

MU9C8358L Evaluation Kit Users Manual

BILL OF MATERIALS

The kit should contain the following:

- Evaluation board PCB.
- 5v power-supply unit and power cord.

- 25-pin D-type parallel port cable.
- Data CD
- This manual
- CAMView LANCAM Viewer Manual

INTRODUCTION

Figure 1: MU9C8358L Evaluation Board

The Evaluation board is shown in Figure 1. It is a very simple printed circuit board that will allow a user to evaluate the MUSIC Semiconductors MU9C8358L Ethernet Filter device. The user simply plugs the board into a standard PC printer port using the 25-pin connector supplied. Sample C-Code functions and a demo program are provided that allows the user to perform the following tasks:

- Initialize the MU9C8358L and LANCAM
- Read and write internal registers
- Read the LANCAM contents
- Delete LANCAM entries
- Write permanent entries to the LANCAM
- Invoke the Purge routine using the software registers or INCR pin
- View the data recently transmitted from the hardware Result Port or Tag ports

A simple Windows Software Tool is also provided that allows the user to view instantly the contents of the LANCAM database. This tool is called the CAMView LANCAM Viewer and allows the user to view all or some of the entries in the device. This can be used in conjunction with the users own C-Code to play with the MU9C8358L and view the additions and modifications to the LANCAM database.

The user may also view any of the device signals by connecting a logic analyzer to the board. Four MICTOR-38 high-density connectors are provided that will allow the user access to the signals. The connectors are widely used by many logic analyzer pods. Network traffic can be received by the MU9C8358L through any of the four RJ-45 connectors. This enables the user to send packets and then observe how the device parses and deals with the Ethernet address information.

HARDWARE INSTALLATION

The Evaluation board is installed in the following way:

- 1. Remove the power supply unit and cable from the box. Plug the power supply cable into the power supply unit. The other end of the cable can be plugged into a standard 110V outlet. Don't plug the output connector into the Evaluation Board for the moment.
- 2. Remove the 25-pin D-type parallel port connector from the box. Insert one end into the parallel port connector in the back of the PC. The board should work with all parallel port configurations. It shouldn't matter whether the port is configured as PS-2, EPP or ECP. The only stipulation is that the port is capable of bi-directional data transfer. The base address of the port being used should be set in any C-Code.
- 3. Carefully remove the Evaluation board from the anti-static bag and place on an anti-static surface. It is advisable that the Evaluation board is used in a lab environment, where the board can be placed on an anti-static surface on a work-bench. If this is not possible, it is important that the board is laid flat on a desk or table. It is very important that metal objects should be kept away from the board as they may cause short circuits in the metal circuit tracks. The board is supplied with rubber insulating feet applied to the bottom. These may be removed by hand if the user wished to lie the board completely flat.
- 4. Make sure the FPGA data PROM is correctly installed in socket U10 (see Figure 2 for location).
- 5. Plug the other end of the parallel port connector into P1 (see Figure 2 for location).
- 6. Connect the other end of the power supply unit into the connector J1 (see Figure 2 for location).
- 7. If the power supply unit is plugged in correctly at the power socket, two green LEDs D24 and D25 should now be lit and the red D1 should be flashing (see Figure 2 for location).
- 8. If D1 is not flashing remove the power cord from J1 and check the data PROM in located properly in socket U10. If neither of the green LEDs D24 and D25 is lit, unplug the power supply cord and test the output with an electrical meter. The output should be approximately 5v DC.
- 9. If you are still having problems installing the board, please call MUSIC Semiconductors.

- 10.When the power is applied, the Result and Tag port LEDs (see Figure 2 for location) should perform a self-test and flash a few times. This will allow you to check that all these LEDs are operational. The LED self-test jumper (JP9) must be closed or the LEDs will remain off.
- 11.If there was no problems, the LEDs should be lit as described earlier, and you are now ready to use the Evaluation board. Instructions about how the C-Code and the Windows Software Tool is installed can be found in Section 4.

SOFTWARE INSTALLATION

The Evaluation board is supplied with some sample C-Code, a Windows Software tool, documentation, and some design information. The design information is the schematics, which are provided in Orcad Capture Version 7.2 format, the FPGA files, and the Verilog code for the FPGA.

The software is provided on a data CD labeled "MU9C8358L Evaluation Kit". The CD contains two setup executable files. One will install the CAMView LANCAM Viewer and the other will install the C-Code, schematics, FPGA binary files, and associated documentation. The CAMView Setup.exe file is located in the CAMView directory. The installation process for the LANCAM Viewer is described in detail in a separate manual. This manual is titled "CAMView LANCAM Viewer User Manual" and should be found in the Kit along with this manual. The manual will describe how to install the Windows Software and how it should be used.

The installation process which installs the C-Code, documentation, and CAD files is as follows:

- 1. Insert the data CD titled: "MU9C8358L Evaluation Kit" in the CD drive.
- 2. Press the Windows START button and select "Run". Use "Browse" to select the "Setup.exe" file on the CD. Click "OK". Alternatively use "Windows Explorer" to locate the "Setup.exe" file from the CD drive. Once it is located, double click on the icon.
- 3. An Install window will pop up that has the title "MU9C8358L Evaluation Kit". Inside this there will be a smaller "Welcome" window. Press "Next" to continue.

- 4. A "User Information" window will prompt you for your name and Company name. Enter this information if not automatically entered and press "Next".
- 5. A "Choose Destination Location" window will prompt you to specify the default directory for all the files that will be copied to your computer. You can either leave this directory as the default shown or use the "Browse" button to specify another. Once you are ready, press "Next" to continue.
- 6. A "Select Program Folder" window will inform you that a new program folder will be created. You can either leave this folder as shown or change the settings. Once you are ready, press "Next" to continue.
- 7. A "Start Copying Files" window will prompt you to press "Next" to start copying files and thus finish the installation. Press "Next" to continue. This will copy all of the files to your hard disk.
- 8. A "Setup Complete" window will inform you that the installation has finished. Press "Finish" to complete the setup.

Once the installation is complete the following files should have been copied to your hard disk. The default for the <INSTALL_DIR> is C:\MUSICSemi\Hardware. You may have changed this during the installation process. If it has been changed, substitute the new home directory where <INSTALL_DIR> is shown. The files and their paths are shown in Tables 1 through 5.

Table 1: C-Code Files

Path	Description
<install_dir>\C_Code\Filter.h</install_dir>	Header file that contains all the register defines and functions
<install_dir>\C_Code\Demo.c</install_dir>	Demo file that will allow the user to perform some basic operations
<install_dir>\C_Code\Skeleton.c</install_dir>	File that shows the basic operation of the board
<install_dir>\C_Code\Clear.c</install_dir>	File that contains a simple Clear Screen function

Table 2: Documentation Files

Path	Description
<install_dir>\Docs\8358LEval.pdf</install_dir>	This Manual
<install_dir>\Docs\MU9C8358L Data Sheet.pdf</install_dir>	The data sheet for the MU9C8358L
<install_dir>\Docs\83388358Lerrata.pdf</install_dir>	An errata showing some bugs present in the MU9C8358L
<install_dir>\Docs\AN-N24.pdf</install_dir>	An Application note showing how to use the MU9C8358L

Table 3: Schematics Files

Path	Description
<install_dir>\Schematics\Eval8358V1.2.dsn</install_dir>	The Schematics design file
<install_dir>\Schematics\Eval8358V1.2.opj</install_dir>	The Schematics OPJ file

Table 4: Verilog Code

Path	Description				
<install_dir>\Verilog\bufg.v</install_dir>	Clock buffer file				
<install_dir>\Verilog\clk.v</install_dir>	Clock divider				
<install_dir>\Verilog\dp_fifo.v</install_dir>	FIFO used to store Result port entries				
<install_dir>\Verilog\epp.v</install_dir>	Parallel port interface				
<install_dir>\Verilog\fstat.v</install_dir>	Fifo entry counter				
<install_dir>\Verilog\led.v</install_dir>	LED control for heartbeat, Result port and Tag port LEDs				
<install_dir>\Verilog\phy.v</install_dir>	PHY register serial access interface				
<install_dir>\Verilog\phy_led.v</install_dir>	LED control for the PHY LEDs				
<install_dir>\Verilog\proc.v</install_dir>	The MU9C8358L processor port interface				
<install_dir>\Verilog\reg.v</install_dir>	The FPGA internal registers				
<install_dir>\Verilog\res.v</install_dir>	The MU9C8358L Result port interface				
<install_dir>\Verilog\rst.v</install_dir>	The reset circuit				
<install_dir>\Verilog\tag.v</install_dir>	The MU9C8358L Tag port interface				
<install_dir>\Verilog\tag_fifo.v</install_dir>	FIFO used to store Tag port entries				
<install_dir>\Verilog\top.v</install_dir>	The top level module that wires all other modules together				
<install_dir>\Verilog\mu8358demo.v</install_dir>	The pseudo pad layer				

Table 5: FPGA Binary Files

Path	Description
<install_dir>\FPGA\8358.ucf</install_dir>	The FPGA constraints file
<install_dir>\FPGA\8358V1_0.bit</install_dir>	The FPGA binary file used when down-loading the design into the FPGA. The version number may change with subsequent releases.
<install_dir>\FPGA\8358V1_0.mcs</install_dir>	The FPGA PROM file. The version number may change with subsequent releases.
<install_dir>\FPGA\dp_fifo.edn</install_dir>	The edn file for the Result port FIFO
<install_dir>\FPGA\tag_fifo.edn</install_dir>	The edn file for the Tag port FIFOs

HARDWARE

The Evaluation Board has connectors that allow a logic analyzer to probe all the signals on the board. There are also some jumpers that allow the board to be configured or reset. LEDs are provided so that the user may quickly determine the power, FPGA status, Result status, and TAG port status. Figure 2 shows the location of all these items.

Figure 2: Jumper, Connector, and LED Positions

Parallel Port

The Evaluation board is connected to a users PC by means of the Parallel (or printer) port. The Windows GUI and the C-Code provided assume that the Parallel port is located at address 0x378. If you have problems getting the C-Code or Software GUI to operate with your Parallel port, please notify MUSIC Semiconductors.

The Hardware in the Evaluation board is designed in such a way that it should operate with any parallel port that is able to perform bi-directional data operations. The hardware uses the Parallel port in PS-2 mode and expects the data to be passed using the standard 8-bit Parallel port data bus. Therefore, it doesn't matter whether the PC bios has the port set to Standard, PS-2, EPP or ECP mode as it should operate in all these modes.

The C-Code routines and the Windows GUI both use the Standard Parallel port Data and Control registers to output or input any data. One stipulation is that if the port is set to ECP mode in the PC bios, the port's ECR register must be set to PS-2 mode. The Windows GUI will do this automatically. Any user specific code must use the Init_Parallel_Port function as shown in the Skeleton.c file. This function sets the ECR register appropriately and sets the control bus to the default values.

READ CYCLES

The Windows GUI and the C-Code functions transfer data between the PC and the Evaluation board using four consecutive 8-bit cycles. This allows a 16-bit address and a 16-bit data word to be transferred. The FPGA expects a read and write access to be as it is shown in Figure 3. The Windows GUI, the reg_write, and reg_read functions use the Parallel port's Control register to assert the Address Strobe (ASb), Data Strobe (DSb), and Write Strobe (WRITEb) while read or writing the data using the 8-bit data bus. The GUI and functions also monitor the port's Status register to detect the condition of the WAIT signal.

The write access uses two 8-bit address write cycles followed by two 8-bit data write cycles. The read access uses two 8-bit address write cycles followed by two 8-bit data read cycles. Both accesses assert the appropriate Strobe to indicate where it is an address or data cycle. The FPGA completes a cycle by asserting its WAIT output.

There is two other Parallel port signals that are not directly used for transferring data. These are the IRQb and INITb signals. IRQb is a Parallel port input and is asserted low by the Evaluation board when the MU9C8358L /INTR signal is asserted low. It will return to its original state, which is logic 1 once the /INTR output is returned to logic 1. The user may monitor the state of the IRQb input with the Poll_For_INTR function or configure their PC to use a user-designed Interrupt Service Routine. The other signal is the INITb output, which is used to perform a hardware reset. The HardWare_Reset function asserts this signal low to cause a full reset of the Evaluation board.

FPGA Registers

The Evaluation Board has three components that have internal registers. The three components are the MU9C8358L Ethernet Filter, the Broadcom Physical Layer device, and the Xilinx FPGA. All the MU9C8358L registers that can be read or written are explained in detail in the MU9C8358L data sheet. The Physical Layer device internal registers should not normally be altered. The Evaluation Board is supplied with some basic C-Code that will allow the Physical Layer device to be configured to suit most applications. Neither of these two components will have their internal registers discussed in this document.

The Xilinx FPGA allows the user to interface with the board. It also contains logic that stores Result and Tag data that was read from the MU9C8358L after it has processed Ethernet traffic. Table 6 lists all of the registers and gives a full description.

Address	Name	R/W	Bits	Description				
00h	Revision	R	[15:8]	Version Number. The first version is 1.				
		R	[7:0]	Revision Number. The first revision is 0.				
01h	Software Reset	R/W	[15:0]	Write any value to this register or read this register to perform a software reset of the FPGA. Reading this register will not cause a reset. Reads as 00h.				
02h	Result Port Entries	R	[15:4]	Reads as 000h.				
	Count	R	[3:0]	The number of valid entries that are available to be read from the Result Port FIFO (addr: 14h). The FIFO will only hold fifteen entries. The Result Port FIFO will only store entries if the Result Port Mode Select register (addr: 0Ah) is set appropriately. For a description of the Result Port Hardware, see the Hardware section.				
03h	Tag Port A Entries	R	[15:4]	Reads as 000h.				
	Count	R	[3:0]	The number of valid entries that are available to be read from the Tag Port A FIFO (addr: 10h). The FIFO will only hold fifteen entries. For a description of the Tag Port Hardware, see the Hardware section.				
04h	Tag Port B Entries	R	[15:4]	Reads as 000h.				
	Count	R [3:0] Th Po Fo		The number of valid entries that are available to be read from the Tag Port B FIFO (addr: 11h). The FIFO will only hold fifteen entries. For a description of the Tag Port Hardware, see the Hardware section.				
05h	Tag Port C Entries	R	[15:4]	Reads as 000h.				
	Count	r [3:0]		The number of valid entries that are available to be read from the Tag Port C FIFO (addr: 12h). The FIFO will only hold fifteen entries. For a description of the Tag Port Hardware, see the Hardware section.				
06h	Tag Port D Entries	R	[15:4]	Reads as 000h.				
	Count	R	[3:0]	The number of valid entries that are available to be read from the Tag Port D FIFO (addr: 13h). The FIFO will only hold fifteen entries. For a description of the Tag Port Hardware, see the Hardware section.				
07h	PHY Read Data	R	[15:0]	When a PHY register is read, the parallel port read cycle completes before the data is available from the PHY. Therefore, after the register read is invoked, the data is placed in this register. Any read from the PHY must be followed by a read of this register to retrieve the data. For a description of PHY register functions, see the Hardware section.				

Table 6: FPGA Internal Registers

Table 6: FPGA Internal Registers (continued)

Address	Name	R/W	Bits	Description		
08h	PHY Status	R	[15:2]	Reads as 0000h.		
		R	[1]	1 = PHY Access in progress. 0 = No PHY access in progress.		
		R	[0]	 1 = New Read data available in PHY Read Data register (addr: 07h). 0 = No unread PHY data available. For a description of PHY register functions, see the Hardware section. 		
09h	Reserved	R	[15:0]	This register is for MUSIC Semiconductor test purposes.		
0Ah	Result Port	R/W	[15:5]	Reads as 000h.		
	Mode/LED	R/W	[4]	Heartbeat On/Off. 1 = Heartbeat LED (D1) Off. 0 = Heartbeat LED (D1) flashes to indicate that the FPGA is operating properly. Default is On.		
		R/W	[3]	LED Test. Set this bit to 1 to invoke the LED test. The test will flash the Result and Tag port LEDs to show that they are all functioning. This is self-clearing bit and will reset to 0 after the test has been invoked. This bit will have no effect if the LED test jumper JP9 is open.		
		R/W	[2]	LED On/Off. 1 = The Result and Tag Port LEDs are turned off. The LED test may still be invoked by setting bit 3. 0 = The Result and Tag Port LEDs indicate how many entries are stored in the internal FPGA FIFOs.		
		R/W	[1]	Result Port Reset Condition. The RP_SEL and RP_NXT signals should be held at specific values prior to a hardware reset. Setting this bit to 1, sets the signals to those values. A hardware reset should be performed immediately by the user after this bit is set. The bit will clear after the reset. This is explained further in the Result Port Hardware description in the Hardware section.		
		R/W	[0]	Result Port Mode. The result data can be read from the Result Hardware port or from an internal MU9C8358L register. If the result port is used to retrieve the data, the FPGA will read the data and store in an internal FIFO. 0 = Hardware Mode. The RP_SEL and RP_NXT signals are enabled to read the port. 1 = Software Mode. The RP_SEL and RP_NXT signals are held at logic 0, thus transferring all results to the MU9C8358L internal register.		
0Bh	INCR Select	R/W	[15:1]	Reads as 0000h.		
		R/W	[0]	Write a 1 to this bit to cause the MU9C8358L INCR input pin to be asserted. This is self-clearing bit and will reset to 0 after the pin has been asserted and de-asserted. The internal MU9C8358L register that allows the INCR to be enabled must be set appropriately prior to setting this bit.		
0Ch	Reserved	R	[15:0]	This register is not used in this version.		
0Dh	Reserved	R	[15:0]	This register is not used in this version.		
0Eh	Reserved	R	[15:0]	This register is not used in this version.		
0Fh	Reserved	R	[15:0]	This register is not used in this version.		

Table 6: FPGA Internal Registers (continued)

Address	Name	R/W	Bits	Description		
10h	Tag Port A Data	R	[15:8]	Reads as 00h.		
		R	[7]	FRX_ER. If this bit is 1, the FRX_ER pin of the Tag port was asserted.		
		R	[6]	REJ. If this bit is set, the REJ pin was asserted.		
		R	[5:0]	The Tag port Port ID data. If no Port ID was identified, 3Fh is given as the Port ID. The number of entries available will be indicated in the Tag Port A Entries Count register (addr: 03h) and also shown by the LEDs D2 through D5 (if enabled). For a description of the Tag Port Hardware, see the Hardware section.		
11h	Tag Port B Data	R	[15:8]	Reads as 00h.		
		R	[7]	FRX_ER. If this bit is 1, the FRX_ER pin of the Tag port was asserted.		
		R	[6]	REJ. If this bit is set, the REJ pin was asserted.		
		R	[5:0]	The Tag port Port ID data. If no Port ID was identified, 3Fh is given as the Port ID. The number of entries available will be indicated in the Tag Port B Entries Count register (addr: 04h) and also shown by the LEDs D6, D11 through D13 (if enabled). For a description of the Tag Port Hardware, see the Hardware section.		
12h	Tag Port C Data	R	[15:8]	Reads as 00h.		
		R	[7]	FRX_ER. If this bit is 1, the FRX_ER pin of the Tag port was asserted		
		R	[6]	REJ. If this bit is set, the REJ pin was asserted.		
		R	[5:0]	The Tag port Port ID data. If no Port ID was identified, 3Fh is given as the Port ID. The number of entries available will be indicated in the Tag Port C Entries Count register (addr: 05h) and also shown by the LEDs D14 through D17 (if enabled). For a description of the Tag Port Hardware, see the Hardware section.		
13h	Tag Port D Data	R	[15:8]	Reads as 00h.		
		R	[7]	FRX_ER. If this bit is 1, the FRX_ER pin of the Tag port was asserted.		
		R	[6]	REJ. If this bit is set, the REJ pin was asserted.		
		R	[5:0]	The Tag port Port ID data. If no Port ID was identified, 3Fh is given as the Port ID. The number of entries available will be indicated in the Tag Port D Entries Count register (addr: 06h) and also shown by the LEDs D18 through D21 (if enabled). For a description of the Tag Port Hardware, see the Hardware section.		
14h	Result Port Data	R	[15:0]	When the Result Port mode is set to Hardware using the register addr: 0Ah, the RP_SEL and RP_NXT pins are enabled. Any result data will be read by the FPGA and placed in an internal FIFO. The data can be read from this register. The number of entries available will be indicated in the Result Port Entries Count register (addr: 02h) and also shown by the LEDs D7 through D10 (if enabled). For a description of the Result Port Hardware, see the Hardware section.		

Jumpers

The Evaluation Board has jumper pins that allow the user to configure options and connect an external JTAG

Table 7: Jumper Description

Controller pod. Table 7 shows the board and where each of the jumpers or connector is located.

Jumper	Name	Description
JP5	Reset	Short the pins to cause a hardware reset of all components on the Evaluation board. The MU9C8358L, Lancam, FPGA, and PHY will all be reset.
JP9	LED Test On/Off	Open: The LED test is disabled. While this jumper is open, initiating an LED test from register 0Fh will have no effect. Closed: The LED test will be performed on power up, hardware reset and if register 0Fh bit 3 is set to 1.
JP11	JTAG Controller	A JTAG Controller pod may be connected to the board. The JTAG circuitry of the MU9C8358L and PHY is connected to the pod to allow the user to evaluate the MU9C8358L's JTAG functions. If this is not required, leave the connector open. Pin 1 – TMS Pin 2 – TRST Pin 3 – TDI Pin 4 – 0v Pin 5 – Unconnected Pin 6 – No pin for keying Pin 7 – TDO Pin 8 – 0v Pin 9 – TCK Return Pin 10 – 0v Pin 11 – TCK Pin 12 – 0v Pin 13 – Unconnected Pin 14 – Unconnected

Logic Analyzer Port

The Evaluation board has 4 logic analyzer pods. These allow a "MICTOR-38" style connector to be used to probe

Table 8: Logic Analyzer Pod U13

any of the internal signals. The positions of the connectors are shown in Figure 1. Tables 8 through 11 list each of the signals that are available for probing.

POD U13					
Pin 38	D0	Port A MII RX CLK	Pin 37	D0	Port C MII RX CLK
Pin 36	D1	Port A MII RX ER	Pin 35	D1	Port C MII RX ER
Pin 34	D2	Port A MII RX D3	Pin 33	D2	Port C MII RX D3
Pin 32	D3	Port A MII RX D2	Pin 31	D3	Port C MII RX D2
Pin 30	D4	Port A MII RX D1	Pin 29	D4	Port C MII RX D1
Pin 28	D5	Port A MII RX D0	Pin 27	D5	Port C MII RX D0
Pin 26	D6	Port A MII RX DV	Pin 25	D6	Port C MII RX DV
Pin 24	D7	Port A MII RX COL	Pin 23	D7	Port C MII RX COL
Pin 22	D8	Port A MII RX CRS	Pin 21	D8	Port C MII RX CRS
Pin 20	D9	Port B MII RX CLK	Pin 19	D9	Port B MII RX COL
Pin 18	D10	Port B MII RX ER	Pin 17	D10	Port B MII RX CRS
Pin 16	D11	Port B MII RX D3	Pin 15	D11	RP_SEL
Pin 14	D12	Port B MII RX D2	Pin 13	D12	RP_NXT
Pin 12	D13	Port B MII RX D1	Pin 11	D13	RP_DV
Pin 10	D14	Port B MII RX D0	Pin 9	D14	Hardware Reset (/Reset)
Pin 8	D15	Port B MII RX DV	Pin 7	D15	NC
Pin 6	CLK	System 50MHz Clock	Pin 5	CLK	System 50MHz Clock
Pin 4	GND	0v	Pin 3	SDA	NC
Pin 2	+5v	NC	Pin 1	SCL	NC

Table 9: Logic Analyzer Pod U14

POD U14					
Pin 38	D0	Port D MII RX CLK	Pin 37	D0	REJ_A
Pin 36	D1	Port D MII RX ER	Pin 35	D1	REJ_B
Pin 34	D2	Port D MII RX D3	Pin 33	D2	REJ_C
Pin 32	D3	Port D MII RX D2	Pin 31	D3	REJ_D
Pin 30	D4	Port D MII RX D1	Pin 29	D4	FRX_ER_A
Pin 28	D5	Port D MII RX D0	Pin 27	D5	FRX_ER_B
Pin 26	D6	Port D MII RX DV	Pin 25	D6	FRX_ER_C
Pin 24	D7	Port D MII RX COL	Pin 23	D7	FRX_ER_D
Pin 22	D8	Port D MII RX CRS	Pin 21	D8	TP_SD_A
Pin 20	D9	LANCAM /E	Pin 19	D9	TP_SD_B
Pin 18	D10	LANCAM /W	Pin 17	D10	TP_SD_C
Pin 16	D11	LANCAM /CM	Pin 15	D11	TP_SD_D
Pin 14	D12	LANCAM /EC	Pin 13	D12	TP_DV_A
Pin 12	D13	LANCAM /MI	Pin 11	D13	TP_DV_B
Pin 10	D14	LANCAM /FI	Pin 9	D14	TP_DV_C
Pin 8	D15	LANCAM /RESET_LC	Pin 7	D15	TP_DV_D
Pin 6	CLK	System 50MHz Clock	Pin 5	CLK	System 50MHz Clock
Pin 4	GND	0v	Pin 3	SDA	NC
Pin 2	+5v	NC	Pin 1	SCL	NC

Table 10: Logic Analyzer Pod U15

Pod U15					
Pin 38	D0	D0	Pin 37	D0	/PCS
Pin 36	D1	D1	Pin 35	D1	/PCSS
Pin 34	D2	D2	Pin 33	D2	/WRITE
Pin 32	D3	D3	Pin 31	D3	PROC_RDY
Pin 30	D4	D4	Pin 29	D4	/INTR
Pin 28	D5	D5	Pin 27	D5	INCR
Pin 26	D6	D6	Pin 25	D6	PHY MDC
Pin 24	D7	D7	Pin 23	D7	PHY MDIO
Pin 22	D8	D8	Pin 21	D8	A0
Pin 20	D9	D9	Pin 19	D9	A1
Pin 18	D10	D10	Pin 17	D10	A2
Pin 16	D11	D11	Pin 15	D11	A3
Pin 14	D12	D12	Pin 13	D12	A4
Pin 12	D13	D13	Pin 11	D13	A5
Pin 10	D14	D14	Pin 9	D14	A6
Pin 8	D15	D15	Pin 7	D15	A7
Pin 6	CLK	System 50MHz Clock	Pin 5	CLK	System 50MHz Clock
Pin 4	GND	0v	Pin 3	SDA	NC
Pin 2	+5v	NC	Pin 1	SCL	NC

Table 11: Logic Analyzer Pod U16

Pod U16					
Pin 38	D0	RP0	Pin 37	D0	LANCAM DQ0
Pin 36	D1	RP1	Pin 35	D1	LANCAM DQ1
Pin 34	D2	RP2	Pin 33	D2	LANCAM DQ2
Pin 32	D3	RP3	Pin 31	D3	LANCAM DQ3
Pin 30	D4	RP4	Pin 29	D4	LANCAM DQ4
Pin 28	D5	RP5	Pin 27	D5	LANCAM DQ5
Pin 26	D6	RP6	Pin 25	D6	LANCAM DQ6
Pin 24	D7	RP7	Pin 23	D7	LANCAM DQ7
Pin 22	D8	RP8	Pin 21	D8	LANCAM DQ8
Pin 20	D9	RP9	Pin 19	D9	LANCAM DQ9
Pin 18	D10	RP10	Pin 17	D10	LANCAM DQ10
Pin 16	D11	RP11	Pin 15	D11	LANCAM DQ11
Pin 14	D12	RP12	Pin 13	D12	LANCAM DQ12
Pin 12	D13	RP13	Pin 11	D13	LANCAM DQ13
Pin 10	D14	RP14	Pin 9	D14	LANCAM DQ14
Pin 8	D15	RP15	Pin 7	D15	LANCAM DQ15
Pin 6	CLK	System 50MHz Clock	Pin 5	CLK	System 50MHz Clock
Pin 4	GND	0v	Pin 3	SDA	NC
Pin 2	+5v	NC	Pin 1	SCL	NC

Note: NC = *No Connect.*

LEDs

The Evaluation board has diagnostic LEDs. Figure 2 shows the position of the LEDs that indicate the power, and FPGA heartbeat status. There are also twenty LEDs

that indicate the number of unread Result and Tag port entries that reside in the FPGA FIFOs. The position of these is also shown in Figure 2.

Figure 4: Result and Tag Port LEDs

Figure 4 shows more clearly the location of the Result and Tag ports LEDs. It shows also that each of the five ports (Result port + 4 Tag ports) has four LEDs to indicate the number of valid entries in the corresponding FIFO. Each of the sets of LEDs operates in the same way. That is that each LED will be on or off to show the number of entries as a 4-bit binary value. Figure 4 shows this more clearly for Tag port B. Therefore, if D13 and D11 were on and D6 and D12 were off, the FIFO for Tag port B would have 5 entries available.

Figure 5 shows the position of the LEDs that indicate the LINK status for each of the four Ethernet ports. It also shows the LEDs, which indicate that the Ethernet port is receiving data. The four LINK LEDs will illuminate green when the LINK is good and be off when there is no LINK. The Receive LEDs will illuminate red when the port is receiving data and be off when it is not. All of the LEDs found on the Evaluation Board are explained in Table 12.

Figure 5: Receive and LINK Status LEDs

LED	Name	Description
D1	Heartbeat	This LED will flash if the FPGA is functioning properly. After power-up, this LED should always be flashing. If it is not, the FPGA bit PROM (U10) or FPGA (U7) may be faulty. Please verify if U10 is in place and FPGA register 0Fh bit $4 = 0$.
D7, D8, D9, D10	Result Port Data Count	After power-up, setting bit 4 of the FPGA register OFN to 1 will turn on this LED. These four LEDs indicate how many results are in the internal FPGA FIFO. The FIFO will store up to fifteen results read from the MU9C8358L Result Port. The LEDs represent a 4-bit value in order to show how many entries are available. The LEDs are decoded as follows: D7 = bit 3 (msb) D8 = bit 2 D9 = bit 1 D10 = bit 0 (lsb)
D2, D3, D4, D5	Tag Port A Data Count	After power-up, setting bit 2 of the FPGA register 0Fh to 1 will turn off these LEDs. These four LEDs indicate how many entries are in the internal Tag Port A FIFO. The FIFO will store up to fifteen entries read from the MU9C8358L Tag Port A. The LEDs represent a 4-bit value in order to show how many entries are available. The LEDs are decoded as follows: D2 = bit 3 (msb) D3 = bit 2 D4 = bit 1 D5 = bit 0 (lsb) After power-up, setting bit 2 of the FPGA register 0Fh to 1 will turn off these LEDs.
D6, D11, D12, D13	Tag Port B Data Count	These four LEDs indicate how many entries are in the internal Tag Port B FIFO. The FIFO will store up to fifteen entries read from the MU9C8358L Tag Port B. The LEDs represent a 4-bit value in order to show how many entries are available. The LEDs are decoded as follows: D6 = bit 3 (msb) D11 = bit 2 D12 = bit 1 D13 = bit 0 (lsb) After power-up, setting bit 2 of the EPGA register 0Eb to 1 will turn off these LEDs
D14, D15, D16, D17	Tag Port C Data Count	These four LEDs indicate how many entries are in the internal Tag Port C FIFO. The FIFO will store up to fifteen entries read from the MU9C8358L Tag Port C. The LEDs represent a 4-bit value in order to show how many entries are available. The LEDs are decoded as follows: D14 = bit 3 (msb) D15 = bit 2 D16 = bit 1 D17 = bit 0 (lsb) After power-up, setting bit 2 of the FPGA register 0Fh to 1 will turn off these LEDs.
D18, D19, D20, D21	Tag Port D Data Count	These four LEDs indicate how many entries are in the internal Tag Port D FIFO. The FIFO will store up to fifteen entries read from the MU9C8358L Tag Port D. The LEDs represent a 4-bit value in order to show how many entries are available. The LEDs are decoded as follows: D18 = bit 3 (msb) D19 = bit 2 D20 = bit 1 D21 = bit 0 (lsb) After power-up, setting bit 2 of the FPGA register 0Fh to 1 will turn off these LEDs.
D24	Input Supply	This LED indicates that the power supply unit is operating correctly.
D25	3.3v Supply	This LED indicates that the Evaluation board has a 3.3v power supply.
A-Right B-Right C-Right D-Right	Link LEDs	The four LEDs are found on the RJ-45 connector. Each of the four ports has its own LED to indicate LINK status. If LINK is good, the GREEN LED is on. As you look at the front of the RJ-45 connector, the LINK LEDs are in the top right corner of each of the four ports.
A-Left B-Left C-Left D-Left	Receive LEDs	The four LEDs are found on the RJ-45 connector. Each of the four ports has its own LED to indicate that the Evaluation board is receiving network traffic. If the board is receiving packets, the particular port's RED LEDs is flashing. As you look at the front of the RJ-45 connector, the Receive LEDs are in the top left corner of each of the four ports.

Table 12: Evaluation Board LEDs

Result Port Hardware

The MU9C8358L has a Hardware Result port that allows the user to read the results of the Source and Destination address searches as they are processed. The Hardware port is directly connected to the Xilinx FPGA. This allows the board to read out the result data, as it becomes available and store it in an internal FIFO within the FPGA. The FPGA asserts the RP_SEL and RP_NXT signals as it is described in the MU9C8358L data sheet. This transfers the results from the MU9C8358L to the FPGA FIFO.

The FIFO is capable of storing up to fifteen results. An internal FPGA register indicates how many valid FIFO entries are available. The number of entries is also indicated by means of four LEDs, which gives the user a visual indication when there is valid data to be read. The LEDs can be turned on or off by setting bit 2 of the Result Port Mode/LED register to 1 (off) or 0 (on).

The MU9C8358L also has the Result Data (RDAT) software register which stores results, as they become available. The Result Status (RSTAT) register indicates if

there is a valid result to be read from the RDAT register. The RDAT register will only store results when the Hardware port is not being used. The Evaluation board regards the Result Hardware port as "not being used" when the FPGA ignores the RP_DV assertion when a result is available. Under this circumstance, all valid results are only available through the MU9C8358L RDAT register.

The user must configure the Evaluation board to operate its Result Port accesses in Software mode or Hardware mode. The data is available in chronological order in either mode. This means that the result that was transferred first is read first. Once the FIFO is full, subsequent results will be read from the Result port but discarded. This will continue until entries have been read from the FIFO. The user is able to inspect the Hardware Result port by connecting a logic analyzer to the board's logic analyzer connectors U13 and U16. The two modes are described in Table 13. Table 14 shows the data register, count register, and the LEDs that display the number of entries in the Result port FIFO.

Table 13: Result Port Mode

Mode	Configuration	Description
Hardware	Set Result Port Mode/LED (0Fh) register bit 0 to 0. This is the default setting.	The result data is automatically read by the FPGA and placed in the Result FIFO. Reading the Result Port Data (09h) register can access this data. Reading the Result Port Entries Count (02h) register can identify the number of valid entries. The Result Port LEDs D7 through D10 also indicates the number of entries.
Software	Set Result Port Mode/LED (0Fh) register bit 0 to 1.	The result data is only available through the MU9C8358L software register. The Result Port signals RP_SEL and RP_NXT are held at logic 0. The Result Port LEDs D7 through D10 are turned off in software mode.

Table 14: Result Port Count LEDs

	Count LED			LEDs		
Port	Data Register	Count Register	Bit 3	Bit 2	Bit 1	Bit 0
Result	09h	02h	D7	D8	D9	D10

Tag Port Hardware

The MU9C8358L has four Tag ports, which transfer the Tag ID to systems, which support Tag Switching. The Tag ports are directly connected to the Xilinx FPGA. This allows the board to read Tag data, as it becomes available and store it in four internal FIFOs within the FPGA. Each FIFO is capable of storing up to fifteen Tag IDs. Four internal FPGA registers indicates how many valid FIFO entries are available. The number of entries is also indicated by means of four LEDs for each port, which gives the user a visual indication when there is valid data to be read.

The data is available in chronological order, which means that the ID that was transferred first is read first. Once the FIFO is full, subsequent Tag IDs will be discarded and not stored in the FIFO. This will continue until entries have been read from the FIFO. The user is able to inspect each of the four Tag ports by connecting a logic analyzer to the board's logic analyzer connectors (U13 through U16). Table 15 shows how the Tag information is stored in the FPGA FIFOs. Table 16 shows for each port, the data registers, count registers, and the LEDs that display the number of entries. The LEDs can be turned on or off by setting bit 2 of the Result Port Mode/LED register (0Fh) to 1 (off) or 0 (on).

Bit	Name	Description
[15:8]	Reserved	Read as 0.
[7]	FRX_ER	If this bit is 1, the FRX_ER pin of the Tag port was asserted.
[6]	REJECT	If this bit is set, the REJ pin was asserted.
[5:0]	Port ID	The Port ID data which indicates to which physical port the Ethernet packet should be forwarded. If no Port ID was identified, 3Fh is given as the Port ID.

Table 15: Tag Port Data Stored in FPGA FIFOs

Table 16: Tag Port Count LEDs

				Count	LEDs	
Port	Data Register	Count Register	Bit 3	Bit 2	Bit 1	Bit 0
А	0Ah	03h	D2	D3	D4	D5
В	0Bh	04h	D6	D11	D12	D13
С	0Ch	05h	D14	D15	D16	D17
D	0Dh	06h	D18	D19	D20	D21

C-Code

The Evaluation kit is supplied with four C-Code files, which allows the user to evaluate the MU9C8358L. The four files and a description of their use is as follows:

• Filter.h

This file contains the Evaluation board C-Code functions, pre-processor defines and the initialization data structure.

• Demo.c

This file contains a C-Code program that shows the basic operations of the Evaluation board. It also contains some functions used to display the data to the screen.

• Skelton.c

This file contains a C-Code program that shows the minimum initialization.

• Clear.c

This file contains a C-Code function that will clear the PC Screen for use in Demo.c.

Using the C-Code

The four files can be used with most C Compliers. The Demo.c file uses a function called Cls. This function is found the Clear.c file and uses some Windows built-in routines to clear the PC screen. If you are using a non-Windows C compiler or your compiler is not compatible with the function, the Cls function should be removed from the Demo.c and Filter.h files. Removing the following pre-processor code from the Demo.c file will disable the Cls function:

#define CLS_ON 1

The procedure for using the Skeleton.c and Demo.c files is as follows:

Demo.c

- 1. Place the Demo.c, Clear.c and Filter.h files in the same directory.
- 2. Compile and build the Demo.c file
- 3. Run the resulting executable.
- 4. A banner message should be displayed. Follow the instructions and you should be able to view entries, add entries, delete entries, purge entries, view Result and Tag port data.
- If the Cls function used is not compatible with your compiler comment out the following line from the beginning of Demo.c: #define CLS_ON 1
- 6. When using the C-Code, you can also use the CAMView Windows GUI in parallel. This will allow you to view the LANCAM contents.

Skeleton.c

- 1. Place the Skeleton.c and Filter.h files in the same directory.
- 2. The Skeleton.c file shows the minimum initialization that should be performed. The user should add their own code to this file. The functions found in Filter.h may be used or the user may use their own as long as the register accesses follow the same method shown in reg_write and reg_read.
- 3. Compile and build the Skeleton.c file
- 4. Run the resulting executable.
- 5. When using your C-Code, you can also use the CAMView Windows GUI in parallel. This will allow you to view the LANCAM contents.

Register Access

The C-Code is supplied with two functions to read and write the internal registers of the MU9C8358L and the interface FPGA. The functions are reg_read and reg_write and are described in Table 21. They have a 16-bit input parameter to specify the address of the register to be accessed. All of the registers that can normally be written to or read from are shown in Tables 17 through 19 along with the input parameter that should be used. The PHY registers are not shown, as the user would not normally directly access them. The register pre-processor values are defined in the Filter.h file and should be accessed as shown in the following two examples:

reg_write(STARG, 0x0C)

U16 read_data = reg_read(SSTAT);

Data can written to or read from the Evaluation board registers directly as shown above. They can also be accessed indirectly by setting the members of the Initialization data structure followed by using the Init_8358_LANCAM or Init_PHY functions. Tables 17 through 19 shows also the data structure member that should be set if the register has one associated with it. An example of how this would be used is shown in the Data Structure section.

Table 17: MU9C8358L System Register Address Parameter Names

Register Name	Evaluation Board Address	Structure Member	Input Parameter
System Status	0x0100		SSTAT
System Static Configuration	0x0101	SSCFG_Reg	SSCFG
System Dynamic Configuration	0x0102		SDCFG
System Target	0x0103	STARG_Reg	STARG
System CAM Data Word 0	0x0105		SCDW0
System CAM Data Word 1	0x0106		SCDW1
System CAM Data Word 2	0x0107		SCDW2
System CAM Data Word 3	0x0108		SCDW3
System Time-stamp Purge	0x0109		STPURG
System Time-stamp Current	0x010A		STCURR
System Max SA/DA Cycles	0x010C	SMXSADACYC_Reg	SMXSADACYC
System Status Word B	0x010D		SCSWB
System Status Word A	0x010E		SCSWA
System SA Update	0x0110		SSAU
System SA Learn	0x0111		SSAL
System LANCAM Control	0x0112		SLCCS
System Command (delete)	0x0120		SDO_DELETE
System Command (add)	0x0121		SDO_ADD
System Command (read)	0x0124		SDO_READ
System Command (inc TS)	0x0126		SDO_INCTS
System Command (inc PR)	0x0127		SDO_INCPR
System Command (inc TS+PR)	0x0128		SDO_INCTSPR
System Command (set address)	0x0129		SDO_SETADD

Register Name	Evaluation Board Address	Structure Member	Register Define
Chip Role	0x0001		CHIPROL
Chip Version	0x0002		CHIPVER
Result Status	0x0003		RSTAT
Result Data	0x0004		RDAT
Port A Port ID	0x0040	PORT_ID_A_Reg	PID_A
Port B Port ID	0x0048	PORT_ID_B_Reg	PID_B
Port C Port ID	0x0050	PORT_ID_C_Reg	PID_C
Port D Port ID	0x0058	PORT_ID_D_Reg	PID_D
Port A Port Configure	0x0041	PCFG_A_Reg	PCFG_A
Port B Port Configure	0x0049	PCFG_B_Reg	PCFG_B
Port C Port Configure	0x0051	PCFG_C_Reg	PCFG_C
Port D Port Configure	0x0059	PCFG_D_Reg	PCFG_D
Port A Port Target	0x0042	PTARG_A_Reg	PTARG_A
Port B Port Target	0x004A	PTARG_B_Reg	PTARG_B
Port C Port Target	0x0052	PTARG_C_Reg	PTARG_C
Port D Port Target	0x005A	PTARG_D_Reg	PTARG_D

Table 18: MU9C8358L Chip and Port Register Address Parameter Names

Table 19: FPGA Register Address Parameter Names

Register Name	Evaluation Board Address	Register Define
Version	0x4000	FPGA_VERSION
Software Reset	0x4001	FPGA_SOFT_RESET
Number of Result Port Entries	0x4002	FPGA_RES_PORT_ENTRIES
Number of Tag Port A Entries	0x4003	FPGA_TAGA_ENTRIES
Number of Tag Port B Entries	0x4004	FPGA_TAGB_ENTRIES
Number of Tag Port C Entries	0x4005	FPGA_TAGC_ENTRIES
Number of Tag Port D Entries	0x4006	FPGA_TAGD_ENTRIES
PHY Read Data	0x4007	FPGA_PHY_DATA
PHY Read Data Valid	0x4008	FPGA_PHY_DATA_VALID
Result Port Data	0x4009	FPGA_RES_PORT_DATA
Tag Port A Data	0x400A	FPGA_TAGA_DATA
Tag Port B Data	0x400B	FPGA_TAGB_DATA
Tag Port C Data	0x400C	FPGA_TAGC_DATA
Tag Port D Data	0x400D	FPGA_TAGD_DATA
Result Port Mode / LED Control	0x400F	FPGA_RESULT_SEL
INCR Pin Assert	0x4010	FPGA_INCR_INVOKE

Functions

The Filter.c file contains functions that can be used to perform standard operations on the Evaluation board. Tables 20 through 24 describe each of the functions.

Table 20: Low level parallel Port Access

Function	Input Parameters	Return Value	Description
Address_Cycle	U8 addr – the 8-bit data value placed on the parallel port data bus during a parallel port address cycle	None	This low level function writes an 8-bit value and asserts the parallel port signals appropriately
Data_Write_Cycle	U8 data – the 8-bit data value placed on the parallel port data bus during a parallel port write data cycle	None	This low level function writes an 8-bit value and asserts the parallel port signals appropriately
Data_Read_Cycle	None	U8 - the 8-bit data value read from the parallel port data bus during a parallel port read data cycle	This low level function reads an 8-bit value and asserts the parallel port signals appropriately
Poll_For_INTR	None	U8 – Indicates state of /INTR output. The two possibilities are: INTR_HIGH or INTR_LOW	This low level function will check the state of the Parallel port IRQb output, which in turn indicates the state of the MU9C8358L /INTR output.

Table 21: Register Access

Function	Input Parameters	Return Value	Description
reg_write	U16 addr – the 16-bit address of the register to be written to. This can be any of the writable 8358 or FPGA registers defined in Filter.h U16 data – the 16-bit data to be written.	None	This function uses the low-level parallel port functions to write to a register on the Evaluation board (not the PHY).
reg_read	U16 addr – the 16-bit address of the register to be read. This can be any of the readable 8358 or FPGA registers defined in Filter.h	U16 data – the 16-bit data read from the register.	This function uses the low-level parallel port functions to read from a register on the Evaluation board (not the PHY).

Table 22: PHY Register Access

Function	Input Parameters	Return Value	Description
PHY_reg_write	U16 addr – the 16-bit address of the PHY register to be written to. U16 data – the 16-bit data to be written.	None	This function uses the low-level parallel port functions to write to a PHY register.
PHY_reg_read	U16 addr – the 16-bit address of the register to be read.	U16 data – the 16-bit data read from the register.	This function uses the low-level parallel port functions to read from a PHY register.

Table 23: LANCAM Access

Function	Input Parameters	Return Value	Description
Command_Write	U16 data – the 16-bit data to be written during the Command Write.	None	This function uses the SCDW0 and SLCCS registers to perform a LANCAM Command Write.
Command_Read	None	U16 – the 16-bit data that is read from the LANCAM during the Command Read.	This function uses the SCDW0 and SLCCS registers to perform a LANCAM Command Read. This function uses a special register in the FPGA as the 8358 does not allow you to read individual LANCAM registers.
Data_Write	U16 data – the 16-bit data to be written during the Data Write.	None	This function uses the SCDW0 and SLCCS registers to perform a LANCAM Data Write.

Table 24: Initialization

Function	Input Parameters	Return Value	Description	
Init_8358_LANCAM	Init_t *pInit – a pointer to an initialization data structure. The structure specifies the values to be written to the 8358 registers.	None	This function initializes the 8358 and the LANCAM the same way as it is described in Application Note ANN-24.	
Init_PHY	Init_t *plnit – a pointer to an initialization data structure. The structure specifies the values to be written to the PHY control register.	U16 – returns whether the Initialization is successful or not.	This function initializes the PHY to be Full or Half Duplex, Auto-negotiating, 10Mb/s or 100Mb/s.	
Init_Parallel_Port	None	None	This function sets the ECR register to PS2 mode and sets the parallel port signals to the default condition.	
HardWare_Reset	None	None	This function performs a hardware reset by asserting the Reset inputs of the FPGA, PHY, 8358 and LANCAM.	
Display_Banner	U16 FPGA_VER – the 16-bit version register value read from the FPGA. U16 FILTER_VER – the 16-bit version register value read from the 8358.	None	This function will display a banner that shows the version of the 8358 and FPGA being used.	

Initialization Data Structure

The C-Code uses a data structure to store Initialization information. The normal procedure would be to set the

members to the appropriate values and pass a pointer to the structure to some initialization functions. The data structure is found in the Filter.h file and is shown in Figure 6.

typedef struct {				
/*System Registers*/				
U16	SSCFG_Reg;			
U16	STARG_Reg;			
U16	SMXSADACYC_Reg;			
/*Port	Registers*/			
U16	PCFG_A_Reg;			
U16	PCFG_B_Reg;			
U16	PCFG_C_Reg;			
U16	PCFG_D_Reg;			
U16	PORT_ID_A_Reg;			
U16	PORT_ID_B_Reg;			
U16	PORT_ID_C_Reg;			
U16	PORT_ID_D_Reg;			
U16	PTARG_A_Reg;			
U16	PTARG_B_Reg;			
U16	PTARG_C_Reg;			
U16	PTARG_D_Reg;			
/*Phy Initialization Regs*/				
U16	MIIControlA_Reg;			
U16	MIIControlB_Reg;			
U16	MIIControlC_Reg;			
U16	MIIControlD_Reg;			
} Init_t;				

Figure 6: Initialization Data Structure

The initialization functions are Init_8358_LANCAM and Init_PHY. The MU9C8358L register data members should be set to the values shown in the device data sheet. The PHY register data members should be set to either of the values shown in Table 25. This will initialize each PHY

port to be Full or Half Duplex. It will also set the speed to be fixed as 10Mb/s or 100Mb/s or to auto-negotiate. An example of how the data structure should be used for both initialization functions is shown in Figures 7 and 8.

Table 25: PHY Register Initialization Values

PHY Register Value	Full Duplex	Half Duplex	Auto-negotiate	10Mb/s	100Mb/s
FULL_DUPLEX_AUTO_NEG	Yes	No	Yes	No	No
FULL_DUPLEX_10Mb	Yes	No	No	Yes	No
FULL_DUPLEX_100Mb	Yes	No	No	No	Yes
HALF_DUPLEX_AUTO_NEG	No	Yes	Yes	No	No
HALF_DUPLEX_10Mb	No	Yes	No	Yes	No
HALF_DUPLEX_100Mb	No	Yes	No	No	Yes

```
Init t Init St;
Init_St.SSCFG_Reg = 0x04; /* 70 ns LANCAM, active high reject*/
Init_St.STARG_Reg = 0x0C; /* INCR enabled,
                            /FI interrupt disabled */
Init_St.SMXSADACYC_Reg = 0x20; /* 70 ns LANCAM */
Init_St.PCFG_A_Reg = 0x0; /* Disable CRC Check */
Init_St.PCFG_B_Reg = 0x0;
                            /* Disable CRC Check */
Init_St.PCFG_C_Reg = 0x0;
                            /* Disable CRC Check */
Init_St.PCFG_D_Reg = 0x0;  /* Disable CRC Check */
Init_St.PORT_ID_A_Reg = 0x20;
Init_St.PORT_ID_B_Reg = 0x21;
Init_St.PORT_ID_C_Reg = 0x22;
Init_St.PORT_ID_D_Reg = 0x23;
Init_St.PTARG_A_Reg = 0x50; /* DA processed, SA processed */
Init_St.PTARG_B_Reg = 0x50; /* DA processed, SA processed */
Init_St.PTARG_C_Reg = 0x50; /* DA processed, SA processed */
Init_St.PTARG_D_Reg = 0x50; /* DA processed, SA processed */
Init_8358_LANCAM(&Init_St);
```



```
Init_t Init_St;
Init_St.MIIControlA_Reg = FULL_DUPLEX_AUTO_NEG;
Init_St.MIIControlB_Reg = FULL_DUPLEX_AUTO_NEG;
Init_St.MIIControlC_Reg = FULL_DUPLEX_AUTO_NEG;
Init_St.MIIControlD_Reg = FULL_DUPLEX_AUTO_NEG;
Init_PHY(&Init_St);
```

Figure 8: Figure 8: Use of Initialization Data Structure with Init_PHY

MUSIC Semiconductors' agent or distributor: MUSIC Semiconductors reserves the right to make changes to its products and specifications at any time in order to improve on performance, manufacturability or reliability. Information furnished by MUSIC is believed to be accurate, but no responsibility is assumed by MUSIC Semiconductors for the use of said information, nor for any infringements of patents or of other third-party rights which may result from said use. No license is granted by implication or otherwise under any patent or patent rights of any MUSIC company. © Copyright 2001, MUSIC Semiconductors

http://www.musicsemi.com email: info@musicsemi.com Worldwide Headquarters MUSIC Semiconductors 1521 California Circle Milpitas, CA 95035 USA Tel: 408 869-4600 Fax: 408 942-0837 USA Only: 800 933-1550 Tech Support 888 226-6874 Product Info

Asian Headquarters

MUSIC Semiconductors Special Export Processing Zone Carmelray Industrial Park Canlubang, Calamba, Laguna Philippines Tel: +63 49 549-1480 Fax: +63 49 549-1024 Sales Tel/Fax: +632 723-6215

European Headquarters MUSIC Semiconductors

MUSIC Semiconductors P. O. Box 184 6470 ED Eygelshoven The Netherlands Tel: +31 43 455-2675 Fax: +31 43 455-1573