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Conventional data compression schemes can be
implemented with minimal hardware when using a
MUSIC Semiconductors CAM (content-addressable
memory). CAMs are fully associative memory devices that
can replace the binary trees or hash tables normally found
in data compression algorithms. Since a good portion of a
compression algorithm’s time is spent searching and
maintaining these data structures, replacing them with a
hardware search engine can greatly increase the throughput
of the algorithm.

Associative memories (CAMs) operate in a converse way
to their counterparts, RAMs (random access memories).
In RAM, an address is presented to the device and that
particular location is accessed. Data may be written to or
read from this location. In CAM, data is presented to the
device, and the address that contains the requested data
appears as output. For this reason, the CAM is a very
efficient search engine. Locating specific data in a table
can be performed much more quickly than by conventional
software techniques using RAM. A CAM will generate a
result in a single transaction, regardless of table size or
length of search list. This makes the CAM an ideal
candidate for data compression schemes that use sparsely
populated tables as part of their algorithm.

DATA COMPRESSION

The theory behind data compression is simply to remove
any redundancy that resides in a given piece of
information, producing an equivalent but shorter message.
If the original data stream can be recovered from the
compressed stream with complete integrity, the method is
known as lossless. Because no data corruption can be
tolerated in lossless systems, compression ratios generally
only range from about 1.5:1 to 5:1 (depending on the
algorithm and the source material). Lossless compression
should be distinguished from the so-called lossy (or
compaction) techniques. Data compaction basically
reduces a volume of information by omitting some of the
data. The key element to efficient utilization of compaction
techniques is determining which information to omit. These
techniques seem to work well for audio and video material,
where superfluous information is easier to identify and
where perfect reproduction is not a requirement of the

human sensory system. Compression ratios as high as
100:1 can be achieved, depending on the source material
and the subjective level of accuracy required.

A number of lossless compression techniques with varying
capabilities (compression efficiency and throughput) have
been introduced throughout the years. The trade-off seems
to remain invariable - the simple algorithms execute very
quickly, yet they generally have poor compression
efficiency. The more complex algorithms will generally
compress better, but at the expense of slower execution
speed. The more complicated algorithms use more complex
data structures, and the reduction in speed is generally
due to searches and maintenance of these structures.
Supplying a piece of hardware to simplify the search and
maintenance functions allows a total hardware solution
of relatively low complexity. A hardware solution will, of
course, dramatically increase the system’s throughput. A
few of the more popular lossless compression techniques
will be briefly described.

HUFFMAN CODING

Huffman coding is probably the best-known data
compression technique, see Reference [1]. The idea behind
Huffman coding is simply that in a given data set, certain
symbols are used more frequently than others. Huffman
coding exploits this fact by assigning variable length codes
to each symbol in the data set. The more frequently
encountered symbols are given the shortest codes. Static
Huffman coding requires that a table of probabilities
exists before compression begins. When the data
in question follows a known statistical pattern (such
as English text), an existing table may be employed.
For other types of information, a histogram of the data set
may need to be generated in order to create an encoding
table that will produce the highest compression ratio.
The symbols of interest for Huffman coding are generally
stored in a binary-tree structure. The branches taken in
traversing the tree from leaf to root will give the Huffman
code for that symbol (in reverse order). Using the Huffman
code to traverse the tree from root to leaf will produce the
encoded symbol. Once this structure has been constructed,
the data (symbols and associated codes) can be transferred
to a linear table.
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Table 1:  Compression Algorithm Comparison
(Compressed Size Equals Percentage of Original)

Algorithm
Hardware Compressed Size

Throughput      Complexity

BSTW (1-4)

BSTW (2-9)

BSTW (3-10)

Huffman
(Static)

Huffman
(Dynamic)

LZW (10-bit)

LZW (12-bit)

Low

Low

Low

Low

High

Medium

Medium

5.1 MB/s

11.0 MB/s

12.4 MB/s

1.3 MB/s

0.8 MB/s

9.5 MB/s

9.5 MB/s

80%

64%

63%

60%

61%

39%

33%

72%

80%

81%

75%

76%

60%

55%

102%

104%

106%

84%

84%

80%

78%

Text      Image      Binary

In situations where a data pre-scan is not possible, a
dynamic version of Huffman coding can be employed, see
Reference [2]. In the dynamic version, the symbol
probabilities are continuously adapted as information is
processed. The algorithm basically creates a binary-tree
structure in which the symbols that occur most frequently
reside closest to the root of the tree (the distance from the
root to the symbol indicates the length of the Huffman
code). As each symbol is processed, its location in the tree
is modified based on its frequency of occurrence. The
symbol may actually move closer to the root of the tree if
its probability becomes higher than a symbol that has a
shorter code. This constant tree maintenance slows the
dynamic compression process relative to its static
counterpart. In addition, the dynamic method does not
compress as tightly as the static method. This is due to the
fact that an extra code must be sent whenever a symbol
appears that is not yet in the table. This extra code is
necessary in order to inform the expander of an incoming
untabulated symbol (it also removes the necessity
of sending an encoding table with the data). However,
because most of the compression time is spent with symbols
that reside in the table, the extra codes are of very
little consequence.

BSTW CODING

BSTW coding, see Reference [3], is similar to Huffman
coding in that it also is a word adaptive scheme. The BSTW
coding table, unlike the Huffman binary-tree structure, is a
simple self-organizing list. The table is basically a list of
codes that uses an LRU (Least Recently Used) replacement
algorithm. Simply put, this means that the most recently
used symbol is at the top of the list, and the least recently
used symbol is at the bottom. Variations of this replacement
policy, such as LFU (Least Frequently Used - most often
used symbol at the top, least often used at the bottom) are
also possible. When new symbols are encountered that
are not in the list, the bottom symbol is removed, the list is
reorganized, and the new symbol is inserted in the
appropriate location. This process requires that the table
be updated each time a new symbol is added so that the
list remains in proper order. The number of symbols per
code and the length of the code are both variable. Finding
the optimal combination is usually a matter of
experimentation with the data sets of interest.

LZW COMPRESSION

LZW compression is probably the most common non-
Huffman form of data compression. LZW compression is
the Lempel-Ziv algorithm modified by Terry Welch, see
Reference [4]. LZW is a compression technique that is
based on repeating patterns in a data file. Since it relies on
patterns, it is fairly weak on data that is random in nature.
The algorithm basically parses strings of symbols into
substrings of variable length. These substrings are then
mapped to unique codes in a table. As the procedure
progresses, the longest input string that matches a
substring in the table is parsed off, with the next symbol
appended. Code words of larger and larger strings are built
up in this way. When the code table has been filled, most
implementations of the algorithm clear the table, then begin
building a new one. More complex implementations
selectively delete table entries (those that are older and are
not used by other entries). As with Dynamic Huffman and
BSTW, the LZW algorithm does not require the string table
to be transmitted with the compressed data. The nature of
the algorithm allows the expander to build its own string
table based on the compressed data.

ALGORITHM PERFORMANCE

The compression efficiency of each of these algorithms is
presented in Table 1 (the size entries represent the
compressed size as a percentage of the original size). The
table entries represent an average taken over several
different files. Certain files (with a high degree of local
redundancy) will compress more dramatically, while others
may actually expand. The information in parentheses after
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dynamic method circumvents the two-pass problem by
creating the probability table on-the-fly. The cost is slower
execution (due to table maintenance) along with slightly
less compression efficiency (longer codes must be sent for
never-before-seen symbols).

While implementations using more than a single byte are
possible, coding tables can grow to an unmanageable size
(64 KB or more) or require complex replacement policies
and code maintenance. For this reason, this study will focus
on implementations that operate on 8-bit symbols.

Static Huffman (Code Conversion)
Implementation of the encoding portion of static Huffman
coding is basically a simple table lookup. The code for
each entry resides in an array that is simply indexed by
the incoming symbol. The decoding process, on the other
hand, offers a little more challenge to the designer. Since
Huffman codes are of variable length, simple table lookups
do not work very well. Huffman decoders are usually built
as binary trees in which each incoming bit is used to select
the appropriate branch. When a terminating leaf is
encountered (no more branches), the proper symbol has
been accessed.

Software implementations of this process do not execute
very quickly. In addition, hardware implementations of
binary tree searches can be very complex. The perfect
replacement for the binary search engine is the CAM. The
CAM has the ability to search its entire list of available
codes in a single transaction, so a binary tree architecture
becomes unnecessary. To convert Huffman codes, the input
stream is built up one bit at a time by shifting each bit into
an input register (refer to Figure 2). A CAM lookup is
performed after each bit is presented. If the code is not
found in the CAM, then another bit is shifted in. If the
code is found, then the appropriate symbol is output and
the input register is flushed. Using this approach, one
standard MUSIC MU9C1480A CAM can handle codes as
long as 48-bits.

The throughput of such a system is dictated by the speed
of decoding (remember that encoding is very fast - just a
table lookup). The main-loop cycle time for such a system
will be the time required to shift in a bit, perform a CAM
lookup, and perform a CAM match flag test. Using
a 66 MHz controller and a 90 ns CAM, the cycle time
is 165 ns (11 CLKs). This provides a throughput of
6.1 Mbits/s (Huffman code bits). To convert this number to
bytes/s requires an estimate of the amount of compression

the algorithm name represents variations in the algorithm’s
implementation. These variations will be explained in the
sections detailing each algorithm.

In addition to the estimated amount of compression,
Table 1 illustrates the estimated throughput for a hardware
implementation. This data is derived from CAM-based
hardware implementations as outlined in this document.
Results from other implementations may vary from those
presented here. A relative comparison of the algorithms
is depicted graphically in Figure 1.

COMPRESSION AND THE CAM

The brief description of the operation of various
compression algorithms helps to demonstrate the utility of
a CAM in data compression. The algorithms all produce a
sparsely-populated table that is then indexed using either
binary-tree techniques or hashing algorithms. The
CAM indexes sparsely-populated tables at very high speed
and requires very little overhead to maintain. This makes
the CAM a logical replacement for RAM in data
compression applications. In order to illustrate how the
CAM can help speed the compression/expansion process,
it is necessary to explore specific compression techniques
in greater detail.

HUFFMAN CODING USING THE CAM

As was discussed earlier, Huffman coding can be
implemented in either a static or dynamic fashion. The
static method has the disadvantage of requiring the code
table to exist before compression. If a suitable table is not
available for the current data set, then the data must be
read twice: once to establish the probability table then again
for the actual compression. The static method must also
provide a copy of the code table to the expander. The

Figure 1:  Compression Algorithm Comparison
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MODIFIED BSTW CODING USING THE CAM

For greater simplicity, the coding strategy chosen for BSTW
is fixed length. This means that, for single byte symbols,
BSTW coding becomes a simple table lookup (just as with
static Huffman). For multiple byte symbols, the table
becomes sparsely populated and requires some form of
hashing algorithm to access in a reasonably sized table.
The CAM provides the hardware equivalent of the required
hashing algorithm. Unfortunately, the CAM is not well
suited to reasonable implementation of either the LRU or
the LFU replacement policies. To greatly simplify the
hardware (and increase the throughput), a simple
round-robin replacement policy is implemented. A
comparison of the policies is displayed in Table 2.

achieved. If a compression rate of 60% is assumed (about
right for most Huffman-coded text), then the estimated
throughput is calculated as follows:

((6.1 Mbits/s)/0.60)/(8 bits/byte) = 1.3 MBytes/s

(The actual throughput will generally range from 1–2
MBytes/s, depending on the source material.)  Higher rates
could be achieved using a faster speed or a CAM with a
wider I/O, such as the WidePort CAM family.

Dynamic Huffman Coding
Dynamic Huffman coding presents a more complex
problem than for the static case. In order to dynamically
assign codes based on symbol frequency, the Dynamic
Huffman Coding algorithm must continually perform
some form of maintenance on its tables. This maintenance
involves various search and replace functions as well as
table data swaps. The complexity of the algorithm along
with the necessity of major table maintenance slows
execution speed considerably. This, coupled with the fact
that the level of compression is only moderate, indicates
that this algorithm is a relatively poor candidate for
hardware implementation. The implementation details
will not be discussed here. For further information
regarding the algorithm itself, see Reference [2].

Figure 2:  Static Huffman Code Converter
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Table 2:  Replacement Policy Comparison for
BSTW (2-9)

(Compressed Size Equals Percentage of Original)

Replacement
Policy

Compressed Size

Round-Robin

LRU

LFU

64%

62%

62%

80%

77%

77%

104%

101%

102%

Text Image Binary
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As can be seen, the benefit gained by using a non-trivial
replacement policy is relatively small. Considering the
amount of additional hardware required and the time
penalty incurred by the more complex policies, the simple
approach is superior.

A control flow diagram for a hardware implementation of
the described version of the BSTW compression algorithm
can be found in Figure 3. The basic compression flow is
as follows: After initialization, a symbol is read in. An EOF
symbol terminates the process by outputting the NIT (Not
In Table) code followed by the EOF character. For any other
symbol, a CAM lookup is performed with the symbol as
the comparand. If the symbol is found, the code for that
symbol (the CAM match address) is sent to the output
section. If the symbol is not found, then the symbol is
entered into the CAM at the address pointed to by the
internal Address register. With proper CAM initialization,
this register will now increment to the next address. The
value of this register must now be tested for table limits.
The current address must be read and checked against the
limit. If the limit has been reached, then the Address
register must be reset to a value of 1 (1 is the first available
code; 0 has been reserved as the NIT code). Now that the
table has been updated, the symbol must also be sent to
the output. The NIT code is sent first, followed by the
actual symbol. This sequence allows the expander to
identify symbols that do not yet appear in its table. It also
allows the expander to build a table that mirrors the table
built by the compressor. Symbols are processed in this
fashion until EOF is encountered.

The expansion flow (Figure 4) is very similar to the
compression flow. After performing initialization, a code is
read. If the code is NIT (Not In Table), then  another symbol
is read. If the symbol is not EOF, then it is written to the
CAM at the address pointed to by the Address register.
This address will increment after the write. The address
register must then be checked against the table bounds.
The current value of the address pointer may either be read
from the CAM, or it may be kept locally in a small counter
within the controller. If the boundary has been exceeded
(or if the counter has wrapped back to 0), then the register
must be reset to a value of 1 (remember that  0 is reserved
for NIT). Now that this table has been updated the same as
the compression table, the symbol should be sent to
the output.

If the code is not NIT, then a CAM lookup is performed
with the code as the comparand. This is a simple table

lookup, so the code must be found or else a fatal error has
occurred. When the code is found, the associated symbol
is sent to the output. Codes are processed in this fashion
until the EOF symbol is encountered.

Now that a working algorithm has been outlined in detail,
it is necessary to assess suitable encoding parameters for
the design. A number of parameters will be of importance
in determining the algorithm’s efficiency:

Coding method
It has already been determined that fixed length coding is
the simplest to implement. Using a 1K CAM, the
maximum code size is 10-bits (Log

2
(1024)). A deeper CAM

will handle larger codes.

Table length
Obviously, the greater the table length, the greater the
chances of finding an encoding for any given symbol.
However, a longer table necessitates longer codes, thereby
reducing compression.

Symbol size (bytes)
The more bytes combined to form a symbol, the better
compression achieved when matched. However, fewer
matches will occur for longer symbols.

In order to determine the optimum combination of symbol
size versus code size, a number of data sets were
compressed using various combinations of these parameters
(Figure 5). The data sets included text, image, and binary
information. The results are expressed as  a compression
ratio (taller bars indicate greater compression).

Notice that some of the combinations actually expand the
file rather than compress it (those bars below the 1:1 level).
This can occur for situations where the table is too large
(long codes), the table is too small (low hit ratio), or the
data shows very little local redundancy (as with binary
data). The experimental results indicate that the optimum
configuration for text data is 2 bytes encoded as 9 bits
(2–9) or 3 bytes encode as 10 bits (3–10). Image data appears
to compress better in a smaller table, such as
1 byte encoded as 4 bits (1–4). The binary files either
compress or expand very minimally (the average is marginal
expansion). It seems that the binary data is random to the
point that none of the various scenarios does a very good
job. Based on the collected data, parameter set ups for
(2–9) and for (3–10) both seem to perform adequately.
System throughput will be greater, however, for the system
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Figure 3:  Modified BSTW Compression Control Flow
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Figure 4:  Modified BSTW Expansion Control Flow
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Figure 5:  BSTW Parameter Effects on Compression

that encodes more bytes per symbol. Keep in mind that the
described hardware solution can be made to support any
parameter combination up to 6-byte symbols and 10-bit
codes. Using a larger CAM allows code lengths up to 13
bits. If the hardware is designed properly, these parameters
could be set differently for each data set of interest.
(Note: lowest possible compressed size using 2-byte
symbols with 9-bit codes is 56%; 3-byte symbols with
10-bit codes is 42%).

The hardware required to implement this flow is really quite
simple (Figure 6). Beyond the CAM itself, all that is
required is a simple controller, a PROM (alternatively a
micro-sequencer), and input and output formatters. The

input and output formatters adjust the data format to the
system interface. For example, 9-bit codes would require
some type of packing in the output formatter in order to
accommodate an 8-bit, 16-bit, or 32-bit bus. Likewise, the
input formatter should be able to disassemble those same
9-bit codes for expansion. Proper control of these formatters
would also be required if variable parameter setups is desired.
Control of the entire system could be achieved through a
relatively simple state machine with Op-Codes for CAM
control being retrieved from a small PROM.

The system’s throughput can be estimated based on the
control flow diagrams (Figure 3 and Figure 4) and statistical
information regarding the branches taken. The flow has two

0 : 1

1 : 1

2 : 1

1-byte

2-bytes

3-bytes

Symbol  Size

Code  Size  (b i ts)

2 3 4 5 6 7 8 9 10

Te xt  Fi l e  C o m p r e s s i o n

Co de  S i z e  (b i t s)

2 3 4 5 6 7 8 9 10

1-byte

2-bytes

3-bytes

Symbol  Size

0 :1

1 :1

2 :1

Im a ge  Fi l e  C om p re s s io n

Co de  S i z e  (b i t s)

2 3 4 5 6 7 8 9 10

1-byte

2-bytes

3-bytes

Symbol  Size

0 :1

1 :1

2 :1

Bi n a ry F il e  C o m p r es s i on

C
o

m
p

r
e

s
s

io
n

  
  

 R
a

t i
o

C
o

m
p

r
e

s
s

i o
n

  
  

 R
a

t i
o

C
o

m
p

r
e

s
s

i o
n

  
  

 R
a

t i
o



Application Note AN-N6

Rev. 19

main branches:  one for symbol found, and one for symbol
not found. Using a 66 MHz controller (7 ns PLD), a -90
MU9C1480A CAM, and pipelining as many functions as
possible, the following cycle estimates can be made:

Not Found # Clocks Found   # Clocks
CAM look-up 6,6,9 CAM lookup   6,6,9
EOF check 5,5,5 Match?   5,5,5
CAM write 6,6,6
Reg bounds 1,1,1

_______   _______
18,18,21   11,11,14

(Given clock values are for (1–4), (2–9), and
(3–10), respectively.)

Based on statistical information, the time spent in the
Found branch for (1–4) codes is about 65-75% of the total,
for (2–9) codes about 80-90% of the time, and for (3–10)
codes  about 60-80% of the time. An estimated throughput
based on this information would be:

(1–4):  (.70 * 11) + (.30 * 18) = 13.1 clocks =
197 ns (@ 66 MHz)
(2–9):  (.85 * 11) + (.15 * 18) = 12.1 clocks =
181 ns (@ 66 MHz)
(3–10):  (.70 * 14) + (.30 * 21) = 16.1 clocks=
242 ns (@ 66 MHz)

Estimated compression rate:
(1–4) -> 1-byte / 197-ns = 5.1 MBytes/sec

         (2–9) -> 2bytes/181-ns = 11.0 MBytes/sec
         (3–10) -> 3bytes/242-ns = 12.4 MBytes/sec

Using the same analysis as for compression throughput,
expansion throughput may be estimated:

Not-In Table # Clocks In-Table # Clocks
Symbol read 1,1,1 CAM lookup 6,6,9
EOF check 1,1,1 Match? 5,5,5
CAM write 6,9,12
CAM read 6,6,6

_______ _______
14,17,20 11,11,14

(Given clock values are for (1–4), (2–9), and (3–10),
respectively.)

Based on statistical information, the time spent in the In-
Table branch for (1–4) codes is about 65-75% of the total,
for (2–9) codes about 80-90% of the time, and for (3–10)
codes  about 60-80% of the time. An estimated throughput
based on this information would be:

(1–4):  (.70 * 11) + (.30 * 14) = 11.9 clocks =
179 ns (@ 66 MHz)
(2–9):  (.85 * 11) + (.15 * 17) = 11.9 clocks =
179 ns (@ 66 MHz)
(3–10):  (.70 * 14) + (.30 * 20) = 15.8 clocks=
237 ns (@ 66 MHz)

Estimated expansion rate:
(1–4) -> 1-byte / 179-ns = 5.6 MBytes/sec
(2–9) -> 2bytes/179-ns = 11.2 MBytes/sec
(3–10) -> 3bytes/237-ns = 12.7 MBytes/sec

Since the slower rate governs the system throughput,
a rate of 5.1 MB/s is appropriate for the (1–4) case, 11.0
MB/s for the (2–9) case, and 12.4 MB/s for the (3–10) case.

LZW COMPRESSION USING THE CAM

Before examining the block diagram and hardware control
flow of the CAM-based LZW routine, the basic algorithm
will be described in greater detail.

The assumption will be made that the source material
consists of 8 bits ASCII codes.  The algorithm starts with a
table containing the 256 ASCII literal codes.  Additional
entries in the table will store combinations of other codes
(known as strings). Beginning with 9-bit codes, the table
length is 512 entries (providing an additional 256 entries).
String comparisons may now take place. The base string is
created by reading and appending the first two symbols. If
the base string is in the table, create a new string by reading
in the next symbol and appending it to the base string’s
code from the table. Now perform a lookup with the new
string. This process is repeated until a string has been
constructed that is not in the table. This unknown string is
added to the table and the code for the previous known
string is sent to the output. The last symbol now forms a
new base string. This process is illustrated in Table 3. As
compression proceeds, each new table entry consists of
either a pair of literals or a code-literal combination. This is
how very long strings are built up with only a dual-entry
index. This entire process is repeated until EOF is reached
or the table fills.  When the table is filled, two options are
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Figure 6:  Modified BSTW Compressor/Expander Block Diagram

available: clear the table and begin a new one, or extend the
table length. Extending the table length is an automatic
implementation of LZW variable length coding. When the
table is extended, the number of encoding bits grows
accordingly. For example, when the 9-bit table is filled,
10-bit codes may be employed thereby extending the table
length by 512 entries (total of 1024). The reason that longer
codes are not utilized from the start is that greater
compression can be achieved if the shortest possible code
is used for as long as possible. When no more table space
is available, the table must be modified in some fashion.
The simplest modification is to clear the table and to send a
Clear code with the data so that the expander is aware of the
table change. More complex methods in which entries are
selectively deleted have been explored, but the complexity
of implementation seems to outweigh any benefit of
additional compression.

The LZW expansion process begins with a table of literal
ASCII codes, just as with the compression process (LZW
expanders do not require any previous information
regarding string tables; a local string table will be built from
the compressed data). The first code from the data stream is
read and sent to the output. This code is the base string for
future reference. The next code is now read and checked for
special codes (EOF or Clear code). If not a special code, the

code is checked to see if it is a literal. A literal code would
have a magnitude less than 256. If the code is literal it is
sent to the output section. The code is then appended to
the base string and it is written to the table at the next free
code location. This current code now becomes the new
base string. If the code had not been literal, then a table
lookup using the code as index would have produced a
new string. The literal portion of this new string would be
placed on an output stack and the base string portion
examined. This process would be repeated until the base
string portion is a literal. In this manner, an output stack
containing all of the symbols that built up the code can be
produced. Each symbol would now be popped from the
stack and sent to the output section. The final literal would
be appended to the original base string and written to the
table. An example of the expansion process can be seen in
Table 4.

As long as the table limits have not been exceeded, this
process continues until a special symbol is encountered.
A Clear code will essentially restart the algorithm. An
EOF will terminate the process. If the next free code
location is beyond the current code size, then the table
must be lengthened and the code size incremented. A Clear
code should be received before the table limit is reached.

  INP UT
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Formatter
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Table 3:  LZW Compression Example

INPUT TABLE ENTRY OUTPUT

M
i
s
s

259
261

p
p
i

---------------------
[258] = M +i
[259] = i + s
[260] = s + s
[261] = s + i
[262] = 259 + s
[263] = 261 + p
[264] = p + p
[265] = p + i

M
i
s
s
is
si
p
p
i

Table 4:  LZW Expansion Example

As presented, the expansion routine is not completely bullet
proof. There is a certain type of string that can cause the
compressor to send a code that has not yet been constructed
in the expander table. The situation can be illustrated with
the example string ABABA. If the string AB already exists
in the table, then the compressor will send the code for AB,
then add ABA to its table. The compressor will then process
the next known string, ABA (beginning with the middle A),
and send its code. If the expansion flow is interpreted, it is
found that this code is not yet in the expander table.

Fortunately, this case is handled by placing a simple test
in the expander routine. If the expander receives an
unknown code (if the code value is greater than the next
free code), then it has encountered this special case. The
expander should at this point output the last translated
code (AB), and then repeat the first letter from that code
(A). This code string (ABA) is also added to the next free
location in the expander’s string table. The compressor
and expander string tables are now back in sync and the
symbols sent to the output are correct.

A control flow diagram for the hardware implementation
of an LZW compressor is given in Figure 7. The flow is
essentially the same as has been described in the preceding
paragraphs with a few more details. After initialization, the
Clear code and the EOF code are calculated. These codes
should be the first two available (for example, 256 and 257).
Header information may include initial code size and
maximum table size. The first code output in this
implementation is the Clear code. This serves to insure that
both tables are cleared and that the expander is
synchronized. At this point the flow is as described
previously. The code table is, of course, a CAM and any
table lookups will be completed in a single transaction.

Similarly, a control flow diagram for the hardware
implemented LZW expander is provided in Figure 8 on page
14.  The expander will first read any header information that
the specific implementation provides. A code will then
immediately be read. According to the rules for this system,
this first code must be a Clear code. This will insure a clean
table and proper synchronization with the compressed data.
The flow proceeds as outlined in the above description.
The expansion process creates a contiguous table that may
be efficiently stored and accessed in a RAM, so a CAM is
not required for this process.

Following are descriptions of variable names referenced
to in Figure 7:

Variable
Clear_code

EOF_code

match
Code
Next_code

Lastcode
Oldcode
Origcode

Lastout

Outstack[ ]
Code_size
Max_code
Overflow
Max_size

Description
Clear table command (CAM
initialization)
Signifies end of data stream (literally
End Of File)
CAM lookup match location
Current symbol
Next available code (CAM - next free
address)
Base string for Compressor
Base string for Expander
Code holder during Expander stacking
procedure
Last literal output holder for LZW
expansion anomaly
Output stack array for Expander
Current code size in bits
Current maximum code (

2 
(Code_size))

Maximum table length
Maximum code size for table
(Log

2
(Overflow))

INPUT TABLE ENTRY OUTPUT

M
i
s
s
i
s
s
i
p
p
i

---------------------
[258] = M +i
[259] = i + s
[260] = s + s
[261] = s + i
---------------------
[262] = 259 + s
---------------------
[263] = 261 + p
[264] = p + p
[265] = p + i
[266] = i + _

-
M
i
s
s
-

259
-

261
p
p
i
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A block diagram for the LZW compression hardware can be
found in Figure 9. As shown, the actual hardware
implementation for such a complex algorithm is fairly simple.
This is due to the fact that the CAM provides a complex
lookup function that would normally require a good deal
more hardware. The bulk of the hardware is basically found
in the control section, which consists of a moderately
complex state machine controller. This section provides all
of the flow control functions as well as CAM Op-Codes.

The only hardware required apart from the control section
and CAM is a latch and a multiplexor. The input and output
formatters are required to pack (or unpack) the data into
widths that match the external I/O bus. All of the functions
specified in the control flow diagrams (Figure 7) can be
implemented using this handful of components.

Use of a single MUSIC MU9C4320L ATMCAM will support
a table length of 4096 (12-bit codes). Longer tables are
possible simply by cascading CAMs to increase the
table length (2 CAMs = 13 bits, 4 CAMs = 14 bits).
MUSIC ATMCAMs have been designed to cascade
with no additional external logic and with no additional
lookup penalty.

A single ATMCAM could also be used to support a number
of smaller tables. This feature could be used to support
multiple data streams going over a single network link.
For example, the table could be divided into four 1K
segments to support four 1K tables with only a small
reduction in throughput.

An estimate of the throughput of the described system can
be made based on the control flow diagram (Figure 7), the
block diagram (Figure 9), and statistical information
regarding the branches taken. The flow has two main
branches: one for symbol found, and one for symbol not
found. All non-CAM related functions (input and output
formats, etc.) would be pipelined.  Using a 66 MHz controller
(7 ns PLD) and a -70 MU9C4320L ATMCAM, the following
cycle estimates can be made:

Not Found # Clocks Found # Clocks
CAM look-up       6 CAM look-up        6
CAM write       4

_______ _______
     10      6

Based on statistical information, the time spent in the Found
branch is about 65-85% of the total. An estimated
throughput based on this information would be:

(.75 * 6) + (.25 * 10) = 70 clocks =
105 ns (@ 66 MHz)

Estimated compression rate:
1-byte/105-ns = 9.5 MBytes/sec

Implementation of common data compression/expansion
algorithms in hardware has been shown to be simplified
through the use of MUSIC Semiconductors CAM
technology. Beyond those examples presented here, any
compression scheme that utilizes sparsely populated tables
can take advantage of the extremely high-speed search
capabilities of the LANCAM or ATMCAM.
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Figure 7:  LZW Compression Flow Control
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Figure 8:  LZW Expansion Control Flow
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Figure 9:  LZW Compression/ Expansion Block Diagram
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