrupt

AcknowledgeInterrupt Acknowledge active interrupts

SetInterruptEnable Set the value of the InterruptEnable register

SetIndicationEnable Set the value of the IndicationEnable register

SetRxFilter Set the value of the RxFilter register

SetRxEarlyThresh Set the value of the RxEarlyThresh register

SetTxAvailableThresh Set the value of the TxAvailableThresh register

SetTxStartThresh Set the value of the TxStartThresh register

StartDma Start a bus master data transfer operation

StatisticsEnable Enable collection of statistics

StatisticsDisable Disable statistics collection

DisableDcConverter Disable the 10BASE2 DC-DC converter (10 Mbps
only)

3-4 Adapter Operation

Basic Operational Concepts
IntStatus Register
The read-only IntStatus register occupies the same location as the Command register:
offset e in every window.

IntStatus is used by a driver to determine the sources of interrupts on the adapter, and to
determine which window is currently visible. IntStatus also includes a bit to indicate when a
command issued to the Command register is in the process of being executed.

Optimized Adapter Operations
This specification describes several mechanisms by which adapter operations are optimized.
An optimization mechanism involves generating an interrupt or starting a process before it would
normally occur, to gain some benefit from parallel operation.

Optimization mechanisms involve the use of a threshold register, whose value specifies when the
early interrupt or process start should occur. For instance, the TxStartThresh register specifies
how many bytes of a frame must be downloaded to the adapter before the frame can begin
transmission.

Timer Register
The Timer register performs interrupt latency measurements to support some of the optimization
mechanisms on the adapter. The timer is started when the adapter asserts an interrupt on the bus.
Refer to the Timer register definition in Chapter 4, “Register Listings,” for complete details.

Data Transfer Modes
Two frame-data transfer modes are supported by PCI/EISA adapters. A driver can use any
convenient combination of the transfer modes to perform frame data transfers. The data transfer
modes (programmed I/O and bus master) are described briefly in the following paragraphs.

Programmed I/O

Programmed I/O (PIO) is the “base” data transfer mode, supported by all PIO and bus master
adapters. Under PIO, a 32-bit wide register in Window 1 is used as a write-only port for transmit
data, and as a read-only port for receive data.

PIO data transfers can be of byte, word, or double-word width, and can be at any byte alignment.
Prior to performing PIO reads, a driver must first check that there is valid data in the receive FIFO
by reading RxStatus. Before performing PIO writes, a driver must verify that space exists in the
transmit FIFO by reading TxFree.

Refer to the sections “Frame Transmission” on page 3-10 and “Frame Reception” on page 3-14
for more details about PIO data transfers.

Adapter Operation 3-5

Basic Operational Concepts
Bus Master

PCI/EISA adapters support fragment-based bus master transfers. This feature allows burst data
transfer at four bytes for every system clock, yielding a maximum raw data transfer rate of over
100 MBps. Actual aggregate data transfer rates will be lower because of on-board RAM
contention and contention with other system masters.

Fragment bus master data transfers are controlled using registers located in Window 7. The length
and starting address for a data fragment transfer are programmed into MasterLen and
MasterAddress, respectively. A command is then issued to the adapter to cause it to initiate the
bus master transfer. Bus master transfers can be of any length and begin on any byte boundary.

Status information for bus master transfers can be read from the MasterStatus register.

When a fragment bus master transfer is complete, the adapter sets the appropriate completion bit
in MasterStatus. The adapter can also be programmed to generate an interrupt upon completion
of a bus master operation.

It is expected that bus master transfers will be intermixed with PIO transfers to move packets in
the most efficient way. Small fragments will probably be more efficiently moved with PIO
because of the overhead involved in setting up a bus master transfer. Host software should
measure the overhead to initiate a bus master transfer at initialization time to determine the break-
even point between PIO and bus master transfers.

Refer to the sections “Frame Transmission” on page 3-10 and “Frame Reception” on page 3-14
for more details about fragment bus master data transfers.

BIOS ROM
Like other PIO and bus master adapters, Fast EtherLink bus master PCI/EISA adapters support an
optional BIOS ROM. A variety of PROMs, EEPROMs, and flash ROMs are supported. The EISA
adapter BIOS ROM interface is similar to the one found in previous PIO adapters. The PCI
specification requires a few differences in the ROM interface compared to that of PIO adapters.

First, the BIOS ROM is configured through the BiosRomControl PCI configuration register. The
physical size of the ROM can still be programmed into the EEPROM at the time of manufacture
and read from there by a driver, but the PCI system power-on self-test (POST) will not be aware of
the ROM’s physical size.

Second, PCI requires that ROMs be accessible using byte, word, or double-word cycles.
Therefore, a host read of the adapter’s BIOS ROM receives wait-states while four byte-wide ROM
accesses occur on the adapter. All write accesses to the ROM (with a flash or EEPROM device
installed) must be made via double-word writes to the adapter.

3-6 Adapter Operation

Configuration and Initialization
Configuration and Initialization
This section contains information about the following topics that affect configuration and
initialization:

■ System reset

■ Forced configuration

■ Global reset

■ PCI adapter configuration

■ EISA adapter configuration

■ Adapter initialization

System Reset
System reset is the assertion of the hardware reset signal on the PCI or EISA bus. System reset
causes a complete reset of the adapter, including forcing flip-flops to known values, and loss of
any adapter configuration that has been set.

Forced Configuration
Under some circumstances, it is necessary to force a usable configuration into the adapter ASIC
without its being able to read the EEPROM. Examples of this are the ASIC IC production test and
board-level production test.

The EEPROM data-in pin is sampled on the trailing edge of the system reset pulse. If it is low,
the adapter is forced into the following configuration:

■ PCI–I/O base address 0x200, I/O target cycles and bus master cycles enabled, memory
target cycles disabled, and BIOS ROM disabled.

■ EISA–I/O base address z000 (z equals the EISA slot number), card enable on, and BIOS
ROM disabled.

Global Reset
A GlobalReset command is available for use by the driver software in resetting the adapter.
The GlobalReset command has a bit mask parameter that allows selective reset of various
parts of the adapter. Refer to the Command register definition in Chapter 4 for details.

Adapter Operation 3-7

Configuration and Initialization
PCI Adapter Configuration
Adapter configuration consists of allocating system resources to the adapter and setting adapter-
specific options. This is done by writing values into special PCI configuration and I/O registers.
The location of this configuration space in the host processor’s address map is system-dependent.
Configuration is performed by a POST routine supplied with the computer system.

The registers that are set during configuration are described in the following paragraphs.

PciCommand Enables adapter operation by allowing it to respond to and generate
PCI bus cycles. This register also allows enabling of parity error
generation.

IoBaseAddress Sets the I/O base address for the adapter.

BiosRomControl Sets the base address and size for an installed expansion ROM, if any.

LatencyTimer Programs an adapter timer that controls how long the adapter can hold
the bus as a bus master.

InterruptLine Maps the adapter’s interrupt request to a specific interrupt line (level)
on the system board.

InternalConfig Selects the media port (transceiver) and local RAM parameters.
InternalConfig will probably not be written by the system
configuration utility, but it will be mapped in the PCI configuration
space for possible future use. InternalConfig is also mapped into
Window 3 of the I/O register space.

Refer to Chapter 5, “Adapter Configuration,” for complete details of the configuration registers.

EISA Adapter Configuration
EISA systems dedicate 1 KB of I/O space to each card slot. EISA adapters are configured using a
group of configuration registers, which are mapped to certain locations within this 1 KB slot-
specific space. Under the EISA configuration scheme, after system reset the system checks each
slot for a unique adapter ID code and matches the codes with data stored in the system’s
nonvolatile RAM. The system uses that data to program the various EISA configuration registers
on the adapter. The basic configuration consists of such parameters as interrupt level and BIOS
ROM base address.

See Chapter 5, “Adapter Configuration,” for more information on EISA configuration.

Adapter Initialization
After the system has performed basic configuration of the adapter, software needs to initialize the
adapter, which means setting the adapter registers to the desired initial values.

3-8 Adapter Operation

Configuration and Initialization
Serial EEPROM

The serial EEPROM is used for nonvolatile storage of such information as the device ID, node
address, manufacturing data, default configuration settings, and software information. Some of the
EEPROM data is automatically read into the adapter logic after system reset (for example, device
ID and configuration defaults), whereas other data (for example, node address and software
information) is meant to be read by driver software.

Shortly after system reset, EEPROM control logic reads certain locations from the EEPROM,
placing the data into the following host-accessible registers:

Selecting the Media Port

The media port (transceiver) to be used is selected through the xcvrSelect field in the
InternalConfig register. On PCI adapters, InternalConfig is mapped into both the PCI
configuration and I/O register spaces but will in most cases be written in the I/O space.

Because the value of InternalConfig is also stored in the serial EEPROM, it is possible to set the
media port once, write the value into EEPROM, and then have the adapter automatically use the
stored value when it is powered up.

Alternatively, there is a mechanism for having the driver ignore the stored value for xcvrSelect and
attempt to set the media port based on which one is currently active. This is called auto select. When
the autoSelect bit in InternalConfig is set, the driver selects each port available on the adapter (see
ResetOptions later in this chapter) in turn, and attempts to determine which port is connected to the
network. If the driver fails to find a connected port, it restores the original value in xcvrSelect.

The recommended sequence for determining the active port is as follows (a driver skips the
steps corresponding to those media types that are not installed on the adapter):

■ 100BASE-TX – linkBeatDetect in the MediaStatus register indicates an active port.

■ 100BASE-FX – linkBeatDetect in the MediaStatus register indicates an active port.

■ MII – the indication of an active port depends upon the type of transceiver that is connected
to the MII. Typically, the management interface provided by the PhysicalMgmt register is
used to check for a device connected to the MII.

PCI EEPROM Location Register Space

3 DeviceId PCI configuration

12 InternalConfig Low I/O, PCI configuration

13 InternalConfig High I/O, PCI configuration

EISA EEPROM Location Register Space

8 AddressConfig EISA configuration

9 ResourceConfig EISA configuration

3 ProductId EISA configuration

12 InternalConfig Low I/O, EISA configuration

13 InternalConfig High I/O, EISA configuration

Adapter Operation 3-9

Configuration and Initialization
■ 10BASE-T – linkBeatDetect in the MediaStatus register indicates an active port.

■ 10Mbps AUI (10BASE5) – The driver performs an external loopback to check for an active
port. Refer to the section “Network Diagnostic” on page 4-34 for more information on
loopback modes.

■ 10BASE2 – The driver performs an external loopback to check for an active port. Refer to
the section “Network Diagnostic” on page 4-34 for more information on loopback modes.

ResetOptions

The ResetOptions register provides a way for driver or configuration software to determine the
hardware media options installed on the adapter, and the media operational mode (normal or test).

ResetOptions attains its value upon hardware (system) reset, when certain ASIC pins are
sampled and latched.

Setting the RAM Partition

The InternalConfig register also contains several fields related to the local packet buffer RAM.
Three of the fields (ramSize, ramWidth, and ramSpeed) are fixed for a particular adapter, and are
not writable by host software. The ramPartition field, however, is set by driver or configuration
software to tune the adapter to the particular system environment.

The value of ramPartition determines how the local packet buffer RAM is divided between
receive and transmit functions. It is expressed in terms of a ratio of receive space to transmit
space. For instance, an adapter with 64 KB of local RAM with a ramPartition setting of 3:1
would have 48 KB of receive space and 16 KB of transmit space.

Refer to the InternalConfig register definition for more details on the RAM parameter fields.

Station Address

The driver is expected to program the adapter’s network address into the StationAddress
register. The adapter’s network address can be obtained from the appropriate data locations within
the EEPROM. The host is, of course, free to program any arbitrary value into StationAddress.

Broadcast Address

To have the adapter respond to broadcast frames, frames with a broadcast address (that is,
ff:ff:ff:ff:ff:ff) can be received by setting the receiveBroadcast bit in RxFilter.

Multicast Addresses

The adapters include no support for multicast comparisons. The Fast EtherLink bus master
adapters can be configured to accept all multicast frames by setting the receiveMulticast bit in
RxFilter. Any further filtering must be accomplished in software.

Capabilities Word

The Capabilities Word is a 16-bit location in the EEPROM that specifies the capabilities of the
adapter. Refer to the section “EEPROM Data Format” on page 5-8 for more details.

3-10 Adapter Operation

Frame Transmission
Frame Transmission
This section contains an overview of the frame transmission process.

Frame Transmission Model
The frame transmission mechanism is modeled as a logical FIFO. Data to be transmitted is transferred
into the FIFO by the system interface and is removed from the FIFO by the network interface.

Within the FIFO, frames are delimited by a 32-bit frame start header (FSH), which includes the
length of the frame that follows. The frame data consists of the destination address field through
the info field. The adapter normally generates a CRC and inserts it into the frame check sequence
(FCS) field automatically, although it is an option to disable this and supply the FCS along with
the frame data.

Transmit data is moved into the FIFO using programmed I/O or bus master transfers. The methods
used to download the data are transparent to the FIFO.

Frame transmission involves downloading (writing) the FSH and the transmit frame to the FIFO,
issuing a TxDone command to inform the adapter that the frame is complete, and possibly
responding to a transmit complete indication.

Transmit Data Writes
The transmit FSH and frame data is written to the transmit FIFO using combinations of two data
transfer modes: programmed I/O and bus master.

Programmed I/O

The first method is through I/O writes to the TxData register. This register is a special-purpose
window into the transmit FIFO.

The data can be written to TxData as bytes, words, or double-words and can be aligned to any
byte lane.

Prior to writing transmit frame data to the adapter, the host must verify that sufficient space
remains in the transmit FIFO. This is determined by reading TxFree. The value returned by
TxFree indicates the number of bytes of free space within the transmit FIFO.

If the driver determines that the free space is smaller than the frame to be transmitted, then the
driver should issue the SetTxAvailableThresh command and await an interrupt. Upon
responding to the txAvailable interrupt, sufficient room within the transmit FIFO is ensured.

Bus Master

In this second method, the host places data to be transmitted in a contiguous block of system
memory. The starting address of the fragment buffer is written to the MasterAddress register,
and the byte length of the buffer is written to MasterLen (the start address may have any byte
alignment). The adapter’s StartDma command is then issued to cause the adapter to perform
the bus master transfer.

Adapter Operation 3-11

Frame Transmission
Unlike PIO, the adapter paces the data transfers so that no transmit FIFO overrun occurs during
bus master transfers. It is not necessary to check the value of TxFree before a bus master
download operation is started.

When the bus master transfer is complete, the adapter sets the masterDownload bit in the
MasterStatus register. The adapter can also be programmed to generate an interrupt upon
completion of a bus master download operation.

While a bus master download operation is in progress, it is an error to write to the TxData register,
since this would insert data at unpredictable places in the transmit frame. The value in TxFree is
also unreliable during bus master download operations.

Frame Start Header
The first 32 bits of data transferred to the transmit FIFO are interpreted to be a frame start header.
The frame start header contains frame length and control information for the frame.

The format of the frame start header is as follows:

txIndicate [15]: This bit is set if the driver desires a txComplete indication upon
completion of transmission of this frame. If this bit is cleared, no
indication of transmit completion is given by the adapter.

reserved [14]: This bit is reserved. A zero should be written here.

crcAppendDisable [13]: The driver sets this bit to inhibit the adapter from appending a
CRC to the end of this frame. When crcAppendDisable is set, it is
expected that the frame’s CRC will be supplied as part of the data
downloaded to the FIFO. An exception to this is a transmit underrun, in
which case a guaranteed-bad CRC is appended to the frame.

When this bit is cleared, the adapter computes and appends CRCs for
transmit frames.

An adapter indicates its support of crcAppendDisable through the
Capabilities Word.

txLength [12:0]: This field contains the length of the frame to follow. When the
driver writes data to the FIFO, it must pad the data to the next dword
boundary (or use the TxDone command). The value in txLength must
match the number of actual frame bytes and must not include any pad
bytes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

3-12 Adapter Operation

Frame Transmission
Completing a Transmit Frame Download
The downloading of a transmit frame can be “completed” in one of two ways. In either case, the
goal in completing a frame is to ensure that the frame is properly delimited and readied for
transmission in the transmit FIFO.

The two ways to complete a frame download are:

■ Padding to a double-word boundary

■ Issuing a TxDone command

The need to properly complete a transmit frame applies equally whether the frame is being moved
with PIO, bus mastering, or a combination of the two methods.

Padding to a Dword Boundary

To pad to a dword boundary, the driver must write sufficient bytes after the last data bytes of the
packet to make the total number of bytes written for the packet be an even multiple of four.

For example, if a 61-byte packet is to be transmitted, and the FSH and 61 bytes of data have been
downloaded, then three more bytes must be written, either as three-byte writes or a word write
plus a byte write.1 With bus mastering, this can also be accomplished by padding out the length of
the final fragment transfer to include the extra bytes. Note that these pad bytes are important in
getting the packet into the transmit FIFO and hence available for transmission. The transmit
packet could underrun after all data bytes have been written if too much time elapses before the
pad bytes are written.

Issuing a TxDone Command

The TxDone command is used when it is inefficient for the driver to pad the final write to the
transmit FIFO. This might occur when the driver is using a bus master transfer to move the last
fragment of a frame, and it is desired to write the fragment length as specified from upper layers of
software directly into the MasterLen register.

When TxDone is used, the total number of frame bytes written to the FIFO must exactly match
the frame length specified in the frame start header. After the last write operation to the FIFO, the
driver issues TxDone to inform the adapter logic that the frame is complete.

Padding to Minimum Frame Length
The adapter automatically appends the appropriate number of arbitrary data bytes to the end of the
frame’s data field to pad the frame to 60 bytes in length. The frame length value written as part of
the frame start header does not reflect the padded frame length, but rather the number of bytes
supplied by the driver to the adapter.

Initiating Frame Transmission
The adapter initiates frame transmission as soon as either the entire frame is resident on the
adapter or the number of bytes that are resident is greater than the value in TxStartThresh.

1. This example does not represent a particularly efficient way to move this 61-byte packet into the FIFO. A more efficient method would
be to move the FSH and packet data in 17 dword write instructions: one dword for the FSH and 16 dwords for the packet data plus pad
bytes.

Adapter Operation 3-13

Frame Transmission
Transmission Completion
As soon as the adapter has completed its attempt(s) to transmit a frame, it can post the frame’s
transmit status. Status is not posted unless either an error occurred during frame transmission or
the txIndicate bit in the frame start header was set.

Assuming that txIndicate for the frame is set and the interrupt and indication masks are
appropriately configured, then the adapter generates an interrupt on the host’s bus.

The host’s initial reaction to an interrupt should be to read the IntStatus register to determine the
cause of the interrupt. The txComplete bit in IntStatus is set.

Once the device driver has determined that the adapter has completed its attempt to transmit a
frame, it may examine TxStatus to determine the outcome of the transmission.

Updating the Status
When the device driver has checked the outcome of a transmission in TxStatus, writing an
arbitrary value to TxStatus causes TxStatus to advance to the results of the next transmit frame,
if one exists.

Multiple Transmit Completions
If more than one frame has pending transmit status, txComplete remains set after the write to
TxStatus, until the status of all completed transmissions has been read. If there are no more
frames that have completed transmission, then txComplete is cleared and the other bits in
TxStatus are undefined.

After servicing a txComplete interrupt and writing to TxStatus, the driver should test to see
whether txComplete remains asserted. If txComplete is not asserted, then the driver should return
from the interrupt service routine. If, however, txComplete is set, then the driver should read the
TxStatus register for the status of the next completed transmission.

Frame Transmission Errors
Although TxStatus is only of interest to the driver when txComplete indications are required, an
exception to this is created when transmission errors occur. In this situation, a txComplete
indication is always issued and transmit processes are stopped. When the host responds to the
indication, it checks TxStatus for the cause of the error. Status for previous, successful transmit
frames (that had the txIndicate bit set) may need to be read first to bring the error frame’s status to
the top of the TxStatus queue.

When a transmission error occurs, the driver must reenable the transmitter before subsequent
transmissions can proceed. Some transmission errors may require the driver to reset the transmit
logic to recover from the error.

3-14 Adapter Operation

Frame Reception
Optimized Transmit Operations

Early Transmission Start

The adapter can be enabled to begin transmission of a frame onto the network media prior to the
transfer of the entire frame into the adapter’s transmit FIFO. This is accomplished via
TxStartThresh.

TxStartThresh specifies the number of bytes of the transmit frame that must reside on the adapter
before it can commence with the transmission of the frame. The start of transmission may be
delayed by other queued transmissions or by delays in gaining media access.

If this register is set to a value that is greater than the maximum allowed frame length, then the
early transmit feature is disabled and the entire transmit frame must reside on the adapter before
the adapter will begin to transmit it.

The value for this register must be carefully chosen to optimize performance. If set too low,
system latencies or bandwidth limitations may cause the adapter to underrun the network during
transmission, causing a partial (bad) frame to be transmitted. (The frame will have a bad CRC
appended, guaranteeing its rejection by receiving stations.) If set too high, unnecessary delays are
incurred before the start of transmission.

The adapter generates an indication of an underrun via the txUnderrun bit in TxStatus. A driver
responds to a txUnderrun error by first waiting for any transmission in progress to finish by
polling on the txInProg bit in MediaStatus. Next, the driver should reset the transmit process,
including any active bus master download, using TxReset. The frame that experienced the
underrun can then be resubmitted to the adapter for transmission.

When a txUnderrun indication does occur, the driver should increase the value in TxStartThresh.
Further txUnderrun indications should cause the driver to continue to increase TxStartThresh. If
TxStartThresh is eventually greater than the maximum allowable frame length, then the early
transmit start feature is disabled.

Frame Reception
This section contains an overview of the frame reception process.

Frame Reception Model
The frame reception mechanism is modeled as a logical FIFO. Data to be received is transferred
into the FIFO by the network interface, and removed from the FIFO by the system interface.

The frame data placed in the FIFO consists of the Destination Address field through the
information field. The adapter normally strips the FCS automatically, although it is an option to
disable this feature, causing the adapter to supply the FCS along with the frame data.

Receive data is moved out of the FIFO using PIO or bus master transfers. The methods used to
upload the data are transparent to the FIFO.

The adapter receives all frames that meet the filtering criteria established by bits in RxFilter and
by the address stored in StationAddress.

Adapter Operation 3-15

Frame Reception
Top Frame

The concept of the “top receive frame” must be understood before any explanation of receive
operations. The top frame is the oldest frame in the receive FIFO, and hence the frame for which
status is available in RxStatus. The top frame can be either a frame that is currently being
received off the network media or one that has already been completely received.

Normal Frame Reception
In the nonoptimized condition, the driver is alerted to the presence of a receive frame by an
interrupt on the host’s bus. The rxComplete bit in IntStatus indicates to the driver that an entire
frame has been received and is available in the receive FIFO. The received frame is available for
examination upon receipt of the rxComplete interrupt.

Receive Data Reads
The receive frame data is removed from the receive FIFO using combinations of two data transfer
modes available on the adapter: programmed I/O and bus master.

Programmed I/O

The first method is through I/O reads of the RxData register. RxData is a 32-bit window into the
adapter’s receive FIFO. Sequential reads of bytes, words, and double words are allowed on any
combination of contiguous byte lanes.

Prior to reading data from RxData, a driver must determine that there are bytes available to be
read in the receive FIFO. This is done by checking the rxBytes field in the RxStatus register.

In general, it is illegal to read bytes from RxData beyond the last byte of the top frame. An
important exception is to read extra bytes (up to three) within the last double word of the frame.
This allows an entire frame to be read with 32-bit I/O cycles.

Bus Master

In this second method, the host writes the address of a fragment buffer into the MasterAddress
register, and the byte length of the buffer into the MasterLen register (the start address may have
any byte alignment). The adapter’s StartDma command is then issued to cause the adapter to
perform the bus master transfer.

Unlike PIO, the adapter paces the data transfers such that no receive FIFO underrun occurs during
bus master uploads. It is not necessary to check the value of rxBytes before a bus master download
operation is started.

When the bus master transfer has been completed, the adapter sets the masterUpload bit in the
MasterStatus register. The adapter can also be programmed to generate an interrupt upon
completion of a bus master upload operation.

While a bus master upload operation is in progress, it is an error to read from the RxData register,
as this would remove data from the uploaded receive frame at unpredictable places. It is also
illegal to issue an RxDiscard command while a bus master operation is in progress. Also, the
values in rxBytes are unreliable during bus master upload operations.

3-16 Adapter Operation

Frame Reception
RxStatus and RxError

Associated with the top receive frame is information related to the condition of the received frame
and the number of bytes of the top frame that remain in the receive FIFO. This information is
available via RxStatus and RxError.

RxStatus provides status information for receive frames and the number of bytes remaining in
the FIFO for receive frames. Receive overruns, framing errors, CRC errors, and the oversized and
runt frame conditions are the error conditions reported in RxError.

The length value returned by RxStatus represents the number of valid data bytes that remain to
be transferred from the FIFO. Data bytes beyond the end of the frame are undefined and in some
cases are illegal to read.

Discarding the Top Frame

Issuing the RxDiscard command causes the adapter to make the next receive frame the top
frame. Until RxDiscard is issued, the status and data of the subsequent frame are unavailable to
the host. Once RxDiscard is issued, the status of the top frame are discarded and cannot be
recovered.

Queued Receives

If the driver is unable to keep up with the adapter’s rate of frame reception, receive frames are
queued up within the adapter’s on-board receive FIFO.

If one or more received frames are queued on the adapter when RxDiscard is issued by the
driver, an rxComplete indication occurs, informing the driver that the receive FIFO contains a new
valid receive frame.

Receive Frame Size Limits

The adapter truncates any received frame to a length of 1,792 or 6,144 bytes, depending upon the
value programmed into the allowLargePackets bit in MacControl.

Also, depending upon the value in allowLargePackets, the adapter generates an oversizeFrame
error for receive frames greater than 1,518 bytes or 4,494 bytes, including the FCS field.

Optimized Frame Reception

Early Receive Indications

A method is available for early indications of received frames. This involves setting a threshold
relative to the start of a frame.

RxEarlyThresh is used to program an indication threshold relative to the start of the incoming
frame. The first byte of the destination address is considered to be byte 1.

RxEarlyThresh is set using the SetRxEarlyThresh command. The current threshold setting
can be read in the RxEarlyThresh register.

Adapter Operation 3-17

Frame Reception
As soon as the number of bytes that have been received is greater than the value in
RxEarlyThresh, the adapter generates an interrupt to the host (assuming the rxEarly indication
and interrupt bits are not masked). The rxEarly indication only occurs when the frame being
received is the top frame. In other words, the rxEarly indication only occurs if the frame being
received can be transferred by the host during reception. The RxEarlyThresh mechanism causes
one rxEarly indication per frame unless it is retriggered.

An rxEarly indication occurs whenever the RxEarlyThresh threshold has been exceeded
and the frame being received is the top frame. These two conditions can be met in either order. In
other words, it is reasonable to expect that issuing the RxDiscard command may cause an
rxEarly indication by making a frame that is in the process of being received the top frame.

The driver can program any value into RxEarlyThresh, but setting RxEarlyThresh to less than 8
causes the adapter to interpret the value as 8, so as to allow the adapter to perform destination
address filtering before generating an rxEarly indication.

RxEarlyThresh also involves the concept of frame “visibility.” The value programmed into
RxEarlyThresh determines how many bytes of a frame must be received before information about the
frame is made visible in RxStatus. Frames become visible when min (60, RxEarlyThresh) bytes are
received (that is, frames become visible after 60 bytes or when the number of bytes set in
RxEarlyThresh has been received).

For bus master transfers, the value in RxEarlyThresh also determines how many bytes of a frame
must be received before upload transfers for the frame are allowed to begin.

Setting RxEarlyThresh to a value that is too low may cause the host to process an excessive
number of collision fragments. Setting RxEarlyThresh to a value that is too high introduces
unnecessary delays in the system’s receive response sequence.

If RxEarlyThresh is set to a value that is greater than the length of the received frame, then an
rxComplete interrupt occurs at the completion of frame reception rather than an rxEarly interrupt.

If the host system is particularly slow in responding to an rxEarly interrupt, then it is entirely
likely that the frame will have been completely received by the time the driver examines the
adapter. In this case, rxEarly is overridden by rxComplete. The rxEarly and rxComplete
interrupts are mutually exclusive. Because rxEarly “goes away” when rxComplete becomes set,
rxComplete should only be disabled if rxEarly is also disabled. This prevents spurious interrupts.

rxEarly is meant to be usable as a retriggerable interrupt. In other words, it is legal for the driver to
respond to an rxEarly interrupt because of a value set in RxEarlyThresh and then reprogram
RxEarlyThresh to a larger value so that a subsequent interrupt is generated within the same
receive frame. If a new value is set in RxEarlyThresh while a frame is being received from the
medium, then an rxEarly indication is generated as soon as the rxEarly threshold is crossed, or it
is generated immediately if the threshold has already been crossed.

Discarding a Frame During Reception

By issuing the RxDiscard command, the driver can discard a frame while it is being received.
A frame discarded in this way does not generate an rxComplete interrupt.

3-18 Adapter Operation

Interrupts and Indications
Interrupts and Indications
Interrupts are used to assert a signal to the host that asynchronous activities deserve the host’s
attention, whereas indications are read from a status register.

Interrupts Versus Indications
There is an important distinction between interrupts and indications. An interrupt results in the
assertion of the interrupt signal on the host bus. An indication is merely a bit set in the IntStatus
register that can be read by the driver. All of the sources of interrupts on the adapter can be used as
indications or as indications and interrupts.

Determining the Cause of an Interrupt
When responding to an interrupt, the host reads IntStatus to determine the cause of the interrupt.

IntStatus

Seven bits in this register define the source of the interrupt. The least significant bit of IntStatus,
interruptLatch, is always set whenever any of the interrupts are asserted. This prevents spurious
interrupts on the host bus. The interruptLatch interrupt must be explicitly acknowledged using the
AcknowledgeInterrupt command.

Interrupt Acknowledgment
The host acknowledges interrupts by carrying out interrupt-specific actions. These actions are
as follows:

interruptLatch acknowledged by AcknowledgeInterrupt command

txComplete acknowledged by writing to TxStatus

rxComplete acknowledged by RxDiscard command

rxEarly acknowledged by AcknowledgeInterrupt command

intRequested acknowledged by AcknowledgeInterrupt command

hostError acknowledged by issuing the appropriate resets

updateStats acknowledged by reading one or more statistics registers

txAvailable acknowledged by AcknowledgeInterrupt command

otherInt acknowledged by clearing interrupt sources in OtherInt

transferInt acknowledged by clearing interrupt sources in MasterStatus

Interrupt and Indication Enable Mechanisms
Figure 3-1 illustrates the relationship between interrupts, indications, and their respective
enable mechanisms.

Adapter Operation 3-19

Interrupts and Indications
Figure 3-1. Interrupt and Indication Enable Mechanisms

An interrupt is an asynchronous indication that an event has taken place on the adapter that
requires the attention of the host system. The host, however, may not respond quickly, or may not
respond at all to certain events. The architecture provides a flexible scheme for allowing each type
of event to be assigned the level of urgency sought by the host.

The shaded boxes in the figure above represent enable mechanisms. The white box is the
IntStatus register, which the host uses to view the various indication bits.

Enable mechanisms have an immediate effect on indications and interrupts. In other words, if a
particular interrupt is pending and the host clears its enable bit in IndicationEnable, the
indication, though still pending, would appear as a zero in IntStatus and would no longer
contribute to the assertion of the interrupt line on the host bus. Conversely, if the pending
indication were to be enabled (by setting its enable bit), the indication would become set in the
appropriate registers, and the interrupt signal on the host bus would be asserted by the adapter.

Masking prevents an interrupt or indication from acknowledging the interrupting event.

Before exiting the interrupt service routine, the host should recheck the IntStatus register to
determine whether any further asynchronous events have occurred.

intR
equested

rxE
arly

rxC
om

plete

txC
om

plete

IndicationEnable

IntStatus

InterruptEnable

Host Interrupt Request

updateStats

txA
vailable

hostE
rror

interruptL
atch

otherInt

transferInt

3-20 Adapter Operation

Statistics
Statistics
The architecture includes specifications for 12 statistics counters of various widths. The gathering
of statistics is enabled by issuing the StatisticsEnable command. When enabled, the
statistics counters advance as the corresponding events occur. No host intervention is required to
facilitate this counting.

Reading a statistics register clears it. It is not necessary to disable statistics collection while
reading the statistics registers. It is legal to do so, but disabling statistics collection may result in
missed statistical events.

Whenever any of the statistics registers reaches the half-way point of its count, it generates an
updateStatistics interrupt. Reading a statistics register clears it.

Writing a value to a statistics register adds that value to the register. This is useful in diagnostics
and IC production tests.

Reading all of the statistics will acknowledge the updateStatistics interrupt.

Transmit Statistics
FramesXmittedOk The number of frames of all types transmitted without

errors. Loss of carrier and absence of an expected SQE
are not considered to be errors by this statistic.

BytesXmittedOk A byte total for all frames transmitted without error.

FramesDeferred If the transmission of a frame had to defer to network
traffic, the event is recorded in this statistic. A single
frame may defer more than once as a result of
collisions; each deferral would be counted.

SingleCollisionFrames Frames that are transmitted without errors after one and
only one collision (including late collisions) are
counted by this register.

MultipleCollisions All frames transmitted without error after experiencing
from 2 through 15 collisions (including late collisions)
are counted here.

LateCollisions Every occurrence of a late collision (there could be
more that one per frame transmitted) is counted by this
statistic.

CarrierLost Frames that were transmitted without error but
experienced a loss of carrier are counted by this
statistic.

SqeErrors If the adapter is configured to expect an SQE pulse after
each transmission and did not receive such a pulse, the
event is counted here.

Adapter Operation 3-21

Statistics
Receive Statistics
FramesRcvdOk Frames of all types that are received without error are

counted here.

BytesRcvdOk A byte total for all frames received without error.
A frame’s bytes are included in this count if the frame is
received without errors and the frame is completely
moved into the receive FIFO before RxDiscard is
issued.

RxOverruns This statistic is a count of rxOverrun errors. Only frames
that are actually seen as overruns by the host are included
in this count. Frames that are completely ignored by the
adapter because of a full receive FIFO are not included.

BadSSD A count of frames received with a bad start-of-stream
delimiter. This statistic applies only to 100BASE-TX or
100BASE-FX operation.

Chapter 4
Register Listings

I/O Model
PCI/EISA bus master adapters present and map a set of registers to the host CPU I/O space.
Since there are far more registers than is advisable to I/O map directly in DOS systems, the
registers are broken into several groups that are made available to the host through 32 bytes worth
of I/O space.

The lower 16 bytes of the I/O space look essentially like the PIO redundant model used in
previous 3Com adapters. At any given time, one of eight possible register banks (windows) is
visible in this space.

The upper 16 bytes are a fixed window into the Window 1 register set.

PCI and EISA bus master adapters share many of the same characteristics. In this manual,
differences are clearly indicated as “PCI Only” or “EISA Only.” If there is no such indication, the
information is valid for either type of adapter.

4-2 Register Listings

I/O Model
PCI/EISA bus master adapter register windows are shown below.

byte 3 byte 2 byte 1 byte 0 Offset Window

IntStatus/Command MasterStatus c

TxStatus Timer RxStatus 8 7

MasterLen TBD RxError 4

MasterAddress 0

IntStatus/Command BytesXmittedOk c

BytesRcvdOk UpperFramesOk FramesDeferred 8 6

FramesRcvdOk FramesXmittedOk RxOverruns LateCollisions 4

SingleCollFrames MultipleColl’s SqeErrors CarrierLost 0

IntStatus/Command IndicationEnable c

InterruptEnable RxFilter 8 5

RxEarlyThresh Reserved 4

TxAvailableThresh TxStartThresh 0

IntStatus/Command Reserved BadSSD c

MediaStatus PhysicalMgmt 8 4

NetworkDiagnostic FifoDiagnostic 4

VcoDiagnostic Reserved 2 2

IntStatus/Command TxFree*

* TxFree in Window 3 is for diagnostic purposes only22
and should not be used by drivers.

c

RxFree ResetOptions 8 3

MacControl RomControl (EISA) OtherInt 4

InternalConfig 0

IntStatus/Command c

StationMask (High) StationMask (Mid) 8 2

StationMask (Low) StationAddress (High) 4

StationAddress (Mid) StationAddress (Low) 0

IntStatus/Command TxFree c

TxStatus Timer RxStatus 8 1

Reserved Reserved RxError 4

TxData/RxData 0

IntStatus/Command EepromData c

EepromCommand ResourceConfig (EISA) 8 0

AddressConfig (EISA) ConfigControl (EISA) 4

ProductId (EISA) ManufacturerID (EISA) 0

Register Listings 4-3

Register Definitions
Register Definitions
This section gives precise definitions of the PCI bus master adapter registers. The figure below
provides a legend for interpreting the register bit map diagrams.

Figure 4-1. Register Bit Map Legend

AddressConfig (EISA Only)
Synopsis Provides access to the BIOS ROM configuration information and a

copy of the xcvrSelect field from the InternalConfig register.

Type Read/Write

Size 16 bits

Window 0

Offset 6

Definition

AddressConfig provides access to the BIOS ROM configuration information.

The romBase field of AddressConfig is loaded with the value from the corresponding bits in
EEPROM word 8, after system reset. See the section “EEPROM Data Format” on page 5-8 for the
default values.

The register format is as follows:

romBase [11:8]: This field defines the base address of the BIOS ROM,
according to the following ROM Configuration Table (the romSize
field is located in the InternalConfig register).

31 08 7 630 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 5 4 3 2 19

00 00 00 00 00 00 00 00 00 0

Most Significant Word Least Significant Word

Most Significant Byte Least Significant Byte

These bits disregard data written
to them, and return zeroes when read.

Active register bits

Drivers should write zeroes to these bits
to ensure compatibility with future
hardware.

08 7 615 14 13 12 11 10 5 4 3 2 19

0 0 0 0 0 00 0 0

4-4 Register Listings

Register Definitions
The romSize for 16, 32, and 64 K has the same romBase decode, since only 16 K is mapped at a
time. The active 16 K is defined by the romPage field within the RomControl register.

xcvrSelect [15:13]: This read-only field is a copy of the corresponding read/write
bits in the InternalConfig register, reflecting the selected transceiver
type. Refer to the InternalConfig register for their definition.

Table 4-1. ROM Configuration Table

romSize romBase Address Window

00 (8 K) 0000 Boot ROM Disabled

0001 0xc2000 to 0xc3fff

0010 0xc4000 to 0xc5fff

0011 0xc6000 to 0xc7fff

0100 0xc8000 to 0xc9fff

0101 0xca000 to 0xcbfff

0110 0xcc000 to 0xcdfff

0111 0xce000 to 0xcffff

1000 0xd0000 to 0xd1fff

1001 0xd2000 to 0xd3fff

1010 0xd4000 to 0xd5fff

1011 0xd6000 to 0xd7fff

1100 0xd8000 to 0xd9fff

1101 0xda000 to 0xdbfff

1110 0xdc000 to 0xddfff

1111 0xde000 to 0xdffff

01 (16 K) 0000 Boot ROM Disabled

or 0001 0xc0000 to 0xc3fff

10 (32 K) 001x 0xc4000 to 0xc7fff

or 010x 0xc8000 to 0xcbfff

11 (64 K) 011x 0xcc000 to 0xcffff

100x 0xd0000 to 0xd3fff

101x 0xd4000 to 0xd7fff

110x 0xd8000 to 0xdbfff

111x 0xdc000 to 0xdffff

Register Listings 4-5

Register Definitions
BadSSD
Synopsis Counts the number of receive frames that have a corrupted start-of-

stream delimiter.

Type Read/Write

Size 8 bits

Window 4

Offset c

Definition

This statistic counts the number of packets that are received with a bad start-of-stream delimiter.
This statistic is only valid for operating in 100BASE-TX or 100BASE-FX operation.

This is an 8-bit counter that wraps around to zero after reaching 0xff. An updateStatistics interrupt
occurs after the counter has counted through 0x80. Reading this statistic clears it. Therefore, this
statistic must be read as an 8-bit quantity. The StatisticsEnable command must have been
issued for this register to count events.

BytesRcvdOk
Synopsis Counts the total number of bytes for frames that are received without

error.

Type Read/Write

Size 16 bits

Window 6

Offset a

Definition

This statistic counts the number of bytes that are received successfully. For the purposes of this
statistic, a successfully received frame is one that is completely moved into the receive FIFO
before being discarded by RxDiscard.

This is a 16-bit counter and wraps around to zero after reaching 0xffff. An updateStatistics
interrupt occurs after the counter has counted through 0x8000. Reading this statistic clears it.
Therefore, this statistic must be read as a 16-bit quantity. The StatisticsEnable command
must have been issued for this register to count events.

4-6 Register Listings

Register Definitions
BytesXmittedOk
Synopsis Counts the total number of bytes for frames that are transmitted

without error.

Type Read/Write

Size 16 bits

Window 6

Offset c

Definition

This statistic counts the number of bytes included in frames that are transmitted with no errors
reported in TxStatus.

This is a 16-bit counter. It wraps around to zero after reaching 0xffff. An updateStatistics interrupt
occurs after the counter has counted through 0x8000. Reading this statistic clears it. Therefore,
this statistic must be read as a 16-bit quantity. The StatisticsEnable command must have
been issued for this register to count events.

CarrierLost
Synopsis Counts the number of frames experiencing loss of carrier during

transmission.

Type Read/Write

Size 8 bits

Window 6

Offset 0

Definition

This statistic register counts the number of frames that experience at least one loss of carrier
during transmission.

The following bit format is defined for this register:

Carrier sense is not monitored for the purpose of this statistic until after the preamble and start-of-
frame delimiter. This is a 4-bit counter that sticks at 0x0f. An updateStats indication occurs after
the counter has counted through 0x08.

Reading this statistic clears it. The StatisticsEnable command must have been issued for
this register to count events.

7 6 5 4 3 2 1 0

0 0 0 0

Register Listings 4-7

Register Definitions
Command
Synopsis Allows for commands to be issued to the adapter.

Type Write only

Size 16 bits

Window All

Offset e

Definition

The Command register is used to issue commands of various types to the adapter. Commands
may or may not contain parameters. Most commands execute in less time than it takes for the host
system to perform a subsequent read or write operation and are considered able to execute in zero
time. Those commands that take a nonzero amount of time to execute are so identified in their
respective definitions.

All commands must be issued as a single write to Command. If the command being issued has
Xs occupying bits 7 through 0, then a write to bits 15 through 8 only (offset 0xf) may be used.
If any of the least significant eight bits of the command word are defined, then a single 16-bit
write must be used. IntStatus (read only) is colocated with Command.

Command Register Format

The figure below describes the Command register format.

A sample command is as follows:

GlobalReset (0000 0000 •••• ••••) *

In the command definitions that follow, the 16-bit value in parentheses following the command
name is the value that the adapter expects to be written to Command to carry out the desired
operation. The most-significant five bits make up the command code, and the remaining bits are
the parameter. Bit positions occupied by “X” indicate that the value for the corresponding bit does
not matter. However, for future hardware compatibility it is recommended that zeroes be written
to these positions. Bit positions occupied by “•” indicate those bit positions that are to be filled by
the parameter associated with the command.

An asterisk (*) following commands indicates that those commands may not complete
execution before the next command can be issued to the adapter. For these commands the host
must ensure that the commandInProgress bit in IntStatus is a zero before taking any further
action with the adapter.

08 7 615 14

Command

12 11 10 5 4 3 2 19

Parametercode

13

4-8 Register Listings

Register Definitions
Supported Commands

The following commands are supported:

GlobalReset (0000 0000 •••• ••••) *

This command causes various parts of the adapter to be reset, depending upon the value passed in
the 8-bit parameter. When the parameter is cleared, GlobalReset has the same effect as a power-
up reset except that the adapter’s configuration is unaffected. Setting individual bits in the parameter
causes the reset to be masked to specific modules, as described in the following paragraphs.

tpAuiReset [0]: When set, masks reset to the 10BASE-T and 10BASE5 transceivers.

endecReset [1]: When set, masks reset to the internal Ethernet encoder/decoder.

networkReset [2]: When set, masks reset to the network interface logic, including
the CSMA/CD core.

fifoReset [3]: When set, masks reset to the FIFO control logic.

aismReset [4]: When set, masks reset to the autoinitialize state machine logic.
If this bit is not set, the EEPROM data is reloaded.

hostReset [5]: When set, masks reset to the bus interface logic. If hostReset is
not set, all registers related to the host interface (IntStatus,
InterruptEnable, and IndicationEnable, but not the configuration
registers) will be cleared.

dmaReset [6]: When set, masks reset to the bus master logic, including
MasterStatus, MasterAddress, and MasterLen.

vcoReset [7]: When set, masks reset to the on-board 10 Mbps VCO.

Except for the adapter configuration aspects that are handled by the Power-on Self-Test (POST)
routines executed by the host, the adapter must be reinitialized after a GlobalReset unless
aismReset is set.

The registers in the PCI configuration space are not reset by the GlobalReset command,
except those registers that are aliased from registers in the I/O space—InternalConfig,
ResetOptions, and EepromData.

Because the adapter’s serial EEPROM may need to be read as part of the reset process, this
operation can take as long as 1 ms to complete. The commandInProgress bit in IntStatus must be
polled to ensure that the command has been completed.

SelectRegisterWindow (0000 1000 0000 0•••)

This command causes the specified register bank to become visible in the 16-byte register window.

Register bank zero is the default bank upon system reset.

EnableDcConverter (0001 0XXX XXXX XXXX)

This command enables (applies power to) the DC-DC converter that drives an on-board 10BASE2
transceiver. This command affects only 10BASE2 operation and should be used only when an
adapter is so configured.

Register Listings 4-9

Register Definitions
After the adapter is powered up or when it experiences a hardware reset, this command must be
issued before the 10BASE2 port can be used to transmit or receive frames. The driver should wait
at least 800 µs after issuing this command before attempting to transmit or receive frames.
The adapter’s Timer register can be used to time this.

RxDisable (0001 1XXX XXXX XXXX)

Issuing this command prevents the adapter from receiving any further frames. Any frame that is in
the process of being received when this command is issued is not affected. RxDisable has no
effect on the contents of the receive FIFO or on any receive status or statistics.

RxEnable (0010 0XXX XXXX XXXX)

This command enables the adapter to receive frames that meet the address filtering requirements
currently in use. If this command is issued while a frame is currently active on the network, the
adapter begins reception at the beginning of the next frame.

The adapter comes out of reset with the receiver disabled. RxEnable must be issued to allow the
adapter to receive frames. Either RxDisable or RxReset can be used to disable receive
operations.

RxReset (0010 1000 0•00 ••••) *

This command resets the receive logic throughout the adapter.

The 5-bit parameter acts as a bit-mask, masking the reset to various portions of the receive
logic, as follows:

tpAuiRxReset [0]: When set, masks reset to the 10BASE-T and 10BASE5
transceiver receive logic.

endecRxReset [1]: When set, masks reset to the internal Ethernet encoder/decoder
receive logic.

networkRxReset [2]: When set, masks reset to the network interface receive logic,
including the CSMA/CD core. If not set, the receiver is disabled, and
RxFilter is cleared.

fifoRxReset [3]: When set, masks reset to the receive FIFO control logic. If this bit
is not set, the receive FIFO contents are flushed and RxEarlyThresh
is set to its reset (disabled) state.

dmaRxReset [6]: When set, masks reset to the bus master logic, including
MasterStatus, MasterAddress, and MasterLen.

This command should not be used after initialization except to recover from receive errors such as
a receive FIFO underrun.

TxDone (0011 1XXX XXXX XXXX)*

Issuing this command signals to the adapter that the data which has been downloaded to the
transmit FIFO is a complete frame. Issuing TxDone has the effect of “flushing” any remaining
data in host interface registers into the FIFO.

Refer to the section “Frame Transmission” on page 3-10 for information on when to use TxDone.

4-10 Register Listings

Register Definitions
RxDiscard (0100 0XXX XXXX XXXX) *

This command causes the top receive frame to be discarded. An RxDiscard must be issued for
every receive frame. If the top frame has been completely read out of the receive FIFO, then
RxDiscard causes the RxStatus register to reflect the status of the next frame in sequence.
If the top frame is still being received or has been only partially read, RxDiscard causes the
remainder of the frame to be discarded and the data and status of the next frame to become
available via RxData and RxStatus, respectively.

TxEnable (0100 1XXX XXXX XXXX)

This command enables the adapter to transmit frames. The adapter comes out of reset with the
transmitter disabled. This command must be issued before attempts are made to transmit frames.
The transmitter can be disabled through the use of the TxDisable or TxReset commands or
by a transmitter error such as a transmit FIFO overrun.

TxDisable (0101 0XXX XXXX XXXX)

This command disables the adapter’s transmitter after the completion of the transmission attempt
of any frame currently being transmitted. If additional frames are queued up in the transmit FIFO,
they are not transmitted, nor are they discarded. If the transmitter is again enabled, frames in the
transmit FIFO are transmitted.

TxReset (0101 1000 0•00 ••••) *

This command resets the transmitter logic throughout the adapter. TxReset is required after a
transmit underrun or jabber error.

The low-order bits in the parameter act as a bit-mask, masking the reset to various portions of
the transmit logic, as follows:

tpAuiTxReset [0]: When set, masks reset to the 10BASE-T and AUI (10BASE5)
transceiver transmit logic.

endecTxReset [1]: When set, masks reset to the internal Ethernet encoder/decoder
transmit logic.

networkTxReset [2]: When set, masks reset to the network interface transmit logic,
including the CSMA/CD core. If not set, the transmitter is disabled
and the TxStatus stack is cleared.

fifoTxReset [3]: When set, masks reset to the transmit FIFO control logic. If this
bit is not set, the transmit FIFO is flushed, and TxStartThresh and
TxAvailableThresh are forced to their reset (disabled) state.

dmaTxReset [6]: When set, masks reset to the bus master logic. If this bit is not set,
all bus master logic is reset, including MasterStatus,
MasterAddress, and MasterLen.

Register Listings 4-11

Register Definitions
RequestInterrupt (0110 0XXX XXXX XXXX)

This command sets the intRequested bit in IntStatus (if so enabled) and causes an interrupt to the
host (also if so enabled).

AcknowledgeInterrupt (0110 1X•• X••X •XX•)

The AcknowledgeInterrupt command resets selected interrupt indications. When issued,
the indications that correspond to bits set to one in the parameter field are cleared.

Several of the interrupt types must be acknowledged by means that are unique to the interrupt
type. These means are defined in the IntStatus register definition.

Attempting to acknowledge an indication that is not active has no effect.

The following bits are defined for this command:

interruptLatchAck Bit 0

txAvailableAck Bit 3

rxEarlyAck Bit 5

intRequestedAck Bit 6

SetInterruptEnable (0111 0X•• •••• •••X)

The parameter of this command becomes the value held in the InterruptEnable register.
Each bit corresponds to an individual interrupt source. Refer to the IntStatus register definition
for the map of the interrupt bits. Interrupts disabled via this command do not cause an interrupt to
the host but may still be set in IntStatus. The InterruptEnable register is cleared upon adapter
reset. Bit 0 of this register does not matter because the interruptLatch bit is always enabled.

SetIndicationEnable (0111 1X•• •••• •••X)

The parameter of this command becomes the value held in the IndicationEnable register.
Each bit corresponds to an individual indication source. Refer to the IntStatus register definition
for the map of the indication bits. Indications disabled via this command do not cause an interrupt
to the host, nor are they visible in IntStatus. The IndicationEnable register is cleared upon
system reset. Bit 0 of this register is not important because the interruptLatch bit is always
enabled.

SetRxFilter (1000 0000 0000 ••••)

This command is used to define the value of the RxFilter register. The four active parameter bits
in this command may be used in any combination and are defined as follows:

Parameter Addresses Enabled

XXX1 Individual (must match station address)

XX1X All multicast (including broadcast)

X1XX Broadcast

1XXX All (promiscuous)

4-12 Register Listings

Register Definitions
The effect of each bit is additive. That is, a 00112 pattern would enable individually addressed
frames that match the adapter’s StationAddress as well as all multicast frames. Setting bit 3
(promiscuous) would override bits 2 through 0.

SetRxEarlyThresh (1000 1••• •••• ••••)

This command is used to set RxEarlyThresh to the desired value. The parameter is written into
bits [12:2] of RxEarlyThresh, and bits [1:0] are cleared.

When the number of bytes received for a frame is greater than the value stored in
RxEarlyThresh, the rxEarly indication is asserted.

For more information on the operation of rxEarly interrupts, see the RxEarlyThresh register
description.

SetTxAvailableThresh (1001 0••• •••• ••••)

This command is used to set TxAvailableThresh to the desired value. The parameter is written
into bits [12:2] of TxAvailableThresh, and bits [1:0] are cleared.

The txAvailable indication is asserted when the number of bytes of free space in the transmit
FIFO is greater than the value of TxAvailableThresh.

SetTxStartThresh (1001 1••• •••• ••••)

This command is used to establish the value of TxStartThresh. The parameter is written into bits
[12:2] of TxStartThresh, and bits [1:0] are cleared.

The adapter begins transmission attempts for a frame as soon as the number of bytes downloaded
to the transmit FIFO is greater than the value in TxStartThresh. If the frame being transmitted is
shorter than TxStartThresh, then transmit attempts start as soon as the entire frame has been
downloaded.

StartDma (1010 0XXX XXXX XX••)

This command is used to initiate bus master operations (the name is something of a misnomer
for bus master adapters). The parameter specifies the direction of the transfer to be started.

Parameter Value Direction

00 Upload

01 Download

1X Reserved

Register Listings 4-13

Register Definitions
StatisticsEnable (1010 1XXX XXXX XXXX)

This command enables the adapter’s statistics counters. Upon power-up, statistics counting is
disabled. This command must be issued to enable the counting of statistics events.

StatisticsDisable (1011 0XXX XXXX XXXX)

To disable the counting of statists events, use this command. It halts the statistics counters.
Disabling the counters does not alter their values.

DisableDcConverter (1011 1XXX XXXX XXXX)

This command disables the DC-DC converter that drives an on-board 10BASE2 transceiver.
This command affects only 10BASE2 operation and should be used only when an adapter is so
configured.

The driver should wait at least 800 µs after issuing this command before attempting to use an AUI
(10BASE5) interface. The adapter’s Timer register can be used to time this.

Reserved Command Codes

The following command codes are reserved and are ignored by the adapter.

00110 Reserved.

11000 Was SetTxReclaimThresh in PIO-only adapters.

11011 PowerUp command on adapters that support power management.

11100 PowerDownFull command on adapters that support power
management.

11101 PowerAuto command on adapters that support power management.

4-14 Register Listings

Register Definitions
ConfigControl (EISA Only)
Synopsis Provides the EISA Expansion Board Control register (card enable)

function required by the EISA specification as well as providing the
settings of the power-on-reset options.

Type Read/Write

Size 16 bits

Window 0

Offset 4

Definition

The lower byte of ConfigControl provides the Expansion Board Control register function
required in EISA machines. ConfigControl is unconditionally decoded at address 0zC84 for this
purpose. The EISA system BIOS enables the adapter by setting the cardEnable bit in this register.

The upper byte of ConfigControl reflects the setting of the power-on reset options, which specify
the hardware configuration of the adapter. These bits are read-only and are also available in
ResetOptions in Window 3.

The register format is as follows:

cardEnable [0]: When set, the adapter is enabled. When cleared, the adapter is
disabled.

baseT4Available [8]: When set, indicates that a 100BASE-T4 is available on the
adapter through the Media Independent Interface (MII).

baseTXAvailable [9]: When set, indicates that a 100BASE-TX PHY is available on the
adapter.

baseFXAvailable [10]: When set, indicates that a 100BASE-FX PHY is available on the
adapter.

10bTAvailable [11]: When set, indicates that a 10BASE-T encoder/decoder and
transceiver are available on the adapter.

coaxAvailable [12]: When set, indicates that a 10BASE2 coaxial transceiver is
available on the adapter.

auiAvailable [13]: When set, indicates that a 10 Mbps AUI connector is available
on the adapter.

miiConnector [14]: When set, indicates that an MII-based connector is available on
the adapter.

08 7 615 14 13 12 11 10 5 4 3 2 19

0 00 0 00 00

Register Listings 4-15

Register Definitions
EepromCommand
Synopsis Allows commands to be issued to the serial EEPROM controller.

Type Read/Write

Size 16 bits

Window 0

Offset a

Definition

This command provides the host with a method for controlling the adapter’s serial EEPROM.
Individual 16-bit word locations within the EEPROM may be written, read, or erased. Also, the
EEPROM’s WriteEnable, WriteDisable, EraseAll, and WriteAll commands can
be issued.

The following fields within EepromCommand are used:

The bit fields within EepromCommand are defined as follows:

eepromAddress [5:0]: These six read/write bits identify one of the 64 sixteen-bit
words to be the target for the ReadRegister, WriteRegister,
and EraseRegister commands. Bits 5 and 4 are further defined to
identify an individual command among the following group of four
subcommands:

The definition of bits 5 and 4 is valid when eepromOpcode in bits 7
and 6 equals 002.

Subopcode Subcommand

00 WriteDisable (60 µs)

01 WriteAll (11 ms)

10 EraseAll (11 ms)

11 WriteEnable (60 µs)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4-16 Register Listings

Register Definitions
eepromOpcode [7:6]: These two read/write bits specify one of three individual
commands and a single group of four subcommands. The following
table defines the opcodes:

eepromBusy [15]: This read-only bit is set during the execution of EEPROM
commands. Further commands should not be issued to
EepromCommand, nor should data be read from EepromData while
this bit is set.

Two-bit opcodes and 6-bit addresses are written to the least significant eight bits of this register to
cause the adapter to carry out the desired EEPROM command. If data is to written to the
EEPROM, the 16-bit data word must be written to EepromData by the host before the
associated write command is issued. Similarly, if data is to be read from the EEPROM, the read
data is available via EepromData 162 µs after the ReadRegister command has been issued.

A mechanism within the EEPROM automatically disables writes and erasures to prevent
accidental data changes should power be interrupted during a write operation. The EEPROM
disables writes and erasures after any write or erase command has been executed. To write or
erase a series of locations, the host must issue the WriteEnable command before any write or
erase command.

The serial EEPROM can only clear bits to zero during a write command and cannot set individual
bits to ones. Therefore, an EraseRegister or EraseAll command must be issued before
attempts are made to write data to the EEPROM.

The EEPROM is a particularly slow device. It is important that the host wait until the eepromBusy
bit is cleared before issuing a command to EepromCommand.

eepromOpcode Command

00 Write Enable/Disable and
Write/Erase All subcommands

01 WriteRegister (11 ms)

10 ReadRegister (162 µs)

11 EraseRegister (11 ms)

Register Listings 4-17

Register Definitions
A typical write operation would be controlled as follows:

1. Verify eepromBusy is cleared.

2. Issue WriteEnable command. Opcode = 0011 XXXX2

3. Verify eepromBusy is cleared.

4. Issue EraseRegister command. Opcode = 11aa aaaa2

5. Verify eepromBusy is cleared.

6. Issue WriteEnable command. Opcode = 0011 XXXX2

7. Write data pattern to EepromData.

8. Verify eepromBusy is cleared.

9. Issue WriteRegister command. Opcode = 01aa aaaa2

EepromCommand defaults to 0x0000 upon reset.

EepromData
Synopsis Provides data access for the EEPROM.

Type Read/Write

Size 16 bits

Window 0

Offset c

Definition

This register is a 16-bit port for use with the adapter’s serial EEPROM. Data read out of the
EEPROM can be read by the host from EepromData when eepromBusy becomes cleared. Data
to be written to the EEPROM is written to EepromData before the write command is issued to
EepromCommand.

EepromData is cleared after a system reset.

4-18 Register Listings

Register Definitions
FifoDiagnostic
Synopsis Provides diagnostic read access to the frame-buffering (FIFO) logic.

Type Read only

Size 16 bits

Window 4

Offset 4

Definition

The bits in this register provide various indications of transmit and receive FIFO failures.

The following bit format is defined for this register:

txOverrun [10]: This bit is asserted when the transmit FIFO has run out of room
to accept further frame data. The assertion of this bit causes a
hostError interrupt. A TxReset or GlobalReset command is
required to recover from this condition.

rxOverrun [11]: This bit is set when the receive FIFO is full. It is not necessary
for frames to have been discarded for this bit to be set. However,
frames received while this bit is set are discarded. This bit is
informational only.

No specific action by the host (beyond reading and discarding frames
in the receive FIFO) is required. This bit is cleared as soon as the
receive FIFO is no longer full.

rxUnderrun [13]: When asserted, this bit causes a hostError interrupt that requires
either an RxReset or a GlobalReset command to clear.
rxUnderrun occurs when the host reads data out of the receive FIFO
faster than the network can fill it or faster than the FIFO can supply
data to RxData, with the result that the host accidentally reads invalid
data.

receiving [15]: This bit is set whenever the adapter is receiving a frame in the
receive FIFO. No particular action is expected on the part of the host
based on the state of this bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register Listings 4-19

Register Definitions
FramesDeferred
Synopsis Counts the number of transmit frames deferred to network activity.

Type Read/Write

Size 8 bits

Window 6

Offset 8

Definition

This statistic register counts the number of times a transmit frame must defer to network traffic.
A single frame may cause multiple deferrals as a result of collisions and retransmissions.

This is an 8-bit counter and wraps around to zero after reaching 0xFF. An updateStatistics
interrupt occurs after the counter has counted through 0x80. Reading this statistic clears it.
The StatisticsEnabled command must have been issued for this register to count events.

FramesRcvdOk
Synopsis Counts the number of error-free frames received.

Type Read/Write

Size 8 bits

Window 6

Offset 7

Definition

This statistic register counts the number of frames that are received without error. Frames received
with an error are defined as frames in which the rxOverrun, runtFrame, alignmentError,
crcError, or oversizedFrame bit is set in RxError. This is a 10-bit counter and wraps around to
zero after reaching 0x3ff. An updateStatistics indication occurs after the counter counts through
0x200.

The low-order eight bits of this register are visible at this location. The upper two bits are visible
in UpperFramesOk. When FramesRcvdOk is read, the value in the upper two bits of the
register is latched and made visible in UpperFramesOk. This latched value can be read from
UpperFramesOk at any time until FramesRcvdOk is again read. Reading UpperFramesOk has
no effect on the value seen in UpperFramesOk. Refer to the register definition for
UpperFramesOk for its bit layout.

The StatisticsEnable command must have been issued for this register to count events.

4-20 Register Listings

Register Definitions
FramesXmittedOk
Synopsis Counts the number of error-free frames transmitted.

Type Read/Write

Size 8 bits

Window 6

Offset 6

Definition

This statistic register counts the number of frames that are transmitted without error. Error frames are
defined as those for which maxCollisions, txJabber, or txUnderrun is returned in TxStatus.
This is a 10-bit counter and wraps around to zero after reaching 0x3ff. An updateStatistics
indication occurs after the counter counts through 0x200.

The low-order eight bits of this register are visible at this location. The upper two bits are visible
in UpperFramesOk. When FramesXmittedOk is read, the value in the upper two bits of the
register is latched and made visible in UpperFramesOk. This latched value can be read from
UpperFramesOk at any time until FramesXmittedOk is again read. Reading UpperFramesOk
has no effect on the value seen in UpperFramesOk. See the register definition for
UpperFramesOk for its bit layout.

The StatisticsEnable command must have been issued for this register to count events.

IndicationEnable
Synopsis Specifies which bits in IntStatus can become set.

Type Read only

Size 16 bits

Window 5

Offset c

Definition

Each bit set in IndicationEnable enables the corresponding bit to be set in IntStatus.
This register is set using the SetIndicationEnable command. Refer to the Command
register description for more details.

IndicationEnable is cleared upon reset.

The register format is as follows:

08 7 615 14 13 12 11 10 5 4 3 2 19

00 0 0 0 0 0

Register Listings 4-21

Register Definitions
InternalConfig
Synopsis Allows for setting of adapter-specific configuration.

Type Read/Write

Size 32 bits

Window 3

Offset 0

Definition

InternalConfig provides a way to set adapter-specific, non-host-related configuration settings.
The contents of InternalConfig are read from the EEPROM at reset.

The low word of InternalConfig (bits [15:0]) contains hardware configuration information that
should generally not be changed by software.

The high word (bits [31:16]) contains information that may be changed by installation software to
tune the adapter to the system configuration, and a field to select the media port.

InternalConfig contains the value 0102001B hex immediately after reset, but normally it is
overwritten with a value loaded from the EEPROM shortly after reset.

The register format is as follows:

ramSize [2:0]: Specifies the size of the packet buffer SRAM installed on the
adapter. Depending upon the value of ramWidth, as shown below,
some values of ramSize may be invalid.

0: 8 KB
2: 32 KB
3: 64 KB
4: 128 KB

All other combinations: reserved.

ramWidth [3]: This read-only field specifies the width of the packet buffer RAM.
0: Byte-wide
1: Word-wide

ramSpeed [5:4]: Specifies the number of 25 MHz clock periods required for
accesses of the external packet buffer RAM. Fast EtherLink adapters
support only 1-clock period accesses, which correspond to the code
01b. This code is always returned here.

romSize [7:6]: Specifies the size of the BIOS ROM installed on the adapter, as
defined below.

0: 8 KB
1: 16 KB
2: 32 KB
3: 64 KB

31 08 7 630 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 5 4 3 2 19

000000000 0 0 0 0 0 0 00

4-22 Register Listings

Register Definitions
disableBadSsdDet [8]: When set, disables checking for corrupted start-of-stream
delimiters (SSD) when operating in 100BASE-TX or 100BASE-FX
operation.

ramPartition [17:16]: Specifies how the packet buffer RAM should be divided
between the receive FIFO and the transmit FIFO.

0: 5 to 3
1: 3 to 1
2: 1 to 1
3: Reserved

The following shows the valid values of ramPartition for the various
ramSize and ramWidth combinations.

xcvrSelect [22:20]: This read/write field indicates the selected transceiver type:

On a given adapter product, the only legal values for xcvrSelect are
those that have a corresponding bit set in ResetOptions.

After the value of xcvrSelect is changed, drivers should issue both
RxReset and TxReset.

autoSelect [24]: When set, indicates that the driver should ignore the value set in
xcvrSelect and instead auto select the media port at load time. If
autoSelect is clear, the xcvrSelect value is used as is, and the driver
configures the adapter accordingly.

Although this bit is read/write, it should be treated as read-only by
drivers.

ramSize
ramWidth

Byte Word

8 K 1:1, 3:1, 5:3 –

32 K 1:1 –

64 K – 1:1, 3:1

128 K – 1:1

xcvrSelect Value Transceiver Selected

000 10BASE-T

001 10 Mbps AUI (10BASE5)

010 Reserved

011 10BASE2

100 100BASE-TX

101 100BASE-FX

110 MII

111 Reserved

Register Listings 4-23

Register Definitions
InterruptEnable
Synopsis Specifies which bits in IntStatus can generate an interrupt to the host.

Type Read only

Size 16 bits

Window 5

Offset a

Definition

Each bit in InterruptEnable is the interrupt enable bit for the corresponding bit in IntStatus.
Setting a bit in InterruptEnable allows that source to generate an interrupt on the bus.
This register is set using the SetInterruptEnable command. See the Command register
description for more details.

InterruptEnable is cleared upon reset.

The register format is as follows:

08 7 615 14 13 12 11 10 5 4 3 2 19

00 0 0 0 0 0

4-24 Register Listings

Register Definitions
IntStatus
Synopsis Indicates the sources for adapter interrupts, and the number of the

visible register window.

Type Read only

Size 16 bits

Window All

Offset e

Definition

IntStatus is the main status register for the adapter. It indicates the source of interrupts and
indications on the adapter, the completion status of commands issued to the Command register,
and the current register window visible in the lower part of the I/O space.

Bits 1 through 7 are the interrupt-causing sources for the adapter. These bits can be individually
disabled as interrupt sources using the InterruptEnable register, and individually forced to read
as zero in IntStatus using the IndicationEnable register.

IntStatus is cleared by a reset.

The register format is as follows:

interruptLatch [0]: Asserted when the adapter is driving the bus interrupt signal. It is a
logical OR of the interrupt-causing bits after they have been filtered
through the InterruptEnable register. interruptLatch is acknowledged
by issuing the AcknowledgeInterrupt command with the
interruptLatchAck bit set.

hostError [1]: Set when either a transmit overrun or a receive underrun occurs.
A transmit overrun occurs when the host writes data to TxData when
there is no more room for transmit data. A receive underrun occurs
when the host reads data from the receive FIFO when there is no valid
data to be read. This interrupt is acknowledged by resetting the
transmitter or receiver as appropriate.

txComplete [2]: Asserted (1) when a frame whose txIndicate bit is set has been
successfully transmitted or (2) when any frame experiences a
transmission error. This interrupt is acknowledged by writing to
TxStatus to advance the status FIFO.

txAvailable [3]: Set when the amount of space available in the transmit FIFO exceeds
the setting of TxAvailableThresh. txAvailable is acknowledged by
issuing the AcknowledgeInterrupt command with the
txAvailableAck bit set.

08 7 615 14 13 12 11 10 5 4 3 2 19

0 0

Register Listings 4-25

Register Definitions
rxComplete [4]: Set when one or more entire frames have been received into the
receive FIFO. This bit is acknowledged by reading and discarding (using
the RxDiscard command) all of the complete frames in the FIFO.

rxEarly [5]: Set when the number of bytes of the top frame that have been
received is greater than the value of RxEarlyThresh. When the top
frame has been completely received by the adapter, rxEarly is negated
and rxComplete is asserted (assuming the appropriate masks are clear).
rxEarly is acknowledged by issuing the AcknowledgeInterrupt
command with the rxEarlyAck bit set.

intRequested [6]: Set by the execution of a RequestInterrupt command. It is
acknowledged by issuing the AcknowledgeInterrupt command
with the intRequestedAck bit set.

updateStats [7]: Indicates that one or more of the statistics counters is nearing an
overflow condition (typically half of its maximum value). Reading all
of the statistics acknowledges this bit.

A driver should respond to an updateStats interrupt by reading all of the
statistics. This has the side effect of acknowledging (clearing)
updateStats.

transferInt [8]: Indicates that a bus master transfer operation has been completed.
When transferInt is active, the driver should check MasterStatus to
determine which transfer direction (upload or download) caused the
interrupt. This bit is cleared by clearing masterUpload/masterDownload
in MasterStatus.

busMasterInProgress [11]: Indicates that a bus master transfer is in progress. This bit is set
when the StartDma command is issued and cleared when the
transfer is completed.

commandInProgress [12]: Set to indicate that the last command issued is still being
executed by the adapter. It need only be checked after a command is
issued that takes more than one I/O cycle for completion. No new
commands may be issued until commandInProgress is negated.

windowNumber [15:13]: Indicates which set of registers is currently visible in the I/O
space of the adapter. The windowNumber bit is reset after a hardware
reset or a GlobalReset.

4-26 Register Listings

Register Definitions
LateCollisions
Synopsis Returns the number of late collisions during transmission attempts.

Type Read/Write

Size 8 bits

Window 6

Offset 4

Definition

This statistic register counts the number of late collisions. Since every transmission attempt is
monitored, it is possible to count multiple late collisions per transmit frame.

This is an 8-bit counter and wraps around to zero after reaching 0xff. An updateStats indication
occurs after the counter counts through 0x80. Reading this statistic clears it. The
StatisticsEnabled command must have been issued for this register to count events.

MacControl
Synopsis Allows control of parameters related to Media Access Control.

Type Read/Write

Size 16 bits

Window 3

Offset 6

Definition

This register provides for setting of MAC-specific parameters. It is cleared upon reset.

The register format is as follows:

deferExtendEnable [0]: Setting this bit enables the special deference mode, in which the
time the transmitter defers after a successful transmission is extended
to allow other stations collision-free access to the medium. Clearing
deferExtendEnable causes the adapter to use standard 802.3
deference rules (the values are scaled when operating at 100 Mbps).

08 7 615 14 13 12 11 10 5 4 3 2 19

000 000000

Register Listings 4-27

Register Definitions
deferTimerSelect [4:1]: This field is used to select the amount of time, in addition to the
standard Interframe Space (IFS) period, to defer when operating in
the special deference modes.

When deferExtendEnable is clear, the special deference modes are
disabled, and the value of deferTimerSelect is irrelevant.

fullDuplexEnable [5]: Setting this bit configures the adapter to communicate with the hub
in a full-duplex manner. Specifically, it disables transmitter deference to
receive traffic, allowing simultaneous receive and transmit traffic.

Setting fullDuplexEnable has the side effect of disabling CarrierLost
statistics collection, since full-duplex operation requires carrier sense
to be masked to the transmitter. Software must issue a TxReset and
an RxReset after changing the value of this bit.

allowLargePackets [6]: Setting this bit specifies the frame size at which the
oversizedFrame error is generated for receive frames.

The table below gives the minimum frame size at which an
oversizedFrame error will be flagged. The frame size includes the
destination and source address, and type/length field, but does not
include the FCS field.

deferTimerSelect Value Defer Time

0 Standard IFS + 0 bit times

1 Standard IFS + 0 bit times

2 Standard IFS + 32 bit times

3 Standard IFS + 64 bit times

4 Standard IFS + 96 bit times

5 Standard IFS + 128 bit times

6 Standard IFS + 160 bit times

7 Standard IFS + 192 bit times

8 Standard IFS + 224 bit times

9 Standard IFS + 256 bit times

A Standard IFS + 288 bit times

B Standard IFS + 320 bit times

C Standard IFS + 352 bit times

D Standard IFS + 384 bit times

E Standard IFS + 416 bit times

F Standard IFS + 448 bit times

allowLargePackets Value Minimum oversizedFrame Size

0 1,515 bytes

1 4,491 bytes*

* This value was calculated by taking the maximum FDDI frame size,
4,500 bytes, and subtracting bytes for fields that have no Ethernet equivalent.

4-28 Register Listings

Register Definitions
ManufacturerId (EISA Only)
Synopsis Returns the EISA manufacturer’s ID code.

Type Read only

Size 16 bits

Window 0

Offset 0

Definition

This register eturns the 16-bit manufacturer’s code that is hard-wired into the ASIC. The value
programmed into word 7 of the EEPROM generally matches ManufacturerId, but there is no
requirement that this be true.

The value is 0x6d50, which is the compressed, byte-swapped manufacturer’s code assigned to
3Com by the EISA standards body.

MasterAddress
Synopsis Defines the starting address in system memory for a bus master data

transfer.

Type Read/Write

Size 32 bits

Window 7

Offset 0

Definition

MasterAddress is loaded with the starting address in system memory for a fragment bus master
transfer.

The register format is as follows:

For upload operations, MasterAddress is the starting address of the buffer to which the fragment
of receive data will be transferred. For download operations, MasterAddress is the starting
address of the buffer to be transferred to the adapter. MasterAddress is written before the
StartDma command is issued.

When read, MasterAddress returns the current value of the bus master address counter, which
counts up from the original value written to MasterAddress. When a bus master transfer is
complete, the value in MasterAddress is the last byte address of the previous transfer plus 1.
Because of this, successive bus master transfers to or from contiguous system memory buffers can
be performed without reprogramming MasterAddress.

31 08 7 630 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 5 4 3 2 19

Register Listings 4-29

Register Definitions
MasterLen
Synopsis Defines the length of a fragment to be transferred via a bus master

operation.

Type Read/Write

Size 16 bits

Window 7

Offset 6

Definition

MasterLen is loaded with the length of a fragment to be transferred using a bus master operation.

The number of bytes to be transferred is written to MasterLen before the StartDma command
is issued.

The register format is as follows:

When read, MasterLen returns the current value of the bus master length counter, which counts
down from the original value written to MasterLen. As a result, MasterLen can be used to
determine the number of bytes uploaded for the case in which the value written to MasterLen is
greater than the remaining number of bytes for a receive frame. When masterDownload is set in
MasterStatus, MasterLen correctly reflects the number of untransferred bytes.

08 7 615 14 13 12 11 10 5 4 3 2 19

0 00

4-30 Register Listings

Register Definitions
MasterStatus
Synopsis Provides status related to bus master operations.

Type Read/Write

Size 16 bits

Window 7

Offset c

Definition

All bits are set by the adapter and are readable by the software. Some bits can be reset by the
software after they have been set by the adapter. The register format is as follows:

masterInProgress [15]: Indicates that a bus master transfer operation is in progress. This
bit is unaffected by write operations.

masterUpload [14]: Set when an upload is complete, either because the terminal count
was reached or because the end of the receive frame was reached.

When masterUpload is set, a transferInt interrupt is generated in
IntStatus, assuming the proper enable bits are set in InterruptEnable
and IndicationEnable.

masterUpload is acknowledged (cleared) by writing a one to it.

masterDownload [12]: Set when an entire download operation is complete.

When masterDownload is set, a transferInt interrupt is generated in
IntStatus if the proper enable bits are set in InterruptEnable and
IndicationEnable.

This bit is acknowledged (cleared) by writing a one to it.

targetDisc [3]: Indicates that a target disconnect sequence occurred at some
point during a bus master transfer. This bit is informational only, and
need not be cleared for subsequent bus master operations to proceed.

targetRetry [2]: Indicates that a target retry sequence occurred at some point during
a bus master transfer. This bit is informational only, and need not be
cleared for subsequent bus master operations to proceed. This bit is
cleared by writing a one to it.

08 7 615 14 13 12 11 10 5 4 3 2 19

00 0000000

Register Listings 4-31

Register Definitions
targetAbort [1]: Indicates that a target abort sequence occurred on the last bus
master transfer. This bit indicates a fatal error and must be cleared
before subsequent bus master operations can proceed. Since a target
abort can occur at any point in a transfer, the amount of data written
into or read out of the FIFO is indeterminate when this bit is set. A
driver will normally perform a DMA reset (GlobalReset command
with dmaReset unmasked) in response to a target abort. This bit is
cleared by writing a one to it.

masterAbort [0]: Indicates that the last bus master transfer was aborted because of no
response from the addressed slave. This bit must be cleared before a
subsequent transfer can occur. This bit is cleared by writing a one to it.

MediaStatus
Synopsis Allows setting of media-specific parameters and provides media-

specific status.

Type Read/Write

Size 16 bits

Window 4

Offset a

Definition

This register provides for setting media-specific parameters and for reading media-specific status
indications.

The register format is as follows:

dataRate100 [1]: This read-only bit reflects the current operating data rate. When
set, the medium is operating at 100 Mbps. When clear, 10 Mbps is the
data rate.

For the first generation adapters with PCI bus master architecture, the
value of this bit will be determined solely by which media port is
selected (xcvrSelect in InternalConfig).

crcStripDisable [2]: The host asserts this bit when the receive frame’s CRC is to be
passed to the host as part of the data in the FIFO. The state of
crcStripDisable does not affect the adapter’s checking of the frame’s
CRC and its posting of CRC error status. crcStripDisable is cleared by
a system reset.

To avoid confusing the FIFO logic, the value of crcStripDisable
should only be changed when the receiver is disabled and the receive
FIFO is empty.

08 7 615 14 13 12 11 10 5 4 3 2 19

0 00

4-32 Register Listings

Register Definitions
enableSqeStats [3]: This read/write bit must be set by the host to enable the
SqeErrors statistics register to count SQE errors. This bit is normally
only set when using an external transceiver across the AUI.

collisionDetect [4]: This read-only bit provides a real-time indication of the state of
the collisionDetect signal within the ASIC.

carrierSense [5]: This read-only bit provides a real-time indication of the state of
the carrierSense signal within the ASIC.

jabberGuardEnable [6]: This read/write bit is for use only with the 10BASE-T transceiver.
When this bit is set, the adapter automatically shuts down
transmissions if it detects that it is not ending transmission normally.
jabberGuardEnable also enables the automatic reversal of polarity on
the receive pair, if required.

linkBeatEnable [7]: The host sets this read/write bit to require that the adapter detect
the presence of the link beat to enable transmission. When
linkBeatEnable is cleared, the adapter is able to transmit frames with
or without detecting the link beat. This bit only works for 10BASE-T
or 100BASE TX/FX.

jabberDetect [9]: This read-only bit is set whenever the adapter senses that it has
been transmitting without interruption for much longer than the
allowed transmit frame duration. When in this state, the adapter is
disabled from further transmissions. The TxReset command is
required to release the adapter from the jabber detect state.

polarityReversed [10]: This read-only bit indicates that the twisted-pair transceiver has
detected a reversal of polarity on its receive pair. If jabberGuardEnable
is asserted, then the transceiver automatically corrects the polarity
reversal.

linkBeatDetect [11]: This read-only bit provides a real-time indication of the twisted-
pair transceiver link beat status for 10BASE-T, 100BASE-TX, and
100BASE-FX operation. When operating with10BASE-T, this bit
reflects the state of the link beat logic. For 100BASE-TX or
100BASE-FX media, this bit reflects the state of the link monitor
process. For all speeds, linkBeatDetect is forced on whenever
linkBeatEnable is cleared. For MII operation, this bit is always set.

txInProg [12]: A real-time indication that a frame is being transmitted. This bit
is used by drivers during underrun recovery to delay issuing a
TxReset.

dcConverterEnabled [14]: This bit, when set, indicates that the 10BASE2 DC-DC
converter has been enabled with the EnableDcConverter
command.

auiDisable [15]: This read-only bit is asserted whenever the on-board 10 Mbps
transceiver has been selected.

Register Listings 4-33

Register Definitions
MultipleCollisions
Synopsis Counts the number of transmit frames experiencing at least two

collisions.

Type Read/Write

Size 8 bits

Window 6

Offset 2

Definition

This statistic register counts the number of frames that are transmitted successfully after
experiencing anywhere from 2 through 15 collisions or late collisions.

The following bit format is defined for this register:

This is an 8-bit counter and wraps around to zero after reaching 0xff. An updateStatistics
indication occurs when the counter has counted through 0x80. Reading this statistic has the side
effect of clearing it. The StatisticsEnable command must have been issued for this
counter to be enabled.

7 6 5 4 3 2 1 0

4-34 Register Listings

Register Definitions
Network Diagnostic
Synopsis Provides medium-dependent diagnostic access to the network

interface logic, and a few other miscellaneous functions.

Type Read/Write

Size 16 bits

Window 4

Offset 6

Definition

This register provides diagnostic access to the network interface logic in the adapter.

The register format is as follows:

testLowVoltageDetector [0]: Setting this bit tests the low voltage detection circuit, which has
the side effect of resetting the adapter. This bit always returns zero.

asicRevision [5:1]: The revision level of the ASIC is reflected in this field. The first
operational silicon for the PCI bus master adapter will return 00000b
in this field. Significant revisions to the ASIC will cause this field to
be incremented.

statisticsEnabled [7]: This read-only bit indicates when the adapter is enabled to count
the various statistical events. The value of this bit is affected by the
StatisticsEnable and StatisticsDisable commands.

txFatalError [8]: If a jabber or transmit underrun occurs, this bit is set, indicating
that the transmitter needs to be reset with the TxReset command.

transmitting [9]: This bit is set whenever the adapter is transmitting or waiting to
transmit (deferring).

rxEnabled [10]: This read-only bit is set by the RxEnable command and is
cleared by the RxDisable command, RxReset command, or a
system reset.

txEnabled [11]: This read-only bit is set by the TxEnable command and is
cleared by the TxDisable command, TxReset command, or a
system reset.

fifoLoopback [12]: Setting this bit forces data loopback from the transmit FIFO
directly into the receive FIFO.

When FIFO loopback mode is used, it is the software’s responsibility
to ensure that the proper interpacket gap is inserted between frames,
to avoid losing data in the receive path. To do this, the software must
not load more than one transmit frame into the FIFO at a time.

macLoopback [13]: Setting this bit causes the adapter to loop back transmissions at
the output of the media access controller.

08 7 615 14 13 12 11 10 5 4 3 2 19

0

Register Listings 4-35

Register Definitions
endecLoopback [14]: When endecLoopback is set, the adapter loops transmissions
back to the receiver at the encoder/decoder. When one of the
100BASE-X ports is selected, the loopback path is from the output of
the scramble to the input of the descrambler.

externalLoopback [15]: The host asserts this bit to enable the reception of frames
transmitted by the adapter. Address filtering criteria must also be met
for each frame received.

In 100BASE-FX or 100BASE-TX operation, external loopback
occurs on the MAC side of the transceiver chip. For true “on-the-
wire” loopback, use a loopback plug, clear all of the loopback bits,
and set the fullDuplexEnable bit in MacControl.

Loopback Mode Notes

TxReset and RxReset must be issued after the value of any of the
loopback bits in Network Diagnostic or fullDuplexEnable in
MacControl is changed.

The various loopback modes and their required values for the
associated bits in NetworkDiagnostic, MacControl, and
PhysicalMgmt are shown below.

Table 4-2. Loopback Modes with Values for NetworkDiagnostic, MacControl, and PhysicalMgmt Registers

Loopback Mode
fifo
Loopback

mac
Loopback

endec
Loopback

external
Loopback

full
Duplex Enable

cat5link
TestDefeat

FIFO Loopback 1 0 0 0 x*

* x means it does not matter.

x

MAC Loopback 0 1 0 0 x x

Encoder/Decoder
Loopback

0 0 1 0 x †

† 1 for 100BASE-TX/FX: x for all others.

“External”
Loopback–
100BASE-X‡

‡ Loopback through 100BASE-TX/FX transceiver chip, which is not a true “on-the-wire” loopback.

0 0 0 1 x 1

True “On-wire”
External Loopback–
100BASE-X

0 0 0 0 1 1

External Loopback–
10BASE-T**

** Requires 10BASE-T loopback plug.

0 0 0 1 x x

External Loopback–
10BASE2††

†† Requires loopback plug or coax segment.

0 0 0 1 x x

External Loopback–
AUI‡‡

‡‡ Loopback type determined by external AUI device.

0 0 0 1 x x

External Loopback–
MII***

*** Loopback type controlled by MII device. You may need to enable a loopback mode within the MII device, using the Management Interface.

0 0 0 1 0 0

4-36 Register Listings

Register Definitions
OtherInt
Synopsis Reports additional adapter interrupt sources.

Type Read/Write

Size 8 bits

Window 3

Offset 4

Definition

OtherInt is reserved for expansion of the adapter interrupt space in future adapters.

The register format is as follows:

PhysicalMgmt
Synopsis Provides control over various physical layer functions.

Type Read/Write

Size 16 bits

Window 4

Offset 8

Definition

This register allows control over various functions related to the 100BASE-TX implementation.

The register format is as follows:

The following bits control the Media Independent Interface (MII) Management Interface.
The Management Interface is a two-wire serial interface connecting the bus master adapter ASIC
and any MII-compliant PHY devices residing on the adapter.

Driver software operates the Management Interface by writing and reading bit patterns to the
PhysicalMgmt register that correspond to the physical waveforms required on the interface
signals. For more information on the Management Interface signal protocols, refer to the
Reconciliation Sublayer and Media Independent Interface draft supplement to IEEE Std. 802.3.

07 6 5 4 3 2 1

0 0 0 0 0 0 0 0

08 7 615 14 13 12 11 10 5 4 3 2 19

0 0 000 0 000000

Register Listings 4-37

Register Definitions
mgmtClk [0]: The MII Management Clock bit. This bit directly drives the
management clock to the PMD device(s).

mgmtData [1]: The MII Management Data bit. When the mgmtDir bit (below) is
set, the value written to this bit is driven onto the MDIO signal. When
mgmtDir is cleared, data being driven by the PMD can be read from
this bit.

mgmtDir [2]: The MII Data Direction Control bit. Setting this bit causes the
ASIC to drive MDIO with the data bit written into mgmtData.

cat5LinkTestDefeat [15]: Setting this bit defeats the link test function in the 100BASE-X
reconciliation layer logic. This bit is for diagnostic purposes only;
drivers should always write a zero to this bit.

ProductId (EISA Only)
Synopsis Allows access to the unique adapter identification code.

Type Read only

Size 16 bits

Window 0

Offset 2

Definition

This register provides access to a unique 16-bit code to identify the adapters. The value in
ProductId is read from EEPROM word 3 after reset.

The contents of ProductId are derived from the 3Com 3C number concatenated with a revision
code.

The register format is as follows:

The following ProductId values have been defined for EISA bus master adapters:

Fast EtherLink EISA TX (3C597 TX): 5970h
Fast EtherLink EISA T4 (3C597 T4): 5971h
Fast EtherLink EISA MII (3C597 MII): 5972h
EtherLink III Bus Master EISA (3C592): 5920h

The reset-default for ProductId is 0x0080, but this value will be overwritten by the above value
in EEPROM before any software has a chance to read the register.

08 7 615 14 13 12 11 10 5 4 3 2 19

4-38 Register Listings

Register Definitions
ResetOptions
Synopsis Provides access to the power-on reset options.

Type Read/Write

Size 16 bits

Window 3

Offset 8

Definition

ResetOptions contains the Power-on Reset (POR) bits, which are latched from certain ASIC pins
upon hardware reset.

This register is also visible in the PCI configuration register space.

The register format is as follows:

Bits [8:0] of this register make up the Power-on Reset (POR) bits.

baseT4Available [0]: This read-only bit, when set, indicates that a 100BASE-T4 PHY is
available on the adapter through the Media Independent Interface (MII).

baseTXAvailable [1]: This read-only bit, when set, indicates that a 100BASE-TX PHY
is available on the adapter.

baseFXAvailable [2]: This read-only bit, when set, indicates that a 100BASE-FX PHY
is available on the adapter.

10bTAvailable [3]: This read-only bit, when set, indicates that a 10BASE-T encoder/
decoder and transceiver are available on the adapter.

coaxAvailable [4]: This read-only bit, when set, indicates that a 10BASE2 coaxial
transceiver is available on the adapter.

auiAvailable [5]: This read-only bit, when set, indicates that a 10 Mbps AUI
connector is available on the adapter.

miiConnector [6]: This read-only bit, when set, indicates that an MII-based
connector is available on the adapter.

08 7 615 14 13 12 11 10 5 4 3 2 19

0 00 0

Register Listings 4-39

Register Definitions
vcoConfig [8]: This read/write bit determines whether the internal VCO or an
external one is to be used.

0: External VCO
1: Internal VCO

forcedConfig [12]: When this read/write bit is set, the ASIC is placed in Forced
Configuration mode. In this mode, the adapter’s PCI configuration
register settings are ignored, and the adapter is enabled with the
following settings: I/O base address 0x200, I/O target accesses and
bus mastering enabled, and memory (BIOS ROM) accesses disabled.

testMode [15:13]: These read-only bits define special test modes, as defined
below.

testMode Value Operational Mode

000 10 Mbps AUI Thresholds

001 10 Mbps Receive

010 10 Mbps Transmit

011 10BASE-T Receive Thresholds

100 100BASE-TX/FX Idle

101–110 Reserved

111 Normal Operation

4-40 Register Listings

Register Definitions
ResourceConfig (EISA Only)
Synopsis Allows interrupt level configuration.

Type Read/Write

Size 16 bits

Window 0

Offset 8

Definition

This register allows setting of the interrupt level configuration.

ResourceConfig is loaded with the value in EEPROM word 9 after system reset. See the section
“EEPROM Data Format” on page 5-8 for the default values.

The register format is as follows:

intLevel [15:12]: The 4-bit interrupt-level select code.

Register Value Bus Interrupt

3xxx IRQ3

5xxx IRQ5

7xxx IRQ7

9xxx IRQ9

Axxx IRQ10

Bxxx IRQ11

Cxxx IRQ12

Fxxx IRQ15

All other values Disabled

08 7 615 14 13 12 11 10 5 4 3 2 19

00 0 0 0 00 0 0000

Register Listings 4-41

Register Definitions
RomControl (EISA Only)
Synopsis Controls BIOS ROM functions.

Type Read/Write

Size 8 bits

Window 3

Offset 5

Definition

This register is used to control BIOS ROM functions.

The register format is as follows:

romPage [1:0]: This field controls which 16 K page of an installed BIOS ROM
is available in the memory window allocated for the adapter. This
field is ignored except when ROM sizes of 32 K or 64 K are installed
on the adapter.

reserved [7:2]: These bits are reserved for future expansion. If other bits must
be placed here, they should be read-only, so that romPage can
continue to be written to without the need to first read and mask data.

romPage
ROM Address
Mapped (Hex)

00 0000-3FFF

01 4000-7FFF

10 8000-DFFF

11 C000-FFFF

07 6 5 4 3 2 1

0 0 0 0 0 0

4-42 Register Listings

Register Definitions
RxData
Synopsis Provides a PIO port for reading receive data.

Type Read only

Size 32 bits

Window 1

Offset 0

Definition

RxData provides a 32-bit read data port for access to the receive FIFO. Each read that occurs
while valid data is available pops the requested number of bytes from the FIFO and presents a
new, double-word unit of receive data to RxData for a subsequent read.

Data may be read from RxData as 8-bit bytes, 16-bit words, or 32-bit double words. These reads
of various sizes may be mixed in any combination.

Figure 4-2 shows an example of how this register can be used.

Figure 4-2. RxData Example

The upper half of the example in Figure 4-2 shows how the data is arranged in the 32-bit wide
receive FIFO immediately after the data has been received. The lower half illustrates how the data
is presented in RxData. Notice that after each read, regardless of the width of the read, a properly
formed 32-bit word is made available in RxData.

byte 0byte 1byte 2byte 3
byte 4byte 5byte 6byte 7
byte 8byte 9byte 10byte 11
byte 12byte 13byte 14byte 15
byte 16byte 17byte 18byte 19
byte 20byte 21byte 22byte 23
byte 24byte 25byte 26byte 27
byte 28byte 29byte 30byte 31

byte 0byte 1byte 2byte 3
byte 4

byte 6byte 7byte 8byte 9

byte 12byte 13byte 14
byte 15byte 16
byte 17

byte 20byte 21byte 22byte 23

byte 25byte 26byte 27byte 28
byte 29byte 30

Data as originally stored in receive FIFO

Data as read out by the host via RxData

entry 1
entry 2
entry 3
entry 4
entry 5
entry 6
entry 7
entry 8

host read 1
host read 2
host read 3
host read 4
host read 5
host read 6
host read 7
host read 8
host read 9
host read 10
host read 11
host read 12

byte 5

byte 10byte 11

byte 19

byte 24

byte 18

byte 31 host read 13

Register Listings 4-43

Register Definitions
RxData automatically pads the receive data to allow the use of a 32-bit read operation at the end
of the frame even if, for example, only one byte remains to be read. The data that pads the frames
is undefined. Reading the pad data is unnecessary for normal operation of the receive FIFO.

After the adapter completes the read of a receive frame, having read either a full or partial frame,
it makes the first double-word of the next frame visible in RxData by issuing the RxDiscard
command. RxDiscard also updates RxStatus to reflect the status of the frame accessible via
RxData.

RxEarlyThresh
Synopsis Returns the value of the RxEarlyThresh register.

Type Read only

Size 16 bits

Window 5

Offset 6

Definition

The value stored in this register defines the number of bytes that must be received before an
rxEarly indication occurs. The first byte of the destination address is considered to be byte 1.

The register format is as follows:

RxEarlyThresh can be set using the SetRxEarlyThresh command.

RxEarlyThresh resets to the value 8188d, which disables the threshold mechanism.

As soon as the number of bytes that have been received is greater than the value in
RxEarlyThresh, the adapter generates an interrupt to the host (if the rxEarly indication and
interrupt bits are not masked). The rxEarly indication only occurs when the frame being received
is the top frame. In other words, the rxEarly indication only occurs if the frame being received can
be transferred by the host during reception.

The RxEarlyThresh mechanism causes one rxEarly indication per frame unless it is retriggered.
Refer to the explanation of retriggering rxEarly, below.

An rxEarly indication occurs whenever the RxEarlyThresh threshold has been met and the frame
being received is the top frame. These two conditions can be met in either order. In other words, it
is reasonable to expect that issuing the RxDiscard command may cause an rxEarly indication
by making a frame that is in the process of being received the top frame.

08 7 615 14 13 12 11 10 5 4 3 2 19

0 00 0 0

4-44 Register Listings

Register Definitions
The driver can program any value into RxEarlyThresh, but setting RxEarlyThresh to less than 8
causes the adapter to interpret the value as 8, to allow the adapter to perform destination address
filtering before generating an rxEarly indication.

RxEarlyThresh also involves the concept of frame “visibility.” The value programmed into
RxEarlyThresh determines how many bytes of a frame must be received before information
about the frame is made visible in RxStatus. Frames become visible when min (60,
RxEarlyThresh) bytes are received (that is, frames become visible after 60 minutes or when the
number of bytes set in RxEarlyThresh has been received).

For bus master operations, the value in RxEarlyThresh also determines how many bytes of a
frame must be received before upload transfers for the frame are allowed to begin.

Setting RxEarlyThresh to a value that is too low causes the host to respond to the interrupt before
the entire receive frame header has been received. Setting RxEarlyThresh to a value that is too
high introduces unnecessary delays in the system’s receive response sequence.

If RxEarlyThresh is set to a value that is greater than the length of the received frame, then an
rxComplete interrupt occurs at the completion of frame reception rather than an rxEarly interrupt.

If the host system is particularly slow in responding to an rxEarly interrupt, then it is entirely
likely that the frame has been completely received by the time the driver examines the adapter. In
this case, rxEarly is overridden by rxComplete. rxEarly and rxComplete are mutually exclusive.
Because rxEarly “goes away” when rxComplete becomes set, rxComplete should only be
disabled if rxEarly is also disabled. This prevents spurious interrupts.

rxEarly is meant to be usable as a retriggerable interrupt: it is legal for the driver to respond to an
rxEarly interrupt because of a value set in RxEarlyThresh and then reprogram RxEarlyThresh
to (presumably) a larger value so that a subsequent interrupt is generated within the same receive
frame. If a new value is set in RxEarlyThresh while a frame is being received from the medium,
then an rxEarly indication is generated as soon as the rxEarly threshold is crossed, or it is
generated immediately if the threshold has already been crossed.

Register Listings 4-45

Register Definitions
RxError
Synopsis Returns the error bits for the top receive frame.

Type Read only

Size 8 bits

Window 1 and 7

Offset 4

Definition

RxError returns error and informational bits pertaining to the top receive frame.

The following bit format is defined for this register:

rxOverrun [0]: Indicates that software was unable to remove data from the
receive FIFO quickly enough, so a data loss condition resulted.

runtFrame [1]: Indicates the frame was less than 60 bytes.

alignmentError [2]: Indicates the frame had an alignment error. This bit applies only
to 10 Mbps operation.

crcError [3]: Indicates a CRC error on the frame.

oversizedFrame [4]: Indicates the frame was larger than the maximum allowable size.

The table below gives the minimum frame size at which an
oversizedFrame error is flagged. The frame size includes the
destination and source address and type/length field, but does not
include the FCS field.

dribbleBits [7]: Indicates that the frame had accompanying dribble bits. This bit
is informational only, and does not indicate a frame error. This bit
applies only to 10 Mbps operation.

allowLargePackets Value Minimum oversizedFrame Size

0 1,515

1 4,491*

* This value was calculated by taking the maximum FDDI frame size, 4,500
bytes, and subtracting bytes for fields that have no Ethernet equivalent.

7 6 5 4 3 2 1 0

00

4-46 Register Listings

Register Definitions
RxFilter
Synopsis Defines the types of receive frames that will be accepted.

Type Read only

Size 16 bits

Window 5

Offset 8

Definition

Each bit in RxFilter, when set, enables reception of a different type of frame.

The register format is as follows:

receiveIndividual [0]: Setting this bit enables the adapter to receive frames that match
the station address set for the adapter.

receiveMulticast [1]: Setting this bit causes the adapter to receive all multicast frames,
including broadcast.

receiveBroadcast [2]: Setting this bit causes the adapter to receive all broadcast frames.

receiveAllFrames [3]: Setting this bit causes the adapter to receive all frames
promiscuously.

RxFilter is set using the SetRxFilter command. It is cleared upon reset.

08 7 615 14 13 12 11 10 5 4 3 2 19

0 0 0 0 0 0 0 0 0 0 0 0

Register Listings 4-47

Register Definitions
RxFree
Synopsis Returns the space available in the receive frame buffer area.

Type Read only

Size 16 bits

Window 3

Offset a

Definition

This register provides a real-time indication of the number of bytes of free space that are available
in the receive buffer FIFO or memory. If this register returns 0xffff, then at least that many bytes
are available. If zero is returned, the receive buffer area is full.

RxFree must be read as a 16-bit quantity to guarantee a valid return value.

RxOverruns
Synopsis Counts the number of frames that cause an rxOverrun error.

Type Read/Write

Size 8 bits

Window 6

Offset 5

Definition

This statistic counts the number of frames which should have been received (the destination
address matched the filter criteria) but which experienced an rxOverrun error because there was
not enough FIFO space to hold the frame. This statistic only includes overruns that become
apparent to the driver and does not count frames that are completely ignored because the receive
FIFO was full at the start of frame reception.

This is an 8-bit counter and wraps around to zero after reaching 0xff. An updateStatistics
indication occurs after the counter has counted through 0x80. Reading this statistic clears it.
The StatisticsEnable command must have been issued for this register to count events.

4-48 Register Listings

Register Definitions
RxStatus
Synopsis Provides frame status information.

Type Read only

Size 16 bits

Window 1 and 7

Offset 8

Definition

RxStatus returns the status and the number of bytes residing in the FIFO for the top receive
frame. This register may be read multiple times throughout the process of transferring the frame
from the adapter to the host. RxStatus must be read as a 16-bit quantity to ensure the reliable
transfer of the dynamic frame length information from the adapter to the host.

The register format is as follows:

rxBytes [12:0]: This field returns the number of data bytes for the top frame
that are available in the receive FIFO.

Since it is possible to read data from the FIFO while the adapter is
still receiving the same frame, it is entirely likely that after the adapter
has read a block of data from the FIFO, rxBytes indicates that a
greater number of bytes remain to be read rather than a smaller
number.

As the top frame is being received from the medium, bits [1:0] of
rxBytes are unreliable and should be masked by software. When the
frame reception is completed, rxBytes then reflects the exact number
of bytes remaining in the FIFO.

Frames are padded to dword boundaries within the receive FIFO. It is
legal for the driver to read the pad bytes when reading frame data
from the FIFO—this improves efficiency of the driver in some cases.
It is illegal to read beyond the pad bytes.

rxError [14]: This bit indicates that an error occurred on the top receive
frame, as indicated in the RxError register. This bit is the logical OR
of bits [4:0] in RxError.

rxIncomplete [15]: This bit indicates that the frame available in the FIFO and
defined here in RxStatus is currently being received from the
network. When rxIncomplete is asserted, rxError is zero. Once
rxIncomplete is false, rxError becomes valid.

Issuing the RxDiscard command advances RxStatus to the status word for the next frame in
the receive FIFO, if any.

08 7 615 14 13 12 11 10 5 4 3 2 19

0

Register Listings 4-49

Register Definitions
SingleCollisionFrames
Synopsis Returns the number of frames experiencing a single collision.

Type Read/Write

Size 8 bits

Window 6

Offset 3

Definition

This statistic counts the number of frames that are transmitted without error after experiencing a
single collision.

The following bit format is defined for this register:

This is an 8-bit counter and wraps around to zero after reaching 0xff. An updateStatistics interrupt
occurs after the counter has counted through 0x80. Reading this statistic clears it. The
StatisticsEnable command must have been issued for this register to count events.

SqeErrors
Synopsis Counts the number of transmit frames that experience SQE errors.

Type Read/Write

Size 8 bits

Window 6

Offset 1

Definition

This statistic counts the number of transmit frames that result in an SQE error.

The following bit format is defined for this register:

This is a 4-bit counter and sticks at 0x0f. An updateStatistics interrupt occurs after the counter has
counted through 0x08. Reading this statistic clears it. The StatisticsEnable command
must have been issued for this register to count events.

SqeErrors collection can be disabled independently of other statistics if the enableSqeStats bit is
cleared in MediaStatus. Normally, SqeErrors would only be enabled when an external
transceiver is used over the AUI.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

0 0 0 0

4-50 Register Listings

Register Definitions
StationAddress
Synopsis Defines the adapter’s station address for receive purposes.

Type Read/Write

Size 48 bits

Window 2

Offset 0

Definition

StationAddress is used to define the individual destination address that the adapter responds to
when receiving frames. Network addresses are generally specified in the form 00:60:8c:11:22:33,
where the bytes appear in the same order as they are transmitted on the network media. To use this
particular example address as the adapter’s station address, the following writes to
StationAddress must occur: (1) a write of 0x118c6000 to StationAddress + 0; and (2) a write
of 0x3322 to StationAddress + 4. The writes can be in any order and of any width. The
important consideration is that the individual bytes end up in the correct byte lane of the register.

The value programmed into StationAddress is not inserted into the source address field of
frames transmitted by the adapter. The adapter’s source address must be specified for every frame
as part of the frame contents.

StationMask
Synopsis Defines a mask to apply to the station address register.

Type Read/Write

Size 48 bits

Window 2

Offset 6

Definition

StationMask is a register that allows bits in receive frames to be treated as “don’t cares” during
individual address matching. Setting a bit in StationMask causes the value in the corresponding
bit of StationAddress to be ignored when the destination address of incoming frames is
compared with the adapter’s individual address.

Register Listings 4-51

Register Definitions
Timer
Synopsis Functions as a general-purpose timer.

Type Read-only

Size 8 bits

Window 1

Offset a

Definition

The Timer register contains an 8-bit counter that begins counting from zero upon the assertion of
the interrupt signal. The host can use this function to make interrupt latency measurements.
The counter increments by one every 3.2 µs. When the counter reaches 0xff, it halts. This yields a
maximum measurable interrupt latency of 816 µs.

When Timer is used to measure interrupt latency, it is suggested that Timer be read as late as
possible in the interrupt service routine (just before dispatching to handle the interrupt reasons
flagged in IntStatus) to include the fixed overhead of the interrupt handler itself.

To use Timer for general-purpose measurements at driver initialization time, ensure that
interruptLatch is clear (a pending interrupt would prevent the counter from starting), disable
system interrupts, and issue a RequestInterrupt command to start the timer.

TxAvailableThresh
Synopsis Returns the value of the TxAvailableThresh register.

Type Read only

Size 16 bits

Window 5

Offset 2

Definition

Reading this register returns the value held in TxAvailableThresh. The value in
TxAvailableThresh used to generate a txAvailable interrupt is based upon the number of free
bytes in the transmit FIFO. A txAvailable interrupt is generated when the amount of free space is
greater than the value in TxAvailableThresh.

The register format is as follows:

The contents of this register reflect the parameter used during the most recent
SetTxAvailableThresh command. However, when a txAvailable interrupt is generated
and acknowledged, the process of acknowledging the interrupt will change the value in
TxAvailableThresh to 8188d, disabling the threshold function. Thus, no more than one
txAvailable interrupt occurs for each SetTxAvailableThresh command issued.

08 7 615 14 13 12 11 10 5 4 3 2 19

0 00 0 0

4-52 Register Listings

Register Definitions
TxData
Synopsis Provides a PIO port for writing transmit data.

Type Write only

Size 32 bits

Window 1

Offset 0

Definition

TxData provides a 32-bit write data port for access to the transmit FIFO. Each write pushes the
requested number of bytes onto the FIFO.

Data may be written to TxData as 8-bit bytes, 16-bit words, or 32-bit double words. These writes
of various sizes may be mixed in any order. Figure 4-3 shows an example of how this register can
be used.

Figure 4-3. TxData Example

The upper half of the example in Figure 4-3 illustrates how the data might be written to TxData.
As long as the host aligns the writes with the least significant byte of the TxData register, it is
assured of writing contiguous data to the FIFO. The lower half of the above example shows how
the data is arranged in the 32-bit wide transmit FIFO immediately after the data has been written
to TxData.

Padding to Double-Word Boundary

Refer to the section “Frame Transmission” on page 3-10 for an explanation of completing a
transmit frame by padding to a double-word boundary.

byte 0byte 1byte 2byte 3
byte 4byte 5
byte 6byte 7byte 8byte 9

byte 10
byte 11byte 12byte 13byte 14

byte 15byte 16
byte 17

byte 18byte 19
byte 20byte 21byte 22byte 23

byte 24
byte 25byte 26byte 27byte 28
byte 29byte 30

Data as written to TxData

host write 1
host write 2
host write 3
host write 4
host write 5
host write 6
host write 7
host write 8
host write 9
host write 10
host write 11
host write 12

byte 0byte 1byte 2byte 3
byte 4byte 5byte 6byte 7
byte 8byte 9byte 10byte 11
byte 12byte 13byte 14byte 15
byte 16byte 17byte 18byte 19
byte 20byte 21byte 22byte 23
byte 24byte 25byte 26byte 27
byte 28byte 29byte 30byte 31

Data as stored in the transmit FIFO

entry 1
entry 2
entry 3
entry 4
entry 5
entry 6
entry 7
entry 8

byte 31 host write 13

Register Listings 4-53

Register Definitions
TxFree
Synopsis Returns the space available in the transmit frame buffer area.

Type Read only

Size 16 bits

Window 1

Offset c

Definition

This register provides a real-time indication of the number of bytes of free space that are available
in the transmit buffer FIFO or memory. If this register returns 0xffff, then at least that many bytes
are available. If zero is returned, the transmit buffer area is full.

TxFree counts in terms of integral dwords: the low-order two bits of this register are always zero.
Hence, TxFree is only valid after whole dwords have been moved into the transmit FIFO. The host
software is responsible for ensuring that it is always interpreting TxFree correctly.

Writing bytes to the transmit FIFO when there is no space causes a transmit overrun condition,
which is signaled to the host through the hostError indication in IntStatus.

TxFree is unreliable while bus master operations are active.

TxStartThresh
Synopsis Provides for an early transmission start based upon the number of

frame bytes resident on the adapter.

Type Read only

Size 16 bits

Window 5

Offset 0

Definition

The value in TxStartThresh is used to control early frame transmission. Transmission of a frame
begins when the number of bytes for the frame resident on the adapter is greater than the value in
TxStartThresh.

TxStartThresh is set using the SetTxStartThresh command.

The feedback to tune this value is the txUnderrun status bit in the TxStatus register.

The register format is as follows:

This register resets to 8188d, which disables the threshold mechanism.

08 7 615 14 13 12 11 10 5 4 3 2 19

0 00 0 0

4-54 Register Listings

Register Definitions
TxStatus
Synopsis Returns the transmit status for the current transmit frame.

Type Read only

Size 8 bits

Window 1

Offset b

Definition

This register returns the status of frame transmission attempts. An I/O write of an arbitrary value
to this register will advance the status queue to the next transmit status byte.

The register format is as follows:

txStatusOverflow [2]: When set, indicates that the TxStatus stack is full and as a result
the transmitter has been disabled. Writing TxStatus clears this bit,
but the transmitter must be reenabled with a TxEnable command
before transmission may resume.

maxCollisions [3]: When set, the frame was not successfully transmitted because it
encountered 16 collisions. Writing txStatus clears this bit, but the
transmission must be reenabled with a txEnable command before
transmissions may resume. It is expected that the communications
protocols will eventually get around to sending the frame again.

txUnderrun [4]: This bit indicates that the frame experienced an underrun during
the transmit process—the host was unable to supply the frame data
fast enough to keep up with the network. An underrun will halt the
transmitter and the transmit FIFO. The TxReset and TxEnable
commands must be issued before any new frames are submitted to
the adapter.

txJabber [5]: This bit is asserted if the adapter determines that it is transmitting
for too long. The TxReset command is required to recover from
this error.

interruptRequested [6]: This bit is asserted if the txIndicate bit was set when the 32-bit
frame start header was written to the adapter for the frame in question.

txComplete [7]: When this bit is false, then the remainder of the status bits are
undefined. When the host chooses to poll this register while waiting
for a frame transmission to be completed, then this bit is used to
determine whether a frame transmission attempt has been completed.
The frame transmission either experienced an error or had the
txIndicate bit set in the transmit frame descriptor.

07 6 5 4 3 2 1

00

Register Listings 4-55

Register Definitions
UpperFramesOk
Synopsis Makes visible the high-order bits of the FramesRcvdOk and

FramesXmittedOk statistics.

Type Read only

Size 8 bits

Window 6

Offset 9

Definition

This register allows read access to the high-order bits of the FramesRcvdOk and
FramesXmittedOk statistics.

The register format is as follows:

upperFramesRcvdOk [1:0]: These are the high-order two bits of the FramesRcvdOk
register. This value is latched whenever FramesRcvdOk is read.

upperFramesXmittedOk [5:4]: These are the high-order two bits of the FramesXmittedOk
register. This value is latched whenever FramesXmittedOk is read.

Refer to the FramesRcvdOk and FramesXmittedOk register definitions for details of how the
register values are latched into UpperFramesOk.

VcoDiagnostic
Synopsis Allows hardware diagnostic access to the on-board 10 Mbps VCO.

Type Read/Write

Size 16 bits

Window 4

Offset 2

Definition

The register bits are reserved.

07 6 5 4 3 2 1

0000

Chapter 5
Adapter Configuration

This chapter explains the configuration mechanisms for the PCI and EISA bus master adapters.
PCI and EISA bus master adapters share many of the same characteristics. In this manual,
differences are clearly indicated as “PCI Only” or “EISA Only,” or each section is labeled for one
or the other. If there is no such indication, the information is valid for either type of adapter.

PCI Configuration Overview
PCI bus master adapters use a slot-specific block of configuration registers to perform adapter
configuration. The configuration registers are accessed with PCI configuration cycles.

The PCI specification defines two types of configuration cycles. Type 0 cycles are used to
configure devices on the local PCI bus. Type 1 cycles are used to pass a configuration request to a
PCI bus at a different hierarchical level. PCI configuration cycles are directed at one out of eight
possible PCI logical functions within a single physical PCI device.

3Com PCI bus master adapters respond only to Type 0 configuration cycles directed at
Function 0: Type 1 cycles and Type 0 cycles directed at functions other than 0 are ignored by
the adapter.

Each PCI device is required to decode 256 bytes worth of configuration registers. Of these, the
first 64 bytes are predefined by the PCI specification. The remaining registers may be used as
needed for PCI device-specific configuration registers.

In PCI configuration cycles, the host system provides a slot-specific decode signal (IDSEL),
which informs the adapter that a configuration cycle is in progress. The adapter responds by
asserting DEVSEL# and decoding the specific configuration register from the address bus and the
byte enable signals. Refer to the PCI BIOS specification for information on generating
configuration cycles from driver software.

Figure 5-1 shows the PCI configuration registers used by the adapter.

5-2 Adapter Configuration

PCI Configuration Overview
Figure 5-1. PCI Configuration Registers

All spaces marked “Reserved” and all of the locations within the 256 bytes of configuration space
that are not shown in Figure 5-1 are not implemented and return zero when read.

PCI Configuration Registers
The following sections describe the various implemented PCI configuration registers.

VendorId

This read-only register contains the unique 16-bit manufacturer’s ID as allocated from the PCI
SIG. 3Com’s manufacturer ID is 0x10B7.

DeviceId

This read-only register contains the vendor-allocated 16-bit device ID for the adapter. This value
is read from EEPROM location 03 after system reset.

byte 3 byte 2 byte 1 byte 0 Offset

EepromData 4c

Reserved ResetOptions 48

Reserved 44

InternalConfig 40

MaxLat MinGnt InterruptPin InterruptLine 3c

Reserved 38

Reserved 34

BiosRomControl 30

Reserved 2c

Reserved 28

Reserved 24

Reserved 20

Reserved 1c

Reserved 18

Reserved 14

IoBaseAddress 10

Reserved HeaderType LatencyTimer Reserved 0c

ClassCode Reserved 08

PciStatus PciCommand 04

DeviceId VendorId 00

Adapter Configuration 5-3

PCI Configuration Overview
PciCommand

This read/write register provides coarse control over the adapter’s ability to generate and respond
to PCI cycles. When a zero is written to this register, the adapter is logically disconnected from the
PCI bus, except for configuration cycles.

The register format is as follows:

ioSpace [0]: Setting this bit allows the adapter to respond to I/O space
accesses.

memorySpace [1]: Setting this bit (along with addressDecodeEnable in
BiosRomControl) allows the adapter to decode accesses to its BIOS
ROM, if one is installed.

busMaster [2]: Setting this bit allows adapters with bus master capability to
initiate bus master cycles.

parityErrorResponse [6]: This bit controls how the adapter responds to parity errors.
Setting this bit causes the adapter to take its normal action upon
detecting a parity error. Clearing this bit causes the adapter to ignore
parity errors. This bit is cleared upon system reset.

SERREnable [8]: This bit is the enable bit for the SERR# pin driver. A value of zero
disables the SERR# driver.

PciStatus

This read/write register is used to record status information for PCI bus events.

Although this register is writable, write operations work in an unusual manner. Read/Write bits in
the register can be reset, but not set, by writing to this register. Bits are reset by writing a one to
that bit-position.

The register format is as follows:

udfSupported [6]: This read-only bit indicates that the adapter supports the User-
Defined Fields format as proposed by the PCI SIG.

fastBackToBack [7]: This read-only bit indicates that the adapter, as a target, supports
fast back-to-back transactions, as defined by the criteria in section
3.4.2 of the PCI specification, Rev. 2.0.

dataParityDetected [8]: The adapter sets this bit when, as a master, it detects the PERR#
signal asserted and the parityErrorResponse bit is set in the
PciCommand register.

08 7 615 14 13 12 11 10 5 4 3 2 19

00 0 0 0 0 0 0 0 00

08 7 615 14 13 12 11 10 5 4 3 2 19

0 00 0 0 0

5-4 Adapter Configuration

PCI Configuration Overview
devselTiming [10:9]: This read-only field is used to encode the slowest time with
which the adapter asserts the DEVSEL# signal. The bus master
adapter returns 012, indicating that it supports “medium” speed
DEVSEL# assertion.

signalledTargetAbort [11]: The adapter asserts this bit when it terminates a bus transaction
with target-abort.

receivedTargetAbort [12]: The adapter asserts this bit when, operating as a bus master, its
bus transaction is terminated with target-abort.

receivedMasterAbort [13]: The adapter asserts this bit when, operating as a bus master, its
bus transaction is terminated with master-abort.

signalledSystemError [14]: This bit is set whenever the adapter asserts SERR#.

detectedParityError [15]: The adapter asserts this bit when it detects a parity error,
regardless of whether parity error handling is enabled.

ClassCode

This 24-bit read-only register identifies the general function of the PCI device. The adapter returns
either 0x020000 (indicating “Ethernet” network controller) or 0x028000 (indicating “other”
network controller), depending upon the value of otherSubclass in the PciParm entry of the
EEPROM.

LatencyTimer

This 8-bit read/write register specifies, in units of PCI bus clocks, the value of the latency timer for
bus master operations.

The register format is as follows:

The system writes a value into LatencyTimer, which determines how long the adapter may hold
the bus in the presence of other bus requesters. Whenever the adapter asserts FRAME#, the
latency timer is started. When the timer count expires, the adapter must relinquish the bus as soon
as its GNT# signal has been negated.

Since the low-order three bits are not implemented, the granularity of the timer is eight bus clocks.

HeaderType

The value returned in this read-only field, 0x00, identifies the adapter as a single-function PCI
device and specifies the configuration register layout shown in Figure 5-1.

07 6 5 4 3 2 1

00 0

Adapter Configuration 5-5

PCI Configuration Overview
IoBaseAddress

This read/write register allows the system to define the I/O base address for the adapter. PCI
requires that I/O base addresses be set as if the system used 32-bit I/O addressing. The register
returns 1 in bit [0] to indicate that this is an I/O base address. The upper 27 bits of the register can
be written to, indicating that the adapter requires 32 bytes of I/O space in the system I/O map.

The register format is as follows:

ioBaseAddress [31:5]: The system programs the I/O base address into this field.
Since the adapter uses 32 bytes of I/O space, 27 bits are required to
completely specify the I/O base address.

BiosRomControl

This read/write register allows the system to define the base address for the adapter’s BIOS ROM.

The register format is as follows:

romBaseAddress [31:16]: The system programs the expansion ROM base address into
this field.

Since this field is 16 bits wide, the ROM can be mapped on 64 KB
boundaries. If a ROM smaller than 64 KB is installed, it appears as
multiple images within the 64 KB space.

addressDecodeEnable [0]: When this bit is cleared, the adapter’s BIOS ROM is disabled.
Setting this bit causes the adapter to respond to accesses in its
configured expansion ROM space, if memorySpace in the
PciCommand register is also set.

InterruptLine

This 8-bit read/write register is written by the system to communicate to the device driver which
interrupt level is being used for the device. This allows the driver to use the appropriate interrupt
vector for its ISR.

For 80x86 systems, the value in InterruptLine corresponds to the IRQ numbers (0 through 15) of
the standard dual 8259 configuration, and the value 255 corresponds to “disabled.”

InterruptPin

This read-only register indicates which PCI interrupt “pin” the adapter will use. PCI bus master
adapters will always use INTA#, so 0x01 is returned in InterruptPin.

31 08 7 630 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 5 4 3 2 19

10000

31 08 7 630 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 5 4 3 2 19

0 0 0 0 0 0 0 0 0 0 0 0000

5-6 Adapter Configuration

PCI Configuration Overview
MinGnt

This read-only value specifies in 250 ns increments how long a burst period the adapter requires
when operating as a bus master. This value is used as a clue to the system in setting the
LatencyTimer.

The PCI bus master adapter returns the value 3 in this field. This assumes a 33 MHz bus
(30 ns clock period), one clock for the address phase, a three clock latency to the first data phase,
and then no wait states for the 15 remaining data phases.

[1 + 3 + 16] 30 ns = 600 ns (round up to 750 ns)

MaxLat

This read-only value specifies in 250 ns increments how often the adapter requires the bus when
operating as a bus master. This value is used as a clue to the system in setting the LatencyTimer.

The bus master PCI returns the value 8 in this field, implying a latency tolerance of 2 µs. In order
to keep up with an incoming frame, the adapter needs to transfer 64 bytes (assuming a 16 dword
burst length) every

64 bytes / 12.5 MBps = 5.12 µs

This implies using a MaxLat value of about 20. To do much better than just keep up with the
incoming frame, lower the value to 8.

ResetOptions

ResetOptions is a read-only register that shows the media options available on the adapter. This
register is also available as a read/write register in Window 3 of the I/O space.

Refer to the section “ResetOptions” on page 4-38 for more information about ResetOptions.

InternalConfig

This read/write register allows for reading and setting adapter options other than those set in the
predefined PCI configuration registers. The register format is identical to the InternalConfig
register in Window 3 of the I/O space.

InternalConfig is loaded with a default value from EEPROM location 0x12 or 0x15 after system
reset. Driver/configuration software can then write a new value in InternalConfig and save the
new value to EEPROM, if desired.

For more information about InternalConfig, refer to the section “InternalConfig” on page 4-21.

Adapter Configuration 5-7

EISA Configuration Overview
EISA Configuration Overview
EISA systems provide 1 KB of slot-specific I/O space per slot. Within this space, EISA adapters
are expected to supply configuration registers starting at address 0zC80, where z is the slot
number.

3Com EISA bus master adapters unconditionally decode accesses to the EISA configuration
register range, 0zC80 to 0zCFF, and map those accesses into the Window 0 through Window 7
I/O registers according to the following table.

Normally, the EISA system BIOS checks the ManufacturerId/ProductId against its current
configuration in nonvolatile RAM. If the adapter is newly installed, the user is prompted to run the
EISA configuration program, supplied by the PC manufacturer. EISA configuration files (which
have a filename extension “.CFG”) are supplied with EISA adapters to allow options such as
interrupt level and BIOS PROM to be configured without conflict.

After reading ManufacturerId/ProductId, the system BIOS configures EISA bus master adapters
by writing values into the AddressConfig and ResourceConfig registers. These settings are
also saved in the system’s nonvolatile RAM for subsequent boot sequences.

The adapter is then enabled by setting the cardEnable bit in the ConfigControl register.
This causes the adapter to map the switchable I/O register window at slot-specific addresses 0z000
through 0z00F, and to map the fixed Window 1 decode at 0z010 through 0z01F.

Address Window

0zC80-F 0

0zC90-F 1

0zCA0-F 2

0zCB0-F 3

0zCC0-F 4

0zCD0-F 5

0zCE0-F 6

0zCF0-F 7

5-8 Adapter Configuration

EISA Configuration Registers
EISA Configuration Registers
This section contains brief descriptions of the EISA configuration registers. Unlike PCI, the EISA
configuration registers are part of the regular I/O register set, and are visible through the standard
I/O register window mechanism. For complete information on these registers, refer to the
definitions in Chapter 4, “Register Listings.”

ManufacturerId Contains the read-only EISA manufacturer’s code that is assigned to
3Com.

ProductId Contains the read-only product code that identifies individual adapter
products.

ConfigControl Contains the writable cardEnable bit, which the EISA system sets to
allow the adapter to decode addresses in the slot-specific address
range 0z000 through 0z01F.

AddressConfig Contains a field to allow the system to set a base address for the on-
board BIOS ROM.

ResourceConfig Contains a field to allow the system to assign an interrupt level to the
adapter.

EEPROM Data Format
This section contains reference information on the EEPROM contents.

PCI Data Format
Table 5-1 summarizes the contents of the EEPROM.

Table 5-1. PCI EEPROM Data Format

Offset (hex) Field Name 10/100 Default (hex) 10 Only Default (hex)

00 3Com Node Address (word 0) 0020 0020

01 3Com Node Address (word 1) afxx afxx

02 3Com Node Address (word 2) xxxx xxxx

03 DeviceId 5950 5900

04 Manufacturing Data - Date xxxx xxxx

05 Manufacturing Data - Division 00xx 00xx

06 Manufacturing Data - Product Code xxxx xxxx

07 Manufacturer Id 6d50 6d50

08 PciParm 0418 0418

09 RomInfo 0000 0000

0a OEM Node Address (word 0) 0020 0020

0b OEM Node Address (word 1) afxx afxx

0c OEM Node Address (word 2) xxxx xxxx

(continued)

Adapter Configuration 5-9

EEPROM Data Format
EISA Data Format
Table 5-2 summarizes the contents of the EEPROM.

0d Software Information 3f10 3f10

0e Compatibility Word 0000 0000

0f Software Information2 0000 2000

10 CapabilitiesWord 11c6 01c6

11 Reserved 0000 0000

12 InternalConfig Low 001b 0012

13 InternalConfig High 0101 0102

14 Reserved 0000 0000

15–16 Reserved 0000 0000

17 Checksum 00yy 00yy

Table 5-2. EISA EEPROM Data Format

Offset (hex) Field Name
10/100 Mbps Default
(hex)

10 Mbps Only Default
(hex)

00 3Com Node Address (word 0) 0020 0020

01 3Com Node Address (word 1) afxx afxx

02 3Com Node Address (word 2) xxxx xxxx

03 ProductId 7059 2059

04 Manufacturing Data - Date xxxx xxxx

05 Manufacturing Data - Division 00xx 00xx

06 Manufacturing Data - Product Code xxxx xxxx

07 ManufacturerId 6d50 6d50

08 AddressConfig 0000 0000

09 ResourceConfig 3000 3000

0a OEM Node Address (word 0) 0020 0020

0b OEM Node Address (word 1) afxx afxx

0c OEM Node Address (word 2) xxxx xxxx

0d Software Information 3f10 3f10

0e Compatibility Word 0000 0000

0f Software Information2 0000 0000

10 CapabilitiesWord 11c6 01c6

11 Reserved 0000 0000

12 InternalConfig Word 0 001b 0012

13 InternalConfig Word 1 0101 0102

14–16 Reserved 0000 0000

17 Checksum 00xx 00xx

Table 5-1. PCI EEPROM Data Format (continued)

Offset (hex) Field Name 10/100 Default (hex) 10 Only Default (hex)

5-10 Adapter Configuration

EEPROM Data Format
Data Field Details

3Com Node Address

This field contains the 3Com node address for the adapter. This is not the field to be programmed
into the StationAddress register. Refer to the section “OEM Node Address” on page 5-11.

DeviceId (PCI Only)

This is the two-byte product identifier, which gets loaded into the ASIC and made available in the
DeviceId register in the PCI configuration space.

The most significant three nibbles are the numeric portion of the 3Com “3C” number. The least
significant nibble is used as a revision code to reflect the particular transceiver resources on the
adapter and potential ASIC revisions. The numbers have been defined for the adapters indicated,
as shown in Table 5-3.

ProductId (EISA Only)

This is the two-byte product identifier required by the EISA bus. It is read automatically by the
adapter upon reset, and made available in the ProductId register.

Manufacturing Data - Date

This is the date of manufacture, encoded according to the following:

day [4:0]: The day (1 through 31).

month [8:5]: The number of the month (1 through 12).

year [15:9]: The last two digits of the current year (0 through 99).

Manufacturing Data - Division

This is the manufacturing division code, as shown on the product bar code label.

Manufacturing Data - Product Code

This is the manufacturing product code, which is two alphanumeric ASCII characters from the bar
code label.

Table 5-3. Code Numbers for 3Com 3C Numbers

Code Adapter Type Connector Type

5950 Fast EtherLink PCI Shared 10BASE-T/100BASE-TX

5951 Fast EtherLink PCI Shared 10BASE-T/100BASE-T4

5952 Fast EtherLink PCI 10BASE-T/MII

5900 EtherLink III PCI 10 Mbps
(10BASE-T, 10BASE2, AUI)
10BASE-T only

Adapter Configuration 5-11

EEPROM Data Format
ManufacturerId

This is 3Com’s assigned EISA manufacturer ID. It is a byte-swapped, encoded form of the string
“TCM.”

NOTE: For PCI adapters, this value has no significance in PCI operation (it is unrelated to the
PCI VendorId value). It is not used by the adapter logic in any way, nor is it made available in
any adapter I/O register.

PciParm (PCI Only)

This is loaded into the ASIC and controls various hardware functions related to PCI bus operation.

fastBackToBack [0]: Determines the value for the fastBackToBack bit in the PciStatus
register.

udfSupported [1]: Determines the value for the udfSupported bit in the PciStatus
register.

otherSubclass [2]: Determines which subclass code is returned in the ClassCode
register. 0 is the Ethernet subclass; 1 is the Other subclass.

minGnt [6:3]: Determines the value returned in the low-order bits of the
MinGnt register.

maxLat [10:7]: Determines the value returned in the low-order bits of the
MaxLat register.

unassigned [15:11] Unassigned and should be written with zeroes.

RomInfo (PCI Only)

This informs a driver or configuration program whether a BIOS ROM is installed, and the
physical size of the ROM.

romSize [13:12]: The physical size of the BIOS ROM. The romSize bit is valid
only when romPresent is set.

romPresent [11]: Indicates the presence of a BIOS ROM.

OEM Node Address

This is the field to be programmed into the StationAddress register. For 3Com adapters, this
field will contain the same value as in 3Com Node Address. OEM customers may choose to
program this field with a different value.

AddressConfig (EISA Only)

This field supplies the value for the AddressConfig register. It is read automatically by the
hardware upon reset to provide default settings for ROM settings and the autoSelect bit. See the
AddressConfig register definition for bit definitions.

5-12 Adapter Configuration

EEPROM Data Format
ResourceConfig (EISA Only)

This field supplies the value for the ResourceConfig register. It is read automatically by the
hardware upon reset to provide a default setting for the interrupt level. See the ResourceConfig
register definition for bit definitions.

Software Information

This field contains environmental information for use by the driver. The default value specifies
optimize for DOS client, 500 µs disable time, link beat enabled.

reserved [3:0]: Reserved, set to zero.

optimizeFor [5:4]: Specifies the environment for which to optimize.
00: Reserved
01: DOS clients
10: Multitasking clients
11: Servers

reserved [7:6]: Reserved, set to zero.

intDisableTime [13:8]: Specifies the maximum time the host can disable interrupts,
according to the formula:

max interrupt disable time = (25 + intDisableTime * 25) µs

linkBeatDisable [14]: Indicates to the host software whether it should set
linkBeatEnable in MediaStatus (for appropriately equipped
adapters). Note the opposite polarities of these bits.

reserved [15]: Reserved, set to zero.

Compatibility Word

This field contains two byte-wide values that are checked by the driver with an internal value
(CLevel) to determine the compatibility of the driver with the software.

warningLevel [7:0]: If the driver’s CLevel is less than this field, the driver issues a
warning message that a newer driver is available that may offer
improved performance.

failureLevel [15:8]: If the driver’s CLevel is less than this field, the driver fails the
install process. A new driver needs to be obtained.

Adapter Configuration 5-13

EEPROM Data Format
Capabilities Word

This word contains data defining the basic capabilities of the adapters. The following table
summarizes the capabilities of the PCI/EISA adapter. The resulting value is 0x11C6.

The following paragraphs describe the bits that are set for the adapter.

supportsFullDuplex [1]: Indicates that the adapter supports full-duplex media operation.

supportsLargePackets [2]: Indicates whether the adapter supports frame sizes over 2,047
bytes.

supportsFragBusMaster [6]: Indicates whether the adapter supports fragment bus master data
transfers.

supportsCrcPassThru [7]: Indicates whether the adapter supports CRC passthrough using
the crcAppendDisable bit in the frame start header.

supportsTxDone [8]: Indicates whether the adapter supports the TxDone command.

supports100Mbps [12]: Indicates the adapter’s ability to support 100 Mbps data rates.

Bit Capabilities Bit Value

0 supportsPlugNPlay 0

1 supportsFullDuplex 1

2 supportsLargePackets 1

3 supportsSlaveDma 0

4 supportsSecondDma 0

5 supportsFullBusMaster 0

6 supportsFragBusMaster 1

7 supportsCrcPassThru 1

8 supportsTxDone 1

9 supportsNoTxLength 0

10 supportsRxRepeat 0

11 supportsSnooping 0

12 supports100Mbps *

* This value is 0 for 10 Mbps only or 1 for 10/100 Mbps.

13 supportsPowerMgmt 0

5-14 Adapter Configuration

EEPROM Data Format
InternalConfig

These two words supply the value for the InternalConfig register. The low word is bits [15:0]; the
high word is [31:16] bits. They are read automatically by the hardware upon reset to provide
default settings for non-system-related configuration settings. The value can later be written over
by driver software.

Refer to the InternalConfig register definition for bit definitions.

Software Information 2

This field contains additional information for drivers as follows:

reserved [4:0]: Reserved, set to zero.

noRxOvnAnomaly [5]: 10 Mbps receive overrun anomaly. Set to 1, the adapter does not
contain the 10 Mbps receive overrun anomaly; set to 0, the adapter
contains the 10 Mbps anomaly. (PCI only; for EISA, this bit is
undefined and will always be zero.)

reserved [15:6]: Reserved, set to zero.

Checksum

The checksum is a byte-wise XOR computed across component bytes in words 0 through 16.

Appendix A
Errata List and Software Solutions

Introduction
Over time anomalies in the PCI/EISA bus-master family of adapters have been found. Software
solutions for these are documented below. Fixes for these anomalies have been incorporated
into the hardware over various revisions of these adapters. Therefore, to ensure that your driver
will run on all revisions, you must incorporate all the workarounds listed. 3Com cannot
guarantee compatibility of any driver that does not contain all of these software solutions.

The following software workarounds are required or highly recommended for the PCI/EISA
bus master family of adapters. The initialization workarounds are unique to the bus. The run-
time workarounds are common to both families, except as noted below.

PCI Adapters (3C590 and 3C595):
1 - The adapter's response to a parity error must be disabled. This is done by clearing the
parityErrorResponse bit in the PCI PciCommand configuration register (this bit is also cleared
upon system reset, but it is usually set by the BIOS).

2 - Bus Master capability must be enabled prior to using bus master operation. This is done by
setting the busMaster bit in the PCI PciCommand configuration register.

3 - The PCI LatencyTimer configuration register must be set to the maximum value (0xFF).
This is to avoid a data corruption issue if the timer elapses while a bus master operation is in
progress.

4 - There is a bug in the 10 Mbit receive logic of the first revision of the adapter which causes
overruns. The workaround is complex and difficult to implement. It is currently available as a
separate document.

5 - Due to a PCI signaling issue, the adapter can experience data corruption in some machines
when a bus master transfer crosses a 4K memory address boundary. To avoid this, the driver
should perform PIO transfers in the 4-byte region at the end of a 4K boundary.

Errata 1, 3, and 4 above have been fixed in newer version of the adapter. The adapters with this
fix can be identified by examining bit 5 in the Software Information 2 field of the EEPROM. If
this bit is one, the errata do not apply. If this bit is zero, the associated workarounds must be
implemented.

EISA Adapters (3C592 and 3C597):
1 - Bus Master operations must start on 32-byte boundaries (physical memory address). If the
buffer's memory address is not on a 32-byte boundary, use Programmed I/O to transfer the data
until such a boundary is reached.

A-2 Errata List and Software Solutions

All Adapters
2 - A bus master reset is required prior to starting a bus master operation. Clear the dmaReset
bit (while masking off other Resets) in the GlobalReset command, and remember to spin on
commandInProgress in the IntStatus register to allow the reset to complete before doing other
programming operations to the adapter.

3 - Some computers violate the EISA bus timing specification relating to when Bus Master
Address and Length registers are written. The workaround is to read back the data that's
written, compare the data read to the written data, and write the data again when a miscompare
occurs. This happens rarely, so the compare loop will not loop indefinitely.

4 – An IO write operation immediately followed by a statistics register read may hang the
adapter. The workaround is to perform an IO read (from any register, for example, Command/
Status) before doing a Statistics Read. This ensures that n write has preceded this stats read.

5 - When a receive bus master operation is programmed with RxEarly enabled and there is no
data to transfer, receive pacing logic in the adapter causes it to wait until data has been received
from the network. A problem occurs in this logic under special circumstances. The problem
happens during a bus master upload of a received packet. The adapter incorrectly tags the last
data burst of the frame as having filled the 64-byte internal cache instead of being partially
filled. The result is too much data is transferred during the upload (up to 63 bytes), and
MasterLen is up to 63 bytes too small. This may result in memory corruption. There are three
ways to work around this problem:

1) Disable RxEarly interrupts and only accept Receive Packet Complete interrupts. This
disables the pacing logic.

2) If the size of the packet is known, program the bus master length register to upload the
correct number of bytes.

3) Don't allow bus master uploads to cross a 1K (400 hex) physical address (stopping/re-
starting on a 1K boundary is OK).

This problem is fixed in the second revision of the EISA ASIC. The fixed adapters can be
detected by examining bit 6 of Software Information 2 field in the EEPROM. If bit 6 is set to
zero, the problem exists. If bit 6 is set to one, this adapter doesn't have the problem. So, an
alternative would be to disallow use of the pre-rev2 boards and notify the user that they must
obtain a later revision of the adapter.

All Adapters
1 - When the statistics interrupt occurs, the badSSD count must be read from the diag window
as part of the statistics read.

2 - Bus master receive data uploads may "hang" the adapter under certain circumstances. This
bug appears to occur only at 10 Mbps. When the hang is detected, all of the data is seen to have
been transferred correctly to system memory, but the bus master logic is stuck in one of two
states. A host reset (GlobalReset command with hostReset unmasked) will clear the hang
condition.

Errata List and Software Solutions A-3

Useful Tips
Workaround: avoid "pacing" on uploads (start an upload DMA transfer only after rxComplete is
set) or always make sure the driver guesses the packet size correctly, so that uploads complete
due to MasterLen countdown rather than end-of-packet.

3 - Drivers should set RxEarlyThresh to 60 bytes or greater to avoid a problem in which an
rxComplete interrupt is generated, but when the driver checks the adapter, there is no receive
packet available because the receive FIFO is empty. (The adapter discards packets less than 60
bytes long, such as from collisions.)

4 - When performing PIO reads, drivers should not read the receive FIFO within a DWORD (4
bytes) of the end of the data unless unless rxComplete is true. In other words, until rxComplete,
if rxBytes returns, for instance, 16 bytes, the driver might only read 8, leaving data in FIFO.

Useful Tips
Note that the parameter for the SetTxAvailThresh command is shifted up 2 bits before it is
placed into the TxStartThreshold register (Window 5, offset 0), effectively multiplying the
parameter by four. A drive should terefore divide the desired threshold value by four when
generating the parameter value for this command.

A-4 Errata List and Software Solutions

Useful Tips

	Contents
	Figures
	Tables
	Introduction
	Summary of Features
	PCI/EISA Bus-Master Adapter Features

	Nomenclature
	Typographic Conventions
	Register Definitions Legend

	PCI/EISA Bus Master Versus PIO
	Functional Differences from PIO
	Data Transfer Modes
	Extra Register Window
	Statistics Registers
	Large Packet Support
	Media-Related Functions
	Station Address Masking Function
	New Registers
	Commands Not Supported
	New Interrupt Bit
	Miscellaneous Details

	Differences Between PCI and EISA Bus Master Adapters
	PIO/Bus Master Nomenclature

	Adapter Operation
	Basic Operational Concepts
	Register Windows
	Bit-Widths of Register Accesses
	Command Register
	Command Summary
	IntStatus Register
	Optimized Adapter Operations
	Timer Register
	Data Transfer Modes
	Programmed I/O
	Bus Master

	BIOS ROM

	Configuration and Initialization
	System Reset
	Forced Configuration
	Global Reset
	PCI Adapter Configuration
	EISA Adapter Configuration
	Adapter Initialization
	Serial EEPROM
	Selecting the Media Port
	ResetOptions
	Setting the RAM Partition
	Station Address
	Broadcast Address
	Multicast Addresses
	Capabilities Word

	Frame Transmission
	Frame Transmission Model
	Transmit Data Writes
	Programmed I/O
	Bus Master

	Frame Start Header
	Completing a Transmit Frame Download
	Padding to a Dword Boundary
	Issuing a TxDone Command

	Padding to Minimum Frame Length
	Initiating Frame Transmission
	Transmission Completion
	Updating the Status
	Multiple Transmit Completions
	Frame Transmission Errors
	Optimized Transmit Operations
	Early Transmission Start

	Frame Reception
	Frame Reception Model
	Top Frame

	Normal Frame Reception
	Receive Data Reads
	Programmed I/O
	Bus Master
	RxStatus and RxError
	Discarding the Top Frame
	Queued Receives
	Receive Frame Size Limits

	Optimized Frame Reception
	Early Receive Indications
	Discarding a Frame During Reception

	Interrupts and Indications
	Interrupts Versus Indications
	Determining the Cause of an Interrupt
	IntStatus

	Interrupt Acknowledgment
	Interrupt and Indication Enable Mechanisms

	Statistics
	Transmit Statistics
	Receive Statistics

	Register Listings
	I/O Model
	Register Definitions
	AddressConfig (EISA Only)
	Definition

	BadSSD
	Definition

	BytesRcvdOk
	Definition

	BytesXmittedOk
	Definition

	CarrierLost
	Definition

	Command
	Definition
	Command Register Format
	Supported Commands
	Reserved Command Codes

	ConfigControl (EISA Only)
	Definition

	EepromCommand
	Definition

	EepromData
	Definition

	FifoDiagnostic
	Definition

	FramesDeferred
	Definition

	FramesRcvdOk
	Definition

	FramesXmittedOk
	Definition

	IndicationEnable
	Definition

	InternalConfig
	Definition

	InterruptEnable
	Definition

	IntStatus
	Definition

	LateCollisions
	Definition

	MacControl
	Definition

	ManufacturerId (EISA Only)
	Definition

	MasterAddress
	Definition

	MasterLen
	Definition

	MasterStatus
	Definition

	MediaStatus
	Definition

	MultipleCollisions
	Definition

	Network Diagnostic
	Definition

	OtherInt
	Definition

	PhysicalMgmt
	Definition

	ProductId (EISA Only)
	Definition

	ResetOptions
	Definition

	ResourceConfig (EISA Only)
	Definition

	RomControl (EISA Only)
	Definition

	RxData
	Definition

	RxEarlyThresh
	Definition

	RxError
	Definition

	RxFilter
	Definition

	RxFree
	Definition

	RxOverruns
	Definition

	RxStatus
	Definition

	SingleCollisionFrames
	Definition

	SqeErrors
	Definition

	StationAddress
	Definition

	StationMask
	Definition

	Timer
	Definition

	TxAvailableThresh
	Definition

	TxData
	Definition
	Padding to Double-Word Boundary

	TxFree
	Definition

	TxStartThresh
	Definition

	TxStatus
	Definition

	UpperFramesOk
	Definition

	VcoDiagnostic
	Definition

	Adapter Configuration
	PCI Configuration Overview
	PCI Configuration Registers
	VendorId
	DeviceId
	PciCommand
	PciStatus
	ClassCode
	LatencyTimer
	HeaderType
	IoBaseAddress
	BiosRomControl
	InterruptLine
	InterruptPin
	MinGnt
	MaxLat
	ResetOptions
	InternalConfig

	EISA Configuration Overview
	EISA Configuration Registers
	EEPROM Data Format
	PCI Data Format
	EISA Data Format
	Data Field Details
	3Com Node Address
	DeviceId (PCI Only)
	ProductId (EISA Only)
	Manufacturing Data - Date
	Manufacturing Data - Division
	Manufacturing Data - Product Code
	ManufacturerId
	PciParm (PCI Only)
	RomInfo (PCI Only)
	OEM Node Address
	AddressConfig (EISA Only)
	ResourceConfig (EISA Only)
	Software Information
	Compatibility Word
	Capabilities Word
	InternalConfig
	Software Information 2
	Checksum

	Errata List and Software Solutions
	Introduction
	PCI Adapters (3C590 and 3C595):
	EISA Adapters (3C592 and 3C597):
	All Adapters
	Useful Tips

