

®

3C359 Network Interface Card
Technical Reference
http://www.3com.com/

TokenLink Velocity® XL PCI token ring NIC with Parallel Tasking® II technology

Part Number: 89-0765-000
Published August 1998

3Com Corporation
5400 Bayfront Plaza
Santa Clara, California
95052-8145

Copyright © 1998, 3Com Corporation. All rights reserved. No part of this documentation may be
reproduced in any form or by any means or used to make any derivative work (such as translation,
transformation, or adaptation) without written permission from 3Com Corporation.

3Com Corporation reserves the right to revise this documentation and to make changes in content from
time to time without obligation on the part of 3Com Corporation to provide notification of such revision or
change.

3Com Corporation provides this documentation without warranty, term, or condition of any kind, either
implied or expressed, including, but not limited to, the implied warranties, terms or conditions of
merchantability, satisfactory quality, and fitness for a particular purpose. 3Com may make improvements or
changes in the product(s) and/or the program(s) described in this documentation at any time.

If there is any software on removable media described in this documentation, it is furnished under a license
agreement included with the product as a separate document, in the hard copy documentation, or on the
removable media in a directory file named LICENSE.TXT or !LICENSE.TXT. If you are unable to locate a copy,
please contact 3Com and a copy will be provided to you.

UNITED STATES GOVERNMENT LEGEND

If you are a United States government agency, then this documentation and the software described herein
are provided to you subject to the following:

All technical data and computer software are commercial in nature and developed solely at private expense.
Software is delivered as “Commercial Computer Software” as defined in DFARS 252.227-7014 (June 1995)
or as a “commercial item” as defined in FAR 2.101(a) and as such is provided with only such rights as are
provided in 3Com’s standard commercial license for the Software. Technical data is provided with limited
rights only as provided in DFAR 252.227-7015 (Nov 1995) or FAR 52.227-14 (June 1987), whichever is
applicable. You agree not to remove or deface any portion of any legend provided on any licensed program
or documentation contained in, or delivered to you in conjunction with, this User Guide.

Unless otherwise indicated, 3Com registered trademarks are registered in the United States and may or may
not be registered in other countries.

3Com, the 3Com logo, Parallel Tasking, and TokenLink Velocity are registered trademarks of 3Com
Corporation.

Atmel is a trademark of Atmel Corporation. Dell is a registered trademark of Dell Computer Corporation.
IBM is a registered trademark of International Business Machines Corporation. National Semiconductor is a
registered trademark of National Semiconductor Corporation. Novell is a registered trademark of Novell, Inc.

All other company and product names may be trademarks of the respective companies with which they are
associated.

C

ONTENTS

1 INTRODUCTION

NIC Features 15
About This Technical Reference 15

Terms and Acronyms 16
Register Descriptions and Bit Maps 18

2 ARCHITECTURE

Block Diagram 19
ASICs 20
Other NIC Devices 21

Flash ROM 21
EEPROM 21
64K SRAM 21

Host Registers 22
Command Register 22
Interrupt Status Register 22
Register Layout 23

MAC ASIC Registers 23

3 OPERATION

Software Interface 25
Statistics 25
Flash ROM 25
Data Structure Lists 26
PCI Bus Master Operation 26

PCI Memory Commands 27
PCI Bus Request Control 27

Download 28
Upload 28

Power Management 28
Remote Wake-up Mode 28
Power States 29
Programming Remote Wake-up Events 30

Accessing and Managing Private Memory 31
Memory Usage 31

Without Flash ROM 31
With Flash ROM 32

Memory Access 32

CPAttention 34
MacAccessCmd 34

PrivateMemRead 35
PrivateMemWrite 35
MmioRead 35
MmioWrite 36
IoRead 36
IoWrite 36

MacData 37
Pmbar 38
WRBR 38
WWCR 39
WWOR 39

4 CONFIGURATION

System Reset 41
Serial EEPROM 41
NIC Configuration 42

Autoinitialization 42
PCI Configuration 43
Driver Configuration 43

Without Flash ROM Installed 43
With Flash ROM Installed 44

PCI Configuration Registers 45
VendorId 46
DeviceId 46
PciCommand 47
PciStatus 47
RevisionId 48
ClassCode 48
CacheLineSize 49
LatencyTimer 49
HeaderType 50
BaseAddress1 50
BaseAddress2 50
SubsystemVendorId 51
SubsystemId 52
BiosRomControl 52
CapPtr 52
InterruptLine 53
InterruptPin 53
MinGnt 53
MaxLat 54

Power Management Registers 54
CapId 54
NextPtr 54
PowerMgmtCap 55
PowerMgmtCtrl 56
Data 57

5 EEPROM
Data Format 59
3Com Node Address 60
Checksum 60
ConfigurationControl 60
ManufacturerId 60
Manufacturing Data 60

Date 60
Division 60
Product Code 60

OEM Node Address 60
PciParms1 61
PciParms2 61
Pmbar 61
DeviceId 61
ResourceRedirector 62
SubsystemId 62
SubsystemVendorId 62
SwitchSettings 62
MAC ASIC Registers 62

EeControl 62
EeData 63

6 DOWNLOAD AND TRANSMISSION

Packet Download Model 65
DPD Data Structure 66

DnNextPtr 66
FrameStartHeader 66
DnFragAddr 67
DnFragLen 67

Packet Download 68
Enabling Download 68
Simple Packet Download 68
Polling on DnNextPtr 68
Download Stalls and Idles 69
Download Completion 69

Multipacket Lists 70
Priority Queueing 70
Adding DPDs to the End of the Downlist 70
Inserting a DPD Near the Head of the Downlist 71

NIC Download Sequence 72
Byte Transmission Order 73
Packet Transmission 73

Packet Transmission Model 73
Optimized Packet Transmission 74
Reducing Interrupts 75

Limiting dnComplete Interrupts 75
Using CountDown Timer Instead of dnComplete 75

Underrun Recovery 75
Host Registers 76

DmaCtrl 76
DnBurstThresh 77
DnListPtr 78
DnPoll 79
DnPriReqThresh 79
TxStartThresh 80

7 RECEPTION AND UPLOAD

Packet Upload Model 81
UPD Data Structure 81

UpNextPtr 82
FrameStatus 82
UpFragAddr 84
UpFragLen 84

Packet Reception 84
Enabling Reception 84
Packet Reception Model 84

Packet Upload 85
Upload Modes 85
Simple Packet Upload 86
Packet Upload Completion 86
Store-and-Forward Packet Reception 87

Store-and-Forward Procedure 87
Minimizing Register Accesses 88

Parallel Tasking Packet Reception 89
Combining Packet Reception Modes 89
Multicast Filtering 90
Multipacket Lists 91
Using Multiple UPDs 91
Early Interrupts 91
Packets with Errors 92
NIC Upload Sequence 93

Host Registers 93
DmaCtrl 93
UpBurstThresh 94
UpListPtr 94
UpPktStatus 95
UpPoll 97

MAC ASIC Registers 97
RxBufArea 97
RxEarlyThresh 98

8 INTERRUPTS AND INDICATIONS

Interrupt and Indication Enables 100
Host Registers 101

IndicationEnable 101
InterruptEnable 101
IntStatus 102
IntStatusAuto 104

MAC ASIC Registers 104
MISR 104
MacStatus 106

9 COMMAND REGISTER

Command 107
Reset Commands 108

GlobalReset * 108
DnReset * 109
UpReset * 109

Transmit Commands 110
DnDisable * 110
DnEnable 110
DnStall * 110
DnUnstall 110
SetTxStartThresh 111

Receive Commands 111
RxDiscard * 111
SelectHashFilterBit 111
UpStall * 111
UpUnStall 112

Interrupt Commands 112
AckInterrupt 112
InterruptRequest * 113
SetIndicationEnable 113
SetInterruptEnable 113

SetConfig 114

10 OTHER REGISTERS

Config 115
Countdown 116
FreeTimer 116
HashFilter 117
SwitchSettings 117
Timer 118

11 SOFTWARE OPERATION

MAC Packets 119
Multicast Reception 119
Communication with the Host 119
SRB Commands 120

Issuing SRB Commands 120
Change.Wakeup.Pattern 121
Close.NIC 122
Get.Statistics 122
Modify.Open.Parms 123
Open.NIC 123

Rules for TXI Protocol 127
Open Errors 127

Read.Log 129
Request.Interrupt 130
Restore.Open.Parms 131
Set.Funct.Address 131
Set.Group.Address 131
Set.Multicast.Mode 132
Set.Receive.Mode 132
Set.Sleep.Mode 133

ARB Commands 134
Received.Data 135
Ring.Status.Change 136

ASB Commands 137
Initializing the NIC 137
Detecting Ring Speed 138
Downloading the Microcode 138

A FRAME FORMAT

Bit Ordering 139
SFD and EFD Fields 140
AC Field 141
FC Field 141
DA Field 142
SA Field 142
RI Field 142
DATA Field 142
FCS Field 143
FS Field 143

B ERRATA LIST AND SOFTWARE SOLUTIONS

Hash Calculation 145

INDEX OF REGISTERS

INDEX OF BITS

INDEX

FIGURES
1 3C359 NIC System Architecture 19
2 3C359 NIC Bus Request Structure 27
3 RAM-Based Configuration Memory Usage 31
4 Memory Usage with Flash ROM Installed 32
5 Private Memory Partitioning 33
6 Downlist 65
7 DPD Format 66
8 Packet Transmission Path 74
9 Uplist 81

10 UPD Format 82
11 Packet Reception Path 85
12 Relationship Between Interrupts and Indications 100
13 WILDFIRE.MAC File Format 138
14 Ring Transmission Order 139
15 SFD and EFD Field Formats and Timing 140

TABLES
1 3Com 3C359 NIC Summary 15
2 MAC ASIC 20
3 PCI Bridge ASIC 21
4 3C359 Host Register Layout 23
5 3C359 MAC ASIC Register Layout 24
6 Responses to Flash ROM Access 26
7 PCI Memory Commands 27
8 Power States 29
9 MMIO Register Sizes and Locations 36

10 I/O Register Sizes and Locations 37
11 EEPROM Data Locations 41
12 NIC Configuration After System Reset 42
13 PCI Configuration Register Layout 46
14 Data Register Values Based on dataSelect Bit Settings 57
15 3C359 NIC EEPROM Contents 59
16 OEM Node Address Words in EEPROM 60
17 OEM Node Address Words on the Network 61
18 Interrupt-specific Actions 99
19 MISR Local Bus Memory Address Bit Definitions 104
20 Command Summary 108
21 Control Blocks 120
22 SRB Command Summary 120
23 Change.Wakeup.Pattern Command Parameters 121
24 Close.NIC Command Parameters 122
25 Get.Statistics Command Parameters 122
26 MIB Statistics Counters 123
27 Modify.Open.Parms Command Parameters 123
28 Open.NIC Command Parameters 124
29 OPEN_OPTIONS Bit Descriptions 125
30 SRB Response Format 126
31 Open Error Code Values 127
32 Responses to Open Error Codes 127
33 Open Error Actions 129
34 Read.Log Command Parameters 129
35 Error Counters Available Through Read.Log 130
36 Request.Interrupt Command Parameters 130
37 Restore.Open.Parms Command Parameters 131
38 Set.Funct.Address Command Parameters 131
39 Set.Group.Address Command Parameters 131

40 Set.Multicast.Mode Command Parameters 132
41 Set.Receive.Mode Command Parameters 132
42 Receive Options 133
43 Set.Sleep.Mode Command Parameters 133
44 ARB Commands 134
45 Received.Data Command Parameters 135
46 Received.Data ASB Response Parameters from the Host 136
47 Ring.Status.Change Command Parameters 136
48 ASB Responses 137
49 Token Ring Frame Fields 139
50 Token Priority Levels 141

1
 INTRODUCTION
This technical reference describes the basic architecture and defines the
programming interface of the 3Com® TokenLink Velocity® XL PCI token ring
network interface card (3C359 NIC). See Table 1.

NIC Features 3C359 NICs have these features:

■ Support for 4 Mbps and 16 Mbps IEEE 802.5 and IBM-compatible token ring
LANs

■ Support for IEEE P802.5r Draft 2 (dedicated token ring)

■ Fully independent transmit and receive data paths for full-duplex operation

■ Support for both promiscuous and receive all group/multicast packet modes

■ Built-in serial EEPROM controller for configuration and network address
storage

■ Support for Remote Wake-Up

■ Support for the maximum size packet (~18 KB)

■ Parallel Tasking® II technology for superior performance

■ Plug and play configurability

■ Hash filtering of multicast packets

■ Optional flash ROM for BIOS code

■ Bus-mastering PCI for ultra-low CPU utilization

■ Multipacket, multifragment DMA scatter and gather operations for uploads
and downloads

■ 64 KB SRAM for microcode and data buffers

About This Technical
Reference

This technical reference contains programming interface information that software
engineers, independent software developers, and test engineers need to write
device drivers, diagnostic programs, and production test software for 3C359 NICs.
This information includes:

■ Theory of operation; for example, how transmission and reception occur.

Table 1 3Com 3C359 NIC Summary

Model Bus
Ring Speed
(Mbps) Cable Connector

3C359 PCI 16 (default)
or 4

Two-pair Category 3, 4, or 5 UTP;
or Type 1 or 6 STP

RJ-45 or
DB-9

16 CHAPTER 1: INTRODUCTION
■ Register set, including the size, type, address, and function of each register and
the functions of the bits in the register.

■ Software interface, which allows communication between the NIC and the
host.

The information in this reference is language-independent. It applies regardless of
the programming language you use to write the driver or other software program.

In this reference, addresses refer to physical addresses, not to logical or virtual
addresses. Numeric values other than decimal values are presented in the
following formats:

Terms and Acronyms The following terms and acronyms are used in this reference:

Format Description Example

#’rZZZZ # is the number of bits.

‘ is a delimiter.

r is the radix (b for binary and h for
hexadecimal).

ZZZZ is the value.

6’b100101 is a 6-bit binary notation.

6’h25 is a 6-bit hexadecimal notation.

ZZZr ZZZ is the value.

r is the radix (b for binary and h for
hexadecimal).

100101b is a binary notation.

25h is a hexadecimal notation.

Term or Acronym Meaning

ACA Attachment control area, the base address for MMIO registers.

ARB Adapter request block, a control block in shared RAM that passes
receive information or commands from the CP to the host.

ASB Adapter status block, a control block in shared RAM that passes
host responses to ARB commands to the CP.

BIOS Basic input/output system. BIOS code is executed when the system
boots.

BIOS ROM Read-only memory (ROM) that contains code that is executed
when the system boots and performs remote program load over
the network.

BIST Built-in self-test.

byte An 8-bit wide quantity of data.

CP Communications processor (V30H).

CRC Cyclic redundancy check.

DA Destination address.

double word (dword) A 32-bit wide quantity of data (4 bytes).

download The process of transferring transmit data from system memory to
the NIC.

DPD Download packet descriptor.

EEPROM The type of PEROM used in 3C359 NICs to hold configuration
information.

field Two or more adjacent bits; for example, [3:0] is a field of bits from
bit 3 down to bit 0.

 (1 of 2)

About This Technical Reference 17
flash ROM The type of PEROM used in 3C359 NICs to hold BIOS code.

FSH Frame start header.

indication The reporting of any interesting event on the NIC. Any indication
may be configured to cause an interrupt.

interrupt The actual assertion of the host machine’s interrupt signal.

LLC Logical link control. LLC packets typically originate and terminate
in the host. In this document, they are also called host packets.

MAC Media access control. MAC packets are used to implement the
token ring access protocol and are usually local to the token ring
subsystem. The driver and host software do not need to process
them.

microcode Code that runs on the NIC communications processor (CP). This
code and the associated ASIC implement the token ring protocol.
Microcode is firmware held in ROM.

MMIO Memory-mapped I/O. Memory locations embedded in silicon are
used to perform I/O control functions. MMIO is preferred over I/O
ports because memory operations on the PCI bus usually execute
faster than do I/O operations.

NIC Network interface card.

NOS Network operating system.

PEROM Programmable and erasable read-only memory.

PIO Programmed I/O.

PHY IEEE designation for physical layer.

private memory The memory the NIC uses for data and firmware. It is implemented
in the 3C359 NIC with two 32 KB static RAMs (SRAMs) for a total
of 64 KB. Private memory is also known as local memory.

Remote Wake-Up The ability to turn on networked computers from a central
location. The computers must have power management
capabilities.

RPL Remote program load. The BIOS code in the optional flash ROM
performs RPL, which allows the computer to be booted from the
network rather than from its own disk.

SRAM Static RAM.

SRB System request block, a control block in shared RAM that passes
transmit information or commands from the host to the CP.

UPD Upload packet descriptor.

upload The process of transferring received data from the NIC to system
memory.

word A 16-bit wide quantity of data (2 bytes).

Term or Acronym Meaning

 (2 of 2)

18 CHAPTER 1: INTRODUCTION
Register Descriptions
and Bit Maps

The register descriptions in this technical reference include register bit maps. For
example:

The first row of a bit map shows the bit numbers.

The second row of the bit map indicates the following information:

■ Shaded areas indicate one of the following:

■ Read-only bits. These bits read back the default values shown. If no value is
shown, the read-back value varies.

■ Unimplemented, reserved bits. These bits may be placeholders for possible use
in a future revision of the NIC, or they may provide diagnostic information.
Reserved bits are writable, but they do not control any function. They disregard
data written to them and return zeros when they are read. To maintain
compatibility with future versions of the NIC, drivers should write zeroes to
reserved bits.

■ Unshaded areas indicate active bits. The functions of these bits are described in
the register descriptions. A value in an unshaded bit indicates that the driver
must write that value to the bit.

■ Vertical lines mark the boundaries of fields of bits (for example, [12:0]).

Default bit values are indicated as follows:

■ 0 and 1 are known default states.

■ x is a bit that is not initialized at reset; thus, its value varies.

Most significant word

Most significant byte

Least significant word

 Least significant byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
 ARCHITECTURE
This chapter describes the 3C359 NIC architecture and shows the layout of the
registers that the driver can control.

Block Diagram The block diagram for the 3C359 NIC is shown in Figure 1. The NIC devices are
described in the following sections.

Figure 1 3C359 NIC System Architecture

EEPROM

MAC
ASIC

PCI bridge ASIC

Host
CPU

RJ-45

Receive
FIFO

Transmit
FIFO

Local
upload
engine

Token ring
MAC

TI380C60
PHY

Bus
interface

CP
(V30H)

Buffer
handler

SRAM
controller

64K
SRAM

Flash
ROM

(optional)

Local
download

engine

Upload
engine

Download
engine

P
C

I b
us

Lo
ca

l b
us

 c
on

tr
ol

le
r

Lo
ca

l b
us

P
C

I b
us

 c
on

tr
ol

le
r

R
X

 b
uf

fe
r

R
X

 b
uf

fe
r

R
X

 b
uf

fe
r

R
X

 b
uf

fe
r

T
X

 b
uf

fe
r

T
X

 b
uf

fe
r

T
X

 b
uf

fe
r

T
X

 b
uf

fe
r

Download
packet

descriptors

Upload
packet

descriptors

System
RAM

System board

20 CHAPTER 2: ARCHITECTURE
ASICs The NIC contains two ASICs:

■ Media Access Control (MAC) ASIC (see Table 2)

■ PCI bridge ASIC (see Table 3)

The PCI bridge ASIC connects the PCI bus and the local bus and uses the
communications processor (CP) bus connection to write registers in the MAC ASIC
directly, thereby controlling MAC ASIC transmissions. Performing this function in
hardware rather than with microcode is largely responsible for the 3C359 NIC’s
very high throughput.

Table 2 MAC ASIC

Function Block Description

Token ring MAC This block implements the IEEE 802.5 Media Access
Control (MAC) function.

Buffer handler This block organizes frames within the SRAM.

Bus interface This block provides the interface between the MAC
ASIC and the local bus.

CP (V30H) This block is the V30H communications processor.

SRAM controller This block arbitrates among various requesters for
memory access (CP, bus interface, and buffer handler)
and implements the interface between the MAC ASIC
and the SRAM and flash ROM.

MAC
ASIC Token ring

MAC

Bus
interface

CP
(V30H)

Buffer
handler

SRAM
controller

Other NIC Devices 21
Other NIC Devices The other devices associated with NIC operation are described in the following
sections.

Flash ROM The 3C359 NIC has a socket for an optional 128 KB flash ROM that stores
microcode and BIOS code. The optional flash ROM is described in “Flash ROM” in
Chapter 3.

EEPROM The 16-bit ´ 64-word serial EEPROM stores configuration information for the NIC.
The EEPROM contents are described in Chapter 5.

64K SRAM The 64K static RAM (SRAM) provides buffer storage for receive and transmit
frames and for firmware. The host software downloads firmware each time the
system resets.

Table 3 PCI Bridge ASIC

Function Block Description

PCI bus controller This block implements the PCI interface functions
(responding to PCI target cycles, generating and
controlling PCI master cycles, and performing parity
checking and generation). The PCI bus controller also
provides bus master services to the download and
upload engines.

Upload and download engines These blocks fetch the descriptors in the downlist and
uplist and perform bus master data transfers by
requesting PCI bus master burst service from the PCI
bus controller block.

The upload engine removes receive data from the
receive FIFO and supplies it to the PCI bus controller as
it is required. The download engine pipes transmit data
from the PCI bus controller into the transmit FIFO.

Receive and transmit FIFOs These blocks are high-speed burst caches.

Local upload and download engines These blocks move data to and from the local bus with
service from the local bus controller block.

Local bus controller This block controls data transfers to and from the local
bus.

PCI bridge ASIC

Receive
FIFO

Transmit
FIFO

Local
upload
engine

Local
download

engine

Upload
engine

Download
engine Lo

ca
l b

us
 c

on
tr

ol
le

r

P
C

I b
us

 c
on

tr
ol

le
r

22 CHAPTER 2: ARCHITECTURE
Host Registers The 3C359 NIC presents a set of registers to the host CPU. These host registers are
mapped into 128 bytes of the host’s I/O space, memory space, or both. A register
that is mapped into memory space is called a memory-mapped I/O
(MMIO) register.

Because PCI memory transactions typically execute much faster than I/O operations, it
is usually best to access the registers in memory space. However, the register set is
also mapped into I/O space for the following reasons:

■ When memory resources are scarce, the only way to operate the NIC may be
through I/O.

■ If you need absolutely synchronous control of the NIC, then you must operate
through I/O.

In general, host registers must be accessed as operands that are no wider than the
bit width of the register. Specific register access limitations are described in the
register definitions in this technical reference.

A host register’s location is specified by its offset from a base address that is
defined in the BaseAddress1 and BaseAddress2 PCI configuration registers. These
registers are described in “PCI Configuration Registers” in Chapter 4.

Command Register Many of a driver’s interactions with the NIC are performed using a command
structure. Command codes written to the NIC perform some action. For example,
the DnEnable command causes the download engine to download frames to the
MAC ASIC.

Commands are written to the write-only Command register, which appears at
offset 5E. For details on the commands, see Chapter 9.

Commands and status are also exchanged between the host driver and the NIC
firmware by means of the software interface. The software commands are
described in Chapter 11.

Interrupt Status Register The read-only IntStatus register shares the location offset 5E with the write-only
Command register. A driver uses IntStatus to determine the sources of interrupts
on the NIC. Some commands, such as DnStall, initiate a process that may take
some time to finish. The IntStatus register includes a bit that indicates when a
command issued to the Command register is in the process of being executed.
For details on the interrupt status registers, see Chapter 8.

MAC ASIC Registers 23
Register Layout Table 4 shows the 3C359 host register layout. Shaded areas in the table indicate
reserved spaces. Do not program in these spaces.

MAC ASIC Registers MAC ASIC registers are not mapped directly into host I/O space. They must be
accessed using the MacAccessCmd and MacData host registers, as described in
Chapter 3.

The main method for host software to communicate with the NIC is through a
group of private memory locations, called control blocks. See “Communication
with the Host” in Chapter 11 for the means by which the locations of these blocks
are communicated to the host. You can access control blocks through the
MacAccessCmd and MacData host registers.

Table 4 3C359 Host Register Layout

Byte 3 Byte 2 Byte 1 Byte 0
Offset
(Hex)

IntStatus/Command IndicationEnable 5C

InterruptEnable TxStartThresh 58

IntStatusAuto 54

50

4C

48

44

DnBurstThresh UpBurstThresh 40

UpPoll 3C

UpListPtr 38

Countdown FreeTimer 34

UpPktStatus 30

DnPoll DnPriReqThresh 2C

Config HashFilter 28

DnListPtr 24

DmaCtrl 20

1C

Timer 18

MacAccessCmd 14

MacData 10

0C

08

04

00

24 CHAPTER 2: ARCHITECTURE
Table 5 shows the 3C359 MAC ASIC register layout. The memory-mapped I/O
(MMIO) registers and the CpAttention I/O register are accessed with the
MmioRead and MmioWrite commands in the MacAccessCmd register. The I/O
registers, except CpAttention, are accessed with the PrivateMemRead and
PrivateMemWrite commands in the MacAccessCmd register.

Shaded areas in the table indicate reserved spaces. Do not program in these
spaces.

Table 5 3C359 MAC ASIC Register Layout

Byte 1 Byte 0

Local
Address

(Hex)

MMIO Registers WRBR CDE02

WWOR CDE04

WWCR CDE06

MacStatus CDE08

MISR CDE0B

RxBufArea CDE10

RxEarlyThresh CDE12

I/O Registers CPAttention 180D

Pmbar 1C80

SwitchSettings 1C88

EeControl 1C8A

EeData 1C8C

3
 OPERATION
This chapter summarizes NIC operational characteristics.

Software Interface The software interface allows a driver to perform high-level operations such as
inserting the NIC into the ring (opening the NIC) or requesting statistics from the
MAC ASIC. The software interface is described in Chapter 11.

Statistics The NIC accumulates statistics to support network management software. The
host retrieves these statistics with the Get.Statistics command, described in
Chapter 11.

Flash ROM The 3C359 NIC has a socket to hold an optional flash ROM (also called a boot
ROM). The flash ROM contains BIOS code that allows the host computer to be
booted remotely over the network, rather than from its own disk. It also contains
a copy of the NIC microcode, which is normally held in SRAM. Placing microcode
in the flash ROM frees SRAM, allowing additional data buffer space, which is an
important consideration in server applications.

The flash ROM is a 64K ´ 16-bit flash device that can be written electrically with a
flash write utility. The flash ROM and utility are available together from 3Com (part
number 3C359-TRIROM).

The flash ROM size is 128 KB. The top 64 KB is reserved for microcode; the
bottom 64 KB is reserved for BIOS code. The flash ROM is configured through the
BiosRomControl PCI configuration register. This register causes the ROM to be
mapped into the memory space of the host system, allowing the ROM contents
to be scanned, copied to system RAM, and executed at initialization time.

The 3C359 NIC uses the enBios bit in the Pmbar register to decide how to respond
to accesses to the flash ROM space defined in the BiosRomControl register. Also,
if either the addressDecodeEnable bit in the BiosRomControl register or the
memorySpace bit in the PciCommand register is cleared, then the PCI bridge ASIC
does not respond to accesses to flash ROM space.

Table 6 shows the possible bit combinations for flash ROM access (cases A, B, C,
and D) and the 3C359 NIC’s responses in each case.

26 CHAPTER 3: OPERATION
Data Structure Lists To move data between the host and the NIC, drivers set up data structures in
system RAM to specify the buffers to be used for packet data movement. These
data structures, called descriptors, are linked together in system memory to form
lists.

All packet data is moved across the 3C359 PCI bus by bus master operations. The
3C359 NIC also uses bus master operations to read descriptor information out of
system RAM and to write status back into the descriptors.

Movement of a transmit packet to the NIC is called a download. The list of
download packet descriptors (DPDs) is called the downlist. Similarly, a receive
packet movement is called an upload, and the list of upload packet descriptors
(UPDs) is the uplist.

The driver creates and maintains the uplist and downlist. It starts the download
process by writing the address of the first download descriptor in the downlist to
the DnListPtr register. Uploads are started by writing the first upload descriptor
address to the UpListPtr register. The driver also accesses NIC registers for
initialization, interrupt handling, statistics collection, and error handling. For details
on data structure lists, see Chapter 6 and Chapter 7.

PCI Bus Master
Operation

This section describes aspects of bus master operation that can be controlled by
software. For information about PCI configuration, see “PCI Configuration
Registers” in Chapter 4.

An on-board bus mastering mechanism passes data to and from the host.
Independent, full-fragment gathering (download) and scattering (upload) DMA
engines allow full-duplex operation and reduce the amount of buffer RAM
required on the NIC. The DMA engines reference DPDs and UPDs in host memory.
UPDs and DPDs indicate the size and location of the buffers for each packet.
When the host transmits a packet, the driver programs the location of the DPD
into the NIC to trigger the DMA engine to begin a download.

Table 6 Responses to Flash ROM Access

Case

Bits

NIC Response
memory
Space*

address
Decode
Enable† enBios‡

A 0 x x No response to memory access. The NIC does not activate the DEVSEL# signal on the
PCI bus.

B 1 0 x Responds only to memory accesses to the area defined by the BaseAddress2 register
(MMIO).

C 1 1 0 Responds to memory accesses as in case B, but returns ones for memory accesses to
the area defined by the BiosRomControl register.

D 1 1 1 Responds to MMIO accesses as in case B and returns ROM data for a memory access to
the area defined by BiosRomControl. The MAC ASIC’s Pmbar register must be set to
F9C0h to read the ROM correctly. The EEPROM must be written with this private
memory base address when the ROM is installed.

* The memorySpace bit is located in the PciCommand register.
† The addressDecodeEnable bit is located in the BiosRomControl register.
‡ The enBios bit is located in the MAC ASIC Pmbar register.

PCI Bus Master Operation 27
Likewise, packets move from the NIC to host memory according to a UPD. A UPD
can be specified before the NIC receives the packet (in which case, the packet
moves immediately off the wire and into host buffers), or can be specified after a
packet has been received. The former case results in higher performance.

The UPD can specify buffer sizes ranging from just large enough to hold some
amount of look-ahead data to large enough to hold a maximum size packet. The
software environment determines the most appropriate arrangement to use.

PCI Memory Commands The 3C359 NIC supports all PCI memory commands. (See Table 7.)

To read packet data transmitted to it, the NIC uses the MR, MRL, or MRM
command. To write packet data it receives, the NIC uses either the MW or MWI
command. For maximum bus efficiency, the NIC decides which command to use
on a burst-by-burst basis. The choice depends on the remaining number of bytes
in the fragment, the amount of free space in the transmit or receive FIFO, and
certain system parameters, such as cache line size.

These configuration bits control the use of PCI memory commands:

■ The MWIEnable bit in the PciCommand configuration register enables or
disables the NIC’s use of MWI.

■ The defeatMWI bit in the DmaCtrl register can disable the NIC’s use of MWI,
independently of the MWIEnable bit. By default, MWI is enabled.

PCI Bus Request Control A set of registers controls PCI burst behavior. These registers allow trade-offs to be
made between PCI bus efficiency and underrun and overrun frequency. Figure 2
illustrates the bus request structure.

Figure 2 3C359 NIC Bus Request Structure

Table 7 PCI Memory Commands

Command Description

MW Memory write

MWI Memory write invalidate

MR Memory read

MRL Memory read line

MRM Memory read multiple

Transmit
FIFO

Receive
FIFO

Upload engine

DnPriReqThresh

Download engine

rxFree

txBytes

txFree

DnBurstThresh dnRequest

dnPriorityRequest

UpBurstThresh

upRequest

Arbiter

PCI bus controller

PCI
bus

28 CHAPTER 3: OPERATION
Arbitration logic (the arbiter) within the PCI bus controller block accepts bus
requests from the download and upload engines.

Download

The download engine monitors the amount of free space in the transmit FIFO.
When there are at least 16 bytes of free space and a fragment available for
download, the download engine issues the dnRequest signal to make a standard
bus request. The DnBurstThresh logic qualifies dnRequest. When the amount of
free space in the FIFO is greater than the value in the DnBurstThresh register, a
download request is passed on to the arbiter. The purpose of DnBurstThresh is to
delay the bus request until there is enough free space in the FIFO for a long,
efficient burst.

The download engine also has a way to make an emergency bus request.
When the number of used bytes in the FIFO drops below the value in the
DnPriReqThresh register, indicating that the FIFO is approaching an underrun
condition, the dnPriorityRequest signal makes a priority request. This request is not
subject to the DnBurstThresh constraint; when the FIFO is close to underrun, burst
efficiency is sacrificed in favor of requesting the bus as quickly as possible.

Upload

The upload mechanism is similar to download. The upload engine monitors the
number of bytes in the receive FIFO. When there are at least 16 bytes in the FIFO
and a buffer is available for upload, the upload engine issues the upRequest signal
to make a standard bus request. The UpBurstThresh logic qualifies the upRequest
signal; when the number of bytes in the FIFO is greater than the value in the
UpBurstThresh register, an upload request is passed on to the arbiter.

Upload does not have a priority request mechanism because the upload FIFO
buffer is larger than 30 KB, which is large enough to tolerate large bus latencies.
Download, with only 512 bytes of buffering, requires the priority mechanism.

Power Management The NIC supports power management directed by the operating system, in
accordance with the Advanced Configuration and Power Interface (ACPI)
specification. A properly equipped PC can put itself into a low-power state while
the NIC remains active on the ring. A defined network event can then be used to
wake the computer remotely. This mode is known as remote wake-up mode.

3C359 NICs include power management registers in the PCI configuration space,
as defined by the PCI Bus Power Management Interface Specification, Revision 1.0.
The PowerMgmtCap register supplies the system with information about the NIC’s
power management support and capabilities. The PowerMgmtCtrl register allows
system or driver software to read the NIC’s power management status and set the
NIC’s power state.

For a complete discussion of power management, refer to the PCI Bus Power
Management Interface specification on the World Wide Web at www.pcisig.com.

Remote Wake-up Mode When the NIC prepares to enter the remote wake-up mode, the driver specifies
one or more types of wake-up packets. While in this mode, the NIC does not
process DPDs, nor does it upload to the host any logical link control (LLC) frames

Power Management 29
that it receives. It simply monitors the ring for a wake-up packet. Firmware parses
all received frames, looking for one that matches the contents of one of the
wake-up packet types. Packets that do not match are discarded.

When the NIC recognizes a remote wake-up packet, it activates a signal on the PCI
bus connector that causes the PC to start up and assume an operational state.
Firmware takes the following actions when it receives a remote wake-up packet:

1 Puts an appropriate response into the adapter request block (ARB), indicating that
it has received a remote wake-up packet.

2 Saves the remote wake-up packet for possible forwarding to the host. The driver
needs to reconfigure the NIC for normal operation before the packet can be
forwarded.

Power States Table 8 defines the supported power states. The current power state is determined
by the powerState field in the PowerMgmtCtrl register.

The system puts the NIC into either the D1 or D2 state when it is going to power
down but wants the NIC to monitor for wake-up packets. From the NIC’s
perspective, D1 and D2 are identical, but D2 consumes less power because the PCI
clock may be stopped.

Because the clock is stopped in D2, the dynamic power consumption of the PCI
bridge ASIC drops dramatically, thus reducing the overall power consumption of
the NIC. Only as much logic as is necessary to allow the NIC to monitor for
wake-up packets and to assert the PME# signal is left powered. Because the NIC is
still inserted in the ring and participating in ring polling, power consumption of
the rest of the NIC is unaffected by whether it is in the D0, D1, or D2 state.

Table 8 Power States

State powerState Value Description

D0uninitialized 0 D0uninitialized is the result of a hardware reset, or of a transition from D3hot to D0. The PCI
configuration registers are uninitialized, and the NIC responds to PCI configuration cycles only.

D0active 0 D0active is the normal operational power state for the NIC. In D0active, the PCI configuration
registers have been initialized by the system, including the ioSpace, memorySpace, and
busMaster bits in the PciCommand register. Therefore, the NIC is able to respond to PCI I/O and
memory and configuration cycles and can operate as a PCI master.

The NIC cannot signal wake-up (assert the PME# signal on the PCI bus) from the D0 state.

D1 1 D1 is a “light-sleep” state, which allows transition back to D0 with no delay. In D1, the PCI
clock is running. The NIC responds to PCI configuration accesses, allowing the system to change
the power state, but it does not respond to PCI I/O or memory accesses. The NIC’s function in
the D1 state is to recognize wake-up events and link state events and pass them on to the
system by asserting the PME# signal on the PCI bus.

D2 2 D2 is a partial power-down state that allows a faster transition back to D0 than is possible from
the D3 state. D2 is functionally identical to D1, except that in D2, the PCI clock may be stopped,
reducing power consumption even further.

D3hot 3 D3hot is the full power-down state for the NIC. In D3hot, the NIC shuts down and places itself
into the lowest power condition.

In D3hot, the NIC responds to PCI configuration accesses, to allow the system to change the
power state back to D0uninitialized, but it does not respond to PCI I/O or memory accesses.

D3cold N/A This is the power-off state for the NIC. The NIC has no function in this state. Restoring power
causes a hardware reset, which puts the NIC into the D0uninitialized state.

30 CHAPTER 3: OPERATION
Exiting the D1 or D2 states involves changing the powerState bit in the
PowerMgmtCtrl register.

In D3hot the PCI bridge ASIC turns the 32-MHz clock off. The RESETOUT signal is
applied to the MAC control ASIC and the PWRDN signal is applied to the
TI380C60 ring interface device (PHY). Power consumption in this state is less than
a few tens of milliwatts, most of which is consumed in the 5-V–tolerant I/O buffers
between the PCI bridge ASIC and the MAC control ASIC, and in the 3.3-V
regulator. In the D3hot state, it is not possible to monitor for wake-up packets.

Removing power puts the NIC into the D3cold state, and all NIC context is lost.
D3cold can only be exited by restoring the power and clock and then asserting the
RST# signal.

In accordance with the PCI specification, the NIC ignores all bus transactions
except configuration accesses when it is in the D1, D2, or D3hot states.

Programming Remote
Wake-up Events

The following steps put the 3C395 NIC into the remote wake-up mode
(D1 or D2):

1 The operating system calls the driver and tells it to go into remote wake-up mode.

2 The driver takes the following actions:

a Waits until all queued download packets have been transmitted, or stalls the
download and purges all remaining packets from memory.

b Uses the Set.Sleep.Mode command to tell the firmware that it is to enter the
remote wake-up mode. The firmware reconfigures the MAC receiver to place
all LLC frames that pass the address filter into private MAC buffers. The driver
specifies to the firmware the contents of all remote wake-up packet types to be
monitored.

c Processes or discards all receive frames still in the queue. The host also
processes all pending interrupts.

d Informs the operating system that the NIC is ready to be put to sleep.

3 The operating system puts the NIC into either the D1 or D2 state and uses the
PowerMgmtCtrl register to enable the PME# pin.

The following steps put the 3C395 NIC into the full power-down state (D3hot):

1 The driver closes the NIC (remove it from the ring) and informs the operating
system that the NIC is closed.

2 The operating system puts the NIC in the D3hot state.

3 The PCI bridge ASIC initiates a controlled power-down sequence:

a Sets the PCI bridge ASIC’s pins to predetermined power-down states.

b Applies the RESETOUT signal to the MAC control ASIC.

c Applies the PWRDN signal to the PHY.

d Shuts off the 32-MHz master clock.

This process requires 32 PCI clock cycles. After 32 cycles, the PCI clock can be
stopped.

Accessing and Managing Private Memory 31
When the PCI clock is restarted, the NIC exits the D3hot state and enters the D0
state through the PowerMgmtCtrl register. When exiting D3hot, the PCI bridge
ASIC automatically issues a GlobalReset command and performs autoinitialization,
returning the NIC to a state equivalent to that after a hardware reset (as if the
RST# signal had been asserted).

Accessing and
Managing Private
Memory

Private memory (also known as local memory) is the memory the NIC uses for
microcode, data, and command and status blocks. The minimum amount of
private memory is 64 KB; the maximum is 1 MB. The 3C359 NIC implements
64 KB of SRAM in its standard SRAM-based configuration and 192 KB
(64 KB SRAM, 128 KB ROM) when the optional flash ROM is installed.

Memory Usage Memory usage depends on whether or not flash ROM is installed.

Without Flash ROM

When no flash ROM is installed, the microcode resides in the RAM and allocates
approximately 139 LLC receive buffers. The receive buffer size is fixed at 256 bytes.
Memory usage in this RAM-based configuration is shown in Figure 3.

Figure 3 RAM-Based Configuration Memory Usage

As shown in Figure 3, one read/write region is defined (FE90h to FFFFh). The
rest of the RAM is write-protected. The microcode preserves itself after the
initialization process; therefore, the driver need not download microcode each
time it holds the CP (using the cpHold bit in the Pmbar register).

Adapter request block (ARB)**
and microcode data space

Rest of microcode*

Version string (20h bytes)

LLC receive buffer pool

System request block (SRB) (40h bytes)

Adapter status block (ASB) (20h bytes)

Scratch buffer (100h bytes)

90h EAh Offset (2 bytes) Segment (2 bytes) UnusedBoot code (10h bytes)

WRBR

0000h

1000h

B000h

FE70h

FE90h

FED0h

FEF0h

FFF0h

FFFFh

* Assume mcrocode size is 5000h bytes

**ARB is located at 08A0h

32 CHAPTER 3: OPERATION
With Flash ROM

When flash ROM is installed, the microcode can allocate approximately 238 LLC
receive buffers. The receive buffer size is fixed at 256 bytes.

Memory usage with flash ROM installed is shown in Figure 4. One read/write
region is defined (FE90h to FFFFh). The rest of the RAM is write-protected.

Figure 4 Memory Usage with Flash ROM Installed

Memory Access As shown in Figure 5, the SRAM is located at private memory addresses 00000h
through 0FFFFh. The ROM is located at addresses E0000h through FFFFFh.

ARB** and microcode data space

Version string (20h bytes)

LLC receive buffer pool

SRB (40h bytes)

ASB (20h bytes)

Scratch buffer (100h bytes)

Unused

WRBR

0000h

1000h

FE70h

FE90h

FED0h

FEF0h

FFF0h

FFFFh

**ARB is located at 08A0h

Accessing and Managing Private Memory 33
Figure 5 Private Memory Partitioning

Only 64 KB of private memory is accessible to the host through the MacAccessCmd
and MacData registers at any given time. The privateMemoryBase field in the Pmbar
register is used to select which 64K block of private memory is to be accessible. For
example, to access SRAM, privateMemoryBase is set to 0’b0000000; to access the
first 64 KB of ROM, it is set to 0’b1110000; to access the second 64 KB of ROM, it
is set to 0’b1111000. Normally, privateMemoryBase is set to 0 so that the SRAM
partition is accessible. Other portions of private memory are selected temporarily to
program the ROM or to perform remote boot.

The SRAM is based at DD000h in private memory space. This base address must
be added to the offset of the location you want to access. The result is used in the
localAddress field of the MacAccessCmd register. For example, to read the byte of
SRAM offset 101h, add D0000h and 101h (equals D0101h) and place this value
into the localAddress field of MacAccessCmd along with the opcode for a private
memory read (0’b10000). Then read the result from the MacData register.
Remember that privateMemoryBase must be set properly (to 0’b000000000 in
this case) before MacAccessCmd is written.

The read/write and read-only areas of private memory have different boundaries.
The private memory management registers—WRBR, WWCR, and WWOR—define
the read/write and read-only boundaries.

The write region extends from the highest address of the private memory to a
variable origin specified by the WRBR register.

The write window extends from a variable base defined by the WWOR register
pair to a variable limit defined by the WWCR register pair.

The least-significant bit in each odd register is 0, because all write boundaries are
word-aligned.

Until the NIC has been opened, the host only has read-only access to private
memory. After it is opened, the NIC indicates which regions are writable through
the WRBR, WWCR, and WWOR memory management registers.

64K

64K

64K

FFFFF

F0000
EFFFF

E0000

0FFFF

00000

Gap (not implemented)

ROM BIOS code

ROM microcode

SRAM (data buffers)

34 CHAPTER 3: OPERATION
The registers associated with accessing and managing private memory are
described in the following sections.

CPAttention

MacAccessCmd

The MacAccessCmd register works in conjunction with the MacData register to
access private memory and MAC ASIC registers.

To read or write information, first specify the command and address with the
MacAccessCmd register and then read the result from, or write the data to, the
MacData register.

CAUTION: The command specified in MacAccessCmd and the operation performed
on MacData must be consistent—if a read is specified with MacAccessCmd, MacData
must be read; if a write is specified, MacData must be written. Mixing different types
of MacAccessCmd commands and MacData operations causes a PCI target abort and
is likely to corrupt data in the MAC ASIC registers.

Synopsis Provides resources for firmware development.

Type Read/write

Size 8 bits

Local Address 180Dh

CPAttention Register Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

CPAttention Bit Descriptions

Bit Name Description

[7] pmbarVisible Makes the Pmbar register writable after a reset. Normally,
Pmbar is read-only after a reset.

[6] memWrEn Makes all of shared memory writable by the host. This
overrides any settings in the WWBR, WWOR, and WWCR
registers and allows CP code to be downloaded to RAM
(on RAM-only NICs) regardless of the write-protection
provided by these registers. This bit can also be used by
host-based diagnostics for testing RAM.

Synopsis Used in conjunction with the MacData register to access MAC ASIC
registers and private memory.

Type Read/write

Size 32 bits

Offset 14

MacAccessCmd Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opCode 0 0 0 0 0 0 localAddress

Accessing and Managing Private Memory 35
The parameter in bit 27 specifies the following:

■ 0 = byte access

■ 1 = word access

The following sections describe MacAccessCmd commands. The command
definitions use the following conventions:

■ The bit value is the 32-bit value that the NIC expects to be written to the
MacAccessCmd register to carry out the desired operation.

■ The opCode field (bits [31:26]) specifies whether an I/O, MMIO, or SRAM read
or write access is to be done, and whether it is a byte or a word access.

■ The localAddress field (bits [19:0]) specifies the address that the PCI bridge
ASIC is to apply to the MAC ASIC address bus during the access.

■ Bit positions occupied by an “X” indicate that the value for the corresponding
bit does not matter. However, for future hardware compatibility it is
recommended that zeros be written to these positions.

■ Bit positions occupied by a dot (•) indicate bit positions that are to be filled by
the parameter associated with the command.

PrivateMemRead

Used to read locations in SRAM or ROM. The localAddress field (bits [19:0]) is the
20-bit address of the SRAM or ROM location to be read. Private memory locations
to be accessed must be visible within SRAM. If a location outside SRAM is to be
accessed, the privateMemoryBase bit in the Pmbar register must first be set
accordingly. To read the addressed location, simply read the MacData register.

Accesses can be either 8- or 16-bit. Accesses of 24 and 32 bits are not permitted.

PrivateMemWrite

Used to write locations in SRAM or ROM. The localAddress field (bits [19:0]) is the
20-bit address of the SRAM or ROM location to be written. Private memory
locations to be accessed must be visible within SRAM. If a location outside SRAM
is to be accessed, the privateMemoryBase bit in the Pmbar register must first be
set accordingly. The PrivateMemWrite command should be written first, followed
by loading the write data into the MacData register. An access to MacData triggers
the write operation to the addressed location.

MmioRead

Used to read MMIO registers. The localAddress field (bits [19:0]) is the 20-bit
address of the MMIO location to be read. To read the addressed location, simply
read MacData.

Bit Value (1000 •1XX XXXX •••• •••• •••• •••• ••••)

Bit Value (0100 •1XX XXXX •••• •••• •••• •••• ••••)

Bit Value (1000 •0XX XXXX •••• •••• •••• •••• ••••)

36 CHAPTER 3: OPERATION
Accesses can be either 8- or 16-bit. Accesses of 24 and 32 bits are not permitted.

MmioWrite

Used to write MMIO registers. The localAddress field (bits [19:0]) is the 20-bit
address of the MMIO location to be written. The MmioWrite command should be
written first, followed by loading the write data into the MacData register. An
access to MacData triggers the write operation to the addressed location.

Accesses can be either 8- or 16-bit. Accesses of 24 and 32 bits are not permitted.

Some MMIO registers are 8-bit and others are 16-bit. When the driver writes
MMIO registers, the command used and the register width must be consistent.
Table 9 summarizes the MMIO register sizes and locations.

IoRead

Used to read I/O registers in the MAC ASIC. The localAddress field (bits [19:0]) is
the 16-bit address of the I/O location to be read. Register read data is returned in
the MacData register.

Accesses can be either 8- or 16-bit. Accesses of 24 and 32 bits are not permitted.

IoWrite

Used to write I/O registers in the MAC ASIC. The localAddress field (bits [19:0]) is
the 16-bit address of the I/O location to be written. The IoWrite command should
be written first, followed by loading the write data into the MacData register.

Accesses can be either 8- or 16-bit. Accesses of 24 and 32 bits are not permitted.

Bit Value (0100 •0XX XXXX •••• •••• •••• •••• ••••)

Table 9 MMIO Register Sizes and Locations

Register Size
Local Address
(Hex)

WRBR Word cde02

WWOR Word cde04

WWCR Word cde06

MISR Byte cde0b

RxBufArea Word cde10

RxEarlyThresh Word cde12

Bit Value (0010 XXXX XXXX XXXX •••• •••• •••• ••••)

Bit Value (0001 •XXX XXXX XXXX •••• •••• •••• ••••)

Accessing and Managing Private Memory 37
Some I/O registers are 8-bit and others are 16-bit. When the driver writes I/O
registers, the command used and the register width must be consistent. Table 10
summarizes the I/O register sizes and locations.

MacData

MacData contains the value accessed with the MacAccessCmd register.
MacAccessCmd specifies whether memory or I/O is to be read or written. The
command is specified first using MacAccessCmd, followed by a corresponding
read from or write to MacData.

CAUTION: The command specified in MacAccessCmd and the operation
performed on MacData must be consistent—if a read is specified with
MacAccessCmd, MacData must be read; if a write is specified, MacData must be
written. Mixing different types of MacAccessCmd commands and MacData
operations causes a PCI target abort and is likely to corrupt data in the MAC ASIC
registers.

Some reads, such as ROM reads, do not finish immediately. The NIC forces PCI
retries until the read data is available.

When a byte-read access is made to either an even or an odd offset, read data is
always placed in bits [7:0] of the MacData register, and bits [15:8] are undefined.
When doing a byte write access to either an even or an odd offset, the data to be
written should always be placed in bits [7:0] of MacData, and bits [15:8] are
“don’t care.”

Table 10 I/O Register Sizes and Locations

Register Size
Local Address
(Hex)

CPAttention Byte 180d

Pmbar Word 1c80

EeControl Word 1c8a

EeData Word 1c8c

Synopsis Works in conjunction with the MacAccessCmd register to provide
read-write access to MAC ASIC registers and memory through PCI
bridge ASIC register space.

Type Read/write

Size 16 bits

Offset 10

MacData Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

38 CHAPTER 3: OPERATION
Pmbar

WRBR

The host can write to private memory between and including the address specified
in the WriteRegionBase register (WRBR) and the top of the window.

Synopsis Private memory base address register that determines the region of
private memory accessible with the PrivateMemRead and
PrivateMemWrite commands.

Type Read/write

Size 16 bits

Local address 1C80h

Pmbar Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0

Pmbar Bit Descriptions

Bit Name Description

[11] enBios When a flash ROM is on the NIC and remote program
load is desired, autoconfiguration sets this bit to 1, which
enables the NIC to map the boot BIOS code into host
memory space (according to the PCI configuration).

[10] cpHold When no flash ROM is on the NIC, autoconfiguration sets
this bit to 1, which keeps the CP in a reset state until the
driver releases it (presumably after microcode has been
downloaded). When a ROM is on the NIC, this bit is 0,
permitting immediate operation of the NIC.

[9] wdtd When set, this bit disables the NIC’s internal watchdog
timer. This bit should only be set in a development
environment. The default is cleared, which enables the
watchdog timer.

[8:2] privateMemoryBase This field is used to page private memory into the private
memory window. When the NIC has no flash ROM
installed, the privateMemoryBase bit initializes to 00h.
When flash ROM is installed and remote boot is desired,
privateMemoryBase initializes to 1C0h. Boot code is
responsible for setting privateMemoryBase back to 00h in
preparation for opening the NIC.

Synopsis Determines the address of the beginning of the private memory write
region.

Type Read-only

Size 16 bits

Local address CDE02h

WRBR Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Accessing and Managing Private Memory 39
Bits [15:8] define the least-significant byte of WRBR. Bits [7:0] define the
most-significant byte. Any attempt by the host to write this register causes an
access interrupt, unless bit 6 in the CPAttention register is a 1.

Bit 8 is always 0.

WWCR

Bits [15:8] of the WriteWindowClose register (WWCR) define the least-significant
byte. Bits [7:0] define the most-significant byte.

The offset specified by WWCR is read-only. The offset just before WWCR is the last
writable location in the write window.

Any attempt by the host to write this register causes an access interrupt, unless
bit 6 in the CPAttention register is a 1.

Bit 8 is always 0.

WWOR

The host can write to private memory between and including the address specified
in the WriteWindowOpen register (WWOR) and up to the WWCR register. Bits
[15:8] define the least-significant byte of WWOR. Bits [7:0] define the
most-significant byte.

Any attempt by the host to write this register causes an access interrupt, unless
bit 6 in the CPAttention register is a 1.

Bit 8 is always 0.

Synopsis Defines the end of the private memory write window.

Type Read-only

Size 16 bits

Local address CDE06h

WWCR Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Synopsis Determines the start of the private memory write window.

Type Read-only

Size 16 bits

Local Address CDE04h

WWOR Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4
 CONFIGURATION
This chapter discusses the configuration mechanism for the NIC and defines the
registers associated with configuration. Configuration has two components: NIC
configuration and PCI configuration.

System Reset System reset is the assertion of the hardware reset signal on the PCI bus, which
causes a complete reset of the NIC, including forcing flip-flops to known values,
losing any NIC configuration that had been set, and loading the default
configuration from the EEPROM.

There are two sources of system reset:

■ A hardware reset, caused by asserting the RESETN signal after power-up, which
brings the NIC into a known state

■ A software-controlled reset, using the GlobalReset command in the Command
register

A GlobalReset command bit mask parameter allows selective reset of various
parts of the NIC.

For details on GlobalReset and other reset commands, see “Reset Commands” in
Chapter 9.

Serial EEPROM The serial EEPROM is used for nonvolatile storage of such information as the
device identifier, node address, manufacturer data, and default configuration
settings. Some of the EEPROM data is automatically read into the NIC logic after
system reset (such as the device identifier and configuration defaults), whereas
other data (such as the node address) is meant to be read by driver software.

Shortly after system reset, the NIC ASICs read certain locations from the EEPROM
and place the data into the host-accessible registers shown in Table 11. If the
EEPROM has the contents specified in Chapter 5, a reset produces the NIC
configuration shown in Table 12.

Table 11 EEPROM Data Locations

EEPROM
Location Register

Value
(Hex)

Read by:

MAC ASIC
PCI Bridge
ASIC

03 DeviceId (0x3590) 3590 X X

09 ResourceRedirector 509F X

0A ConfigurationControl 0000 X

 (1 of 2)

42 CHAPTER 4: CONFIGURATION
NIC Configuration The basic NIC configuration steps—autoinitialization, PCI configuration, and driver
configuration—are described in the following sections.

Autoinitialization Following a system reset, the autoinitialization state machine reads configuration
settings from the EEPROM and configures the MAC ASIC and the local bus.

These steps configure the NIC after reset:

1 The MAC ASIC reads the following registers from EEPROM:

■ DeviceId (3590h)

■ SwitchSettings

■ ResourceRedirector

■ ConfigurationControl

■ Pmbar (private memory base address register)

0B Pmbar F600* X X

0C PciParms1 FC18 X

17 SubsystemVendorId 10B7† X

18 SubsystemId 3590‡ X

19 PciParms2 429E X

* The Pmbar value is for the standard configuration, with no flash ROM installed. When a flash ROM is
installed and the boot BIOS is enabled, the Pmbar value is 0x19C0. When a flash ROM is installed and the
boot BIOS is not enabled, the Pmbar value is 0x1000.

† As shipped from 3Com. May be altered by a value-added reseller.
‡ As shipped from 3Com. May be altered by a value-added reseller.

Table 12 NIC Configuration After System Reset

Item Configuration

Pmbar visibility Visible

Private memory writability Not writable. To download microcode, the loader must set
the memWrEn bit in the CPAttention register to make private
memory writable. Following the download, the loader should
set the memWrEn bit back to 0. The microcode determines
private memory writability through the WWOR, WWCR, and
WWBR memory management registers.

CP state Held in the reset state if flash ROM is not installed; not held if
flash ROM is installed.

Private memory base address 00000h.

Private memory page size 64K.

Private memory size 64K.

Table 11 EEPROM Data Locations (continued)

EEPROM
Location Register

Value
(Hex)

Read by:

MAC ASIC
PCI Bridge
ASIC

 (2 of 2)

NIC Configuration 43
2 The PCI bridge ASIC monitors the process in step 1. When the process is finished,
the PCI bridge ASIC activates the MAC ASIC register set and performs the
following steps:

a Reads the DeviceId register from EEPROM and places its contents in the
DeviceId PCI configuration register.

b In the MAC ASIC, writes the CPAttention register with 80h to make the Pmbar
register visible.

c Reads the Pmbar register (for internal use).

d Reads the SubsystemVendorId register from EEPROM and places it in the
SubsystemVendorId PCI configuration register.

e Reads the SubsystemId register from EEPROM and places it in the SubsystemId
PCI configuration register.

f Reads the PciParms1 and PciParms2 registers from EEPROM and places them in
various PCI configuration registers.

g Writes bits [7:0] in the MAC ASIC RamRelocation register with D0h to set the
private memory base address to D0000h.

PCI Configuration Following autoinitialization, PCI configuration proceeds. The system BIOS performs
the following steps:

1 Establishes the PCI configuration for the NIC, including the allocation of memory
and I/O resources.

2 Searches for a flash ROM on the NIC.

3 If a flash ROM is installed and it is enabled (see the Pmbar footnote in Table 11),
copies the boot image from the flash ROM to system RAM and executes the code
from the RAM.

Driver Configuration After the system has been booted (either remotely if a flash ROM is installed, or
from the local disk), the driver is loaded. The driver performs different steps,
depending on whether a flash ROM is installed.

Without Flash ROM Installed

Without flash ROM installed, the driver must download the microcode into private
memory before the NIC can be opened. Once this is done, the CP (which has been
held in the reset state since the system reset) can be released by clearing the
cpHold bit in the Pmbar register.

The download process is:

1 In the Pmbar register, set the privateMemoryBase bit to 0.

2 In the CPAttention register, set the memWrEn bit to 1.

This allows the driver to use the MacAccessCmd and MacData registers to write
the first 64 KB of private memory. Because the 3C359 NIC contains only 64 KB in
its standard configuration, this is sufficient to access all of private memory.

3 Write the PrivateMemWrite command with the appropriate localAddress bit into
the MacAccessCmd register. The write operation can be in either byte or word
length. If it is word length, the local address you specify must be an even
boundary.

44 CHAPTER 4: CONFIGURATION
4 Write the data into the MacData register.

The PCI bridge ASIC arbitrates for access to the MAC ASIC. When access is
granted, the PCI bridge ASIC writes the data to the addressed location.

5 Repeat steps 3 and 4 for each subsequent word to be written.

6 Following the download:

a In the CPAttention register, clear the memWrEn bit (to protect private memory
from inadvertent writes by the host).

b In the Pmbar register, clear the cpHold bit (to start the processor).

After the driver releases the microcode, the microcode performs a self-test and
prepares itself to receive and process commands from the driver. The driver
performs these additional configuration steps:

7 Specifies the ring speed, if different from the EEPROM setting. (See “Detecting
Ring Speed” in Chapter 11.)

8 Writes the RxBufArea register with D0000h.

9 Specifies the following register values:

■ RxEarlyThresh = See “RxEarlyThresh” in Chapter 7.

■ TxStartThresh = See “TxStartThresh” in Chapter 6.

■ DnPriReqThresh = See “DnPriReqThresh” in Chapter 6.

At this point the NIC may be opened. A complete listing of the EEPROM contents
is given in Chapter 5.

With Flash ROM Installed

When the flash ROM is installed, the driver only needs to perform steps 7 through 9
of the “Without Flash ROM Installed” driver configuration procedure described in
the previous section to download the microcode.

The optional 3Com flash ROM that can be installed on the 3C359 NIC has these
uses:

■ It holds the boot BIOS code, thus permitting remote program load (RPL).

■ It contains the microcode for the NIC. This frees SRAM space (which would
otherwise be used to hold the microcode) and greatly increases the amount of
memory available for receive data buffers. For this reason alone, it may be
desirable to install the flash ROM, even if RPL is not needed.

RPL is enabled and disabled by setting the Pmbar field in EEPROM to a value
that causes the enBios bit in the Pmbar register to be on or off. For the Pmbar
field values, see the Pmbar footnote in Table 15 in Chapter 5. For instructions
on changing this value, see the documentation that comes with the flash ROM.

PCI Configuration Registers 45
PCI Configuration
Registers

PCI NICs use a slot-specific block of configuration registers to perform NIC
configuration. PCI configuration cycles are directed at one of eight possible PCI
logical functions within a single physical PCI device. The configuration registers are
accessed with two types of PCI configuration cycles:

■ Type 0 cycles are used to configure devices on the local PCI bus.

■ Type 1 cycles are used to pass a configuration request to a PCI bus at a different
hierarchical level.

3C359 PCI NICs respond only to Type 0 configuration cycles directed at function 0.
The NIC ignores Type 1 cycles and Type 0 cycles that are directed at functions other
than 0.

Each PCI device decodes 256 bytes of configuration registers. Of these, the first 64
bytes are predefined by the PCI specification. The remaining registers may be used
as needed for PCI device-specific configuration. The 3C359 NIC implements a
group of power management registers in this device-specific register space.

In PCI configuration cycles, the host system provides a slot-specific decode signal
(IDSEL), which informs the NIC that a configuration cycle is in progress. The NIC
responds by asserting the DEVSEL# signal and decoding the specific configuration
register from the address bus and the byte enable signals.

Configuration consists of allocating system resources to the NIC and setting
NIC-specific options. This is done by writing values into special PCI configuration
registers, and into I/O registers. The location of this configuration space in the host
processor’s address map is system-dependent.

PCI configuration is performed by a BIOS routine supplied with the computer
system. NIC-specific configuration is the driver’s responsibility. For information on
generating configuration cycles from driver software, see the PCI BIOS
specification (available from the PCI SIG at the World Wide Web site
www.pcisig.com.)

Table 13 summarizes the PCI configuration registers. Shaded spaces and all
locations within the 256-byte configuration space that are not shown in the table
are reserved.

46 CHAPTER 4: CONFIGURATION
The following sections describe the PCI configuration registers.

VendorId

The 3Com manufacturer ID is 10B7h.

DeviceId

Table 13 PCI Configuration Register Layout

Byte 3 Byte 2 Byte 1 Byte 0
Offset
(Hex)

Data PowerMgmtCtrl E0

PowerMgmtCap NextPtr CapId DC

40–D8

MaxLat MinGnt InterruptPin InterruptLine 3C

38

CapPtr 34

BiosRomControl 30

SubsystemId SubsystemVendorId 2C

28

24

20

1C

18

BaseAddress2 (memory) 14

BaseAddress1 (I/O) 10

HeaderType LatencyTimer CacheLineSize 0C

ClassCode RevisionId 08

PciStatus PciCommand 04

DeviceId VendorId 00

Synopsis Contains the unique 16-bit manufacturer’s ID allocated by the
PCI SIG.

Type Read-only

Size 16 bits

Offset 0

VendorId Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1

Synopsis Contains the 3Com-allocated 16-bit device ID for the NIC, which is
read from EEPROM location 03h after reset.

Type Read-only

Size 16 bits

Offset 2

PCI Configuration Registers 47
PciCommand

When a 0 is written to the PciCommand register, the NIC is logically disconnected
from the PCI bus, except for configuration cycles.

PciStatus

DeviceId Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 1 0 0 0 0

Synopsis Provides control over the NIC’s ability to generate and respond to PCI
cycles.

Type Read/write

Size 16 bits

Offset 4

PciCommand Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

PciCommand Bit Descriptions

Bit Name Description

[0] ioSpace Allows the NIC to respond to I/O space accesses (if the NIC
is in the D0 power state).

[1] memorySpace Allows the NIC to respond to memory accesses if the NIC
is in the D0 power state.

[2] busMaster Allows NICs with bus master capability to initiate bus
master cycles (if the NIC is in the D0 power state).

[4] MWIEnable Memory Write and Invalidate Enable. Allows the NIC to
generate the MWI command.

[6] parityErrorResponse Controls how the NIC responds to parity errors. Setting
this bit causes the NIC to take its normal action upon
detecting a parity error. Clearing this bit causes the NIC to
ignore parity errors. This bit is cleared upon system reset.

[8] SERREnable Enables the SERR# pin driver. A value of 0 disables the
SERR# driver.

Synopsis Records status information for PCI bus events.

Type Read/write

Size 16 bits

Offset 6

PciStatus Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 0 0 0

48 CHAPTER 4: CONFIGURATION
Although the PciStatus register is writable, write operations work in an unusual
manner. Read/write bits in the register can be reset, but not set, by writing to
PciStatus. A bit can be reset by writing a 1 to that bit position.

RevisionId

The first version of the ASIC returns 21h. Succeeding versions are incremented.

ClassCode

PciStatus Bit Descriptions

Bit Name Description

[4] capabilitiesList This read-only bit indicates the existence of a list of
extended capabilities registers. The CapPtr register points
to the start of the list.

[4] udfSupported This read-only bit indicates that the NIC supports the User
Defined Fields format, as proposed by the PCI SIG.

[7] fastBackToBack This read-only bit indicates that the NIC, as a target,
supports fast back-to-back transactions as defined in
section 3.4.2 of the PCI specification, revision 2.0.

[8] dataParityDetected The NIC sets this bit when, as a master, it detects the
PERR# signal asserted, and the parityErrorResponse bit is
set in the PciCommand register.

[10:9] devselTiming This read-only field is used to encode the slowest time
with which the NIC asserts the DEVSEL# signal.

The NIC returns 2’b01, indicating support of “medium”
speed DEVSEL# assertion.

[11] signaledTargetAbort The NIC asserts this bit when it terminates a bus
transaction with target-abort.

[12] receivedTargetAbort The NIC asserts this bit when, operating as a bus master,
its bus transaction is terminated with target-abort.

[13] receivedMasterAbort The NIC asserts this bit when, operating as a bus master,
its bus transaction is terminated with master-abort.

[14] signaledSystemError This bit is set whenever the NIC asserts the SERR# signal.

[15] detectedParityError The NIC asserts this bit when it detects a parity error,
regardless of whether parity error handling is enabled.

Synopsis Provides a revision code for the PCI bridge ASIC.

Type Read-only

Size 8 bits

Offset 8

RevisionId Register Format

7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 1

Synopsis Identifies the general function of the PCI device.

Type Read-only

Size 24 bits

Offset 9

PCI Configuration Registers 49
The NIC returns 020100h, indicating a token ring network controller.

CacheLineSize

The NIC uses the cache line size to optimize PCI bus master operation (choosing
the best memory command, and so forth).

The value in the CacheLineSize register represents the number of dwords in a
cache. CacheLineSize only supports powers of 2 from 4 to 64 (giving a range
of 16 to 256 bytes). An unsupported value is treated the same as zero.

LatencyTimer

The system writes a value into the LatencyTimer register, which determines how
long the NIC can hold the bus in the presence of other bus requesters. Whenever
the NIC asserts the FRAME# signal, the latency timer is started. When the timer
count expires, the NIC must relinquish the bus as soon as its GNT# signal has been
negated.

Because the low-order three bits are not implemented, the granularity of the timer
is eight bus clocks.

ClassCode Register Format

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Synopsis Holds the system’s cache line size, as written by the system BIOS.

Type Read/write

Size 8 bits

Offset C

CacheLineSize Register Format

7 6 5 4 3 2 1 0

0 0 0

Synopsis Specifies, in units of PCI bus clocks, the value of the latency timer for
bus master operations.

Type Read/write

Size 8 bits

Offset D

LatencyTimer Register Format

7 6 5 4 3 2 1 0

0 0 0

50 CHAPTER 4: CONFIGURATION
HeaderType

This field returns the value 00h.

BaseAddress1

PCI specifications require that base addresses be set as if the system used 32-bit
addressing. The register returns 1 in bit 0 to indicate that this is an I/O base
address (not a memory base address). The upper 25 bits of the register are
writable, indicating that the NIC requires 128 bytes of I/O space in the system
I/O map.

All host registers are mapped into both I/O and memory space.

BaseAddress2

Synopsis Identifies the NIC as a single-function PCI device, and specifies the
configuration register layout shown in Table 13.

Type Read-only

Size 8 bits

Offset E

HeaderType Register Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

Synopsis Allows the system to define the I/O base address for the NIC’s host
register set.

Type Read/write

Size 32 bits

Offset 10

BaseAddress1 Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1

BaseAddress1 Bit Descriptions

Bit Name Description

[31:2] ioBaseAddress The system programs the I/O base address into this field.
Because the NIC uses 128 bytes of I/O space, 25 bits are
required to specify the base address. The hardware forces
bits [6:2] to 0.

[1] reservedByPci This bit always reads 0.

[0] ioSpaceIndicator This read-only bit indicates that the base address specified
is an I/O base address, not a memory base address.

Synopsis Allows the system to define the memory base address for the NIC’s
host register set.

Type Read/write

Size 32 bits

Offset 14

PCI Configuration Registers 51
PCI specifications require that base addresses be set as if the system used 32-bit
addressing. The BaseAddress2 register returns 0 in bit 0 to indicate that this is a
memory base address (not an I/O base address). The upper 25 bits of the register
are writable, indicating that the NIC requires 128 bytes of I/O space in the system
I/O map.

All host registers are mapped into both I/O and memory space.

SubsystemVendorId

BaseAddress2 Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0

BaseAddress2 Bit Descriptions

Bit Name Description

[31:4] memBaseAddress The system programs the memory base address into this
field. Because the NIC uses 128 bytes of I/O space, 25 bits
are required to specify the base address. The hardware
forces bits [6:4] to 0.

[3] prefetchable This read-only bit is set to 0 to indicate that read
operations from the 3C359 NIC have side effects and
therefore are not prefetchable. Specifically, reading the
IntStatusAuto register acknowledges interrupts and clears
the IntStatus and InterruptEnable registers.

[2:1] type The value in this read-only field is determined by bit 2 of
the PciParms1 register in EEPROM. When bit 2 of
PciParms1 is zero, this field is 00b, indicating that the
3C359 NIC’s register set may be mapped anywhere in the
host’s 32-bit memory space. When bit 2 of PciParms1 is
one, this field is 01b, indicating that the 3C359 NIC’s
register set must be mapped into the first 1 MB of host
memory space. The 3C359 NIC ships with this field set to
2’b00.

[0] memSpaceIndicator This read-only bit indicates that the base address specified
is a memory base address, not an I/O base address.

Synopsis Contains the two-byte subsystem vendor ID, which is read from
EEPROM location 17h after system reset.

Type Read-only

Size 16 bits

Offset 2C

SubsystemVendorId Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Restored from EEPROM location 17h

52 CHAPTER 4: CONFIGURATION
SubsystemId

BiosRomControl

CapPtr

CapPtr is a hard-coded value. This register returns DCh, which points to the power
management registers.

Synopsis Contains the two-byte subsystem ID, which is read from EEPROM
location 18h after system reset.

Type Read-only

Size 16 bits

Offset 2E

SubsystemId Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Restored from EEPROM location 18h

Synopsis Allows the system to define the base address for the NIC’s flash ROM.

Type Read/write

Size 32 bits

Offset 30

BiosRomControl Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BiosRomControl Bit Descriptions

Bit Name Description

[31:16] romBaseAddress The system programs the expansion ROM base address
into this field.

Because this field is 16 bits wide, the ROM is mapped to
64 KB boundaries.

[0] addressDecodeEnable When this bit is cleared, the NIC does not respond to flash
ROM accesses. Setting this bit when the memorySpace bit
in the PciCommand register is also set causes the NIC to
respond to accesses in its configured expansion ROM space.

Synopsis Points to the beginning of a chain of registers that describe enhanced
functions.

Type Read-only

Size 8 bits

Offset 34

CapPtr Register Format

7 6 5 4 3 2 1 0

1 1 0 1 1 1 0 0

PCI Configuration Registers 53
InterruptLine

For 80x86 systems, the value in InterruptLine corresponds to the IRQ numbers
(1 through 15) of the standard dual 8259 configuration, and the values 0 and 255
correspond to disabled.

InterruptPin

The 3C359 NIC always uses the INTA# interrupt pin, so 01h is returned.

MinGnt

The system uses the value in the MinGnt register as a clue for setting the
LatencyTimer register. The value for MinGnt is stored in the PciParms1 register in
the EEPROM. The probable value for MinGnt is 6h, which implies a bus grant
period of 1.5 microseconds.

Synopsis Communicates to the device driver the interrupt level that is being
used for the device, which allows the driver to use the appropriate
interrupt vector for its ISR.

Type Read-only

Size 8 bits

Offset 3C

InterruptLine Register Format

7 6 5 4 3 2 1 0

Synopsis Indicates which PCI interrupt pin the NIC uses.

Type Read-only

Size 8 bits

Offset 3D

InterruptPin Register Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1

Synopsis Specifies, in 250-ns increments, how long a burst period the NIC
requires when it is operating as a bus master.

Type Read-only

Size 8 bits

Offset 3E

MinGnt Register Format

7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0

54 CHAPTER 4: CONFIGURATION
MaxLat

The system uses the value in the MaxLat register as a clue for setting the
LatencyTimer register. The value for MaxLat is stored in the PciParms1 register in
the EEPROM. The value for MaxLat is 20h, which implies a latency tolerance of
8 microseconds.

Power Management
Registers

This section describes the power management registers. For details on power
management operation, see “Power Management” in Chapter 3.

CapId

CapId returns 01h to indicate a PCI power management structure.

NextPtr

NextPtr returns 00h to indicate that there are no further data structures.

Synopsis Specifies, in 250-ns increments, how often the NIC requires the bus
when it is operating as a bus master.

Type Read-only

Size 8 bits

Offset 3F

MinGnt Register Format

7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0

Synopsis Indicates the type of capability data structure.

Type Read-only

Size 8 bits

Offset DC

CapId Register Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1

Synopsis Points to the next capability data structure in the capabilities list.

Type Read-only

Size 8 bits

Offset DD

NextPtr Register Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1

Power Management Registers 55
PowerMgmtCap

The 3C359 NIC returns 00111b, which means that it can issue a power
management event indication from states D0, D1, and D2.

Synopsis Provides information about the NIC’s power management
capabilities.

Type Read-only

Size 16 bits

Offset DE

PowerMgmtCap Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1

PowerMgmtCap Bit Descriptions

Bit Name Description

[2:0] version This field returns 1h, as specified in the PCI Bus Power
Management Specification.

[3] pmeClock This bit indicates whether or not a PCI clock is needed for
the 3C359 NIC to assert the PME# signal. Because the
3C359 NIC does not need a clock, this bit is hard-coded to
0.

[4] auxPower This bit indicates whether or not an auxiliary power supply
is required to support power management events in the
D3cold state. The 3C359 NIC does not support this
capability, so this bit is hard-coded to 0.

[8:5] Reserved.

[9] d1 This bit, when set, indicates that this device supports the
D1 power state.

This value of this bit is determined by bit 12 in the
EEPROM PciParms1 word.

[10] d2 This bit, when set, indicates that this device supports the
D2 power state.

This value of this bit is determined by bit 13 in the
EEPROM PciParms1 word.

[15:11] pmeSupport This field indicates the power states from which this
device is able to generate a power management event
(assert the PME# signal). Each bit corresponds to a power
state. A zero in a particular bit indicates that events
cannot be generated from that state. This values of these
bits are determined by bits [15:11] in the EEPROM
PciParms1 word.

The bits are defined as follows:

■ xxxx1 = Power management events possible from D0.

■ xxx1x = Power management events possible from D1.

■ xx1xx = Power management events possible from D2.

■ x1xxx = Power management events possible from
D3hot.

■ 1xxxx = Power management events possible from
D3cold.

56 CHAPTER 4: CONFIGURATION
PowerMgmtCtrl
Synopsis Allows control over the power state and the power management

interrupts.

Type Read/write

Size 16 bits

Offset E0

PowerMgmtCtrl Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

PowerMgmtCtrl Bit Descriptions

Bit Name Description

[1:0] powerState This read/write field is used to determine or set the NIC’s
power state. The following values are defined:

■ 00 = State D0, the full power on state. The NIC is fully
operational. D0 can be followed by any other state
(D1, D2, or D3hot).

■ 01 = State D1, the low-power state. D1 is used when
the host system turns off but the NIC remains on the
ring to look for a wake-up packet. In D1 the NIC
ignores all PCI activity except configuration accesses.
The PCI clock continues to run. The NIC must be put
into the wake-up packet monitoring mode before
entering D1. In D1, the NIC is able to detect a wake-up
packet and assert the PME# signal pin when it receives
one. NIC context is saved in D1. D0 and D2 are the
only states that can directly follow D1. To move the
NIC from D1 to D3hot, the system must first put the
NIC into D0, close the NIC, and then move to D3hot.

■ 10 = State D2, which is identical to D1 except that the
PCI clock is shut off. D2 results in a power savings for
the 3C359 NIC of about 1 watt, relative to D0 or D1.
NIC context is saved in D2. D0 is the only state that can
follow D2. To move the NIC from D2 to D3hot, the
system must first put the NIC into D0, close the NIC,
and then move to D3hot.

■ 11 = State D3hot, the lowest power state. The NIC
should be closed before entering D3hot. In D3hot, the
RESETOUT signal to the MAC ASIC is asserted, the
PWRDN signal is asserted to the PHY, and the 32-Mhz
clock is gated off. All pins between the PCI bridge ASIC
and the rest of the NIC are individually set to the
appropriate state that minimizes leakage in the I/O
circuitry. NIC context is saved in D3hot. D0 is the only
state that can follow D3hot. When the transition to D0
is made, a GlobalReset command is automatically
performed and autoinitialization is done (as if the RST#
signal were asserted).

If powerState is set to a nonzero value, the NIC does not
respond to PCI I/O or memory cycles, and it cannot
generate PCI bus master cycles.

[8] pmeEn When this read/write bit is set, the NIC is allowed to report
wake-up events on the PME# signal. The default is 0.

 (1 of 2)

Power Management Registers 57
Data

The information in the Data register is restored from the EEPROM PciParms2
register. The value read from this register depends on the setting of the dataSelect
bit in the PowerMgmtCtrl register. See Table 14.

[12:9] dataSelect This field selects the information that is reported in the
Data register.

[14:13] dataScale This read-only field indicates the scaling factor for the
information that is reported in the Data register. When
the dataSelect bit is set to 0, 1, 2, 4, 5, or 6, 0b01 is
returned, indicating that the power levels reported in Data
are in units of 0.1 watts. When dataSelect is set to 3 or 7,
0b11 is returned, indicating that the power levels reported
in Data are in units of 0.001 watts.

[15] pmeStat This bit is set when the NIC would normally assert the
PME# signal, regardless of the state of the pmeEn bit. This
bit drives the PME# signal, assuming that the pmeEn bit is
set. Writing 1 to this bit clears it. Writing 0 (the default)
has no effect.

PowerMgmtCtrl Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Synopsis Provides information on the amount of power the 3C359 NIC
consumes in different power states.

Type Read-only

Size 8 bits

Offset E3

Data Register Format

7 6 5 4 3 2 1 0

0 0 1

Table 14 Data Register Values Based on dataSelect Bit Settings

dataSelect Setting
(PowerMgmtCtrl) Interpretation

Value from
PciParms2 (Hex)

Scale Factor
(Watts)

Nominal Power
Requirements
(Watts)

0 D0 consumed 1F 0.1 3.1

1 D1 consumed 1F 0.1 3.1

2 D2 consumed 15 0.1 2.1

3 D3 consumed 11 0.001 0.017

4 D0 dissipated 1F 0.1 3.1

5 D1 dissipated 1F 0.1 3.1

6 D2 dissipated 15 0.1 2.1

7 D3 dissipated 11 0.001 0.17

8–15 Unsupported 00 N/A N/A

5
 EEPROM
This chapter provides information about the EEPROM contents and registers. The
EEPROM is physically connected to the MAC ASIC. The host gains access to the
EEPROM through the EeControl and EeData registers. After system reset, the MAC
ASIC configures itself by reading configuration registers in EEPROM. Then the PCI
bridge ASIC configures itself by reading other EEPROM configuration registers.

Data Format Table 15 summarizes the contents of the 3C359 NIC EEPROM. The data fields are
described in alphabetical order in the following sections.

Table 15 3C359 NIC EEPROM Contents

Address Offset
(Hex) Field Name

Value
(Hex)

Read by:

MAC ASIC PCI Bridge ASIC

00 3Com Node Address (word 0) Variable

01 3Com Node Address (word 1) Variable

02 3Com Node Address (word 2) Variable

03 DeviceId 3590 x x

04 Manufacturing data - Date Variable

05 Manufacturing data - Division 0036

06 Manufacturing data - Product Code 484C

07 ManufacturerId 6D50

08 SwitchSettings 3201 x

09 ResourceRedirector 509F x

0A ConfigurationControl 0000 x

0B Pmbar F600* x x

0C PciParms1 FC18 x

0D–0F Reserved 0000

10 OEM Node Address Word 0 Variable

11 OEM Node Address Word 1 Variable

12 OEM Node Address Word 2 Variable

13-16 Reserved 0000

17 SubsystemVendorId Variable x

18 SubsystemId Variable x

19 PciParms2 429E x

1A–1E Reserved 0000

1F Checksum Variable

* The Pmbar value is for the standard configuration, with no flash ROM installed. When a flash ROM is installed and remote program load (RPL) is
enabled, the Pmbar value is F9C0Hh. When a flash ROM is installed and RPL is not enabled, the Pmbar value is F000h. For instructions on changing
this value in EEPROM, see the documentation that comes with the flash ROM.

60 CHAPTER 5: EEPROM
3Com Node Address This field contains the 3Com node address for the NIC. This is not the address
specified with the Open.NIC command; see “OEM Node Address” later in this
chapter.

Checksum The checksum for the EPPROM contents is a word-wide XOR computed across all
words in EEPROM words zero through 1Eh, and written into word 1Fh.

ConfigurationControl The MAC ASIC reads the NIC-specific configuration information in this field during
configuration. This field contains no bits of interest to the driver.

ManufacturerId This field contains 3Com’s assigned EISA Manufacturer ID. It is a byte-swapped,
encoded form of the string “TCM.” This is included to aid software in identifying
3Com NICs in systems where a PCI BIOS is not available. This value has no
significance in PCI operation (it is unrelated to the PCI VendorId value). It is not
used by the NIC logic in any way.

Manufacturing Data The manufacturing data fields are described below.

Date This field contains the date of manufacture, encoded as follows:

Division This field contains the manufacturing division code, as shown on the product
bar code label.

Product Code This field contains the manufacturing product code, which is two alphanumeric
ASCII characters from the bar code label.

OEM Node Address This is the address to be specified with the Open.NIC command. For 3Com NICs,
this field contains the same value as in 3Com Node Address. OEM developers may
choose to program this field with a different value.

The ordering of the bytes in the OEM Node Address field is important. OEM node
address words are ordered in the EEPROM as shown in Table 16. Their order on
the network is shown in Table 17.

Day [4:0]: The day (1 through 31)

Month [8:5]: The number of the month (1 through 12)

Year [15:9]: The last two digits of the current year (0 through 99)

Table 16 OEM Node Address Words in EEPROM

Byte Byte Offset

1 0 10

3 2 11

5 4 12

PciParms1 61
The driver must read the OEM node address and insert it into the SA field of all
downloaded frames. For more information on the ordering of bytes see “Byte
Transmission Order” in Chapter 6. For more information on the SA field, see
Appendix A.

PciParms1 The contents of this field are loaded into the ASIC to control various hardware
functions related to PCI bus operation.

PciParms2 This field contains information on the NIC’s power consumption. The operating
system can access this information through the PCI configuration Data register.

Pmbar The MAC ASIC reads this field during configuration and makes its information
available in the MAC ASIC register set. The Pmbar register contains bits to control
NIC initialization and to enable writes to the flash memory.

DeviceId This field contains the 2-byte device identifier, which is loaded into the PCI bridge
ASIC and made available in the DeviceId register in the PCI configuration space.

Table 17 OEM Node Address Words on the Network

Bytes 0 1 2 3 4 5

Transmission order

PciParms1 Bit Descriptions

Bit Name Description

[0] fastBackToBack Determines the value for the fastBackToBack bit in the
PciStatus register.

[1] udfSupported Determines the value for the udfSupported bit in the
PciStatus register.

[2] lower1Meg Provides the value for the type bit in the BaseAddress2
register.

[6:3] minGnt Determines the value returned in bits [4:1] of the MinGnt
register.

[10:7] maxLat Determines the value returned in bits [5:2] of the
MaxLat register.

[15:11] pmeSupport Provides the values for the following fields of the
PowerMgmtCap register: pmeSupport, d1, and d2.

PciParms2 Bit Descriptions

Bit Name Description

[5:1] data1 These bits specify the NIC’s power consumption in the D0
and D1 states. See “Data” in Chapter 4.

[10:6] data2 These bits specify the NIC’s power consumption in the D2
state. See “Data” in Chapter 4.

[15:11] data3 These bits specify the NIC’s power consumption in the D3
state. See “Data” in Chapter 4.

62 CHAPTER 5: EEPROM
ResourceRedirector The MAC ASIC reads the NIC-specific configuration information in this field during
configuration. This field contains no bits of interest to the driver.

SubsystemId This is the 2-byte subsystem ID. 3Com NICs use the same code as the DeviceId
data field. OEM developers may want to specify a different SubsystemId.

SubsystemVendorId This is the 2-byte subsystem vendor ID. 3Com NICs use the 3Com PCI vendor ID,
10B7h. OEM developers may want to specify a different SubsystemVendorId.

SwitchSettings The MAC ASIC reads the NIC-specific configuration information in this field during
configuration. The only bit in this field that is useful to the driver is bit 1,
ringSpeed, which is used when detecting ring speed as described in “Detecting
Ring Speed” in Chapter 11.

MAC ASIC Registers The following MAC ASIC registers are associated with the EEPROM.

EeControl
Synopsis Provides access to the EEPROM.

Type Read/write

Size 16 bits

Local address 1C8Ah

EeControl Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1

EeControl Bit Descriptions

Bit Name Description

[15] eeBusy When this bit is set, the EEPROM is busy. Write operations
are ignored and read data is not valid in the EeData
register.

[7:6] opcode This field is used in conjunction with the address bit to
specify EEPROM operations, as follows:

■ 10 = Read the data in the register specified by address.

■ 11 = Erase the register specified by address.

■ 01 = Write the register specified by address.

■ 00 = If address = 10XXXX, erase all registers.

■ 00 = If address = 01XXXX, write all registers with the
data in the EeData register.

■ 00 = If address = 00XXXX, disable all write/erase
modes.

■ 00 = If address = 11XXXX, enable all write/erase
modes. This command must precede all write/erase
commands.

[5:0] address See the opcode bit description above.

MAC ASIC Registers 63
EeData
Synopsis Contains the data to be written to EEPROM or read from EEPROM as

specified by the EeControl register.

Type Read/write

Size 16 bits

Local address 1C8Ch

EeData Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Restored from EEPROM

6
 DOWNLOAD AND TRANSMISSION
This chapter presents an overview of the packet download and transmission
process, and defines the registers associated with the downloading and
transmission of data.

3C359 NICs support a multipacket, multifragment gather process, whereby the
driver builds descriptors that represent packets in system memory and links them
together. The NIC follows the links, downloading multiple fragments per packet
and generating interrupts when required.

Packet Download
Model

A driver controls packet download by building a linked list of packet descriptors,
called download packet descriptors (DPDs) when the network operating system
issues a transmit request. The driver informs the NIC of a DPD’s location and the
NIC handles download and transmission of the packet with no further intervention
from the driver. The linked list of DPDs, which is called the downlist, is illustrated in
Figure 6.

Figure 6 Downlist

The driver places packets to be transmitted in data fragments (buffers) in
system memory and then creates the list of DPDs that point to the fragments
in system memory. All pointers are physical memory addresses (not virtual memory
addresses).

The head of the list is the DPD that corresponds to the current download packet.
The DnListPtr register points to this DPD. The NIC processes the DPD, fetching
fragment address and fragment length values one at a time from the DPD and
places them into NIC registers, which control the data download operations.

First DnFragAddr

First DnFragLen

Last DnFragAddr

Last DnFragLen

FrameStartHeader

DnNextPtrDnListPtr

3 DPD 0

DPD

System RAMNIC

Last data fragment

First data fragment

Transmit packet

66 CHAPTER 6: DOWNLOAD AND TRANSMISSION
DPD Data Structure The 3C359 NIC supports the DPD format shown in Figure 7.

Figure 7 DPD Format

DPD length ranges from 16 to 512 bytes. Each DPD describes up to 63 fragments,
which consist of pairs of DnFragAddr and DnFragLen DPD entries.

DnNextPtr The first dword in the DPD is the DnNextPtr entry, which contains the physical
address of the next DPD in the downlist. If there are no more DPD entries in the
downlist, then this value is zero.

DPDs must be aligned on 8-byte boundaries.

FrameStartHeader The FrameStartHeader DPD entry (also called the FSH) contains packet control and
status information.

First DnFragAddr

First DnFragLen

nth DnFragAddr

nth DnFragLen (n x 8) + 4

n x 8

c

8

4

0

FrameStartHeader

DnNextPtr

DnNextPtr Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

FrameStartHeader Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

FrameStartHeader Bit Descriptions

Bit Name Description

[14:0] frameLength This field specifies the sum of all fragments that make up
the transmit packet.

[15] disableCrc The driver sets this bit to inhibit the NIC from appending a
CRC to the end of this packet. When disableCrc is set, it is
expected that the packet’s CRC would be supplied as part
of the data downloaded to the FIFO. An exception to this
occurs with a transmit underrun. In this case, either a
guaranteed-bad CRC is appended to the packet (if so
enabled by the firmware) or an abort delimiter is
transmitted.

When this bit is cleared, the NIC computes and appends
CRCs for transmit packets.

 (1 of 2)

DPD Data Structure 67
DnFragAddr The DnFragAddr DPD entry contains the physical address of a contiguous block of
data to be downloaded to the NIC and transmitted.

A fragment can start on any byte boundary. The hardware is responsible for
aligning to dword and cache line boundaries.

DnFragLen The DnFragLen DPD entry contains fragment length and control information for
the block of data pointed to by the previous DnFragAddr DPD entry.

[16] dnComplete This bit indicates that the packet download is complete.
The NIC sets this bit after it has finished downloading all
of the fragments specified in the DPD, regardless of the
setting of the dnIndicate bit.

[27] txIndicate When this bit is set, a txComplete interrupt occurs when
the packet finishes transmitting. If this bit is cleared, no
interrupt occurs unless a transmit error occurs.

[29] dpdEmpty This bit indicates that there is no packet data in this DPD,
so the NIC should proceed directly to fetching the
DnNextPtr DPD entry. A driver can use this feature to
handle an empty DownList condition consistently. See
“Polling on DnNextPtr” later in this chapter.

[30] fshFormat The driver must set this bit to 0 when the FSH is created.

[31] dnIndicate When this bit is set, a dnComplete interrupt occurs when
a packet finishes downloading. If this bit is cleared, no
interrupt occurs.

The NIC reads this bit after the download operation has
finished, allowing the host to change this bit while the
download is in progress. The FSH is read twice: first to
store the FSH bit values temporarily while the packet is
being downloaded; and again after the download is
finished to determine whether to generate an interrupt.

FrameStartHeader Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

DnFragAddr Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DnFragLen Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DnFragLen Bit Descriptions

Bit Name Description

[14:0] dnFragLen This field contains the length of the contiguous block of
data pointed to by the previous DnFragAddr DPD entry.

[31] dnFragLast The driver sets this bit to indicate that this is the last
fragment of the transmit packet and that the NIC should
proceed to the next DPD.

68 CHAPTER 6: DOWNLOAD AND TRANSMISSION
Packet Download A packet download begins when all of the following conditions are true:

■ The DnListPtr register is not equal to zero.

■ The download engine is not in the DnStall command state.

■ The transmitter has not experienced an underrun.

■ If the downloadMode bit is set in the Config register, the available space in the
download FIFO equals or exceeds the calculated burst size. If downloadMode is
clear, the download FIFO must be empty.

Enabling Download The NIC exits reset with the download engine in the idle state. Before attempting
a download, the NIC must be opened (inserted in the ring) with the Open.NIC
command. (For details on this and other software interface commands, see
Chapter 11.)

After the NIC is opened, it is ready to start processing a downlist as soon as the
driver writes a nonzero value into the DnListPtr register.

Simple Packet Download The simplest example of packet download starts with the download engine idle,
and an empty downlist, as is the case after reset. It is assumed that the NIC is
already open.

To download a single packet, the driver creates a DPD with the addresses and
lengths of the fragments containing the data to be transmitted. Since there are no
more DPDs, the driver programs zero into the DnNextPtr DPD entry.

To start the download engine, the driver writes the address of the DPD into the
DnListPtr register. The NIC proceeds to fetch information from the DPD and to
move the packet data into the transmit FIFO.

When the download is finished, the NIC sets the appropriate status in the
FrameStartHeader DPD entry and in the IntStatus register. It then reads the
DnNextPtr DPD entry and places its value in the DnListPtr register. In the case of
simple packet download, this is the only DPD entry in the downlist and the
DnListPtr register is zero, which idles the download engine.

Polling on DnNextPtr When the download engine fetches a DnNextPtr DPD entry that is equal to zero,
the download goes idle. To restart the download, the DnListPtr register must be
written with a nonzero value, which increases CPU utilization because it requires a
bus transaction. However, the NIC can be programmed to poll on DnNextPtr
automatically until the driver writes a nonzero value to it when it adds a DPD entry
to the downlist. When the NIC reads a nonzero value, the download engine
restarts with the DPD pointed to by the DnNextPtr entry it just fetched.

The DnPoll register controls this polling function. The value written to DnPoll
determines the DnNextPtr polling interval. The polling function is enabled when
DnPoll contains a nonzero value and the download engine is forced to read a
DPD’s DnNextPtr entry. This is done by creating a downlist that is not empty and
pointing the NIC at it by writing the first DPD address to the DnListPtr register.

Packet Download 69
Sometimes it is desirable to start the polling process even though the downlist is
empty, such as at initialization time. You can use the dpdEmpty bit in the
FrameStartHeader DPD entry for this purpose. The procedure is:

1 Create a dummy DPD with its DnNextPtr entry set to 0 and the dpdEmpty bit of its
FramestartHeader DPD entry set to 1. Because the dpdEmpty bit is set, the
download engine does not process fragments.

2 Write a nonzero value to the DnPoll register.

3 Write the DnListPtr register with the address of the DPD created in step 1.

The NIC reads the FrameStartHeader entry in the DPD to which DnListPtr points,
but because the dpdEmpty bit is set, the NIC immediately reads the DnNextPtr
entry. Because DnNextPtr is zero at this time, the NIC begins polling on it. When
the first packet is ready to be transmitted, the driver writes the address of its DPD
into the dummy DPD’s DnNextPtr entry. At the next polling cycle, the NIC sees the
nonzero DnNextPtr entry and begins downloading as described in “Simple Packet
Download” earlier.

It is possible for the driver to “short-circuit” the polling cycle after adding a DPD by
simply reading DnListPtr. The NIC interprets this as a trigger to poll DnNextPtr.
Polling is otherwise unaffected by this action.

Download Stalls and
Idles

It is important to understand the distinction between stalling and idling the
download engine.

A stall state is entered only when a DnStall command is issued. The stalled
download engine must be restarted by issuing the DnUnStall command.

An idle state occurs if a DnReset or GlobalReset command has been issued, or if
the DnListPtr register is 0. In these cases, simply writing a nonzero value to
DnListPtr restarts the download. If the download is idle and also in the polling
mode, then the download engine is restarted by writing a nonzero value to the
DnNextPtr entry of the DPD that it is polling.

Download Completion After downloading a packet, the NIC sets the dnComplete bit in the
FrameStartHeader DPD entry.

The NIC can be configured to generate dnComplete interrupts when the
downloading of packets has finished. These dnComplete interrupts can be
generated on a per-packet basis by programming the appropriate value into the
dnIndicate bit of each DPD’s FrameStartHeader entry.

The NIC fetches the FrameStartHeader entry to examine the dnIndicate bit before
packet download and again when the download is finished. This allows a driver to
change dnIndicate while packet download is in progress. For example, a packet’s
DPD might be at the end of the downlist when it starts downloading, so the driver
would set dnIndicate to generate an interrupt. However, if during the process of
downloading this packet the driver were to add a new DPD to the end of the list,
it might clear dnIndicate in the active DPD so that the interrupt is delayed until the
next DPD finishes.

In response to a dnComplete interrupt, the driver acknowledges the interrupt and
returns the DPD’s buffers to the protocol. In the general case, in which the driver is

70 CHAPTER 6: DOWNLOAD AND TRANSMISSION
using a multipacket downlist, when the driver enters its interrupt handler, multiple
packets may have been downloaded. To determine which packets in a list of DPDs
have been downloaded, the driver can traverse the list, examining the
dnComplete bit in each DPD.

Multipacket Lists Generally, it is desirable to queue multiple DPDs. The driver links multiple DPDs
together by pointing the DnNextPtr entry within each DPD at the next DPD, and
programming zero into DnNextPtr in the last DPD.

Because the host and the NIC are frequently both accessing the downlist at the
same time, the host must stall the NIC before modifying the downlist or writing a
new value to the DnListPtr register (unless the value is already zero). Stalling the
NIC ensures that the driver and the NIC do not process the same DPD at the same
time, which causes erratic behavior.

Stalling is done by issuing a DnStall command. When DnStall is issued, the NIC
finishes the current DPD but does not process the next DPD until the DnUnstall
command is issued. When the host has finished manipulating the list, it issues
DnUnStall.

Another way to restart the download process when it has been idled by a zero
DnNextPtr value is by programming the NIC to poll automatically on the DnNextPtr
DPD entry until a nonzero value has been written to it.

Priority Queueing

The DPD specifies a packet’s location in host memory to the NIC. Multiple DPDs
can be linked to construct a queue of transmit packets. The NIC downloads
packets in the order that they appear in the queue.

The driver can change the order of the queue. Thus, if multiple low-priority
packets are queued and a high-priority packet transmission is requested, the driver
can place the high-priority packet near the head of the queue, just behind the DPD
that the download engine is currently processing. It does this by stalling the
download DMA engine with the DnStall command, linking the new high-priority
packet to the head of the queue, and then restarting the DMA engine with the
DnUnStall command. The DnStall command can be issued at any time, but it takes
effect only on packet boundaries. The packet where the stall takes effect is made
available to the driver in the DnListPtr register, so that the driver knows where to
insert the high-priority packet.

The driver must also specify the priority of the packet in two 3-bit fields within the
packet’s AC and FC bytes. Together, these fields convey packet priority onto the
ring and through bridges, switches, and other network equipment. For more
information on these bytes, see “AC Field” and “FC Field” in Appendix A.

Adding DPDs to the End of the Downlist

You can add DPDs to the end of the downlist with polling disabled or enabled.

Packet Download 71
Polling Disabled The following sequence is recommended for adding a new
DPD into the downlist when download polling is disabled (the DnPoll register is
zero):

1 Stall the download engine by issuing the DnStall command.

2 Wait for DnStall to take effect by polling on the cmdInProgress bit in the IntStatus
register. This bit typically clears immediately.

3 Update the DnNextPtr entry in the last DPD in the downlist to point at the new
DPD.

4 Read the DnListPtr register.

5 If DnListPtr is zero, write the address of the new DPD to DnListPtr. (If DnListPtr is
nonzero at the time the driver writes it, then the hardware ignores the write. If
DnListPtr is zero, then the download has already reached the end of the downlist,
as it was defined before adding the new DPD, and the hardware accepts the
write.)

6 Unstall the download engine by issuing the DnUnStall command.

Polling Enabled When polling is enabled (the DnPoll register is nonzero), DPDs
can be added with no register accesses. Point the last DPD’s DnNextPtr entry at the
new DPD.

Inserting a DPD Near the Head of the Downlist

To implement the priority queueing feature, you can insert packets into the
downlist. Although DPDs cannot be added at the head of the downlist, they can
be added just after the first active (unfinished) DPD.

Polling Disabled The following sequence is recommended for inserting a DPD
near the head of the downlist when download polling is disabled (the DnPoll
register is zero):

1 Stall the download engine by issuing the DnStall command.

2 Wait for DnStall to take effect by polling on the cmdInProgress bit in the IntStatus
register. This bit typically clears immediately.

3 Read the DnListPtr register. The next action depends on whether DnListPtr is zero
or nonzero:

■ If DnListPtr is zero, then the queue is empty and you can proceed with a simple
packet download, as described in “Simple Packet Download” earlier in this
chapter.

■ If DnListPtr is nonzero, then its value indicates which packet in the queue the
download engine is processing. The download stalls when it is finished with
this packet. It is safe for the driver to adjust the queue beginning with the next
DPD in the queue, if there is one. Read the current DPD’s DnNextPtr entry. The
next action depends on whether DnNextPtr is zero or nonzero:

■ If DnNextPtr is zero, indicating that there is no following DPD, add the new
DPD to the end of the downlist as described in “Adding DPDs to the End of
the Downlist” earlier in this chapter.

■ If DnNextPtr is nonzero, check the priority of the packet just after the stall
point. If it is not a priority packet, insert the new packet here. If it is a
priority packet, then check the next packet. Continue checking packets until
you find the last of the priority packets.

72 CHAPTER 6: DOWNLOAD AND TRANSMISSION
4 Set the DnNextPtr entry of the DPD just ahead of where the new packet is to be
placed to point to the new DPD.

5 Set the DnNextPtr entry of the new DPD to point to the packet just following the
newly inserted packet.

6 Write the address of the new DPD to DnListPtr. (If DnListPtr is nonzero at the time
the driver writes it, then the hardware ignores the write. If DnListPtr is zero, then
the download has already reached the end of the downlist, as it was defined
before adding the new DPD, and the hardware accepts the write.)

7 Unstall the download engine by issuing the DnUnStall command.

Polling Enabled When polling is enabled (the DnPoll register is nonzero), DPDs
can be inserted with no register accesses as follows:

1 Find the first nonpriority DPD that is not marked as downloaded (the dnComplete
bit is zero).

2 Set this DPD’s DnNextPtr entry to zero.

3 Check to see if this DPD is now marked as downloaded. If so, it is too late to insert
a DPD at this DPD. Restore DnNextPtr, and move to the next DPD in the list and
check again. If this DPD is not downloaded, go to the next step.

4 Point the inserted DPD’s DnNextPtr where the first DPD once pointed.

5 Point the first DPD’s DnNextPtr at the inserted DPD to complete the packet chain.

The driver must also specify the priority of the packet in the ppp field within the
packet’s AC byte and in the yyy field of the FC byte. For more information on these
bytes, see “AC Field” and “FC Field” in Appendix A.

The ppp field enables the MAC to transmit the frame with a token of equal or
lower priority than ppp. Upon transmission, the ppp field assumes the priority of
the token used to transmit the frame. Thus, priority is lost when the frame is
transmitted. To retain the priority, the yyy field in the FC byte is used.

Any software that forwards frames (a bridge, for example) should restore ppp with
the value of yyy when forwarding frames, so that frame priority is retained
through bridges, switches, and other networking equipment.

NIC Download Sequence The steps that the NIC performs for downloading packets are:

1 Check that the DnListPtr register is nonzero.

2 Check that the NIC is not in the DnStall command state.

3 Fetch the FrameStartHeader entry from the DPD to which the DnListPtr entry
points. If the dpdEmpty bit is set, proceed directly to fetching the DnNextPtr entry.
If dpdEmpty is clear, write the FrameStartHeader entry to the transmit FIFO.

4 Check that there is enough space in the download FIFO to support the calculated
burst size.

5 One by one, fetch the DnFragAddr and DnFragLen entries from the DPD, and
move the associated data fragments to the download FIFO.

6 After the last fragment download, set the dnComplete bit in the
FrameStartHeader entry.

7 If the DnStall command was issued, wait until the DnUnStall command is issued.

Byte Transmission Order 73
8 Fetch the FrameStartHeader entry again. If the dnIndicate bit is set, set the
dnComplete indication in the IntStatus register. This may, in turn, cause an
interrupt, depending upon the masking of the bits in the IndicationEnable and
InterruptEnable registers.

9 Fetch the DnNextPtr entry from the current DPD.

10 If the new DnNextPtr entry is zero, the download engine becomes idle. If polling is
not enabled, the download engine waits until the driver writes a nonzero value to
DnListPtr. If polling is enabled, then the current value of DnListPtr is retained while
the NIC polls on the DnNextPtr DPD entry until it fetches a nonzero value, which is
then written to DnListPtr.

11 Once a new DnListPtr has been acquired, return to step 2.

12 Repeat as necessary.

Byte Transmission
Order

In different interfaces within the 3C359 NIC, the size of the data unit (bit, byte,
word, or dword) varies. In the PCI interface, a data transaction on the bus may be
one, two, three, or four bytes, depending on the size of the data fragment and its
alignment. The 3C359 NIC packs all downloaded fragments together and
reformats them into 2-byte words. Regardless of the alignment of the first
fragment, the first word of the reformatted frame is a full word; that is, both bytes
are transmitted.

Upon transmission, the reformatted frame is moved from the PCI bridge ASIC to
the MAC ASIC as a stream of 2-byte words. The right-most byte is considered to
be the most-significant byte, and is transmitted first, followed by the left-most
byte. The last transfer of frame data between the two ASICs may be either a full
word or a single byte, depending on whether the frame has an even or odd
number of bytes.

The data fragments that make up a frame must contain all of these fields: AC, FC,
DA, SA, and DATA. If the frame contains source route information, the fragments
must also contain the RI field. The 3C359 NIC appends the SFD, FCS, EFD, and FS
fields automatically. For more information on these fields, see Appendix A.

Packet Transmission Once transmission is enabled, the NIC starts packet transmission as soon as either
an entire packet has been downloaded to the transmit FIFO or the number of
bytes in the FIFO is greater than the value in the TxStartThresh register.

Packet Transmission
Model

Packet transmission is modeled as a logical FIFO. The PCI bridge ASIC downloads
data from host memory to the transmit FIFO, a small but very fast burst FIFO. The
download DMA engine places data into the transmit FIFO. The local download
DMA engine supplies data from the FIFO to the MAC transmitter over the NIC’s
private memory bus, and constantly monitors for transmit underrun. See Figure 8.

74 CHAPTER 6: DOWNLOAD AND TRANSMISSION
Figure 8 Packet Transmission Path

The download engine tries to keep the FIFO full until the end of a packet has been
downloaded, while also observing rules on burst size and frequency that are
designed to optimize transfers across the PCI bus.

The downloadMode bit in the Config register controls the downloading of
subsequent packets. Two modes allow a trade-off between performance and
flexibility in queue reordering:

■ In one mode, the download of a subsequent packet proceeds as soon as
download of the current packet is finished, essentially keeping the FIFO full at
all times. This mode offers the highest throughput.

■ In the other mode, the download of a subsequent packet waits until the FIFO is
empty. This mode offers the most flexibility for reordering the downlist.

Optionally, a completion indication may be given when the download or
transmission of any frame is complete.

Optimized Packet
Transmission

PCI bus latencies are generally very short, and bandwidth is very high. Thus, it is a
good assumption that the host DMA can supply transmit data as fast as the
transmitter needs it. Transmit packets should be queued as early as possible to
maximize performance. To do this, the txStartThresh value should be kept very low
(12 bytes is the practical minimum). If underruns occur at a rate that is considered
excessive (for example, more than 1 in 5,000 frames) the driver should increase
the value of txStartThresh. A threshold setting above 512 (the size of the
download FIFO) results in a threshold of 512 (a full FIFO). Packets that are shorter
than the value of txStartThresh are queued when they are completely
downloaded. Conversely, if underruns occur at a very low rate, and the
txStartThresh value is not already at its minimum, then the driver should lower the
txStartThresh value.

You can achieve the best transmission throughput by setting the downloadMode
bit in the Config register. This permits the download engine to process DPDs as
long as there is room in the FIFO, regardless of whether or not other frames or

MAC
ASIC

PCI bridge ASIC

Transmit
FIFO

Token ring
MAC

Bus
interface

CP
(V30H)

Buffer
handler

SRAM
controller

64K
SRAM

Local
download

engine

Download
engine

P
C

I b
us

Lo
ca

l b
us

 c
on

tr
ol

le
r

Lo
ca

l b
us

P
C

I b
us

 c
on

tr
ol

le
r

Underrun Recovery 75
pieces of frames are also in the FIFO. The drawback to this mode is that when a
priority frame is to be inserted into the queue, the FIFO may already be full of short
frames. A priority frame cannot be placed ahead of these frames.

Reducing Interrupts The transmit mechanism allows the driver software to perform optimizations that
reduce the number of interrupts generated.

Limiting dnComplete Interrupts

The driver can limit the number of packets in the downlist for which a dnComplete
interrupt is generated. It could, for example, only set the dnIndicate bit for the
packet at the end of the list (clearing dnIndicate for the current tail before
enqueueing each new packet). Or the driver might require an interrupt every n
packets. In any case, on each interrupt the driver would then dequeue all of the
packets that were downloaded before that interrupt occurred (DPDs in which the
dnComplete bit is set or all packets in the list preceding the packet pointed to by
DnListPtr). Obviously, there is a trade-off between latency and the number of
interrupts taken. The driver writer is responsible for making this trade-off.

Using CountDown Timer Instead of dnComplete

The driver can mask off dnComplete interrupts and use the CountDown register
to generate interrupts instead. The driver might look at the time it would take to
transmit all the bytes currently in the transmit FIFO and queued in the downlist
and set CountDown to half that time, for example. The driver would then use the
intRequested interrupt (which results when CountDown expires) to dequeue all
the DPDs in which the dnComplete bit is set or all the packets in front of DnListPtr.
Again, this is just an example, and it is the driver writer’s job to determine which
algorithm to use.

Underrun Recovery While the transmission is under way, the PCI bridge ASIC monitors the download
FIFO for underrun. Underrun occurs if the MAC ASIC attempts to fetch transmit
data, but the download FIFO is empty.

When an underrun occurs, the txUnderrun indication is set and the download data
path is stopped. The host is responsible for cleaning up the PCI bridge ASIC’s
download data path, reenabling it, and requeueing the packet that underran. The
underrunning packet can be identified by reading the DnListPtr register before
issuing a DnReset command. The DnListPtr contains the pointer to the DPD that
contains the packet that underran.

The procedure for underrun recovery follows:

1 The NIC suspends all download operations and retains the pointer to the
underrunning DPD in the DnListPtr entry.

2 The host responds by reading the DnListPtr entry to locate the DPD of the
underrunning packet.

3 The host issues a DnReset command to reset the underrun. This clears the
dnComplete bit and the txUnderrun indication.

4 The host issues an AckInterrupt command with bit 0 set to clear the interruptLatch
indication.

76 CHAPTER 6: DOWNLOAD AND TRANSMISSION
5 The host restores all transmit-related thresholds (the TxStartThresh register, in
particular).

6 The host enables local download by issuing the DnEnable command and
retransmits the packet by pointing the DnListPtr entry at the DPD of the
underrunning frame.

Host Registers The host registers that apply to download and transmission are described in the
following sections.

DmaCtrl

DmaCtrl is cleared by a reset.

Synopsis Provides control and status information for bus master operations.

Type Read/write

Size 32 bits

Offset 20

DmaCtrl Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

DmaCtrl Bit Descriptions

Bit Name Description

[1] dnCmplReq This read-only bit is set to the value that the packet
controller reads from the dnIndicate field in the FSH of the
current DPD.

[2] dnStalled This read-only bit is set whenever downloading is
stalled with the DnStall command. It is cleared by a
DnUnStall command.

[3] upComplete This read-only bit is the same as upComplete in the
IntStatus register, except that this bit is always visible
regardless of the setting of the IndicationEnable mask.
This bit is different from the upPktComplete bit in the
UpPktStatus register in that upComplete latches on once
an upComplete indication has occurred, whereas
upPktComplete is cleared once an RxDiscard command is
issued either by the driver or by hardware at upload
completion.

This bit is cleared by issuing an AckInterrupt command
with the upCompleteAck bit set.

[4] dnComplete This read-only bit is the same as dnComplete in IntStatus,
except that this bit is always visible regardless of the
setting of the IndicationEnable mask.

This bit is cleared by issuing an AckInterrupt command
with the dnCompleteAck bit set.

 (1 of 2)

Host Registers 77
DnBurstThresh

[6] armCountdown This read-only bit specifies whether expiration of the
Countdown register sets the intRequested bit. If
armCountdown is clear, Countdown expiration does not
set the intRequested bit. If armCountdown is set,
expiration of Countdown sets intRequested.

The armCountdown bit is cleared automatically by the act
of setting intRequested, or when a zero value is written to
Countdown. The armCountdown bit is set when a
nonzero value is written to Countdown.

[7] dnInProgress This read-only bit indicates that a download operation is in
progress. Drivers use this bit primarily in an underrun
recovery routine. The driver waits for this bit to be cleared
before issuing a DnReset command to clear the underrun
condition. Before checking dnInProgress, issue a DnStall
command to ensure that dnInProgress is not set as a result
of the NIC being in a polling mode.

[8] counterSpeed This read/write bit sets the count rate for the Countdown
and FreeTimer counters. When counterSpeed is cleared,
the count rate is once every 8 microseconds (four byte
times at 4 Mbps). When counterSpeed is set, the count
rate is once every 2 microseconds (four byte times at
16 Mbps). By setting counterSpeed appropriately for the
ring speed, conversions can be made between byte times
and counter values using simple shift operations.

[9] countdownMode This read/write bit controls the operating mode of the
Countdown register. With this bit cleared, Countdown
begins its down counting operation as soon as a nonzero
value is written to it. With this bit set, Countdown does
not begin counting down until the dnComplete bit in the
IntStatus register is set. For more information on the
Countdown modes, see “Countdown” in Chapter 10.

[20] defeatMWI Setting this bit prevents the bus master logic from using
the MWI PCI command.

[30] targetAbort This read-only bit is set when the NIC experiences a target
abort sequence when operating as a bus master. This bit
indicates a fatal error, and it must be cleared before
further download or upload operations can proceed.

This bit is cleared by issuing a GlobalReset command with
the upDownReset mask bit cleared.

[31] masterAbort This read-only bit is set when the NIC experiences a
master abort sequence when operating as a bus master.
This bit indicates a fatal error, and it must be cleared
before further download or upload operations can
proceed.

This bit is cleared by issuing a GlobalReset command with
the upDownReset mask bit cleared.

DmaCtrl Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Synopsis Defines a threshold that determines when bus master download
requests are made.

Type Read/write

Size 8 bits

Offset 41

78 CHAPTER 6: DOWNLOAD AND TRANSMISSION
The DnBurstThresh register determines when the NIC makes download bus master
requests, based upon the available space in the transmit FIFO. The value in this
register represents free space in the FIFO in units of 32 bytes. When the free space
exceeds the threshold, the NIC can make a download request.

DnBurstThresh may be overridden by the DnPriReqThresh register mechanism. See
“PCI Bus Master Operation” in Chapter 3 for information about the relationship
between DnBurstThresh and DnPriReqThresh.

A value of zero is invalid. DnBurstThresh defaults to 8, a threshold of 256 bytes.

DnListPtr

The DnListPtr register holds the address of the current DPD in the downlist. The
NIC interprets a value of zero in DnListPtr to mean that no more packets remain to
be downloaded.

DnListPtr is cleared by reset.

DnListPtr can only point to addresses on 8-byte boundaries, so DPDs must be
aligned on 8-byte boundaries.

DnListPtr may be written directly by host software to point the NIC at the head of
a newly created downlist.

Writes to DnListPtr are ignored while the current value in the register is nonzero.
To avoid access conflicts between the NIC and host software, the host must issue a
DnStall command before writing to DnListPtr (unless the driver has specific
knowledge that DnListPtr contains zero).

The NIC also updates DnListPtr while it processes DPDs in the downlist. As the NIC
finishes processing a DPD, it fetches the value from the DnNextPtr entry. If the
value is nonzero, the value is loaded into DnListPtr, allowing the download engine
to move on to the next DPD.

DnBurstThresh Register Format

7 6 5 4 3 2 1 0

0 0 0 0

Synopsis Points to the current DPD in the downlist.

Type Read/write

Size 32 bits

Offset 24

DnListPtr Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Host Registers 79
If the NIC reads a value of zero from the current DPD, the current value in
DnListPtr is preserved, and the download engine becomes idle. There are two ways
the download engine can leave the idle state:

■ The driver can write a nonzero value directly to DnListPtr.

■ If polling is enabled, the download engine leaves the idle state when a nonzero
value is finally fetched from DnNextPtr.

When the download engine is polling on DnNextPtr, a write of any value to
DnListPtr stops the polling process. A read of DnListPtr truncates the polling
interval (which results in an immediate poll cycle) and leaves polling mode active.

This register must always be written using a 4-byte write transaction. Anything less
than four bytes could result in the download engine starting up with a transient
DnListPtr.

DnPoll

The value in the DnPoll register determines the rate at which the DnNextPtr DPD
entry is polled. Polling only occurs if DnPoll is nonzero and the value of the
DnNextPtr entry fetched by the download engine at the end of DPD processing is
zero.

Polling is disabled when DnPoll is cleared. DnPoll is cleared by hardware reset or
setting the upDownReset bit in the GlobalReset command register and the
dnReset bit in the DnReset command register.

The value in DnPoll represents 500-ns time intervals. The maximum value
represents 63.5 µs.

DnPriReqThresh

Synopsis Sets the poll rate of the DnNextPtr DPD entry.

Type Read/write

Size 8 bits

Offset 2d

DnPoll Register Format

7 6 5 4 3 2 1 0

0

Synopsis Provides a threshold to set a point at which the download engine
makes a priority bus master request.

Type Read/write

Size 8 bits

Offset 2c

DnPriReqThresh Register Format

7 6 5 4 3 2 1 0

0 0 0 0

80 CHAPTER 6: DOWNLOAD AND TRANSMISSION
The value in the DnPriReqThresh register sets a point at which the download
engine makes a priority bus master request to the bus master arbiter. A priority
download request has priority over the upload engine. When the amount of data
in the download FIFO falls below the value implied by DnPriReqThresh, the priority
bus request is made.

The value in DnPriReqThresh represents data in the transmit FIFO in terms of
32-byte portions. For example, a DnPriReqThresh value of 4 causes the NIC to
request the bus when the amount of data in the FIFO falls below 128 bytes.

DnPriReqThresh resets to 4, or a threshold of 128 bytes. DnPriReqThresh is cleared
by hardware reset or setting the upDownReset bit in the GlobalReset command
register and the dnReset bit in the DnReset command register.

TxStartThresh

The value in the TxStartThresh register is used to control early packet transmission.
Packet queueing to the transmitter begins when the number of bytes for the
packet resident on the NIC is greater than the value implied by TxStartThresh.

TxStartThresh is set with the SetTxStartThresh command.

The recommended minimum threshold is 256 bytes.

TxStartThresh resets to 8,188 bytes, which disables the threshold mechanism.
Thresholds above 512 truncate to 512. To correctly program the start threshold,
the numerical value for the desired threshold must be right-shifted two bits. This
value is then used in the SetTxStartThresh command.

Synopsis Provides for an early transmission start based upon the number of
packet bytes downloaded to the NIC.

Type Read-only

Size 16 bits

Offset 58

TxStartThresh Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

7
 RECEPTION AND UPLOAD
This chapter presents an overview of the packet reception and uploading process
and defines the registers associated with the reception and uploading of data.

Packet Upload Model The NIC supports a multipacket, multifragment scatter process, whereby incoming
packets are moved to system memory buffers defined by descriptors. The
descriptors themselves also reside in system memory and are linked together by
the host CPU.

The packet upload model is similar to the download model. Upload is structured
around a linked list of packet descriptors, called upload packet descriptors (UPDs).
UPDs contain pointers to the fragment buffers into which the NIC is to place
receive data. The linked list of UPDs, called the uplist, is illustrated in Figure 9.

Figure 9 Uplist

The head of the uplist is the UPD that corresponds to the current upload packet.
The UpListPtr register points to this UPD. As the UPD is processed, the NIC fetches
fragment address and fragment length values one at a time from the UPD and
places them into NIC registers, which control the data upload operations.

UPD Data Structure A UPD is 16 to 512 bytes long. It contains the UpNextPtr and FrameStatus entries,
and from 1 to 63 pairs of UpFragAddr and UpFragLen entries. See Figure 10.

First UpFragAddr

First UpFragLen

Last UpFragAddr

Last UpFragLen

UpPktStatus

UpNextPtrUpListPtr

3 UPD 0

UPD

System RAMNIC

Last data buffer

First data buffer

Rx fragment buffers

82 CHAPTER 7: RECEPTION AND UPLOAD
Figure 10 UPD Format

UpNextPtr The first dword in the UPD is the UpNextPtr entry, which contains the physical
address of the next UPD in the uplist. If this is the last UPD in the uplist, then this
value is zero.

UPDs must be aligned on 16-byte physical address boundaries.

FrameStatus The second dword in the UPD is the FrameStatus entry. At the end of packet
upload, the NIC writes the value of the FrameStatus entry into this location in the
UPD. Only the updFull and updComplete bits are valid for every FrameStatus in the
uplist. All other bits are valid only if the upComplete bit is set and the rxOverrun
bit is clear in the IntStatus register.

First UpFragAddr

First UpFragLen

nth UpFragAddr

nth UpFragLen (n x 8) + 4

n x 8

c

8

4

0

FrameStatus

UpNextPtr

3 2 1 0

UpNextPtr Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

FrameStatus Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

FrameStatus Bit Descriptions

Bit Name Description

[14:0] upPktLength This field indicates the length of the uploaded packet
when the updComplete bit is set.

[18:16] arrMatch This field indicates the Address Recognition register (ARR)
that matched the destination address of the received
packet. Only the following codes are used:

■ 000 = ARR0 (this node address)

■ 100 = ARR4 (this node address, MAC buffers)

■ 101 = ARR5 (used for source routing)

■ 111 = ARR7 (used for functional addressing)

 (1 of 2)

UPD Data Structure 83
[19] rxOverrun Indicates a packet that has overrun. No status other than
upComplete is valid if the packet overran. The driver
should discard overrunning packets.

The rxOverrun bit is set under either of these conditions:

■ The number of available buffers in NIC memory was
insufficient to hold the complete frame.

■ The frame exceeded the limit specified by the
SetMaxBytes command.

When rxOverrun is set, the rxComplete bit is also set.

[21] rxFc This is the frame copied bit (fc) of the received FS field.
See Appendix A.

[22] rxAr This is the address recognized bit (ar) of the received FS
field. See Appendix A.

[23] updComplete Upload of the frame in this UPD is complete. When the
updComplete bit is set, the updFull bit is never set, even if
the packet fully fills the UPD.

[24] updFull When set, this bit indicates that the packet overflowed the
UPD. That is, the fragments specified in the UPD used to
upload the frame were too small to fit the entire frame.
No other status is valid if the updFull bit is set.

This is not a fatal condition. When updFull occurs, the
upload continues to the next UPD, if there is one, or goes
idle if there is none. If idled, the upload can be resumed
after the driver provides another UPD and informs the NIC
of such. See “Early Interrupts” later in this chapter for
more information.

[26:25] receiveStatusCode This field provides encoded receive status as follows:

■ 00 = No error (normal completion)

■ 01 = An aborted packet was received

■ 10 = An implicit abort was received for one of the
following reasons:

The MAC detected a BURST4 condition.

The -REDY signal was lost from the PHY.

No EFD was received.

■ 11 = Either the ar bit pair or the fc bit pair in the FS
field did not match.

[27] sourceRouteCompare When set, this bit indicates that the received packet
passed the source route filter.

[28] redi (Returned error detect indication.) When set, this bit
indicates that a remote station has detected a CRC or
code violation in the packet. It is the edi bit of the EFD
field (see “SFD and EFD Fields” in Appendix A).

[29] rlpedi (Receive local packet error detect indication.) When set,
this bit indicates that the receiver detected a CRC or code
violation while it was receiving the packet.

[30] groupAddress When set, this bit indicates that the received packet has a
group address.

[31] broadcastAddress When set, this bit indicates that the received packet has a
broadcast address.

FrameStatus Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

84 CHAPTER 7: RECEPTION AND UPLOAD
UpFragAddr The third (fifth, and so on) dword in the UPD is the UpFragAddr entry, which
contains the physical address of a contiguous block of system memory to which
receive data is to be uploaded.

A fragment can start on any byte boundary. The hardware is responsible for
aligning to dword or cache line boundaries, or both.

UpFragLen The fourth (sixth, and so on) dword in the UPD is the UpFragLen entry, which
contains fragment length and control information for the block of data pointed to
by the previous UpFragAddr UPD entry.

Packet Reception The following sections describe various aspects of packet reception.

Enabling Reception The NIC exits reset with the upload engine in the idle state. Reception is enabled
when the NIC is opened (inserted in the ring) with the Open.Nic command. (For
details on this and other software interface commands, see Chapter 11.) Once
reception is enabled, packets are received according to the address filter specified
in the Open.Nic or Modify.Open.Parms commands.

After the NIC is opened, it is ready to start processing an uplist as soon as the
driver writes a nonzero value into the UpListPtr register.

Packet Reception Model Packet reception is modeled as a logical FIFO. The network interface places data
that is received into the FIFO. The system interface removes data from the FIFO.

The FIFO is composed of these entities:

■ A burst FIFO handles high-speed bursts on the PCI bus. The burst FIFO size is
64 dwords by 32 bits. It can supply 32-bit words to the PCI bus at 33 MHz.

■ A much larger but slower FIFO is implemented off-chip in private SRAM. This
external FIFO is slower, but very deep (roughly 35 KB).

UpFragAddr Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UpFragLen Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UpFragLen Bit Descriptions

Bit Name Description

[14:0] upFragLen This field contains the length of the contiguous block of
data pointed to by the previous UpFragAddr UPD entry.

[31] upLastFrag This is the last fragment defined by the current UPD. If
the frame has not been fully uploaded by the time this
fragment is filled, an updFull is indicated in the UPD’s
FrameStatus. Upload of the packet continues into the
next UPD.

Packet Upload 85
The burst FIFO can be replenished from the external FIFO at roughly 8 MB per
second, allowing rapid back-to-back bursts on PCI.

The packet data placed in the FIFO consists of the AC physical control field
through the source routing information field (RI), and can include the frame check
sequence field (FCS). For details on these fields, see Appendix A.

Receive data is moved only by bus mastering DMA. There is no provision for using
slave accesses to move data.

As shown in Figure 11, the MAC receiver places receive data into a series of
buffers in private memory. The PCI bridge ASIC’s local upload engine retrieves
data from these buffers and places it in the upload FIFO on the PCI bridge ASIC.
The local upload engine extracts each frame’s status and length from the data
stream, which it makes available to the driver in a hardware register. The host
upload engine bursts data out of the FIFO into host buffers, as described by the
UPDs, while observing the same set of rules for burst frequency and size as the
download engine.

Figure 11 Packet Reception Path

Packet Upload Any operation that the host performs on receive packets is performed on the top
packet only. The top packet is the oldest packet in the FIFO, and the one that the
upload DMA engine is either transferring or is ready to transfer next. It is also the
packet for which status is made visible to the host.

In the 3C359 NIC, the top packet becomes visible—and thus eligible for
uploading—after 64 bytes have been received, or packet reception is completed,
whichever comes first.

Upload Modes To provide optimal performance for different software environments, upload can
operate in the standard store-and-forward mode or in parallel tasking mode, as
described in “Store-and-Forward Packet Reception” and “Parallel Tasking Packet
Reception” later in this chapter. It is possible to use a combination of the two
modes when the Get_RCB-1 call can be used, such as in a Novell environment

MAC
ASIC

PCI bridge ASIC

Receive
FIFO

Token ring
MAC

Bus
interface

CP
(V30H)

Buffer
handler

SRAM
controller

64K
SRAM

Local
upload
engine

Upload
engine

P
C

I b
us

Lo
ca

l b
us

 c
on

tr
ol

le
r

Lo
ca

l b
us

P
C

I b
us

 c
on

tr
ol

le
r

Flash
ROM

(optional)

86 CHAPTER 7: RECEPTION AND UPLOAD
under DOS. This approach has the high throughput of Parallel Tasking®
technology, but because a second copy of data is required (from the RCB-1 buffers
to the final application buffers), CPU utilization is compromised. This combined
mode is described in “Combining Packet Reception Modes” later in this chapter.

Simple Packet Upload The simplest example of packet upload starts with the upload engine idle and an
empty uplist, as is the case after a reset. To upload a packet, the driver creates a
UPD with the addresses and lengths of the buffers to be used (typically one buffer,
equal to the maximum packet size). Because there are no more UPDs, the driver
programs zero into the UpNextPtr UPD entry.

Next, the driver writes the address of the UPD into the UpListPtr register. Assuming
there is a receive packet in the FIFO, the NIC proceeds to fetch information from
the UPD and move the packet data into the buffers.

With receives, the driver probably needs to set up one or more UPDs and their
associated buffers before reception of a packet. One approach is simply to allocate
a block of full-size packet buffers in its own data space and create UPDs that point
to the buffers, as described in “Store-and-Forward Packet Reception”later in this
chapter. Data is subsequently copied out of these temporary buffers into protocol
buffers after reception and upload have been completed. Another approach is for
the driver to request the buffers from the protocol ahead of time, as described in
“Parallel Tasking Packet Reception” later in this chapter.

Similar to the download DnStall and DnUnStall commands, which stall the
download engine, there are UpStall and UpUnStall commands to stall the upload
engine. The driver should issue an UpStall command before modifying the list
pointers in the uplist. As with download stalls, upload stalls take effect at packet
descriptor boundaries. However, unlike a DPD, a UPD boundary may be in the
middle of a packet, because upload can use multiple UPDs per packet, whereas
download uses only a single DPD per packet. Thus, when modifying the uplist, be
aware that the stall may occur in the middle of a packet.

As with download, the upload engine becomes idle if it fetches an UpListPtr
register value of zero. It also stalls (unless polling is enabled) if the updComplete or
updFull bit in the current UPD’s FrameStatus entry is set.

Packet Upload
Completion

Normally, for every top frame, an rxComplete indication is given at the end of
reception, followed by an upComplete indication at the end of upload. At the
time upComplete is set, hardware issues an internal RxDiscard command, which
clears rxComplete. Thus rxComplete and upComplete are mutually exclusive.

The rxComplete indication disappears when upComplete is set. Therefore, to
prevent spurious interrupts, upComplete should only be disabled if rxComplete is
also disabled.

The rxComplete indication is not followed by upComplete when the driver issues
an RxDiscard command before the upComplete is given.

When there is more than one complete frame in NIC memory, rxComplete is
cleared after RxDiscard and then set again to indicate that the new top frame is
complete. But although the setting of rxComplete happens very quickly following
the discard, the associated status in the UpPktStatus register is delayed because

Packet Upload 87
the hardware must first collect the new top frame’s status and length from local
buffers. The time required to do this varies according to frame length. The upper
bound is about 20 microseconds when hashing is not enabled.

Setting rxComplete immediately instead of waiting for status and length to be
recovered provides the driver with a quick indication of whether or not another
complete frame has been received. Thus, the driver is able to process the frame
without the need to exit and return to its interrupt service routine (ISR).

If hash filtering is enabled, the new top frame may not pass the hash filter. In
this case, the PCI bridge ASIC discards the frame automatically, without issuing
an rxComplete. The next frame then becomes the new top frame and the process
repeats. An rxComplete is issued only after a frame passes the hash filter. So,
with hash filtering enabled, the time until the next rxComplete is indeterminate,
because it depends on the number of frames that fail to pass the filter. For more
on hash filtering, see “Multicast Filtering” later in this chapter.

Store-and-Forward
Packet Reception

The standard reception process is a store-and-forward mode characterized by
lower performance than optimized reception, but which allows better CPU
utilization. In some environments, store-and-forward is the preferred operating
mode. Store-and-forward mode saves on host memory usage because large
temporary buffers are not used for frame data. This mode also provides the lowest
CPU utilization metric, because there is no double copying of frames. However,
this mode is not suggested for servers, because of the 3C359 NIC’s limited on-card
memory.

For standard packet reception, a lookahead UPD that is large enough to hold only
a packet header is predefined in driver memory. The UpNextPtr entry should point
back to this UPD. Thus, the UPD structure is a ring that contains only one UPD.
This UPD might be 128 or 256 bytes long. The updNeeded interrupt should be
disabled, and the rxComplete and upComplete interrupts enabled.

Store-and-forward operating mode is very efficient because the packet is copied
only once to host memory (except for that portion of the lookahead UPD that
is copied twice), or not at all if the packet is of no interest. The entire packet is
received and stored in NIC memory. The lookahead UPD, its status, and its size are
determined, and then it is copied (forwarded) to protocol buffers. This mode
should be used when CPU utilization is to be kept to a minimum. (See “Parallel
Tasking Packet Reception” later in this chapter for a contrasting operating mode.)

Store-and-Forward Procedure

The steps for store-and-forward packet reception are:

1 When the NIC begins to receive a frame, it uses the predefined UPD to upload the
frame. If the frame is larger than the UPD, the upload stops when the UPD is full,
but the NIC continues to receive and buffer the frame.

2 When the NIC has received the entire frame, it issues an rxComplete indication.

3 A short time after the rxComplete indication (from about 1 microsecond for short
frames to 20 microseconds for 18 KB frames), hardware recovers the frame status
and size and makes them available in the UpPktStatus register. Between the time
when the rxComplete indication is issued and the UpPktStatus register is valid, bits
[31:15] (the status field) of UpPktStatus are zero. The driver, in response to

88 CHAPTER 7: RECEPTION AND UPLOAD
rxComplete, should poll on the status field bits for a nonzero value before
moving on.

4 The driver, after examining the UpPktStatus register and the frame header in the
UPD, takes one of the following actions:

■ If the frame is of no interest, discards it by issuing the RxDiscard command. This
purges the packet from its FIFO, acknowledges the rxComplete indication, and
makes the next packet in line (if any) the new top packet. The driver should
also recover the UPD if the frame was discarded.

■ If the frame is of interest, masks off the rxComplete indication by clearing the
corresponding bit in the InterruptEnable register, and requests buffers from
the upper layers, into which the frame is to be copied. When the list of buffers
is made available and organized by the driver into a UPD, the driver unstalls
the NIC. The NIC then proceeds to upload the remainder of the packet using
the new UPD. Meanwhile, the driver needs to copy that portion of the frame
that resides in the original UPD and is of interest, into the protocol buffer. See
“Multipacket Lists” later in this chapter for the recommended method to
unstall the upload.

5 When the upload is finished, the upComplete indication is issued and the NIC
issues an internal RxDiscard command, which makes the next frame in line the
top frame.

Minimizing Register Accesses

Because register accesses are very expensive in a PCI environment, the driver
should strive to minimize them in store-and-forward mode.

The following method for minimizing register accesses requires, for each frame,
two interrupts (rxComplete and upComplete), two reads of the IntStatus register
(to determine the interrupt source), two acknowledgments of the interrupts
(register writes), and one read of the UpPktStatus register. It may also be necessary
to read the UpListPtr register to guarantee that the driver knows which UPD the
NIC is polling on. The method is:

1 Organize two or more UPDs into a ring. Each UPD should be only large enough to
hold the packet header.

2 Clear the updComplete and updFull bits of one UPD’s FrameStatus entry and set
either the updComplete or updFull bit of the other UPD. When the updComplete
and updFull bits are clear, the UPD is available for upload, but when either is set,
the UPD is considered used and unavailable to the hardware.

3 When the bits are cleared, write the location of the UPD to the NIC’s UpListPtr
register. Also, write the UpPoll register to set the desired poll interval.

When the NIC begins to receive a frame, it uploads and fills the UPD (assuming
the frame is bigger than the UPD). The NIC fills out the FrameStatus entry of this
UPD (with its updFull bit set) and moves to the next UPD. However, because the
updComplete or updFull bits of the second UPD are set, the upload pauses while
the NIC monitors both of these bits continuously at the interval specified in the
UpPoll register, looking for them to be clear.

4 When frame reception is completed, the rxComplete indication is issued. The
driver clears the rxComplete interrupt enable bit and requests buffers from the
protocol. After getting these buffers from the upper layers, the driver fills out the

Packet Upload 89
UPD that the NIC is pointing to with these buffers. Then the driver clears the
updComplete and updFull bits in the UPD’s FrameStatus entry.

The NIC, which continuously polls on the updComplete and updFull bits at the poll
interval, sees that they are cleared and resumes the upload.

5 When the upload is finished, the NIC, as always, sets the upComplete indication,
writes the UpPktStatus register to the UPD’s FrameStatus entry, issues an internal
RxDiscard command, fetches the UpNextPtr entry from the UPD and loads it into
UpListPtr, and fetches the FrameStatus entry from the new UPD. Since the updFull
bit in FrameStatus is set (from step 2), an implicit stall is done.

6 The driver, after processing the earlier frame, clears the updFull bit of the first UPD
so that it can be reused for the next frame. The upload unstalls itself when it sees
that updFull bit is clear.

7 Repeat as necessary.

Parallel Tasking Packet
Reception

Instead of accumulating packets in NIC memory, the driver can preallocate buffers
(predefine UPDs) in driver memory space and let the NIC upload packets into these
buffers as they are received. This process is called Parallel Tasking technology. At
the end of the upload, frame length and status are deposited in the FrameStatus
UPD entry and an upComplete indication is given. After the driver gets buffers
from the protocol, it copies the frame into the buffers using a
memory-to-memory copy.

With Parallel Tasking technology, when the upComplete indication occurs, the
packet is already in host memory. However, the packet still needs to be placed in
protocol buffers, so it must be copied from the driver’s buffers to the protocol’s
buffers. This memory-to-memory copy takes place very quickly in some processors.

Parallel Tasking technology consumes more CPU time than store-and-forward
mode, because the packet must be copied twice. However, performance is better
because memory-to-memory copies are faster than copies across the PCI bus.
Parallel Tasking technology also increases the size of the driver, because buffers
are required in the data space. Because it requires a double copy of data,
Parallel Tasking technology sacrifices some CPU utilization to increase throughput.
This technology is useful if driver size is not a great concern, such as might be the
case with drivers that can use extended memory.

Combining Packet
Reception Modes

It is possible to combine store-and-forward and parallel tasking modes of packet
reception. In this combined mode, the driver uses store-and-forward mode to
receive small frames that fit completely into a lookahead buffer. It uses parallel
tasking to receive additional frames into more lookahead buffers while the
last-completed lookahead buffer is still being processed.

The driver organizes at least two UPDs into a ring, so that each UPD points to
another. Each UPD is large enough to hold a small frame that occupies perhaps
512 bytes. The FrameStatus field in one of the UPDs is cleared, while the updFull
bit is set in the other UPD’s FrameStatus field. If all incoming frames fit into the
memory provided by each UPD, this configuration basically uses parallel tasking
mode to receive all data. However, if larger frames are also received, this
configuration uses store-and-forward mode as well, because the driver sees
only a portion of the total incoming frame when it receives an interrupt.

90 CHAPTER 7: RECEPTION AND UPLOAD
The driver must enable both the upComplete and updNeeded interrupts to use
this mode. The updNeeded interrupt occurs whenever the NIC has transferred a
portion of a large frame into one of the lookahead buffers, or anytime the NIC
starts trying to upload data into another lookahead buffer before the driver has
finished processing the one pointed to by the new UPD. The upComplete interrupt
occurs whenever a frame is completely received into a lookahead buffer, or after
the driver has provided additional host memory in response to the updNeeded
interrupt.

The steps for using store-and-forward and parallel tasking modes simultaneously
are:

1 When the NIC begins to receive a frame, it uses the current UPD to upload the
frame. If the frame fits completely within the space provided by the UPD, the NIC
generates an upComplete interrupt. If it does not fit, the NIC generates the
updNeeded interrupt but continues to receive and buffer the rest of the frame in
its local memory.

2 When upComplete occurs, the driver immediately clears the updFull bit in the
adjacent UPD’s FrameStatus field. This allows the NIC to start transferring a new
frame into that UPD when one arrives. The driver checks the size of the frame to
determine whether the entire frame has been received. If so, the driver handles
the frame using store-and-forward techniques. Otherwise, the upComplete
interrupt must have been generated following an earlier updNeeded interrupt,
and because of the way that interrupt is handled, the frame has already been
copied into host memory.

3 When the updNeeded interrupt occurs, the driver must provide enough host
memory so that the NIC can finish uploading the remainder of the incoming
frame. The driver shows the first portion of the frame to the protocol. If the
protocol wants to receive the frame, the driver fills out the current UPD with
pointers to the memory fragments provided by the protocol. Otherwise, the
driver discards the frame using the RxDiscard command.

Multicast Filtering The 3C359 NIC uses a hashing technique to filter multicast packets during
reception. If a frame fails to pass the hash filter, the upload engine issues an
RxDiscard command without notifying the host of the frame’s presence. If the
frame passes the hash, the frame is uploaded. The NIC must be set to promiscuous
group receive mode when hashing is enabled to allow the NIC to receive multicast
(group) addressed frames. To enable promiscuous group receive mode, use the
procedure in “Multicast Reception” in Chapter 11.

The least-significant six bits of the result are used as an index into the hash table. If
the indexed hash table entry is set to 1, the frame is uploaded. If the entry is 0, the
frame is discarded with no indication given to the host.

Because hashing is not a perfect filter—multiple distinct destination addresses can
produce the same result after the hash operation has been applied to them—the
driver must also filter the address before it decides to accept a multicast frame. A
multicast frame that has passed the hash filter has the groupAddress bit set in the
UpPktStatus register and the FrameStatus UPD entry.

Packet Upload 91
Hashing is performed by accumulating a CRC on the frame’s destination address if
the destination address’s most-significant bit is a 1, which indicates a group frame.
The polynomial used for the CRC calculation is:

g(X) = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + X0

No part of a frame is uploaded before the result of the hash is known.

Hashing is enabled with the Command register.

Multipacket Lists Sometimes it is desirable for the driver to create a list of multiple UPDs. Multiple
UPDs are linked together by pointing the UpNextPtr entry within each UPD at the
next UPD and programming zero into UpNextPtr in the last UPD.

One upload option that differs from download is that the uplist can be formed
into a ring by writing the address of the first UPD, instead of zero, into the
UpNextPtr entry of the last UPD. The NIC issues an internal UpStall command
if it fetches an UpListPtr register value for a UPD that has already been used (that
is, one in which either the updComplete or updFull bit is set in the FrameStatus
entry). When the driver finishes processing a UPD, it should leave the FrameStatus
entry cleared and issue an UpUnStall command, just in case the NIC has already
read FrameStatus and stalled.

The following sequence is recommended for adding UPDs to the uplist:

1 Stall the upload engine by issuing the UpStall command.

2 Update the UpNextPtr entry in the last UPD in the uplist to point at the
“new” UPD.

3 Read the UpListPtr UPD register.

4 If UpListPtr was zero, write the address of the new UPD into UpListPtr. (If the entry
was nonzero, do nothing.)

5 Unstall the upload engine by issuing the UpUnStall command.

Using Multiple UPDs It is possible to use more than one UPD to buffer a packet. Essentially, if an upload
fills all the fragments of a UPD, the upload simply indicates updFull in that UPD’s
FrameStatus entry and continues the upload using the next UPD. This can go on as
long as there are UPDs and until the frame ends. The FrameStatus of the UPD that
holds the end of the frame is updated with final frame status and length. The
updFull indication is not set in this UPD, but the updComplete indication is.

This capability is helpful for receiving packets as described in “Store-and-Forward
Packet Reception” earlier in this chapter. It is also useful for parallel tasking when
you do not want to preallocate a number of UPDs, each of which is big enough to
hold the maximum frame size.

Early Interrupts The 3C359 NIC uses only bus mastering to move receive data. There is no
provision for using slave accesses to move data. When a packet has been
completely uploaded, an upComplete indication is normally issued to inform
the driver. In some cases, however, the driver would like to be interrupted after n
number of bytes of a packet have been uploaded (an early interrupt) so that it can
examine the packet’s header information before continuing with the upload. This

92 CHAPTER 7: RECEPTION AND UPLOAD
capability is supported through special use of the updNeeded interrupt in the
following way:

1 The driver preallocates a one-fragment UPD. The size of the fragment in this UPD
should be the desired lookahead size (n). If the driver wants to use the RxDiscard
command as part of its frame processing, then UPDs should be organized into a
ring, even if only one UPD is defined. This implies that no UPD’s UpNextPtr entry is
ever set to zero.

2 When a packet becomes visible and the upload engine fills the fragment defined
in the first UPD, the NIC issues an updNeeded interrupt and goes idle. (These
events occur if the frame is larger than the fragment. If the frame completely fits
into the lookahead buffer, then an upComplete indication is issued instead of
updNeeded.)

3 The driver examines the packet header. It can discard the packet with the
RxDiscard command, if desired. If the packet is to be kept, the driver requests
buffers from the protocol. When the buffers are returned, a second UPD is filled
out with them.

4 The driver resumes the upload by writing the UpListPtr entry with the location
of the new UPD and issuing the UpUnStall command. (Or, it can use polling to
resume the upload.) Providing the new UPD automatically acknowledges the
updNeeded indication.

5 After the upload is complete, the FrameStatus entry is updated as with any other
frame. The upPktLength bit contains the received packet length, as usual, but in
this case, upPktLength indicates the number of bytes in the frame, not the number
of bytes in the second UPD. The difference will be n minus the number of bytes
placed into the look-ahead UPD.

If the packet is still being received while it is being uploaded, then the parallel
tasking method is being used. If the packet is fully received before the new
fragments are made available, then the store-and-forward method is being used.
Remember that when reception is finished, the UpPktStatus register contains
frame status and size. This information may be of use to the driver, depending on
the state of the upload at the time reception is finished.

From a performance and CPU utilization perspective, this mode probably does
not offer any significant advantages over the parallel tasking mode. However, the
smaller look-ahead buffer allows a reduced driver size, which may be very
important in some environments.

Packets with Errors Errors are reported in the FrameStatus UPD entry. Possible error conditions are
CRC error, aborted frame, implicitly aborted frame, and overrun.

In store-and-forward mode, error information is available before the packet is
uploaded. Thus, the driver can simply discard bad frames without uploading them.
The NIC itself takes no action on these errors, other than to update RMON
counters.

In token ring networks, abnormally large frames can result when stations click in
and out of the ring. Through the Command register, the upload engine can be set
to limit the amount of data to be uploaded by specifying the maximum number of
bytes uploaded for any one packet. When this upload limit has been set, and a
packet exceeds this number, the updFull bits are set in all UPDs used by the packet

Host Registers 93
except the last UPD. In the last UPD, the upComplete and rxOverrun bits are set.
Hardware purges the remainder of the packet from the NIC.

NIC Upload Sequence The NIC performs the following steps to upload a packet to the host:

1 Checks that the UpListPtr register is nonzero.

2 Checks that the NIC is not in the UpStall state.

3 Fetches the FrameStatus entry from the current UPD. If the updComplete or
updFull bit is set, the NIC issues an internal UpStall command to stall the upload
process. In this case, the driver needs to issue an UpUnStall command before
upload can continue. (If the UpPoll register contains a nonzero value, the NIC polls
on updComplete and updFull, rather than stalling. When these bits are clear, the
upload continues.)

4 Waits for the top receive packet to become visible. This occurs after either 64 bytes
have been received or packet reception is completed, whichever comes first.

5 Uploads the packet into the fragments specified in the UPD. If there is more data
in the packet than space in the fragment buffers, the NIC sets the updFull bit in
the current UPD’s FrameStatus entry and continues the upload with the next UPD,
if there is one. If there is none, the updNeeded bit is issued and the upload stalls
until a new UPD is provided and the UpUnStall command is issued. (As in step 3,
polling can be used to unstall the upload.)

6 As the packet is being uploaded, maintains the UpPktStatus register, specifically
the upPktLength field. If packet reception is finished, the UpPktStatus register
indicates final frame status and received length.

7 At the end of packet upload, updates the UpPktStatus register with any error code
from the packet, sets the updComplete bit, and writes UpPktStatus to the UPD’s
FrameStatus entry.

8 Issues an internal RxDiscard command and waits for it to finish. This does not
discard the frame; instead, it enables the NIC to process the next frame in line.

9 If an UpStall command has been carried out, waits until an UpUnStall command
has been executed.

10 Fetches the UpNextPtr entry from the UPD. If UpNextPtr is zero and polling is
enabled, the NIC starts a polling loop. If polling is disabled, loads the fetched value
into the UpListPtr register.

11 Writes UpPktStatus to the UPD in host memory.

12 If a polling loop had been started, polls on UpNextPtr until a nonzero value is
fetched, and loads the value into UpListPtr.

13 If the UpListPtr value is zero (polling is disabled), then the upload engine becomes
idle and waits for a nonzero value to be written into UpListPtr.

14 Repeats as necessary.

Host Registers The host registers that apply to upload and reception are described in the
following sections.

DmaCtrl See “DmaCtrl” in Chapter 6.

94 CHAPTER 7: RECEPTION AND UPLOAD
UpBurstThresh

The UpBurstThresh register determines when the NIC makes upload bus master
requests, based on the number of receive frame data bytes in the upload FIFO. The
value in UpBurstThresh represents used space in the FIFO in units of 32 bytes.
When the used space exceeds the threshold, the NIC may make an upload request
on the PCI bus.

For more information about PCI requests, see “PCI Bus Master Operation” in
Chapter 3.

A value of zero is invalid. UpBurstThresh defaults to 4, a threshold of 128 bytes.

UpListPtr

The UpListPtr register holds the physical address of the current UPD in the uplist. A
value of zero in UpListPtr is interpreted by the NIC to mean that no more UPDs are
available to accept receive packets.

UpListPtr is cleared by reset, the upDownReset bit, or the upReset bit.

UpListPtr can only point to addresses on 8-byte boundaries, so UPDs must be
aligned on 8-byte physical address boundaries.

UpListPtr may be written directly by host software to point the NIC at the head
of a newly created uplist. Writes to UpListPtr are ignored by the hardware when
the uplist is not empty. When the upload engine is polling on the updFull and
updComplete bits, a read of UpListPtr initiates an immediate poll cycle.

UpListPtr is also updated by the NIC as it processes UPDs in the uplist. As the NIC
finishes processing a UPD, it loads UpListPtr with the value from the UpNextPtr
UPD entry to allow it to move on to the next UPD. If the NIC loads a value of zero

Synopsis Provides a threshold that determines when bus master upload
requests are made.

Type Read/write

Size 8 bits

Offset 40

UpBurstThresh Register Format

7 6 5 4 3 2 1 0

0 0 0 0 0

Synopsis Points to the current UPD in the uplist.

Type Read/write

Size 32 bits

Offset 38

UpListPtr Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Host Registers 95
from the current UPD, the upload engine enters the idle state, waiting for a
nonzero value to be written to UpListPtr.

To avoid access conflicts between the NIC and host software, the host must issue
an UpStall command before writing to UpListPtr.

UpListPtr must be written using a 4-byte command to prevent the upload engine
from starting with a transient UpListPtr value.

UpPktStatus

Bits [31:15] are called the status field. Bits [14:0] are called the length field.

Synopsis Provides the status of the packet that the upload DMA engine is
currently processing (the top packet).

Type Read-only

Size 32 bits

Offset 30

UpPktStatus Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

UpPktStatus Bit Descriptions

Bit Name Description

[14:0] upPktLength These bits, which are called the length field, indicate the
number of data bytes that have been uploaded at the
time this register is read and before the rxComplete bit
is set. After rxComplete is set, this field indicates the
received size of the packet.

[15] upStalled This bit is asserted when the NIC is in the stalled state.
There are two ways stall the NIC:

■ Issue an UpStall command.

■ Cause an implicit stall by fetching a UPD when the NIC
is not in polling mode and the updComplete or updFull
bit in the FrameStatus register is already set.

The upStalled bit is cleared with an UpUnStall command.

[18:16] ARRMatch These bits indicate the Address Recognition register (ARR)
that matched the destination address of the received
packet. Only the following codes are used:

■ 000 = ARR0 (this node address)

■ 100 = ARR4 (this node address, for MAC frames)

■ 101 = ARR5 (used for source routing)

■ 111 = ARR7 (used for functional addressing)

 (1 of 2)

96 CHAPTER 7: RECEPTION AND UPLOAD
[19] rxOverrun The DMA engine sets this bit to indicate a packet that has
overrun. No status other than updComplete is valid if the
packet overran. The driver should discard overrunning
packets.

The rxOverrun bit is set under these conditions:

■ The number of available buffers in NIC memory was
insufficient to hold the complete frame.

■ The frame exceeded the limit specified with the
SetMaxBytes command.

[21] rxFc This is the frame copied bit (fc) of the received FS field.
See Appendix A.

[22] rxAr This is the address recognized bit (ar) of the received FS
field. See Appendix A.

[23] upPktComplete This bit is set after upload of the packet is finished.

[24] updNeeded This bit is set if uploading of the packet requires a UPD,
but either the uplist is empty or the updComplete or
updFull bit of the current UPD is set.

The setting of this bit is not a fatal condition. When it is
set, the upload process stalls, but the remainder of the
frame accumulates in NIC memory. The upload can be
resumed after the driver provides more UPD fragments
and informs the NIC of such. For more information, see
“Early Interrupts” earlier in this chapter.

This is the same bit that is reported in the IntStatus register,
but it is not latched. It is cleared with an RxDiscard
command, whereas the bit in the IntStatus register must
be acknowledged through the AckInterrupt command.

[26:25] receiveStatusCode This field provides encoded receive status as follows:

■ 00 = No error (normal completion)

■ 01 = An aborted packet was received

■ 10 = An implicit abort was received for one of the
following reasons:

The MAC detected a BURST4 condition.

The -REDY signal was lost from the PHY.

No EFD was received.

■ 11 = Either the ar bit pair or the fc bit pair in the FS
field did not match.

[27] sourceRouteCompare When set, this bit indicates that the received packet
passed the source route filter.

[28] redi (Returned error detect indication.) When set, this bit
indicates that a remote station has detected a CRC or
code violation in the packet. It is the edi bit of the EFD
field (see “SFD and EFD Fields” in Appendix A).

[29] rlpedi (Receive local packet error detect indication.) When set,
this bit indicates that the receiver detected a CRC or code
violation while it was receiving the packet.

[30] groupAddress When set, this bit indicates that the received packet has a
group address.

[31] broadcastAddress When set, this bit indicates that the received packet has a
broadcast address.

UpPktStatus Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

MAC ASIC Registers 97
Processing of a packet is not complete until an RxDiscard command has been
issued, regardless of whether all the packet data has been uploaded. The
hardware issues an RxDiscard command automatically when a packet has been
completely uploaded. The driver must issue an RxDiscard command when a packet
is to be discarded without being uploaded. The UpPktStatus register is only valid
if the packet has been fully received, meaning that the rxComplete bit in the
IntStatus register is set. UpPktStatus is written to the last UPD used for the frame
at the end of the upload, and then this register is zeroed by the subsequent
RxDiscard command.

UpPoll

The value in the UpPoll register determines the rate, in 2-microsecond time
intervals, at which the current UPD is polled when the NIC is looking for the
updComplete bit in the FrameStatus UPD entry to be cleared. The maximum
representable value is 254 microseconds.

Polling is disabled when UpPoll is cleared. UpPoll is cleared with a hardware reset,
or by setting the upDownReset or upReset bits.

MAC ASIC Registers The MAC ASIC registers that apply to upload and reception are described in the
following sections.

RxBufArea

The host must program the RxBufArea register with 00h before opening the NIC.

Synopsis Sets the polling rate.

Type Read/write

Size 8 bits

Offset 3D

UpPoll Register Format

7 6 5 4 3 2 1 0

0

Synopsis Specifies the location of the receive buffer area in the host address
space.

Type Write-only

Size 16 bits

Local address CDE10h

RxBufArea Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

98 CHAPTER 7: RECEPTION AND UPLOAD
RxEarlyThresh

At initialization, the driver should program the RxEarlyThresh register for a 64-byte
threshold (write 0020h).

Synopsis Specifies the number of bytes of a frame that the MAC ASIC must
receive before the PCI bridge ASIC is notified of the frame.

Type Read/write

Size 16 bits

Local address CDE12h

RxEarlyThresh Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8
 INTERRUPTS AND INDICATIONS
This chapter provides an overview of interrupts and indications, and defines the
registers associated with interrupts.

Indications are reports of any interesting events on the NIC. An indication appears
as a set bit in the IntStatus register. Indications can be individually masked off to
prevent them from appearing as set in IntStatus. Any indication can be individually
configured to cause an interrupt, which is the actual assertion of the interrupt
signal on the PCI bus. In this technical reference, the term interrupt is used loosely
to refer to both interrupts and indications. It is assumed that a driver configures
the NIC to generate an interrupt for any indication that is of interest to it.

When responding to an interrupt, the host reads the IntStatus register to
determine the cause of the interrupt. The IntStatus register bits define the source
of the interrupt. The least-significant bit, interruptLatch, is always set whenever
the interrupt pin is asserted. This is done to prevent spurious interrupts on the host
bus. The interruptLatch bit must be explicitly acknowledged (cleared) using the
AckInterrupt command.

The host acknowledges interrupts by carrying out the interrupt-specific actions
summarized in Table 18.

Table 18 Interrupt-specific Actions

Action Description

interruptLatch Acknowledged by the AckInterrupt command with the interruptLatchAck bit set

hostError Acknowledged by issuing the appropriate resets

txComplete Acknowledged by the AckInterrupt command with the txCompleteAck bit set

txUnderrun Acknowledged by the DnReset command

rxComplete Acknowledged by the RxDiscard command

intRequested Acknowledged by the AckInterrupt command with the intRequestedAck bit set

macError Acknowledged by the GlobalReset command

dnComplete Acknowledged by the AckInterrupt command with the dnCompleteAck bit set

upComplete Acknowledged by the AckInterrupt command with the upCompleteAck bit set

updNeeded Acknowledged by providing a UPD for the upload or by the RxDiscard command

arbc Acknowledged by the AckInterrupt command with the arbcAck bit set

asbf Acknowledged by the AckInterrupt command with the asbfAck bit set

srbr Acknowledged by the AckInterrupt command with the srbrAck bit set

100 CHAPTER 8: INTERRUPTS AND INDICATIONS
Interrupt and
Indication Enables

An interrupt is an asynchronous indication that an event which requires the
attention of the host system has occurred on the NIC. Figure 12 illustrates the
relationship between interrupts and indications, and their respective enables. The
host uses the IntStatus register to view the various interrupt bits.

Figure 12 Relationship Between Interrupts and Indications

Enables have an immediate effect on indications and interrupts. If a particular
interrupt is pending and the host clears its enable bit in the IndicationEnable
register, the indication, though still pending, appears as a zero in the IntStatus
register and no longer contributes to the assertion of the interrupt line on the host
bus (although the interrupt line stays asserted because of the interruptLatch bit).

Conversely, if a pending indication is enabled by setting its enable bit, the
indication causes the NIC to assert the interrupt signal on the host bus. The
interruptLatch bit is always enabled.

Masking an interrupt or indication does not acknowledge the interrupting event.

The cmdInProgress bit cannot cause an interrupt because its interrupt enable bit is
hard-coded to 0. It is merely reported in the IntStatus register.

Most interrupts can be acknowledged through the AckInterrupt command. The
interrupt source and the interruptLatch bit can be acknowledged at the same time.
Some interrupt sources are acknowledged by means other than AckInterrupt. For
example, the txUnderrun interrupt is acknowledged by issuing the DnReset
command. DnReset clears the txUnderrun bit in IntStatus, but the interruptLatch
bit is not affected; it needs to be cleared with an AckInterrupt command.

IndicationEnable

txUnderrun
txComplete
rxComplete
hostError
intRequested
macError
dnComplete
upComplete
updNeeded
arbc
asbf
srbr

IntStatus InterruptEnable
Interrupt

cmdInProgress
interruptLatch

Host Registers 101
Host Registers The host registers that apply to interrupts and indications are described in the
following sections.

IndicationEnable

Each bit set in the IndicationEnable register enables the corresponding bit to be set
in the IntStatus register. This register is set using the SetIndicationEnable
command. See “SetIndicationEnable” in Chapter 9 for more details.

IndicationEnable is cleared upon hardware reset or with the hostReset bit.

InterruptEnable

Each bit in the InterruptEnable register is the interrupt enable bit for the
corresponding bit in the IntStatus register. Setting a bit in InterruptEnable allows
that source to generate an interrupt on the bus. This register is set using the
SetInterruptEnable command. See “SetInterruptEnable” in Chapter 9 for more
details.

InterruptEnable is cleared upon hardware reset or with the hostReset bit.

Synopsis Specifies which bits in the IntStatus register can become set.

Type Read-only

Size 16 bits

Offset 5C

IndicationEnable Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1

Synopsis Specifies which bits in the IntStatus register can generate an interrupt
to the host.

Type Read-only

Size 16 bits

Offset 5A

InterruptEnable Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1

102 CHAPTER 8: INTERRUPTS AND INDICATIONS
IntStatus
Synopsis Provides interrupt status and the status of a command that may be in

progress.

Type Read-only

Size 16 bits

Offset 5E

IntStatus Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

IntStatus Bit Descriptions

Bit Name Description

[0] interruptLatch This bit is set when the NIC is driving the bus interrupt
signal. It is a logical OR of the interrupt-causing bits after
they have been filtered through the InterruptEnable
register. It is acknowledged by issuing the AckInterrupt
command with the interruptLatchAck bit set.

[1] hostError This bit is set when a catastrophic error related to the
bus interface occurs. The errors that set hostError are
PCI target abort; PCI master abort; and false transmit
underrun. The GlobalReset command with bits 8, 5, and 3
clear acknowledges the hostError bit.

[2] txComplete This bit is set when transmission is complete for a frame
in which the txIndicate bit in the FrameStartHeader DPD
entry was set. It is cleared by issuing the AckInterrupt
command with the txCompleteAck bit set.

The PCI bridge ASIC does not know when the
transmission is actually complete because of pipelining
within the transmitter itself. The ASIC only knows when
the last byte was read from the download FIFO. At
4 Mbps, the time between when the MAC ASIC DMA
engine last reads data and the transmission of the frame
start byte can be as long as 30 microseconds.

[3] updNeeded This bit, if enabled, is set whenever the upload needs a
UPD and one is not available. A UPD is needed whenever
there is a frame to upload but either the uplist is empty or
the next UPD in the uplist is not available because it is full.
This bit is acknowledged (cleared) when the driver
provides a UPD (allowing upload to resume) or an
RxDiscard command is issued.

[4] rxComplete This bit is set when the NIC has received at least one
receive packet completely. It is acknowledged by
uploading all of the complete packets, or discarding them
without uploading.

[6] intRequested This bit is set when the Countdown register has expired
or when the InterruptRequest command is issued. It is
acknowledged by issuing the AckInterrupt command with
the intRequestedAck bit set.

[7] macError This bit is set when bit 14, 3, or 2 in the MacStatus
register is set. It indicates that an unusual, and perhaps
fatal, error has occurred. To restore proper operation, the
MAC ASIC needs to be reset and initialized. The macError
bit is acknowledged by the GlobalReset command.

 (1 of 2)

Host Registers 103
[9] dnComplete This bit indicates that a packet download has been
completed, and that the DPD has had the dnIndicate
bit set in its FrameStartHeader entry. This bit can be
acknowledged by an AckInterrupt command with the
dnCompleteAck bit set. The host should examine the
DnListPtr register to determine which packets have been
downloaded; those in the downlist before the current
DnListPtr (which, if zero, implies all those in the list) have
already been downloaded.

[10] upComplete This bit indicates that a packet upload has been
completed. It is acknowledged by an AckInterrupt
command with the upCompleteAck bit set.

[11] txUnderrun This bit is set when a transmission has experienced an
underrun (the host was not fast enough to keep up with
the transmitter). An underrun halts the transmitter and
download FIFO, and stalls the download engine. The CP
sets this bit, and it should set it only after the transmit
path through the MAC ASIC has been restored. It is
cleared by the DnReset command.

[12] cmdInProgress This bit, when set, indicates that the NIC is still executing
the last command issued. It need only be checked after
one of the commands that require longer than a single I/O
cycle to finish has been issued. No new commands can be
issued until cmdInProgress is negated.

[13] asbf The CP sets this bit when it has read the response
provided in the adapter status block (ASB), and the ASB
is available for another response. It is set only if the host
has set the asbfr bit in the MISR register, or if an error has
been detected in the response. This bit is acknowledged
by an AckInterrupt command with the asbfAck bit set.

[14] srbr The CP sets this bit when it has recognized a system
request block (SRB) request and it has set the return code
in the SRB. This bit is acknowledged by an AckInterrupt
command with the srbrAck bit set.

[15] arbc The CP sets this bit to indicate that the adapter request
block (ARB) contains a command for the host to act upon.
It is acknowledged by an AckInterrupt command with the
arbcAck bit set.

IntStatus Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

104 CHAPTER 8: INTERRUPTS AND INDICATIONS
IntStatusAuto

The IntStatusAuto register has the same bit definition as the IntStatus register. It
differs from IntStatus only in the side effects that occur when it is read.

In addition to returning the IntStatus value, the following side effects occur when
IntStatusAuto is read, preventing further interrupts from occurring:

■ The InterruptEnable register is cleared to prevent subsequent events from
generating an interrupt on the bus.

■ The following bits in IntStatus (if they are set) are acknowledged (cleared):
dnComplete, txComplete, upComplete, intRequested, interruptLatch, asbf,
srbr, and arbc.

MAC ASIC Registers The MAC ASIC registers that apply to interrupts and indications are described in
the following sections.

MISR

The MISR register has bit set/clear capability in addition to read/write access. The
read/write and set/clear capabilities are encoded in the local bus address. See
Table 19.

Synopsis Special version of the IntStatus register with some added side effects
to allow a reduction in the number of I/O operations required to
service interrupts.

Type Read-only

Size 16 bits

Offset 56

IntStatusAuto Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Synopsis Interrupts the CP.

Type Read/write/set/clear

Size 8 bits

Local address CDE0Bh

Table 19 MISR Local Bus Memory Address Bit Definitions

A23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A0

0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 command 0 1 0 1 1

MAC ASIC Registers 105
In most cases, the driver should use only the set capability. Bit setting and clearing
is accomplished during a memory write access by interpreting a field within the
local bus memory address as a command. The value of the data byte being written
during the access specifies which bits in the register the command is to be
performed upon.

MISR Bit Local Bus Memory Address Bit Descriptions

Bit Name Description

[6:5] command These bits select the MMIO operation to be performed, as
follows:

■ 00 = Reads or writes the MISR register using the
MacAccessCmd register. A read is performed by
issuing a read command. Likewise, a write is
performed if a write command is executed.

■ 01 = Performs an AND (or CLEAR) function on the
MISR register when a write command is issued.
MacData register bits set to 0 during the write cause
the corresponding MISR bits to be cleared. MacData
bits set to 1 have no effect on the state of the
corresponding MISR register bits. Reads with this
command are not defined.

■ 10 = Performs an OR (or SET) function on the MISR
register when a write command is issued. MacData
register bits set to 1 during the write cause the
corresponding MISR bits to be set. MacData bits set
to 0 have no effect on the state of the corresponding
MISR bits. Reads with this command are not defined.

■ 11 = Not defined.

MISR Register Format

7 6 5 4 3 2 1 0

MISR Bit Descriptions

Bit Name Description

[5] csrb The host is informing that NIC that it has placed a
command in the system request block (SRB).

[4] rasb The host is informing the NIC that it has placed a response
to an adapter request block (ARB) request in the adapter
status block (ASB).

[3] srbfr The host wants to use the SRB, but the NIC is still
processing a previous request. After the SRB return code
field has been set, the NIC returns an srbfr interrupt.

[2] asbfr The host wants to use the ASB, but the NIC is still
processing a previous response. After the ASB return code
field has been set, the NIC returns an asbfr interrupt.

[1] arbf The host has read the command in the ARB, and the ARB
is available.

106 CHAPTER 8: INTERRUPTS AND INDICATIONS
MacStatus

Although the MacStatus register is read/write, host software must never write it.

Bits 15 and 8 are reserved for PCI bridge ASIC to MAC ASIC communication. Their
values are indeterminate at any given time.

Synopsis Provides status for the MacError interrupt reported in the IntStatus
register.

Type Read/write

Size 16 bits

Local address CDE08h

MacStatus Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 0 0 0

MacStatus Bit Descriptions

Bit Name Description

[14] tchk The firmware writes this bit if an unrecoverable error
occurs.

[3] eint The hardware sets this bit if the internal watchdog timer
has expired. This indicates that the firmware has stopped
executing.

[2] aint This bit is set if host software performs one of the
following illegal operations:

■ Any host write to a write-protected location in private
memory, unless the memWrEn bit 6 of the
CPAttention register is set.

■ Any host write to the WRBR, WWCR, or WWOR
registers, unless the memWrEn bit 6 of the
CPAttention register is set.

9
 COMMAND REGISTER
This chapter provides an overview of the host Command register and gives
definitions of the commands.

Command

The Command register is used to issue commands of various types to the NIC.
Most commands execute in less time than it takes for the host system to perform a
subsequent read or write operation and are considered to execute in zero time.

In general, a 16-bit access is required when writing the Command register.
However, if a particular command has X values occupying the least-significant byte
of the command, a byte write to the most-significant byte of the Command
register is sufficient. The read-only IntStatus register is located at the same address
as the Command register.

The command definitions in this chapter use the following conventions:

■ The bit value is the 16-bit value that the NIC expects to be written to the
Command register to carry out the desired operation. The Command Code
(bits [15:11]) defines the command to be executed. Commands may or may
not contain parameters in bits [10:0].

■ Bit positions occupied by an “X” indicate that the value for the corresponding
bit does not matter. However, for future hardware compatibility it is
recommended that zeros be written to these positions.

■ Bit positions occupied by a dot (•) indicate bit positions that are to be filled by
the parameter associated with the command.

Commands marked with an asterisk (*) (for example, GlobalReset *) may not be
completely executed immediately. For these commands, the driver must ensure
that the cmdInProgress bit in the IntStatus register is a zero before taking any
further action with the NIC.

The commands are summarized in Table 20 and described in the following
sections.

Synopsis Allows commands to be issued to the NIC.

Type Write-only

Size 16 bits

Offset 5E

Command Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Command Code Parameter

108 CHAPTER 9: COMMAND REGISTER
Reset Commands

GlobalReset *

This command is not always completely executed before the next command can
be issued to the NIC. The driver must ensure that the cmdInProgress bit in the
IntStatus register is a zero before taking any further action with the NIC.

Table 20 Command Summary

Command Type Command Name Bit Value Description

Reset GlobalReset (0000 000• 00•0 ••••) * Perform an overall reset of the NIC.

UpReset (0010 100• 0000 •XXX) * Reset the upload logic.

DnReset (0101 100• 0000 •XXX) * Reset the download logic.

Transmit DnStall (0011 0XXX XXX0 0010)* Stall the download engine.

DnUnStall (0011 0XXX XXX0 0011) Unstall the download engine.

SetTxStartThresh (1001 1••• •••• ••••) Set the value of the TxStartThresh register.

DnDisable (0101 0XXX XXXX XXXX)* Disable the local download engine.

DnEnable (0100 1XXX XXXX XXXX) Enable the local download engine.

Receive RxDiscard (1100 0XXX XXXX XXXX)* Discard the top receive frame.

SelectHashFilterBit (1100 1•XX XX•• ••••) Program a particular bit in the hash filter.

UpStall (0011 0XXX XXX0 0000)* Stall the upload engine.

UpUnStall (0011 0XXX XXX0 0001) Unstall the upload engine.

Interrupt AckInterrupt (0110 1••• X••X •XX•) Acknowledge active interrupts.

InterruptRequest (0110 0XXX XXXX XXXX)* Cause the NIC to generate an interrupt.

SetIndicationEnable (1000 •••• •••• ••••) Set the value of the IndicationEnable register.

SetInterruptEnable (0111 •••• •••• ••••) Set the value of the InterruptEnable register.

Configuration SetConfig (0100 0XXX XXX0 ••••) Set the value of the Config register.

Bit Value (0000 000• 00•0 ••0•) *

Bit Name Description

[0] phyReset When this bit is clear, the PWRDN signal to the PHY is
asserted for 22 PCI clock cycles.

[2] macReset When this bit is set, it masks reset to the MAC ASIC.
When clear, the MAC ASIC is reset.

[3] fifoReset When this bit is set, it masks reset to the FIFO control
logic.

[5] hostReset When this bit is set, it masks reset to the bus interface
logic. If hostReset is not set, the following registers are
cleared: IntStatus, InterruptEnable, IndicationEnable,
and Countdown.

[8] upDownReset When this bit is set, it masks reset to the upload and
download logic. If upDownReset is not set, the following
upload and download engines and registers are reset:
UpMaxBurst, UpLatency, DnListPtr, UpListPtr, DmaCtrl,
and UpPktStatus.

Reset Commands 109
The GlobalReset command resets various parts of the NIC, depending on the bit
mask passed in the parameter field. Setting bits in the mask causes reset to
specific modules to be masked. When the mask is cleared, the entire NIC is reset,
which is equivalent to a hardware reset.

You can also use the MacAccessCmd register to activate resets through the cpHold
bit in the Pmbar register.

DnReset *

This command is not always completely executed before the next command can
be issued to the NIC. The driver must ensure that the cmdInProgress bit in the
IntStatus register is a zero before taking any further action with the NIC.

Relative to download, this command is identical to the GlobalReset command with
the upDownReset bit clear.

UpReset *

This command is not always completely executed before the next command can
be issued to the NIC. The driver must ensure that the cmdInProgress bit in the
IntStatus register is a zero before taking any further action with the NIC.

Bit Value (0101 100• 0000 •XXX) *

Bit Name Description

[3] dnFifoReset When this bit is set, it masks reset to the transmit FIFO
control logic. If this bit is not set, the transmit FIFO is
flushed, and the TxStartThresh register is forced to its
reset state.

[8] dnReset When this bit is set, it masks reset to the download
logic. When it is clear, the download logic is reset (the
DnListPtr and DnPoll registers and the dnComplete and
dnInProg bits in the DmaCtrl register are reset).

Bit Value (0010 100• 0000 •XXX) *

Bit Name Description

[3] upFifoReset When this bit is set, it masks reset to the receive FIFO
control logic. If this bit is not set, the receive FIFO
contents are flushed.

[8] upReset When this bit is set, it masks reset to the upload logic.
When it is clear, the upload logic is reset (the UpPoll,
UpListPtr, and UpPktStatus registers and the upComplete
bit in the DmaCtrl register are reset). The upload stall
condition is also cleared.

110 CHAPTER 9: COMMAND REGISTER
Transmit Commands

DnDisable *

This command is not always completely executed before the next command can
be issued to the NIC. The driver must ensure that the cmdInProgress bit in the
IntStatus register is a zero before taking any further action with the NIC.

The DnDisable command disables the local download engine. This command has
no effect on the host download, which is controlled by the downlist and the stall
condition. This command takes effect only after packet transmission (if any)
is complete when the command is issued. This command does not control the
transmitter, which is controlled by the Open.Nic command (described in
Chapter 11). DnDisable controls only the download function.

DnEnable

The DnEnable command enables the local download engine to queue frames to
the MAC ASIC. This does not, by itself, enable the NIC to transmit packets. The
NIC must also be open for transmission to occur.

DnStall *

This command is not always completely executed before the next command can
be issued to the NIC. The driver must ensure that the cmdInProgress bit in the
IntStatus register is a zero before taking any further action with the NIC.

The DNStall command stops the NIC from fetching the DnNextPtr DPD entry and
loading it into the DnListPtr register.

If DnListPtr is nonzero, the driver must issue a DnStall command before modifying
the downlist to avoid conflicts with the DnListPtr updates. The host must wait for
the cmdInProgress bit to be deasserted before continuing.

DnUnstall

The opposite of DnStall, this command releases the NIC to fetch the DnNextPtr
DPD entry and update the DnListPtr register. The host should issue this command
as soon as possible after the DnStall command, once it has finished modifying the
downlist.

Bit Value (0101 0XXX XXXX XXXX) *

Bit Value (0100 1XXX XXXX XXXX)

Bit Value (0011 0XXX XXX0 0010) *

Bit Value (0011 0XXX XXX0 0011)

Receive Commands 111
SetTxStartThresh

The SetTxStartThresh command is used to establish the value of the TxStartThresh
register. The parameter is written into bits [12:2] of TxStartThresh, and bits [1:0]
are cleared.

The NIC queues packets to the transmitter as soon as the number of bytes
downloaded to the transmit FIFO is greater than the value in TxStartThresh. If
the packet being transmitted is shorter than TxStartThresh, then queueing of
the packet commences as soon as the entire packet has been downloaded.

Receive Commands

RxDiscard *

This command is not always completely executed before the next command can
be issued to the NIC. The driver must ensure that the cmdInProgress bit in the
IntStatus register is a zero before taking any further action with the NIC.

The RxDiscard command causes the top receive frame to be discarded.

RxDiscard should not be used if the driver organizes UPDs into a grounded chain.
They must be organized as a ring, even if only one UPD is defined.

SelectHashFilterBit

The SelectHashFilterBit command is used to set individual bits in the hash filter
table for multicast packet reception. Each bit in the hash filter corresponds to a set
of multicast addresses that can be received. Bits [5:0] select one of the 64 possible
entries in the table. Bit 10 specifies whether the selected bit should be cleared or
set.

The hash filter acts as an array of 64 enable bits. Incoming frames have a cyclic
redundancy check (CRC) applied to their destination address. The low-order six
bits of the CRC are used as an index into the hash filter. If the hash filter bit
addressed by the index is set, the NIC accepts the packet. If the hash filter bit
is cleared, the NIC discards the packet.

In addition, the NIC must be directed to enable multicast reception. This is
accomplished through the system request block (see Chapter 11).

UpStall *

This command is not always completely executed before the next command
can be issued to the NIC. The driver must ensure that the cmdInProgress bit in
the IntStatus register is a zero before taking any further action with the NIC.

Bit Value (1001 1••• •••• ••••)

Bit Value (1100 0XXX XXXX XXXX) *

Bit Value (1100 1•XX XX•• ••••)

112 CHAPTER 9: COMMAND REGISTER
The UpStall command stops the NIC from fetching the UpNextPtr UPD entry and
loading it into the UpListPtr register. Whenever the host wishes to modify the
uplist, and UpListPtr is nonzero, the host must issue an UpStall command to avoid
conflicts with the NIC’s UpListPtr updates. Note that this command requires the
host to wait for cmdInProgress to be deasserted before continuing.

UpUnStall

The opposite of UpStall, this command releases the NIC to fetch the UpNextPtr
UPD entry and load the UpListPtr register. The host should issue this command as
soon as possible after UpStall, once it has finished modifying the uplist.

When the upload engine stalls because it is reading a UPD that is in use (meaning
that either the updComplete or updFull bit is set in the UPD FrameStatus entry),
the NIC can automatically execute an UpUnStall command by polling on these bits
and waiting for the software to clear them. This function is enabled when the
UpPoll register contains a nonzero value.

Interrupt Commands

AckInterrupt

The AckInterrupt command resets selected interrupt indications in the IntStatus
register. When it is issued, the indications that correspond to bits set to 1 in the
parameter field are cleared.

Several of the interrupt types must be acknowledged by means that are unique to
the interrupt type. These means are defined in the IntStatus register definition.

Attempting to acknowledge an indication that is not active has no effect.

Bit Value (0011 0XXX XXX0 0000) *

Bit Value (0011 0XXX XXX0 0001)

Bit Value (0110 1••• X••X •XX•)

Bit Name Acknowledged IntStatus Bit

[0] interruptLatchAck interruptLatch

[1] txCompleteAck txComplete

[2] intRequestedAck intRequested

[3] dnCompleteAck dnComplete

[4] upCompleteAck upComplete

[5] asbfAck asbf

[6] srbrAck srbr

[7] arbcAck arbc

Interrupt Commands 113
InterruptRequest *

This command is not always completely executed before the next command can
be issued to the NIC. The driver must ensure that the cmdInProgress bit in the
IntStatus register is a zero before taking any further action with the NIC.

This command sets the intRequested bit in the IntStatus register (if so enabled)
and causes an interrupt to the host (if so enabled).

The 3C359 NIC can generate an automatic intRequested interrupt when the
Countdown register count reaches zero. The driver must maintain internal
state to determine what to do when an intRequested interrupt occurs.

SetIndicationEnable

The SetIndicationEnable command is used to set or clear bits of the
IndicationEnable register. Each bit in the parameter field specifies whether the
corresponding bit in the IndicationEnable register is to be set (1) or cleared (0).

Although the bits in the SetIndicationEnable command do not correspond
bit-for-bit with those in the IndicationEnable register, the order of bits matches.
For example, bit 0 in the SetIndicationEnable command controls the
least-significant controllable bit of IndicationEnable (bit 1, hostError) and bit 11
controls the most-significant bit of IndicationEnable (bit 15, arbc). Refer to the
IntStatus register definition for the map of the indication bits.

Indications disabled with the SetIndicationEnable command do not cause the
indication to appear in the IntStatus register. All indication enables are cleared
upon NIC reset. Bits 0 and 12 of the IndicationEnable register cannot be written
because their status is always available in IntStatus. Bits 5 and 8 of
IndicationEnable have no function.

SetInterruptEnable

The SetInterruptEnable command is used to set or clear bits of the InterruptEnable
register. Each bit in the parameter field specifies whether the corresponding bit in
InterruptEnable is to be set (1) or cleared (0).

Although the bits in SetInterruptEnable do not correspond bit-for-bit with those in
the InterruptEnable register, the order of bits matches. For example, bit 0 in the
SetInterruptEnable command controls the least-significant controllable bit of the
InterrruptEnable register (bit 1, hostError) and bit 11 controls the most-significant
bit of InterrruptEnable (bit 15, arbc). Refer to the IntStatus register definition for
the map of the interrupt bits.

Bit Value (0110 0XXX XXXX XXXX) *

Bit Value (1000 •••• •••• ••••)

Bit Value (0111 •••• •••• ••••)

114 CHAPTER 9: COMMAND REGISTER
Interrupts disabled with the SetInterruptEnable command block the corresponding
interrupt from causing an interrupt to the host. All interrupt enables are cleared
upon NIC reset. Bits 0 and 12 of the InterruptEnable register cannot be written
because the interruptLatch bit in the IntStatus register is always enabled, and the
cmdInProgress bit cannot cause an interrupt signal. Bits 5 and 8 of InterruptEnable
have no function.

SetConfig

The SetConfig command is used to set bits [3:0] of the Config register. The
parameter field specifies the value to be written to Config, as follows:

Bit Value (0100 0XXX XXX0 ••••)

Bit Value in the Config Register

[0] Global enable of the hash filter.

[1] Configures the maximum number of uploaded bytes to be 8192.

[2] Configures the maximum number of uploaded bytes to be 20480.

[3] Configures the download mode. When clear, download restricts itself to one frame
at a time in the download FIFO. When set, download strives to keep the FIFO full
at all times, regardless of how many frames may be in the FIFO.

10
 OTHER REGISTERS
This chapter describes various other registers in the 3C359 NIC.

Config

The SetConfig command is used to set bits in this register.

Synopsis Contains mode bits that are used to configure the operation of the
PCI bridge ASIC.

Type Read-only

Size 8 bits

Offset 29

Config Register Format

7 6 5 4 3 2 1 0

0 0 0

Config Bit Descriptions

Bit Name Description

[0] hashEn When this bit is clear, it indicates that hashing is disabled;
when set, hashing is enabled. Proper use of hashing
also requires that the hash table be set correctly (see
“SelectHashFilterBit” in Chapter 9) and that the MAC
has been configured for multicast reception through the
software interface system request block (SRB). See
Chapter 11 for details on the SRB.

[1] maxFrameEq8192 When this bit is set, it indicates that the upload engine has
been configured to limit the largest packet uploaded to
8,192 bytes. The hardware truncates packets larger than
this, and the rxOverrun bit in the FrameStatus field of the
last UPD used for the packet (the one with the
updComplete bit set) is set.

[2] maxFrameEq20480 When this bit is set, it indicates that the upload engine has
been configured to limit the largest packet uploaded to
20,480 bytes. The hardware truncates packets larger than
this, and the rxOverrun bit in the FrameStatus field of the
last UPD used for the packet (the one with the
updComplete bit set) is set.

[3] downloadMode When this bit is clear, the download restricts itself to one
packet at a time in the download FIFO. When this bit is
set, the download is not restricted to one packet; it
attempts to keep the FIFO full regardless of the number
of packets.

116 CHAPTER 10: OTHER REGISTERS
Countdown

The Countdown register is a programmable down-counter that can cause the NIC
to generate an interrupt when the counter expires.

The host software loads Countdown with an initial countdown value. Thereafter,
Countdown decrements at a rate determined by the counterSpeed bit in the
DmaCtrl register. When counterSpeed is clear, the count rate is once every
8 microseconds. When counterSpeed is set, the count rate is once every
2 microseconds. When Countdown reaches zero, it continues to count,
wrapping to FFFFh.

Countdown can cause an intRequested interrupt when it counts through zero. The
interrupt is generated if the armCountdown bit in the DmaCtrl register is set at the
time of the 1-to-0 transition.

The armCountdown bit is managed solely by the hardware according to the
following rules:

■ Set when a nonzero value is written to Countdown

■ Cleared when the value zero is written to Countdown, or when Countdown
counts through zero

This means that when the host writes a nonzero value to Countdown, an interrupt
is generated in a corresponding amount of time. By writing a zero value to
Countdown, the host can suppress interrupts.

Countdown is cleared by hardware reset (hostReset bit in the GlobalReset
command).

FreeTimer

Synopsis Provides a mechanism for the host to cause the NIC to generate an
interrupt in a programmable time period.

Type Read/write

Size 16 bits

Offset 36

Countdown Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Synopsis Provides a free-running counter to be used for general timing
purposes.

Type Read-only

Size 16 bits

Offset 34

FreeTimer Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HashFilter 117
The FreeTimer register is a free-running, read-only counter that increments
at precise time intervals so that it can used for timing measurements. The
count interval for FreeTimer is determined by the counterSpeed bit in the DmaCtrl
register.

When counterSpeed is cleared, the count rate is once every 8 microseconds
(four byte times at 4 Mbps). This yields a maximum measurable time interval of
524 milliseconds. When counterSpeed is set, the count rate is once every
2 microseconds (four byte times at 16 Mbps), giving a maximum measurable time
interval of131 milliseconds.

FreeTimer is cleared by hardware reset or the hostReset bit in the GlobalReset
command register.

HashFilter

The value of the hash filter can be read by doing eight successive reads. The
low-order eight bits are returned first, followed by the successive higher-order
eight bits.

Individual bits in the hash filter are set or cleared using the SelectHashFilterBit
command.

HashFilter is cleared by hardware reset.

SwitchSettings

The only bit of interest to the driver is bit 1, ringSpeed. The ringSpeed bit settings are:

■ 0 = 16 Mbps

■ 1 = 4 Mbps

Synopsis Defines the values for a 64-bit multicast address hash filter.

Type Read-only

Size 8 bits

Offset 28

HashFilter Register Format

7 6 5 4 3 2 1 0

Synopsis Defines the NIC ring speed.

Type Read/write

Size 16 bits

Local address 1C88h

SwitchSettings Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1

118 CHAPTER 10: OTHER REGISTERS
Timer

The Timer register contains an 8-bit counter that begins counting from zero upon the
assertion of the interrupt signal. The host can use this function to make interrupt
latency measurements. The counter increments by one every 2 microseconds. When
the counter reaches FFh, it halts. This yields a maximum measurable interrupt latency
of 512 microseconds.

When Timer is used to measure interrupt latency, it is suggested that Timer be
read as late as possible in the interrupt service routine (just before dispatching to
handle the interrupt reasons flagged in the IntStatus register) in order to include
the fixed overhead of the interrupt handler itself.

To use Timer for general-purpose measurements at driver initialization time, ensure
that the interruptLatch bit is clear (a pending interrupt would prevent the counter
from starting), disable system interrupts, and issue a RequestInterrupt command to
start the timer.

Synopsis Provides a general purpose timer function.

Type Read-only

Size 8 bits

Offset 1A

Timer Register Format

7 6 5 4 3 2 1 0

11
SOFTWARE OPERATION
This chapter describes the software interface, which allows you to perform
high-level operations such as inserting the NIC into the ring (opening the NIC)
or requesting statistics from the MAC ASIC.

MAC Packets Although MAC packets are not normally uploaded to the host, the Open.NIC
and Modify.Open.Parms commands allow some or all types of MAC frames to
be forwarded to the host.

MAC frames are read from the receive buffer in shared memory and placed into
buffers in host memory. Bus mastering is not used. The adapter request block
(ARB) is used to notify the host that a MAC frame is to be forwarded.

Multicast Reception The 3C359 NIC can be configured to receive up to 64 different multicasts. These
steps enable multicast reception:

1 For each multicast to be received, the driver must calculate the hash for the
destination address and set the corresponding bit in the hash table, as described
in “Multicast Filtering” in Chapter 7.

2 The driver uses the SetConfig command to set the hashEn bit in the Config
register.

3 The driver issues the Set.Multicast.Mode command to the communications
processor (CP).

4 The CP configures the MAC ASIC for multicasting and returns a response in the
system request block (SRB).

To delete a multicast that was set previously, use the SelectHashFilterBit command
with bit 10 cleared and bits [5:0] pointing to the hash table entry to be cleared.

Upon hardware reset, the hash filter is cleared. The driver must reprogram the
hash filter, if necessary.

Because more than one destination address may hash to the same 6-bit value, the
driver must also filter the address before it decides to accept a frame.

If only one multicast address is to be set, the Set.Group.Address command can be
used, which provides better performance than the Set.Multicast.Mode command.
When this method is used, it is not necessary to filter the address after reception.

Communication with
the Host

Communication between the CP and the host is by means of control blocks and
buffers in the shared RAM. Commands and their status pass between the CP and
the host in control blocks, which, in conjunction with interrupts, provide

120 CHAPTER 11: SOFTWARE OPERATION
event-driven, asynchronous NIC operation. The commands include high-level
requests from the host for MAC and LLC services. Use of these requests can
greatly reduce host program size and complexity.

The control blocks are summarized in Table 21.

SRB Commands The system request block (SRB) is used to pass a command from the host to the
CP. It is located at local address DFE90h. The SRB address is returned in the
SRB_ADDRESS field of the open completion response SRB (see Table 30). The NIC
supports the SRB commands listed in Table 22.

Issuing SRB Commands A driver uses the following sequence to issue SRB commands to the CP:

1 Set up the MacAccessCmd register as follows:

■ opCode = PrivateMemWrite

■ localAddress = DFE90h

Table 21 Control Blocks

Block Abbreviation Use

System request block SRB Passes transmit information or commands from the
host to the CP.

Adapter request block ARB Passes receive information or commands from the
CP to the host.

Adapter status block ASB Passes host responses to ARB commands to the CP.

Table 22 SRB Command Summary

Command
Code
(Hex) Description

Request.Interrupt 00 Causes the NIC to issue an interrupt to the host.

Modify.Open.Parms 01 Allows the host to change operational
parameters.

Restore.Open.Parms 02 Modifies the OPEN_OPTIONS parameter set by
the Open.NIC command.

Open.NIC 03 Inserts the NIC onto the ring with specified
parameters.

Close.NIC 04 Removes the NIC from the ring.

Set.Sleep.Mode 05 Directs the NIC to go into the remote
wake-up mode.

Set.Group.Address 06 Sets group addresses.

Set.Funct.Address 07 Sets functional addresses.

Read.Log 08 Resets the statistics counters to zero after
reading.

Set.Multicast.Mode 0C Tells the NIC to enable or disable the multicast
function.

Change.Wakeup.Pattern 0D Notifies the NIC that the host wants to add or
delete a wake-up packet pattern.

Get.Statistics 13 Requests a dump of the RMON statistics.

Set.Receive.Mode 1F Tells the NIC to set different receive modes.

SRB Commands 121
2 Write the SRB contents to the MacData register. The write operation can be in byte
or word increments. This write causes the value in the MacData register to be
written to the address specified in the MacAccessCmd register.

3 The NIC does not automatically increment the localAddress after each write
access. Therefore, to write the next byte or word, the driver must write the
MacAccessCmd register so that the localAddress bits point to the next location
to be accessed.

4 After writing the entire SRB contents, the driver interrupts the NIC by setting the
csrb bit of the MISR register.

The SRB commands are described in the following sections.

Change.Wakeup.Pattern The Change.Wakeup.Pattern command notifies the NIC that the host wants to
add or delete a wake-up packet pattern. Together with this command, the
sleeping system can be awakened by receiving and matching the frame with
the specific pattern. See Table 23.

Table 23 Change.Wakeup.Pattern Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 0D,
Change.Wakeup.Pattern.

1 1 Reserved.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid return
codes are:

■ 00 = Operation completed
successfully

■ 01 = Invalid command code

■ 06 = Invalid options

■ 46 = Not available

3 1 Reserved.

4 PATTERN_FLAG (hex) 2 Add or delete pattern:

■ 0001 = Add

■ 0002 = Delete

6 MASKSIZE 2 The size, in bytes, of the pattern mask.
The range is 0 to 12 bytes.

8 PATTERNOFFSET 2 The offset from the beginning of the
scratch buffer to the packet pattern
(0 to 255 bytes).

10 PATTERNSIZE 2 The size, in bytes, of the packet pattern.
The range is 1 to 96 bytes.

12 MASK 12 The bit mask, which can be up to 96
bits wide. The bits are set as follows:

■ Bit n = 1, if host wants to ignore the
nth byte comparison in the packet
pattern.

■ Bit n = 0, if the host wants to
compare the nth byte in the packet
pattern.

122 CHAPTER 11: SOFTWARE OPERATION
The host can issue multiple Change.Wakeup.Pattern commands to add or delete
multiple packet patterns.

The Change.Wakeup.Pattern command can be issued before the NIC is opened.
Before issuing this command, the driver must write the pattern of the frame to the
NIC’s scratch buffer, which is located at local address DFEF0h of the NIC SRAM.
The NIC reserves a buffer space large enough to hold a frame pattern at this
location.

This command is needed if the host wants to use the packet pattern-matching
capability to wake up the sleeping system.

Close.NIC The Close.NIC command closes the NIC and terminates all ring communication. This
command can be issued any time after the NIC has been initialized. Commands the
NIC has accepted are not completed, and they are not returned to the host. The NIC
is removed from the ring, and the WRBR register is reset to the value it had before
the Open.NIC command was issued. When the NIC completes the operation, it sets
the RETCODE and interrupts the host. See Table 24.

Get.Statistics The Get.Statistics command obtains MIB management information statistics
counters that the NIC maintains. The NIC must be opened before this command
is issued. The NIC copies the MIB statistics counters into the scratch buffer located
at DFEF0h of the SRAM. The NIC then clears the counters before returning an SRB
completion indication to the driver. When the driver receives the SRB completion
indication, it can use the MacAccessCmd and MacData registers to read the
counters from the scratch buffer. See Table 25.

The NIC maintains the MIB statistics counters and copies them to the scratch
buffer in the order shown in Table 26.

Table 24 Close.NIC Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 04, Close.NIC.

1 1 Reserved.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid
return codes are:

■ 00 = Operation completed
successfully

■ 01 = Invalid command code

Table 25 Get.Statistics Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 13, Get.Statistics.

1 1 Reserved.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid
return codes are:

■ 00 = Operation completed
successfully

■ 01 = Invalid command code

■ 04 = NIC closed; it should be open

SRB Commands 123
After the Get.Statistics command is issued, the CP resets the associated counters
to zero. The driver must keep track of the values it reads.

Other statistics counters are available through the Read.Log command.

Modify.Open.Parms The Modify.Open.Parms command modifies the Open.NIC command
OPEN_OPTIONS parameter. When the NIC completes the operation, it sets
the RETCODE and interrupts the host. See Table 27.

Open.NIC The Open.NIC command inserts the NIC onto the ring with specified parameters.
See Table 28.

Table 26 MIB Statistics Counters

Offset Counter Name Byte Length Remarks

0 Total Bytes Received 4 LLC frames only.

4 Total Frames Received 4 LLC frames only.

8 Total Bytes Transmitted 4 LLC frames only.

12 Total Frames Transmitted 4 LLC frames only.

16 Receive CRC Errors 2 Received LLC frames only.

18 MAC Frames Received 2

20 Function MAC Received 2

22 Group MAC Received 2

24 MAC Frames Transmitted 2

26 Group MAC Transmitted 2

28 PTT Time-out Errors 2 MAC and LLC frames.

30 Transmit Underrun Errors 2 MAC and LLC frames.

32 Signal Loss Errors 2

Table 27 Modify.Open.Parms Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 01, Modify.Open.Parms.

1 1 Reserved.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid
return codes are:

■ 00 = Operation completed
successfully

■ 01 = Invalid command code

■ 04 = NIC closed; it should be open

3 1 Reserved.

4 OPEN_OPTIONS 2 See Table 29.

124 CHAPTER 11: SOFTWARE OPERATION
Table 28 Open.NIC Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 03, Open.NIC.

1 7 Reserved.

8 OPEN_OPTIONS 2 See Table 29.

10 NODE_ADDRESS 6 This NIC’s ring address. If 0, the
address is the node address.

The byte order of the ring address
must be swapped from the IEEE
byte order. For example:

Bytes: 10 12 14

IEEE address: 6655 4433 2211

Ring address: 5566 3344 1122

16 GROUP_ADDRESS 4 The group address to set. If 0, no
address is set.

The byte order of the group
address must be swapped from
the IEEE byte order. For example:

Bytes: 16 18

IEEE address: 6655 4433

Ring address: 5566 3344

See also “Set.Group.Address”
later in this chapter.

20 FUNCT_ADDRESS 4 The function address to set. If set
to 0, no address is set.

The byte order of the function
address must be swapped from
the IEEE byte order. For example:

Bytes: 20 22

IEEE address: 6655 4433

Ring address: 5566 3344

See also “Set.Funct.Address” later
in this chapter.

24 8 Reserved.

32 MAC_PROTOCOL 1 Allows the driver to specify a
specific MAC access protocol for
the NIC, as follows:

■ 0 = TXI/TKP protocol. The NIC
tries to access the ring using
the TXI protocol. If the access
fails, then the NIC uses the TKP
protocol. TXI is the default.

■ 1 = TKP only. The NIC uses the
classic TKP protocol.

■ 2 = TXI only. The NIC uses the
TXI protocol.

 (1 of 2)

SRB Commands 125
33 SUPPRESS_ERROR 1 Allows the driver to specify
whether the NIC should generate a
receiver congestion error MAC
frame when a receive overrun
condition occurs, as follows:

■ 0 = The NIC generates a
receiver congestion error MAC
frame when a receive overrun
occurs (default).

■ 1 = The NIC does not generate
a receiver congestion error
MAC frame.

34 N/A 8 Reserved.

42 N/A 18 Reserved.

Table 29 OPEN_OPTIONS Bit Descriptions

Bit Name Description

[0] contender When this bit is set, the NIC participates in monitor
contention (claim token) when the opportunity arises.
When this bit is off, the NIC does not participate. If the
NIC detects the need for a new active monitor, it initiates
claim token processing regardless of whether this bit is set
on or off.

[1] Reserved Bit value must be 0.

[2] Reserved Bit value must be 0.

[3] passAttentionMacFrames When this bit is set, the NIC passes directly to the host all
attention MAC frames that are not the same as the last
attention MAC frame received. When this bit is off, these
frames are not passed.

[4] passNicMacFrames When this bit is set, the NIC passes directly to the host all
NIC class MAC frames that are received but not supported
by the NIC. When this bit is off, these frames are ignored.

[5] disableSoftError When this bit is set, it prevents soft error status changes
from causing interrupts.

[6] disableHardError When this bit is set, it prevents hard error and transmit
beacon status changes from causing interrupts.

[7] wrapInterface When this bit is set, the NIC does not attach itself to the
network. Instead, it wraps all transmitted data as received
data.

[10:8] Reserved Bit values must be 0.

[11] duplex This bit allows the driver to specify full-duplex or
half-duplex frames as follows:

■ 0 = Full-duplex mode (default)

■ 1 = Half-duplex mode

[12] tokenRelease This bit is only available when the NIC is operating at
16 Mbps. When it is set to 0, the NIC gets early token
release as the default. When set to 1, the NIC gets no
early token release as the default.

 (1 of 2)

Table 28 Open.NIC Command Parameters (continued)

Offset Parameter Name Byte Length Description

 (2 of 2)

126 CHAPTER 11: SOFTWARE OPERATION
When the NIC completes the Open.NIC command, it generates a system request
block (SRB) response with the format shown in Table 30.

.

[13] remoteProgramLoad This bit prevents the NIC from becoming a monitor during
the open process. If it is set to 1, the NIC fails the open
process if there is no other NIC on the ring when it
attempts to insert into the ring.

[14] Reserved. Bit value must be 0.

[15] passBeaconMacFrames When this bit is set, it passes directly to the host the first
beacon MAC frame and all subsequent beacon MAC
frames that have a change in the source address or the
beacon type.

Table 30 SRB Response Format

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 03, Open.NIC.

1 1 Reserved.

2 RETCODE (hex) 1 Code set by the NIC upon return.

3 4 Reserved.

7 OPEN_ERROR_CODE 1 Valid if RETCODE is 07h. See “Open
Errors” later in this chapter.

8 ASB_ADDRESS 2 Address of the beginning of the ASB.

10 SRB_ADDRESS 2 Address of the beginning of the SRB.

12 ARB_ADDRESS 2 Address of the beginning of the ARB.

14 VERSION_STRING 2 Contains an offset to an ASCII
character string in the NIC SRAM that
tells the revision number and the date
of the microcode that the NIC is
running. The version string has the
following format:

rr.rr mm/dd/yy

where rr.rr is the revision number in
decimal and mm/dd/yy is the date of
the microcode in month/date/year
format.

The driver can use the MacAccessCmd
and MacData registers to read the
version string.

16 DTR_FLAG 1 Indicates the MAC protocol that the
NIC is using, as follows:

■ 0 = The NIC has opened using the
TKP protocol.

■ Nonzero = The NIC is attached to a
DTR switch and opened using the
TXI protocol.

Table 29 OPEN_OPTIONS Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

SRB Commands 127
Rules for TXI Protocol

When the NIC is using the TXI access protocol, the driver must loop back LLC
frames whose destination addresses meet any of the following conditions:

■ Matches the source address

■ Is a broadcast address

■ Matches the station’s function address

■ Matches the station’s group address

Open Errors

Open errors are returned in two bytes. The high-order byte is always 0. The
low-order byte contains the following:

■ In the high-order half: the test phase in which the error was encountered.

■ In the low-order half: the error condition.

Table 31 summarizes the open error code values. Table 32 summarizes responses
to open error codes. For more information on open errors, see IBM Local Area
Network Technical Reference, Appendix B, Return Codes (November 1988).

Table 31 Open Error Code Values

Value Test Phase Value Error

1n Lobe media test n1 Function failure

2n Physical insertion n2 Signal loss

3n Address verification n3 Reserved

4n Roll call poll (neighbor notification) n4 Reserved

5n Request parameters n5 Timeout

n6 Ring failure

n7 Ring beaconing

n8 Duplicate node address

n9 Parameter request

nA Remove received

nB Reserved

nC Reserved

nD No monitor detected

nE Monitor contention failed for RPL

Table 32 Responses to Open Error Codes

Code
(Hex) Description

Action
(See Number
in Table 33)

11 Lobe media function failure. The lobe bit-error rate is too high, or
the NIC is unable to receive.

1, 3, 5

26 Physical insertion ring failure. The active monitor NIC was unable
to complete ring purge.

1, 2a

 (1 of 3)

128 CHAPTER 11: SOFTWARE OPERATION
27 Physical insertion, ring beaconing. The NIC tried to open on a ring
operating at a different data rate, a monitor contention (claim
token) failure occurred, or the NIC received a beacon MAC frame
from the ring.

1, 2, 2b

2A Physical insertion timeout. A network management function
directed the NIC to get off the ring.

2a, 4

2D No monitor detected. The RPL station is the first attempting to
insert onto the ring.

1, 2a

2E Monitor contention failed for RPL. 2

32 Address verification signal loss. A 250-millisecond signal loss
occurred after the NIC completed ring signal recognition.

1, 2a

35 Address verification timeout. The insertion timer expired before
this function was completed. The ring may be congested,
experiencing a high bit-error rate, or losing enough tokens or
frames to prevent successful transmission of address verification
MAC frames.

1, 2a

36 Address verification ring failure. Acting as an active monitor, the
NIC was unable to complete the ring purge function. An error
condition occurred after the successful completion of a monitor
contention (claim token), when the NIC became an active monitor.

1, 2a

37 Address verification ring beaconing. The NIC detected a monitor
contention (claim token) failure or received a beacon MAC frame
from the ring.

1, 2b

38 Address verification, duplicate node address. The NIC detected
that another station on the ring has a NIC with the same address.

4

3A Address verification, remove received. A network management
function directed the NIC to get off the ring.

2a, 4

42 Ring poll signal loss. A 250-millisecond signal loss occurred after
the NIC completed ring signal recognition.

1, 2a

45 Ring poll timeout. The insertion timer expired before this function
was completed. The ring may be congested, experiencing a high
bit-error rate, or losing enough tokens or frames to prevent
successful reception of the ring poll request or MAC frame, or
transmission of the required ring poll response MAC frame.

1, 2a

46 Ring poll failure. Acting as an active monitor, the NIC was unable
to complete the ring purge function. An error condition occurred
after the successful completion of a monitor contention (claim
token), when the NIC became an active monitor.

1, 2a

47 Ring poll ring beaconing. The NIC detected a monitor contention
(claim token) failure or received a beacon MAC frame from the
ring.

1, 2b

4A Ring poll remove received. A network management function
directed the NIC to get off the ring.

2a, 4

55 Request parameters timeout. The insertion timer expired before this
function was completed. The ring may be congested, experiencing
a high bit-error rate, or losing enough tokens or frames to prevent
successful transmission of the request parameter MAC frame or
reception of either the set parameters 1 or set parameters 2 MAC
frame (required response to the NIC request).

1, 2a

Table 32 Responses to Open Error Codes (continued)

Code
(Hex) Description

Action
(See Number
in Table 33)

 (2 of 3)

SRB Commands 129
Read.Log The Read.Log command reads and resets NIC error counters. The Read.Log
command parameters are listed in Table 34. This command should be issued if the
NIC receives a ring status ARB with the error counter overflow set, which occurs if
a NIC error counter reaches a count of 255. The error counters are described in
Table 35. The Read.Log command can be issued any time between the Open.NIC
and Close.NIC commands.

56 Request parameters ring failure. Acting as an active monitor, the
NIC was unable to complete the ring purge function. An error
condition occurred after the successful completion of a monitor
contention (claim token), when the NIC became an active monitor.

1, 2a

57 Request parameters ring beaconing. The NIC received a beacon
MAC frame from the ring.

1, 2b

59 Request parameters, parameter request. The NIC detected that
the ring parameter server is present on the ring, but that the
required response (set parameter 1 or set parameter 2 MAC
frame) was not received in time. The ring may be congested,
experiencing a high bit-error rate, or losing too many tokens or
frames.

1, 2a

5A Request parameters, remove received. A network management
function directed the NIC to get off the ring.

2a, 4

Table 33 Open Error Actions

Number Description

1 Delay 30 seconds or more, retry the open two times, with a 30-second delay
between the retries.

2 Delay 30 seconds or more, check NIC configuration for data rate, and retry the
open.

2a If error persists, direct the PC system operator to contact the network system
administrator for assistance and provide open error information.

2b If error persists, direct the PC system operator to contact the network system
administrator for assistance and provide NIC status parameter information.

3 Direct the PC system operator to contact the network system administrator for
assistance and provide open error information.

4 Direct the PC system operator to contact the network system administrator for
assistance, provide node address information, and try attaching to the ring again
after 6 minutes.

5 If this error persists, there is a problem with the NIC or the lobe.

Table 32 Responses to Open Error Codes (continued)

Code
(Hex) Description

Action
(See Number
in Table 33)

 (3 of 3)

Table 34 Read.Log Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 08, Read.Log.

1 1 Reserved.

 (1 of 2)

130 CHAPTER 11: SOFTWARE OPERATION
Request.Interrupt The Request.Interrupt command forces a MAC ASIC interrupt. It has no effect on
ring communications. The NIC must be initialized but need not be opened.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid
return codes are:

■ 00h = Operation completed
successfully

■ 01 = Invalid command code

■ 04 = NIC closed; it should be
open

3 3 Reserved.

6 LOG_DATA 14 14 bytes of data sent by the NIC.

Table 35 Error Counters Available Through Read.Log

Byte Meaning

0 Line errors (including LLC and MAC frame transmit CRC errors, and MAC frame
receive CRC errors)

1 Internal errors

2 Burst errors

3 A/C errors

4 Abort delimiters

5 Reserved

6 Lost frames

7 Congestion errors (LLC and MAC frame receive overrun errors)

8 Frame copied errors

9 Frequency errors

10 Token errors

[11:13] Reserved

Table 34 Read.Log Command Parameters (continued)

Offset Parameter Name Byte Length Description

 (2 of 2)

Table 36 Request.Interrupt Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 00, Request.Interrupt

1 1 Reserved.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid
return codes are:

■ 00h = Operation completed
successfully

■ 01 = Invalid command code

SRB Commands 131
Restore.Open.Parms The Restore.Open.Parms command modifies the OPEN_OPTIONS set by the
Open.NIC command. The wrap option, remote program load, and modified token
release bits are ignored.

Set.Funct.Address The Set.Funct.Address command sets the functional address for the NIC to receive
messages. If the FUNCT_ADDRESS field contains all zeros, any previously set
functional address is disabled. Bits 31, 1, and 0 are ignored. The NIC accepts this
command any time between when it is opened and when it is closed. The upper
two bytes of the address are set to C000h.

Set.Group.Address The Set.Group.Address command sets the group address for the NIC to receive
messages. The NIC accepts this command any time between when it is opened
and when it is closed. The upper two bytes of the address are set to C000h.

Table 37 Restore.Open.Parms Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 02, Restore.Open.Parms.

1 1 Reserved.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid
return codes are:

■ 00 = Operation completed
successfully

■ 01 = Invalid command code

■ 04 = NIC closed; it should be open

3 1 Reserved.

4 OPEN_OPTIONS 2 See Table 29.

Table 38 Set.Funct.Address Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 07, Set.Funct.Address.

1 1 Reserved.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid
return codes are:

■ 00 = Operation completed
successfully

■ 01 = Invalid command code

■ 04 = NIC closed; it should be open

3 1 Reserved.

6 FUNCT_ADDRESS 4 New functional address to set.

Table 39 Set.Group.Address Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 06, Set.Group.Address.

1 1 Reserved.

 (1 of 2)

132 CHAPTER 11: SOFTWARE OPERATION
Set.Multicast.Mode The Set.Multicast.Mode command tells the NIC to enable or disable the multicast
function. The NIC must be opened before this command is issued. See Table 40.

Set.Receive.Mode The Set.Receive.Mode command tells the NIC to set different receive modes. This
command must be issued after the NIC is opened. See Table 41.

2 RETCODE (Hex) 1 Set by the NIC upon return. Valid
return codes are:

■ 00 = Operation completed
successfully

■ 01 = Invalid command code

■ 04 = NIC closed; it should be open

3 1 Reserved.

6 GROUP_ADDRESS 4 New group address to set.

Table 39 Set.Group.Address Command Parameters (continued)

Offset Parameter Name Byte Length Description

 (2 of 2)

Table 40 Set.Multicast.Mode Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 0C, Set.Multicast.Mode.

1 1 Reserved.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid
return codes are:

■ 00 = Operation completed
successfully

■ 01 = Invalid command code

■ 04 = NIC closed, should be open

■ 06 = Options invalid

3 1 Reserved.

4 MULTICAST_FLAG 1 Enable or disable multicast function.
The driver should specify one of the
following options:

■ 0 = Disable the multicast function

■ FF = Enable the multicast function

Table 41 Set.Receive.Mode Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 1F, Set.Receive.Mode.

1 1 Reserved.

 (1 of 2)

SRB Commands 133
Set.Sleep.Mode The Set.Sleep.Mode command notifies the NIC that the host has entered the
remote wake-up mode. See Table 43.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid
codes are:

■ 00 = Operation completed
successfully

■ 01 = Invalid command code

■ 04 = NIC closed; should be open

■ 06 = Options invalid

3 1 Reserved.

4 RECEIVE_OPTIONS 2 See Table 42.

Table 42 Receive Options

Code Meaning

0000 Normal mode. The NIC receives LLC and MAC frames that pass the address filter,
and it forwards all received LLC frames to the host. The NIC does not forward
received MAC frames to the host unless bits 15 or [4:3] in the OPEN_OPTIONS
parameter of the Open.NIC command are set when the NIC is opened.

0002 The NIC receives only MAC frames that pass the address filter. It does not receive
LLC frames. The NIC does not forward received MAC frames to the host unless
bits 15 or [4:3] in the OPEN_OPTIONS parameter of the Open.NIC command are
set when the NIC is opened.

0004 Promiscuous mode. The NIC receives all LLC and MAC frames regardless of their
destination addresses. The NIC forwards all received LLC and MAC frames to the
host, even if bits 15 or [4:3] in the OPEN_OPTIONS parameter of the OPEN.NIC
command are not set when the NIC is opened.

0006 Promiscuous mode for LLC frames only. The NIC receives only those MAC frames
that pass the address filter. It forwards all received LLC frames to the host. The
NIC does not forward received MAC frames to the host unless bits 15 or [4:3] in
the OPEN_OPTIONS parameter of the OPEN.NIC command are set when the NIC
is opened.

Table 41 Set.Receive.Mode Command Parameters (continued)

Offset Parameter Name Byte Length Description

 (2 of 2)

Table 43 Set.Sleep.Mode Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 05, Set.Sleep.Mode.

1 1 Reserved.

2 RETCODE (hex) 1 Set by the NIC upon return. Valid
return codes:

■ 00 = Operation completed
successfully

■ 01 = Invalid command code

■ 04 = NIC closed, should be open

■ 06 = Invalid options

 (1 of 2)

134 CHAPTER 11: SOFTWARE OPERATION
The NIC must be opened before the Set.Sleep.Mode command is issued. If the
frame pattern capability is applied, the driver must issue the
Change.Wakeup.Pattern command before issuing this command.

When the NIC receives the Set.Sleep.Mode command, it generates an SRB
response to the host and then enters into the sleep mode, in which it behaves as
follows:

■ Remains inserted in the ring but does not report ring status change to the host.

■ Does not forward MAC frames to the host.

■ Ignores SRB commands and gives no SRB response to the host.

■ Disables transmission of LLC frames.

■ Redirects incoming LLC frames to be received into the local SRAM MAC buffer.
It does not forward received LLC frames. Instead, the NIC compares received
LLC frames to see if they match either the magic frame or the frame pattern
specified by the driver. If there is a match, the NIC generates an interrupt to
wake up the host. If there is no match, the NIC discards the frame.

■ After it wakes up the host, the NIC exits from the sleep mode and restores
normal operation.

ARB Commands The adapter request block (ARB) passes receive information or commands from
the CP to the host. It is located at absolute physical address D08A0h of the NIC
SRAM. The ARB address is returned in the ARB_ADDRESS field of the open
completion response SRB (see Table 30).

Table 44 summarizes the ARB commands.

The NIC issues ARB commands and the driver acts upon them. The NIC first
prepares the ARB command, which is located at offset D08A0h of the SRAM. It
then sets the arbc bit in the IntStatus register, which generates an interrupt to the
driver.

3 1 Reserved.

4 CAPABILITY 2 Magic/pattern:

■ Packet magic matching

■ Packet pattern matching

■ Magic and pattern packet
matching

Table 43 Set.Sleep.Mode Command Parameters (continued)

Offset Parameter Name Byte Length Description

 (2 of 2)

Table 44 ARB Commands

Command Name
Code
(Hex) Description

Received.Data 81 Forwards MAC frames to the host.

Ring.Status.Change 84 Indicates a change in network status to the host.

ARB Commands 135
To read ARB commands, the driver sets up the MacAccessCmd register with
opCode = PrivateMemRead and localAddress = D08A0h. Then it reads from the
MacData register. The read operation can be in byte or word lengths. The NIC
does not automatically increment the localAddress after each read access. To read
the next byte or word, the driver must write the MacAccessCmd register so that
the localAddress points to the next location to be accessed.

Received.Data The Received.Data command informs the host that data for a particular station
has been received. The data must be moved from the receive buffers in shared
memory and placed into host memory buffers. The Received.Data command
provides the addresses of the buffers to the host in the ARB. In the last (or only)
buffer containing the frame, bytes 2 and 3 contain 0000h; otherwise they contain
the address of the next buffer plus two bytes.

When the host finishes processing the Received.Data command, it provides a
return code in the ASB and interrupts the NIC. If the return code is 20 and the
frame was an I frame destined for a link station, the NIC sets the local busy state
for the link station. The host software must reset the local busy state when buffers
become available. See Table 45 for Received.Data command parameters and
Table 46 for ASB response parameters from the host.

Table 45 Received.Data Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 81, Received.Data.

1 3 Reserved.

4 2 Reserved.

6 RECEIVE_BUFFER 2 Offset to the receive buffer in shared
memory (points to the MAC frame
location).

8 1 Reserved.

9 1 Reserved.

10 FRAME_LENGTH 2 Length of the entire frame.

12 NCB_TYPE 1 Category of the message received.
Hex values of the categories are:

■ 02 = MAC frame

■ 04 = I frame

■ 06 = UI frame

■ 08 = XID command poll

■ 0A = XID command not poll

■ 0C = XID response final

■ 0E = XID response not final

■ 10 = TEST response final

■ 12 = TEST response not final

■ 14 = Other or unidentified

136 CHAPTER 11: SOFTWARE OPERATION
Ring.Status.Change The Ring.Status.Change command indicates a change in the network status to the
host. The indicated status may be the same as the last status if the NIC had to wait
for the ARB to become available. After the host reads the command information
from the ARB, it interrupts the NIC to acknowledge receipt of the command and
indicate that the NIC can reuse the ARB. This command requires no response. See
Table 47.

Table 46 Received.Data ASB Response Parameters from the Host

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 81, Received.Data.

1 1 Reserved.

2 RETCODE (hex) 1 Set by the NIC upon return.

Valid return codes to the MAC ASIC:

■ 00 = Operation completed
successfully

■ 20 = Lost data on receive (no
buffers available). Local busy is
set if the NCB_TYPE is I frame.

Valid return codes to the host:

■ FF = Response valid; ASB available

■ 01 = Unrecognized command
code

■ 26 = Unrecognized command
correlator; the receive buffer
address is not that which the
NIC expects

■ 40 Invalid STATION_ID

3 1 Reserved.

4 STATION_ID 2 ID of the station receiving data.

6 RECEIVE_BUFFER 2 Offset to the address of the first
receive buffer in shared memory.

Table 47 Ring.Status.Change Command Parameters

Offset Parameter Name Byte Length Description

0 COMMAND 1 Hex code = 84, Ring.Status.Change.

1 5 Reserved.

6 NEW_STATUS 2 Current network status.

ASB Commands 137
ASB Commands The adapter status block (ASB) passes host responses to ARB commands to the CP.
It is located at absolute physical address DFED0h of the NIC SRAM. The ASB
address is returned in the ASB_ADDRESS field of the open completion response
SRB (see Table 30).

Table 48 summarizes ASB responses.

To provide responses to the NIC, the device driver sets up the MacAccessCmd
register with opCode = PrivateMemWrite and localAddress = DFED0h. It then
writes the ASB contents to the MacData register. The write operation can be byte
or word length. The NIC does not automatically increment the localAddress after
each write access. To write the next byte or word, the driver must write the
MacAccessCmd register so that the localAddress points to the next location to be
accessed. After the ASB contents are written, the device driver interrupts the NIC
by setting the rasb bit in the MISR register.

Initializing the NIC Before opening the NIC, the driver must perform the following procedure to
initialize it:

1 Reset the NIC.

2 Set the pmbarVisible bit in the CPAttention register. Read the Pmbar register.

■ If the cpHold bit is cleared, indicating that a flash ROM is installed, do nothing
but wait for the initialization SRB response interrupt as described in step 3.

■ If the cpHold bit is set, download the microcode to the NIC RAM as described
in “Downloading the Microcode” in this chapter, and then clear the cpHold bit.

3 The NIC generates an initialization SRB response to indicate that it has completed
the power-on self-test and initialization process.

4 The driver receives the initialization SRB response interrupt and completes the
initialization by setting the DnBurstThresh, UpBurstThresh, TxStartThresh, and
DnPriReqThresh registers.

Table 48 ASB Responses

Command Name
Code
(Hex) Description

Received.Data 81 The device driver has completed receiving a
forwarded MAC frame and the buffer can be
reused by the NIC.

138 CHAPTER 11: SOFTWARE OPERATION
Detecting Ring Speed The NIC communicates with the network at either 4 Mbps or 16 Mbps. The choice
of speed is determined by the ringSpeed (bit 1) setting in the SwitchSettings
EEPROM field. The speed must be set properly for the NIC to open onto the ring.

The driver can either read the proper ring speed setting from some configuration
disk file or determine the speed automatically.

To detect the proper ring speed, the driver should try to open onto the ring at the
speed determined by the current value of the ringSpeed bit. If the Open command
succeeds, then the current setting is correct and the driver can proceed with
initialization. If the command returns a RETCODE equal to 7 (see Table 30) and an
OPEN_ERROR_CODE equal to 7 (ring beaconing), the driver should assume that
the ringSpeed setting is incorrect. The driver should then read the SwitchSettings
field from the EEPROM and toggle the ringSpeed bit value. Then the driver should
write the EEPROM with the new SwitchSettings value and retry the Open.NIC
command.

Downloading the
Microcode

The procedures for downloading microcode with or without flash ROM installed
are described in “Driver Configuration” in Chapter 4.

The driver can find the size of the microcode in the WILDFIRE.MAC file. The
microcode size is a multiple of 16 bytes. The download starting address is
calculated by subtracting the microcode size from the value 10000h. The driver
should update the segment value of the boot code (4 bytes offset from the
beginning of the boot code) and leave the offset value unchanged.

Assuming a WILDFIRE.MAC file size of 5000h, Figure 13 presents the format of
the file. When the driver downloads the microcode file to the NIC memory, it
should locate the end of 16 bytes (boot code) in the file and copy them to the
address of FFF0h through FFFFh in the NIC’s private memory.

Figure 13 WILDFIRE.MAC File Format

Rest of microcode

Microcode version string (10h bytes)

Scratch buffer (100h bytes)

Manufacturer version string (10h bytes)

System response block (SRB)
(40h bytes)

Adapter status block (ASB)
(20h bytes)

90h EAh Offset (2 bytes) Unused(Boot code 10h bytes)

0000

4E70h

4E80h

4E90h

4F90h

4FD0h

4FF0h

4FFFh

A
 FRAME FORMAT
This appendix describes the token ring frame format. Although a complete
description of the frame format is beyond the scope of this reference, some
aspects are presented here because of their significance to receive error reporting
and priority queueing.

A token ring frame contains the fields listed in Table 49.

The order in which the fields are transmitted over the ring is shown in Figure 14.

Figure 14 Ring Transmission Order

Bit Ordering Bits within a byte are transmitted with the most-significant bit first. In all
representations of data in this document, the most-significant bit is the left-most
bit in the byte.

Table 49 Token Ring Frame Fields

Field Abbreviation

StartFrameDelimiter SFD

PhysicalControlField (access control [AC] and frame control [FC]) PCF

DestinationAddress DA

SourceAddress SA

SourceRoutingInformation RI

Data DATA

FrameCheckSequence FCS

EndFrameDelimiter EFD

PCF Extension Field FS

0 to 30 n* 4 1 166111Size
(bytes)

RI DATA FCS EFD FSSADAFCACSFD

First Last

* n indicates that the size varies

140 APPENDIX A: FRAME FORMAT
SFD and EFD Fields The SFD field indicates the beginning of one of the following:

■ Token ring frame

■ Token

■ Abort delimiter sequence (a contiguous pair of SFD and EFD fields)

The SFD field provides a unique definition for the bit and byte boundaries of every
supported frame type.

The EFD field indicates the end of a token ring frame, token, or abort delimiter
sequence. To be valid, EFD fields must appear on bit and byte boundaries. Frame
reception is successful only after a valid EFD is detected.

The MAC engine generates an EFD on byte boundaries when it ends the normal
transmission of a frame. It generates an SFD when it issues a free token or
begins a transmit immediate operation. It generates an abort delimiter sequence
under the following conditions:

■ The MAC engine is transmitting with a false free token (a corrupted token
was captured and used for a frame transmission before the token corruption
was detected).

■ The transmitter underran.

If the MAC engine detects a code violation (cv) between the SFD and the EFD of a
frame it is copying, it sets the error detect indicator of that frame (edi, bit 7 in the
EFD) and indicates the error in bit 29 of the FrameStatus UPD entry. See Figure 15.

Figure 15 SFD and EFD Field Formats and Timing

The edi bit also indicates, when set, that a remote station detected an error in the
frame. This bit is useful to management software for isolating possible error-prone
segments of the ring. It is reported in bit 28 of the FrameStatus UPD entry.

One byte

0 1 2 3 4 5 6 7

cv1SFD cv0 0 cv1 cv0 0 0 0

cv1EFD cv0 1 cv1 cv0 1 0 edi

c d c d c d c d c d c d c d c d c

xxxxxx

xxxxxx

cv = code violation
c = clock
d = data
edi = error detect indicator bit

Bit number

AC Field 141
AC Field The AC field contains these bits:

■ Three priority indicator bits (ppp)

■ One token bit (t)

■ One monitor count bit (m)

■ Three reservation indicator bits (rrr)

The token ring handler supports eight priority levels of tokens, depending on the
setting of the ppp and rrr bits. See Table 50.

Table 50 Token Priority Levels

The driver must supply the AC field with packet data. The ppp bits [2:0] specify the
priority level of the token that can be used to transmit the frame. For example, if
ppp=101 (priority 5; see Table 50) tokens with priorities from 000 to 101 can be
captured and used to transmit the frame. The MAC engine sets the remaining bits
in the AC field according to ring protocol when the frame is transmitted.

The ppp bits specify the access priority only to the ring to which the station is
connected. If the frame must hop to another ring, the priority that these bits
convey is lost. To carry frame priority across the entire token ring network, the
frame priority must also be specified in the FC field, described next.

FC Field The FC field contains these bits:

■ Two frame type bits (ff)

■ Three reserved bits

■ Three frame priority bits (yyy)

AC Field Format

0 1 2 3 4 5 6 7

ppp t m rrr

ppp bit 0 bit 1 bit 2 Priority

(low to high)rrr bit 5 bit 6 bit 7

0 0 0 0 (normal)

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

FC Field Format

0 1 2 3 4 5 6 7

ff 0 0 0 yyy

142 APPENDIX A: FRAME FORMAT
A driver should set the frame priority to the level it wishes to attach to the frame
and set the indicator priority in the AC field to the same value. This allows the
frame’s priority to be carried unaltered across the network.

These following priorities are recognized:

■ 000 = standard, nonpriority LLC traffic

■ 100 = bridge LLC traffic

■ 101 = video LLC traffic

■ 110 = audio LLC traffic

■ 111 = reserved for MAC frames

DA Field The DA field identifies the stations (destination addresses) for which the frame is
intended. The DA field is 6 bytes (48 bits) long. Individual, group, broadcast, null,
and functional address types are encoded. Station addresses may be administrated
either locally or globally.

SA Field The SA field is 6 bytes long, and contains the source address of the frame’s
originating station. Unlike a destination address, a source address is constrained to
a single address. This implies that the most-significant bit of the frame address, the
i/g bit, is 0. In place of the i/g bit is the routing information indicator bit (rii), which
indicates the presence or absence of a routing information field (RI) in the frame.

RI Field Frames may be routed through devices (known as bridges) from one ring to
another. The RI field specifies the precise route through one or more bridges to the
destination ring. The presence of an RI field is indicated when the rii bit of the SA
field is set to 1.

The detailed structure of the RI field is described in these specifications:

■ ISO/IEC 10038, 1993

■ ISO/IEC 8802-2, 1994

DATA Field The DATA field contains the contents of the frame. The length of the DATA field
varies from 0 to n, where n is determined by the maximum frame size allowed
(4,550 bytes at 4 Mbps and 18,200 bytes at 16 Mbps).

FC Field Bit Descriptions

Bit Name Description

[1:0] frameType These bits specify whether the frame is a MAC or an
LLC frame. The driver should only be concerned with
LLC frames, and thus should set these bits to 2’b10.

[4:2] Reserved These bits have no function and should be set to
3’b000.

[7:5] framePriority These bits set the frame priority. The priority levels are
the same as specified in the AC field (see Table 50).

FCS Field 143
FCS Field Token ring technology uses the following polynomial to generate the FCS field:

g(X) = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + X0

The FCS is calculated bit by bit starting with bit 0 in the FC field and ending with
the last data bit. This occurs while the frame is being transmitted onto the token
ring. Similarly, the FCS remainder of the protected field is accumulated bit by bit
while the frame is being received from the ring. Before accumulating either FCS
remainder, the accumulator is preset to 0xFFFFFFFF.

Each bit of the FCS remainder for the protected field is inverted to derive the
transmitted FCS field.

To check a received frame for errors, the FCS remainder for the received vector is
accumulated along with the data. If no error is present, the result is the constant
0xC704DD7B.

FS Field The FS field contains two bits of interest:

■ ar = address recognized

■ fc = frame copied

The originating station sends the ar and fc bits as 0. Another station sets the ar bit
if it recognizes the destination address as its own. The station also sets the fc bit if
it copies the frame.

B
 ERRATA LIST AND
SOFTWARE SOLUTIONS
This appendix describes 3C359 NIC anomalies and their software solutions.

Hash Calculation Hashing is performed by accumulating a CRC on the frame’s DA field if the DA
field’s most-significant bit is a 1 (indicating a group frame). The polynomial used
for the CRC calculation is:

g(X) = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + X0

The remainder is preset to all ones, and it is then modified by dividing the DA field
by the polynomial. The hash function is the low-order six bits (the coefficients of
X5 to X0) of the remainder. Normally this operation should be done beginning with
the most-significant bit (0) of the DA field and ending with the least-significant
bit (47). The order of the calculation is inconsequential in itself except that the
driver needs to calculate the hash in exactly the same way that the hardware does
in order to set the hash table bits correctly.

Most software routines that are commonly available to do this calculation were
originally written for Ethernet, and they were written to operate on a stream of
bytes (not bits). The bit order in Ethernet is not the same as it is for token ring
technology. Within each token ring byte, the bit order as it appears on the wire
is reversed. So to use an algorithm that was created for Ethernet, the bits within
each byte must be reversed before the hash is calculated.

However, a bug in the 3C359 NIC silicon causes the bits within each byte to be
calculated in this order: 3, 2, 1, 0, 7, 6, 5, 4. Therefore, an Ethernet algorithm
being used for token ring must swap the nibbles within each byte (but not do any
bit swapping) before performing the calculation. The sample code shown below
demonstrates this technique.

The least-significant six bits of the resulting remainder are used as a vector into the
hash table. The driver should set those bits in the tables that correspond to each
address of interest. After the 3C359 NIC has performed the same calculation on
multicast frames, it checks the state of the bit at the addressed location. If the
addressed bit is set, the frame is uploaded. If the addressed bit is clear, the
hardware discards the frame.

* CalculateCRC() - Calculate CRC based on input addr.
*
* Input: Addr = pointer to a string containing 6-byte addr
* Return: CRC = double word CRC value
**/
ULONG CalculateCRC(BYTE *Addr)
{
 const ULONG Poly=0x04c11db6L;

146 CHAPTER B: ERRATA LIST AND SOFTWARE SOLUTIONS
 ULONG CRCValue=0xffffffffL,
 CurrentCRCHigh;
 UINT NumberOfBytes=6,
 CurrentBit;
 BYTE CurrentByte;

 for (; NumberOfBytes; NumberOfBytes--)
 {
 CurrentByte = SwapNibble(*Addr); // swap the nibbles
 Addr++;
 for (CurrentBit=8; CurrentBit; CurrentBit--)
 {
 CurrentCRCHigh = CRCValue>>31;
 CRCValue <<= 1;
 if(CurrentCRCHigh^(CurrentByte&0x01))
 {
 CRCValue ^= Poly;
 CRCValue |= 0x00000001L;
 }
 CurrentByte >>= 1;
 }
 }
 return CRCValue;
} // end CalculateCRC()

/**
* SwapNibble() - Swap nibbles in a byte, so that:
* bit 7 6 5 4 3 2 1 0
* becomes bit 3 2 1 0 7 6 5 4
**/
BYTE SwapNibble(BYTE b)
{
 asm {
 mov al,b
 mov ah,al
 and ah,0f0h
 and al,0fh
 shr ah,4
 shl al,4
 or al,ah
 }
 return _AL;
} // SwapNibble()

INDEX OF REGISTERS

A
AckInterrupt (command) 112

B
BaseAddress1 50
BaseAddress2 50
BiosRomControl 52

C
CacheLineSize 49
CapID 54
CapPtr 52
ClassCode 48
Command 107
Config 115
Countdown 116
CPAttention 34

D
Data 57
DeviceId 46
DmaCtrl 76
DnBurstThresh 77
DnDisable (command) 110
DnEnable (command) 110
DnFragAddr (DPD entry) 67
DnFragLen (DPD entry) 67
DnListPtr 78
DnNextPtr (DPD entry) 66
DnPoll 79
DnPriReqThresh 79
DnReset (command) 109
DnStall (command) 110
DnUnstall (command) 110

E
EeControl 62
EeData 63

F
FrameStartHeader (DPD entry) 66
FrameStatus (UPD entry) 82
FreeTimer 116
G
GlobalReset (command) 108

H
HashFilter 117
HeaderType 50

I
IndicationEnable 101
InterruptEnable 101
InterruptLine 53
InterruptPin 53
InterruptRequest (command) 113
IntStatus 102
IntStatusAuto 104
IoRead (command) 36
IoWrite (command) 36

L
LatencyTimer 49

M
MacAccessCmd 34
MacData 37
MacStatus 106
MaxLat 54
MinGnt 53
MISR 104
MmioRead (command) 35
MmioWrite (command) 36

N
NextPtr 54

P
PciCommand 47
PciStatus 47
Pmbar 38
Pmbar (EEPROM) 61
PowerMgmtCap 55
PowerMgmtCtrl 56
PrivateMemRead (command) 35
PrivateMemWrite (command) 35

148 INDEX OF REGISTERS
R
RevisionId 48
RxBufArea 97
RxDiscard (command) 111
RxEarlyThresh 98

S
SelectHashFilterBit (command) 111
SetConfig (command) 114
SetIndicationEnable (command) 113
SetInterruptEnable (command) 113
SetTxStartThresh (command) 111
SubsystemId 52
SubsystemVendorId 51
SwitchSettings 117

T
Timer 118
TxStartThresh 80

U
UpBurstThresh 94
UpFragAddr (UPD entry) 84
UpFragLen (UPD entry) 84
UpListPtr 94
UpNextPtr (UPD entry) 82
UpPktStatus 95
UpPoll 97
UpReset (command) 109
UpStall (command) 111
UpUnStall (command) 112

V
VendorId 46

W
WRBR 38
WWCR 39
WWOR 39

INDEX OF BITS

A
address 62
addressDecodeEnable 52
aint 106
arbc 103
arbf 105
armCountdown 77
ARRMatch (UPD entry) 95
arrMatch (UPD entry) 82
asbf 103
asbfr 105
auxPower 55

B
broadcastAddress (UPD entry) 83, 96
busMaster 47

C
capabilitiesList 48
cmdInProgress 103
contender 125
countdownMode 77
counterSpeed 77
cpHold 38
csrb 105

D
d1Support 55
d2Support 55
data1 (EEPROM) 61
data2 (EEPROM) 61
data3 (EEPROM) 61
dataParityDetected 48
dataScale 57
dataSelect 57
deteatMWI 77
detectedParityError 48
devselTiming 48
disableCrc (DPD entry) 66
disableHardError 125
disableSoftError 125
dnCmplReq 76
dnComplete 76, 103
dnComplete (DPD entry) 67
dnFifoReset 109
dnFragLast (DPD entry) 67
dnFragLen (DPD entry) 67
dnIndicate (DPD entry) 67
dnInProg 77
dnReset 109
dnStalled 76
downloadMode 115
dpdEmpty (DPD entry) 67
duplex 125

E
edi 140
eeBusy 62
eint 106
enBios 38

F
fastBackToBack (EEPROM) 48, 61
fifoReset 108
frameLength (DPD entry) 66
framePriority 142
frameType 142
fshFormat (DPD entry) 67

G
groupAddress (UPD entry) 83, 96

H
hashEn 115
hostError 102
hostReset 108

I
interruptLatch 102
intRequested 102
ioBaseAddress 50
ioSpace 47
ioSpaceIndicator 50

L
lower1Meg (EEPROM) 61

M
macError 102
macReset 108
masterAbort 77
maxFrameEq20480 115
maxFrameEq8192 115
maxLat (EEPROM) 61
memBaseAddress 51
memorySpace 47
memSpaceIndicator 51
memWrEn 34
minGnt (EEPROM) 61
MWIEnable 47

150 INDEX OF BITS
O
opcode 62

P
parityErrorResponse 47
passAttentionMacFrames 125
passBeaconMacFrames 126
passNicMacFrames 125
phyReset 108
PMBARVisible 34
pmeClock 55
pmeEn 56
pmeStatus 57
pmeSupport 55
pmeSupport (EEPROM) 61
powerState 56
prefetchable 51
privateMemoryBase 38

R
rasb 105
receivedMasterAbort 48
receivedTargetAbort 48
receiveStatusCode (UPD entry) 83, 96
redi (UPD entry) 83, 96
remoteProgramLoad 126
reservedByPci 50
ringSpeed 117
rlpedi (UPD entry) 83, 96
romBaseAddress 52
rxAr (UPD entry) 83, 96
rxComplete 102
rxFc (UPD entry) 83, 96
rxOverrun 96
rxOverrun (UPD entry) 83

S
SERREnable 47
signaledSystemError 48
signaledTargetAbort 48
sourceRouteCompare (UPD entry) 83, 96
srbfr 105
srbr 103

T
targetAbort 77
tchk 106
tokenRelease 125
txComplete 102
txIndicate (DPD entry) 67
txUnderrun 103
type 51

U
udfSupported (EEPROM) 61
upComplete 76, 103
updComplete (UPD entry) 83
updFull (UPD entry) 83
updNeeded 96, 102
upDownReset 108
upFifoReset 109
upFragLen (UPD entry) 84
upLastFrag (UPD entry) 84
upPktComplete 96
upPktLength 95
upPktLength (UPD entry) 82
upReset 109
upStalled 95

V
version 55

W
wdtd 38
wrapInterface 125

INDEX

Numbers
3C359 NIC

anomalies 145
architecture 19
block diagram 19
devices 21
features 15
flash ROM 25
host register layout 23
initialization 137
operation 25
software operation 119

3Com node address 60

A
access conflicts, avoiding 78
accessing

EEPROM 62
registers in memory space 22

acronyms 16
adapter request block (ARB) 120, 134
adapter status block (ASB) 120, 137
adding multipacket lists to the

downlist 70
adding or deleting a wake-up packet

pattern 121
address

functional, setting 131
group, setting 131

anomalies 145
ARB commands

defined 134
reading 135

arbitration logic 28
architecture 19
ASB responses 137
ASIC

Media Access Control (MAC) 20
PCI bridge 21

autoinitialization 42

B
BIOS code in flash ROM 25
bit map of register, defined 18
bits

default values 18
for PCI memory command

configuration 27
block diagram

3C359 NIC 19
Media Access Control (MAC)

ASIC 20
PCI bridge ASIC 21

blocks, control, defined 119
burst behavior, PCI 27
bus controller, local 21
bus master operation 26
bus request, emergency 28

C
Change.Wakeup.Pattern command 121
checksum 60
Close.NIC command 122
combining packet rerception modes 89
Command register 22
commands

ARB 134
Change.Wakeup.Pattern 121
Close.NIC 122
Get.Statistics 122
interrupt 112
Modify.Open.Parms 123
Open.NIC 123
PCI memory 27
Read.Log 129
receive 111
Received.Data (ARB) 134
Received.Data (ASB) 137
Request.Interrupt 130
reset 108
Restore.Open.Parms 131
Ring.Status.Change 134
Set.Funct.Address 131
Set.Multicast.Mode 132
Set.Receive.Mode 132
Set.Sleep.Mode 133
SRB 120
transmit 110

communication
from the CP to the host 134
from the host to the CP 137

communication through data structure
lists 26

communication with the host 119
completing a download 69
configuration 41

autoinitialization 42
driver 43, 44

with flash ROM 44
without flash ROM 43

enBios bit 25
NIC 42
PCI 43, 45

configuration bits for PCI memory
commands 27

configuration control 60
control blocks, defined 119
CP-to-host communication 134
CRC calculation, in hashing 91
D
data structure lists 26
data, movement of 26
default bit values 18
descriptors, as data structures 26
detecting ring speed 138
device identifier 61
devices, 3C359 NIC 21
down fragment address (DnFragAddr)

DPD entry 67
down fragment length (DnFragLen) DPD

entry 67
down next pointer DPD entry 66
down packet descriptor (DPD) data

structure 66
downlist

adding DPDs to 70 to 72
defined 26
illustrated 65

download 28
and transmission 65
completion 69
defined 26
enabling the NIC 68
engine 21
priority 80
process 68
sequence 72
single packet 68
stalling and idling 69

downloading microcode 138
with flash ROM 44
without flash ROM 43

downloading packets 72
DPD, defined 26, 65
driver configuration 43, 44

with flash ROM 44
without flash ROM 43

E
early interrupts 91
early packet transmission 80
EEPROM 21, 41

3Com node address 60
access 62
checksum 60
configuration control 60
contents 59
data locations 41
device identifier 61
manufacturer ID 60
manufacturing data 60
OEM node address 60
PciParms1 61
PciParms2 61

152 CHAPTER : INDEX
power consumption 61
private memory base address

(Pmbar) 61
resource redirector 62
subsystem ID 62
subsystem vendor ID 62
switch settings 62
writing and reading 63

emergency bus request 28
enabling

download 68
upload 84

enabling and disabling the multicast
function 132

enBios bit, flash ROM access 25
engine

local upload and download 21
upload and download 21

error counters, reading and
resetting 129

exiting sleep states 30

F
FIFO, transmit and receive 21
file, WILDFIRE.MAC 138
flash ROM

3C359 NIC 25
driver configuration 43
role of enBios bit 25

frame start header (FSH) DPD entry 66
frame status 82
functional address, setting 131

G
Get.Statistics command 122
glossary of terms and acronyms 16
group address, setting 131

H
hardware reset 41
hashing

CRC calculation 91
errata 145
for filtering multicast packets 90

high-priority packet transmission 70, 71
host registers

defined 22
for download and transmission 76
for interrupts and indications 101
for upload and reception 93
layout 23

host, communication with 119
host-to-CP communication 137

I
I/O registers 22

reading 36
writing 36

idling and stalling 69
indications, defined 99
initializing the NIC 137
inserting the NIC into the ring 68, 84
inserting the NIC onto the ring 123
interrupt commands 112
interrupt status register 22
interrupts

defined 99
early 91
reducing 75

interrupts and indications, relationship
between 100

interrupt-specific actions 99

L
lists, multipacket 70

adding to the downlist 70
local

bus controller 21
download engine 21
upload engine 21

local memory. See private memory 31
lookahead UPD 87

M
MAC access protocols 124
MAC ASIC registers 23

accessing 34
for reception and upload 97
for the EEPROM 62

MAC frames, forwarding to the
host 119

MAC packets 119
manufacturer ID 60
manufacturing data 60
Media Access Control (MAC) ASIC 20
memory

access 32
private, defined 31

memory commands, PCI 27
configuration bits 27

Memory read command (MR) 27
Memory read line command (MRL) 27
Memory read multiple command

(MRM) 27
memory space, accessing registers in 22
memory usage

with flash ROM 32
without flash ROM 31

Memory write command (MW) 27
Memory write invalidate command

(MWI) 27
memory-mapped I/O (MMIO) 17

reading 35
writing 36

microcode
downloading 138

with flash ROM 44
without flash ROM 43

finding the size of 138
space allocation in flash ROM 25
WILDFIRE.MAC file 138

minimizing register accesses 88
MMIO registers 36
mode, receive, setting 132
mode, remote wake-up, entering 133
mode, sleep, NIC behavior 134
Modify.Open.Parms command 123
mulficast function, enabling and

disabling 132
multicast filtering 90
multicast reception, enabling 119
multipacket lists 70

adding DPDs to 70
multiple DPDs 70
multiple UPDs 91

N
NIC configuration 42

autoinitialization 42
driver 43, 44

with flash ROM 44
without flash ROM 43

NIC initialization 137
numeric formats 16

O
obtaining statistics 122
OEM node address 60
open NIC 68, 84
Open.NIC command 123
operation

characteristics 25
PCI bus master 26

optimized packet transmission 74

P
packet

downlist 65
download 68

and transmission 65
packet descriptor (DPD) 65
sequence 72

MAC 119
priority queueing 70, 71
transmission modes 74
uplist 81
upload packet descriptor (UPD) 81
with errors 92

packet data
movement 26
writing 27

packet reception
and uploading 81
combining reception modes 89
completion 86
enabling 84
model 84
store-and-forward 87
upload modes 85
uploading 84
using Parallel Tasking technology 89

packet transmission 73
early 80
optimized 74
underrun recovery 75

parallel tasking packet reception 89

153
PCI
burst behavior 27
bus controller 21
bus master operation 26
bus request control 27
configuration cycles and

registers 45
memory commands 27
memory commands, configuration

bits 27
parameters 61

PCI bridge ASIC 21
PCI configuration 43
PciParms1 61
PciParms2 61
Pmbar 61
polling 68, 79
power consumption 61
power management 28
power management registers 28, 54
power states 29
power-down state 30
priority

bus request 28
download 80
packet queueing 70

priority packet queueing 71
private memory 31

partitioning 33
reading 35
registers, accessing 34
writing 35

private memory base address
(Pmbar) 61

programming remote wake-up
events 30

promiscuous group receive mode 90
protocols, MAC access 124

R
RAM, static (SRAM) 21
RAM-based configuration memory

usage 31
Read.Log command 129
reading and resetting NIC error

counters 129
reading and writing EEPROM 63
reading ARB commands 135
reading packet data 27
receive commands 111
receive FIFO 21
receive modes, setting 132
Received.Data command (ARB) 134
Received.Data command (ASB) 137
reception

and uploading 81
model 84
store-and-forward 87

reducing transmission interrupts 75
register bit map, defined 18
registers
access to, minimizing 88
accessing in memory space 22
bit map description 18
Command 22
host 22
I/O 22
interrupt status 22
MAC ASIC 23
mapped into I/O space 22
power management 28, 54

remote wake-up
enBios bit 25
mode 28, 133
programming 30

Request.Interrupt command 130
reset commands 108
reset, defined 41
resource redirector 62
responses, ASB 137
Restore.Open.Parms command 131
ring communication, terminating 122
ring speed

detecting 138
setting 117

ring, inserting the NIC 123
Ring.Status.Change command 134
ROM-based configuration memory

usage 32

S
serial EEPROM 21, 41
Set.Funct.Address command 131
Set.Group.Address command 131
Set.Multicast.Mode command 132
Set.Receive.Mode command 132
Set.Sleep.Mode command 133
setting receive modes 132
setting the functional address 131
setting the group address 131
sleep mode, NIC behavior 134
sleep states, exiting 30
software interface 25, 119
SRB commands

issuing to the CP 120
summary 120

stalling and idling 69
static RAM (SRAM) 21, 32
statistics 25
statistics, obtaining 122
store-and-forward packet reception 87
subsystem ID 62
subsystem vendor ID 62
switch settings 62
system request block (SRB) 120
system reset 41
T
terminating ring communication 122
terms 16
theory of operation 25
transmission 65, 73

early 80
modes 74
optimized 74
underrun recovery 75

transmit commands 110
transmit FIFO 21
TXI access protocol, looping back LLC

frames 127

U
underrun recovery 75
UPD

data structure 81
defined 26
lookahead 87

uplist 26, 81
upload 28

completion 86
defined 26
enabling the NIC 84
engine 21
fragment address 84
fragment length 84
modes 85
next pointer 82
packet descriptor (UPD), data

structure 81
packet reception and 81
sequence 93

W
wake-up mode, entering 133
waking the system 121
WILDFIRE.MAC file 138
writing and reading EEPROM 63
writing packet data 27

	Introduction
	NIC Features
	About This Technical Reference
	Terms and Acronyms
	Register Descriptions and Bit Maps

	Architecture
	Block Diagram
	ASICs
	Other NIC Devices
	Flash ROM
	EEPROM
	64K SRAM

	Host Registers
	Command Register
	Interrupt Status Register
	Register Layout

	MAC ASIC Registers

	Operation
	Software Interface
	Statistics
	Flash ROM
	Data Structure Lists
	PCI Bus Master Operation
	PCI Memory Commands
	PCI Bus Request Control
	Download
	Upload

	Power Management
	Remote Wake-up Mode
	Power States
	Programming Remote Wake-up Events

	Accessing and Managing Private Memory
	Memory Usage
	Without Flash ROM
	With Flash ROM

	Memory Access
	CPAttention
	MacAccessCmd
	PrivateMemRead
	PrivateMemWrite
	MmioRead
	MmioWrite
	IoRead
	IoWrite

	MacData
	Pmbar
	WRBR
	WWCR
	WWOR

	Configuration
	System Reset
	Serial EEPROM
	NIC Configuration
	Autoinitialization
	PCI Configuration
	Driver Configuration
	Without Flash ROM Installed
	With Flash ROM Installed

	PCI Configuration Registers
	VendorId
	DeviceId
	PciCommand
	PciStatus
	RevisionId
	ClassCode
	CacheLineSize
	LatencyTimer
	HeaderType
	BaseAddress1
	BaseAddress2
	SubsystemVendorId
	SubsystemId
	BiosRomControl
	CapPtr
	InterruptLine
	InterruptPin
	MinGnt
	MaxLat

	Power Management Registers
	CapId
	NextPtr
	PowerMgmtCap
	PowerMgmtCtrl
	Data

	EEPROM
	Data Format
	3Com Node Address
	Checksum
	ConfigurationControl
	ManufacturerId
	Manufacturing Data
	Date
	Division
	Product Code

	OEM Node Address
	PciParms1
	PciParms2
	Pmbar
	DeviceId
	ResourceRedirector
	SubsystemId
	SubsystemVendorId
	SwitchSettings
	MAC ASIC Registers
	EeControl
	EeData

	Download and Transmission
	Packet Download Model
	DPD Data Structure
	DnNextPtr
	FrameStartHeader
	DnFragAddr
	DnFragLen

	Packet Download
	Enabling Download
	Simple Packet Download
	Polling on DnNextPtr
	Download Stalls and Idles
	Download Completion
	Multipacket Lists
	Priority Queueing
	Adding DPDs to the End�of the Downlist
	Inserting a DPD Near�the Head of�the�Downlist

	NIC Download Sequence

	Byte Transmission Order
	Packet Transmission
	Packet Transmission Model
	Optimized Packet Transmission
	Reducing Interrupts
	Limiting dnComplete Interrupts
	Using CountDown Timer Instead of dnComplete

	Underrun Recovery
	Host Registers
	DmaCtrl
	DnBurstThresh
	DnListPtr
	DnPoll
	DnPriReqThresh
	TxStartThresh

	Reception and Upload
	Packet Upload Model
	UPD Data Structure
	UpNextPtr
	FrameStatus
	UpFragAddr
	UpFragLen

	Packet Reception
	Enabling Reception
	Packet Reception Model

	Packet Upload
	Upload Modes
	Simple Packet Upload
	Packet Upload Completion
	Store-and-Forward Packet Reception
	Store-and-Forward Procedure
	Minimizing Register Accesses

	Parallel Tasking Packet Reception
	Combining Packet Reception Modes
	Multicast Filtering
	Multipacket Lists
	Using Multiple UPDs
	Early Interrupts
	Packets with Errors
	NIC Upload Sequence

	Host Registers
	DmaCtrl
	UpBurstThresh
	UpListPtr
	UpPktStatus
	UpPoll

	MAC ASIC Registers
	RxBufArea
	RxEarlyThresh

	Interrupts and Indications
	Interrupt and Indication Enables
	Host Registers
	IndicationEnable
	InterruptEnable
	IntStatus
	IntStatusAuto

	MAC ASIC Registers
	MISR
	MacStatus

	Command Register
	Command
	Reset Commands
	GlobalReset *
	DnReset *
	UpReset *

	Transmit Commands
	DnDisable *
	DnEnable
	DnStall *
	DnUnstall
	SetTxStartThresh

	Receive Commands
	RxDiscard *
	SelectHashFilterBit
	UpStall *
	UpUnStall

	Interrupt Commands
	AckInterrupt
	InterruptRequest *
	SetIndicationEnable
	SetInterruptEnable

	SetConfig

	Other Registers
	Config
	Countdown
	FreeTimer
	HashFilter
	SwitchSettings
	Timer

	Software Operation
	MAC Packets
	Multicast Reception
	Communication with the Host
	SRB Commands
	Issuing SRB Commands
	Change.Wakeup.Pattern
	Close.NIC
	Get.Statistics
	Modify.Open.Parms
	Open.NIC
	Rules for TXI Protocol
	Open Errors

	Read.Log
	Request.Interrupt
	Restore.Open.Parms
	Set.Funct.Address
	Set.Group.Address
	Set.Multicast.Mode
	Set.Receive.Mode
	Set.Sleep.Mode

	ARB Commands
	Received.Data
	Ring.Status.Change

	ASB Commands
	Initializing the NIC
	Detecting Ring Speed
	Downloading the Microcode

	Frame Format
	Bit Ordering
	SFD and EFD Fields
	AC Field
	FC Field
	DA Field
	SA Field
	RI Field
	DATA Field
	FCS Field
	FS Field

	Errata List and Software�Solutions
	Hash Calculation

	Index of Registers
	Index of Bits
	Index

