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SEMICONDUCTORS

Data Compression With MUSIC CAMs

Conventional data compression schemes can bdwuman sensory system. Compression ratios as high as
implemented with minimal hardware when using a 100:1 can be achieved, depending on the source material
MUSIC Semiconductors CAM (content-addressable and the subjective level of accuracy required.
memory). CAMs are fully associative memory devices that
can replace the binary trees or hash tables normally founé number of lossless compression techniques with varying
in data compression algorithms. Since a good portion of a&apabilities (compression efficiency and throughput) have
compression algorithm’s time is spent searching andbeen introduced throughout the years. The trade-off seems
maintaining these data structures, replacing them with ao remain invariable - the simple algorithms execute very
hardware search engine can greatly increase the throughpquickly, yet they generally have poor compression
of the algorithm. efficiency. The more complex algorithms will generally
compress better, but at the expense of slower execution
Associative memories (CAMs) operate in a converse wayspeed. The more complicated algorithms use more complex
to their counterparts, RAMs (random access memories)data structures, and the reduction in speed is generally
In RAM, an address is presented to the device and thatlue to searches and maintenance of these structures.
particular location is accessed. Data may be written to orSupplying a piece of hardware to simplify the search and
read from this location. In CAM, data is presented to themaintenance functions allows a total hardware solution
device, and the address that contains the requested datd relatively low complexity. A hardware solution will, of
appears as output. For this reason, the CAM is a vencourse, dramatically increase the system’s throughput. A
efficient search engine. Locating specific data in a tablefew of the more popular lossless compression techniques
can be performed much more quickly than by conventionalwill be briefly described.
software techniques using RAM. A CAM will generate a
result in a single transaction, regardless of table size o0HUFFMAN CODING
length of search list. This makes the CAM an ideal
candidate for data compression schemes that use sparseyuffman coding is probably the best-known data

populated tables as part of their algorithm. compression technique, see Reference [1]. The idea behind
Huffman coding is simply that in a given data set, certain
DATA COMPRESSION symbols are used more frequently than others. Huffman

coding exploits this fact by assigning variable length codes
The theory behind data compression is simply to removeo each symbol in the data set. The more frequently
any redundancy that resides in a given piece ofencountered symbols are given the shortest codes. Static
information, producing an equivalent but shorter messageHuffman coding requires that a table of probabilities
If the original data stream can be recovered from theexists before compression begins. When the data
compressed stream with complete integrity, the method isn question follows a known statistical pattern (such
known as lossless. Because no data corruption can bas English text), an existing table may be employed.
tolerated in lossless systems, compression ratios generallyor other types of information, a histogram of the data set
only range from about 1.5:1 to 5:1 (depending on themay need to be generated in order to create an encoding
algorithm and the source material). Lossless compressiomable that will produce the highest compression ratio.
should be distinguished from the so-called lossy (or The symbols of interest for Huffman coding are generally
compaction) techniques. Data compaction basicallystored in a binary-tree structure. The branches taken in
reduces a volume of information by omitting some of the traversing the tree from leaf to root will give the Huffman
data. The key element to efficient utilization of compaction code for that symbol (in reverse order). Using the Huffman
techniques is determining which information to omit. These code to traverse the tree from root to leaf will produce the
techniques seem to work well for audio and video material,encoded symbol. Once this structure has been constructed,
where superfluous information is easier to identify and the data (symbols and associated codes) can be transferred
where perfect reproduction is not a requirement of theto a linear table.
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In situations where a data pre-scan is not possible, 4ZW COMPRESSION
dynamic version of Huffman coding can be employed, see
Reference [2]. In the dynamic version, the symbol LZW compression is probably the most common non-
probabilities are continuously adapted as information isHuffman form of data compression. LZW compression is
processed. The algorithm basically creates a binary-treghe Lempel-Ziv algorithm modified by Terry Welch, see
structure in which the symbols that occur most frequentlyReference [4]. LZW is a compression technique that is
reside closest to the root of the tree (the distance from theéased on repeating patterns in a data file. Since it relies on
root to the symbol indicates the length of the Huffman patterns, it is fairly weak on data that is random in nature.
code). As each symbol is processed, its location in the tre&he algorithm basically parses strings of symbols into
is modified based on its frequency of occurrence. Thesubstrings of variable length. These substrings are then
symbol may actually move closer to the root of the tree ifmapped to unique codes in a table. As the procedure
its probability becomes higher than a symbol that has grogresses, the longest input string that matches a
shorter code. This constant tree maintenance slows thgubstring in the table is parsed off, with the next symbol
dynamic compression process relative to its staticappended. Code words of larger and larger strings are built
counterpart. In addition, the dynamic method does notup in this way. When the code table has been filled, most
compress as tightly as the static method. This is due to thémplementations of the algorithm clear the table, then begin
fact that an extra code must be sent whenever a symbdjuilding a new one. More complex implementations
appears that is not yet in the table. This extra code isselectively delete table entries (those that are older and are
necessary in order to inform the expander of an incomingnot used by other entries). As with Dynamic Huffman and
untabulated symbol (it also removes the necessityBSTW, the LZW algorithm does not require the string table
of sending an encoding table with the data). However,to be transmitted with the compressed data. The nature of
because most of the compression time is spent with symbolghe algorithm allows the expander to build its own string
that reside in the table, the extra codes are of verytable based on the compressed data.
little consequence.

ALGORITHM PERFORMANCE
BSTW CODING

The compression efficiency of each of these algorithms is
BSTW coding, see Reference [3], is similar to Huffman presented in Table 1 (the size entries represent the
coding in that it also is a word adaptive scheme. The BSTWcompressed size as a percentage of the original size). The
coding table, unlike the Huffman binary-tree structure, is atable entries represent an average taken over several
simple self-organizing list. The table is basically a list of different files. Certain files (with a high degree of local
codes that uses an LRU (Least Recently Used) replacememgdundancy) will compress more dramatically, while others
algorithm. Simply put, this means that the most recentlymay actually expand. The information in parentheses after
used symbol is at the top of the list, and the least recentl
used symbol is at the bottom. Variations of this replacemen Hardware Compressed Size
policy, such as LFU (Least Frequently Used - most often| Algorithm
used symbol at the top, least often used at the bottom) ar
also possible. When new symbols are encountered th3
are not in the list, the bottom symbol is removed, the list is|
reorganized, and the new symbol is inserted in the BSTW (2-9) | 11.0MB/s Low 64% | 80% | 104%
appropriate location. This process requires that the tabl¢ggryy 3.10) [ 124 M8/ Low 63% | 819 | 106%
be updated each time a new symbol is added so that the
list remains in proper order. The number of symbols per '(*S‘g{‘i“:;”
code and the length of the code are both variable. Finding
the optimal combination is usually a matter of | Huffman 0.8 MB/s High 61% [ 76%) 84%

Throughput Complexity Text Image Binary

[¢)

—

BSTW (1-4) 5.1 MB/s Low 80% | 72% | 102%

1.3 MB/s Low 60% | 75% 84%

. . . . Dynamic
experimentation with the data sets of interest. (B )
LZW (10-bity | 9.5 MB/s Medium | 39% [ 60% | 80%
LZW (12-bity | 9.5 MB/s Medium | 33% [ 55%| 78%

Table 1: Compression Algorithm Comparison
(Compressed Size Equals Percentage of Original)
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dynamic method circumvents the two-pass problem by
creating the probability table on-the-fly. The cost is slower
execution (due to table maintenance) along with slightly

less compression efficiency (longer codes must be sent for
never-before-seen symbols).

While implementations using more than a single byte are
= Compression % possible, coding tables can grow to an unmanageable size
(64 KB or more) or require complex replacement policies
and code maintenance. For this reason, this study will focus
on implementations that operate on 8-bit symbols.
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Figure 1. Compression Algorithm Comparison Static Huffman (Code Conversion)
the algorithm name represents variations in the algorithm’simplementation of the encoding portion of static Huffman
implementation. These variations will be explained in the coding is basically a simple table lookup. The code for
sections detailing each algorithm. each entry resides in an array that is simply indexed by
the incoming symbol. The decoding process, on the other
In addition to the estimated amount of compression, hand, offers a little more challenge to the designer. Since
Table 1 illustrates the estimated throughput for a hardwareHuffman codes are of variable length, simple table lookups
implementation. This data is derived from CAM-based do not work very well. Huffman decoders are usually built
hardware implementations as outlined in this document.as binary trees in which each incoming bit is used to select
Results from other implementations may vary from thosethe appropriate branch. When a terminating leaf is

presented here. A relative comparison of the algorithmsencountered (no more branches), the proper symbol has
is depicted graphically in Figure 1. been accessed.

COMPRESSION AND THE CAM Software implementations of this process do not execute

very quickly. In addition, hardware implementations of
The brief description of the operation of various binary tree searches can be very complex. The perfect

compression algorithms helps to demonstrate the utility ofreplacement for the binary search engine is the CAM. The
a CAM in data compression. The algorithms all produce aCAM has the ability to search its entire list of available
sparsely-populated table that is then indexed using eithecodes in a single transaction, so a binary tree architecture
binary-tree techniques or hashing algorithms. The becomes unnecessary. To convert Huffman codes, the input
CAM indexes sparsely-populated tables at very high speedtream is built up one bit at a time by shifting each bit into
and requires very little overhead to maintain. This makesan input register (refer to Figure 2). A CAM lookup is
the CAM a logical replacement for RAM in data performed after each bit is presented. If the code is not
compression applications. In order to illustrate how thefound in the CAM, then another bit is shifted in. If the
CAM can help speed the compression/expansion process;ode is found, then the appropriate symbol is output and
it is necessary to explore specific compression techniqueshe input register is flushed. Using this approach, one
in greater detail. standard MUSIC MU9C1480A CAM can handle codes as

long as 48-bhits.
HUFFMAN CODING USING THE CAM

The throughput of such a system is dictated by the speed
As was discussed earlier, Huffman coding can beof decoding (remember that encoding is very fast - just a

implemented in either a static or dynamic fashion. Thetable lookup). The main-loop cycle time for such a system
static method has the disadvantage of requiring the cod&ill be the time required to shift in a bit, perform a CAM
table to exist before compression. If a suitable table is nolookup, and perform a CAM match flag test. Using
available for the current data set, then the data must b& 66 MHz controller and a 90 ns CAM, the cycle time
read twice: once to establish the probability table then agairis 165 ns (11 CLKs). This provides a throughput of
for the actual compression. The static method must alsd.1 Mbits/s (Huffman code bits). To convert this number to
provide a copy of the code table to the expander. Thebytes/s requires an estimate of the amount of compression
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Figure 2: Static Huffman Code Converter

achieved. If a compression rate of 60% is assumed (abouMODIFIED BSTW CODING USING THE CAM
right for most Huffman-coded text), then the estimated

throughput is calculated as follows: For greater simplicity, the coding strategy chosen for BSTW
is fixed length. This means that, for single byte symbols,
((6.1 Mbits/s)/0.60)/(8 bits/byte) = 1.3 MBytes/s BSTW coding becomes a simple table lookup (just as with

static Huffman). For multiple byte symbols, the table
(The actual throughput will generally range from 1-2 becomes sparsely populated and requires some form of
MBytes/s, depending on the source material.) Higher rateshashing algorithm to access in a reasonably sized table.
could be achieved using a faster speed or a CAM with aThe CAM provides the hardware equivalent of the required

wider 1/O, such as the WidePort CAM family. hashing algorithm. Unfortunately, the CAM is not well
suited to reasonable implementation of either the LRU or
Dynamic Huffman Coding the LFU replacement policies. To greatly simplify the

Dynamic Huffman coding presents a more complex hardware (and increase the throughput), a simple
problem than for the static case. In order to dynamically round-robin replacement policy is implemented. A
assign codes based on symbol frequency, the Dynamicomparison of the policies is displayed in Table 2.
Huffman Coding algorithm must continually perform

some form of maintenance on its tables. This maintenancg Replacement Compressed Size
involves various search and replace functions as well ag pPoIicy Text Image | Binary
table data swaps. The complexity of the algorithm along

with the necessity of major table maintenance slows| Round-Robin 64% 80% 104%
execution speed considerably. This, coupled with the fact

that the level of compression is only moderate, indicates LRU 62% 77% 101%
that this algorithm is a relatively poor candidate for

hardware implementation. The implementation details|LFY 62% 7% 102%
will not be discussed here. For further information

regarding the algorithm itself, see Reference [2]. Table 2: Replacenégr_llfvsczgcg)Comparison for

(Compressed Size Equals Percentage of Original)
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As can be seen, the benefit gained by using a non-trivialookup, so the code must be found or else a fatal error has
replacement policy is relatively small. Considering the occurred. When the code is found, the associated symbol
amount of additional hardware required and the timeis sent to the output. Codes are processed in this fashion
penalty incurred by the more complex policies, the simpleuntil the EOF symbol is encountered.
approach is superior.

Now that a working algorithm has been outlined in detail,
A control flow diagram for a hardware implementation of it is necessary to assess suitable encoding parameters for
the described version of the BSTW compression algorithmthe design. A number of parameters will be of importance
can be found in Figure 3. The basic compression flow isin determining the algorithm’s efficiency:
as follows: After initialization, a symbol is read in. An EOF
symbol terminates the process by outputting the NIT (NotCoding method
In Table) code followed b_y the EOF Chargcter. For any OtherIt has already been determined that fixed length coding is
symbol, a CAM lookup is performed with the symbol as the simplest to implement. Using a 1K CAM, the

the comparand. If the symbol is found, the code for thatmaximum code size is 10-bits (L§5024)). A deeper CAM

symbol (the CAM match address) is sent to the output il handle larger codes
section. If the symbol is not found, then the symbol is '

entered into the CAM at the address pointed to by theTabIe length

internal Address register. With proper CAM initialization, Obviously, the greater the table length, the greater the
this register will now increment to the next address. Thechances c;f finding an encoding for am’/ given symbol

value of this register must now be tested for table I'_m'tS'However, alonger table necessitates longer codes, thereby
The current address must be read and checked against tl?@ducing compression

limit. If the limit has been reached, then the Address
register must be reset to a value of 1 (1 is the first availablesympol size (bytes)
code; 0 has been reserved as the NIT code). Now that th¢he more bytes combined to form a symbol, the better
table has been updated, the symbol must also be sent {gmpression achieved when matched. However, fewer
the output. The NIT code is sent first, followed by the matches will occur for longer symbols.
actual symbol. This sequence allows the expander to
identify symbols that do not yet appear in its table. It alsoln order to determine the optimum combination of symbol
allows the expander to build a table that mirrors the tablesize versus code size, a number of data sets were
built by the compressor. Symbols are processed in thisompressed using various combinations of these parameters
fashion until EOF is encountered. (Figure 5). The data sets included text, image, and binary
information. The results are expressed as a compression
The expansion flow (Figure 4) is very similar to the ratio (taller bars indicate greater compression).
compression flow. After performing initialization, a code is
read. If the code is NIT (Not In Table), then another symbolNotice that some of the combinations actually expand the
is read. If the symbol is not EOF, then it is written to the file rather than compress it (those bars below the 1:1 level).
CAM at the address pointed to by the Address register.This can occur for situations where the table is too large
This address will increment after the write. The address(long codes), the table is too small (low hit ratio), or the
register must then be checked against the table boundslata shows very little local redundancy (as with binary
The current value of the address pointer may either be readata). The experimental results indicate that the optimum
from the CAM, or it may be kept locally in a small counter configuration for text data is 2 bytes encoded as 9 bits
within the controller. If the boundary has been exceeded(2-9) or 3 bytes encode as 10 bits (3-10). Image data appears
(or if the counter has wrapped back to 0), then the registeto compress better in a smaller table, such as
must be reset to a value of 1 (remember that 0 is reservedl byte encoded as 4 bits (1-4). The binary files either
for NIT). Now that this table has been updated the same asompress or expand very minimally (the average is marginal
the compression table, the symbol should be sent t@xpansion). It seems that the binary data is random to the
the output. point that none of the various scenarios does a very good
job. Based on the collected data, parameter set ups for
If the code is not NIT, then a CAM lookup is performed (2-9) and for (3-10) both seem to perform adequately.
with the code as the comparand. This is a simple tableSystem throughput will be greater, however, for the system
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Figure 3: Modified BSTW Compression Control Flow
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Figure 5: BSTW Parameter Effects on Compression

that encodes more bytes per symbol. Keep in mind that thanput and output formatters adjust the data format to the
described hardware solution can be made to support angystem interface. For example, 9-bit codes would require
parameter combination up to 6-byte symbols and 10-bisome type of packing in the output formatter in order to
codes. Using a larger CAM allows code lengths up to 13accommodate an 8-bit, 16-bit, or 32-bit bus. Likewise, the
bits. If the hardware is designed properly, these parameteiigput formatter should be able to disassemble those same
could be set differently for each data set of interest.9-bit codes for expansion. Proper control of these formatters
(Note: lowest possible compressed size using 2-bytevould also be required if variable parameter setups is desired.
symbols with 9-bit codes is 56%; 3-byte symbols with Control of the entire system could be achieved through a
10-bit codes is 42%). relatively simple state machine with Op-Codes for CAM
control being retrieved from a small PROM.
The hardware required to implement this flow is really quite
simple (Figure 6). Beyond the CAM itself, all that is The system’s throughput can be estimated based on the
required is a simple controller, a PROM (alternatively acontrol flow diagrams (Figure 3 and Figure 4) and statistical
micro-sequencer), and input and output formatters. Thénformation regarding the branches taken. The flow has two
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main branches: one for symbol found, and one for symboBased on statistical information, the time spent in the In-

not found. Using a 66 MHz controller (7 ns PLD), a -90 Table branch for (1-4) codes is about 65-75% of the total,

MU9C1480A CAM, and pipelining as many functions as for (2—9) codes about 80-90% of the time, and for (3-10)

possible, the following cycle estimates can be made: codes about 60-80% of the time. An estimated throughput
based on this information would be:

Not Found # Clocks Found # Clocks
CAM look-up 6,6,9 CAM lookup 6,6,9 (1-4): (.(70*11) + (.30 * 14) = 11.9 clocks =
EOF check 55,5 Match? 55,5 179 ns (@ 66 MHz)
CAM write 6,6,6 (2-9): (.85*11) + (.15* 17) = 11.9 clocks =
Reg bounds 11,1 179 ns (@ 66 MHz)
(3-10): (.70 * 14) + (.30 * 20) = 15.8 clocks=
18,18,21 11,11,14 237 ns (@ 66 MHz)

and Estimated expansion rate:

(1-4) -> 1-byte / 179-ns = 5.6 MBytes/sec
(2-9) -> 2bytes/179-ns = 11.2 MBytes/sec
(3-10) -> 3bytes/237-ns = 12.7 MBytes/sec

(Given clock values are for (1-4), (2-9),
(3-10), respectively.)

Based on statistical information, the time spent in the
Found branch for (1-4) codes is about 65-75% of the total
for (2—9) codes about 80-90% of the time, and for (3-10)
codes about 60-80% of the time. An estimated throughpu
based on this information would be:

Since the slower rate governs the system throughput,
rate of 5.1 MB/s is appropriate for the (1-4) case, 11.0
B/s for the (2-9) case, and 12.4 MB/s for the (3—10) case.

(1-4): (.70 * 11) + (.30 * 18) = 13.1 clocks = LZW COMPRESSION USING THE CAM

197 ns (@ 66 MHz)

(2-9): (.85 * 11) + (.15 * 18) = 12.1 clocks = Before examining the block diagram and hardware control
181 ns ('@ 66 MHz). ' flow of the CAM-based LZW routine, the basic algorithm
(3-10): (.70 * 14) + (.30 * 21) = 16.1 clocks= will be described in greater detail.

242 ns 66 MHz
@ ) The assumption will be made that the source material

consists of 8 bits ASCII codes. The algorithm starts with a
table containing the 256 ASCII literal codes. Additional

entries in the table will store combinations of other codes
(known as strings). Beginning with 9-bit codes, the table
length is 512 entries (providing an additional 256 entries).

Using th vsi ¢ ion th h tString comparisons may now take place. The base string is
sing the same analysis as for cpmpresgon rougnpPUly eated by reading and appending the first two symbols. If
expansion throughput may be estimated:

the base string is in the table, create a new string by reading
in the next symbol and appending it to the base string’s

Estimated compression rate:
(1-4) -> 1-byte / 197-ns = 5.1 MBytes/sec
(2-9) -> 2bytes/181-ns = 11.0 MBytes/sec
(3-10) -> 3bytes/242-ns = 12.4 MBytes/sec

Not-In Table  # Clocks In-Table # Clocks code from the table. Now perform a lookup with the new
Symbol read  1,1,1 CAM lookup 6,6,9 string. This process is repeated until a string has been
EOF check 1,11 Match? 59,5 constructed that is not in the table. This unknown string is
CAM write 6,9,12 added to the table and the code for the previous known
CAM read 6,6,6 string is sent to the output. The last symbol now forms a
[ — _ new base string. This process is illustrated in Table 3. As
14,17,20 11,11,14 compression proceeds, each new table entry consists of

either a pair of literals or a code-literal combination. This is
(Given clock values are for (1-4), (2-9), and (3-10), how very long strings are built up with only a dual-entry
respectively.) index. This entire process is repeated until EOF is reached

or the table fills. When the table is filled, two options are
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Figure 6: Modified BSTW Compressor/Expander Block Diagram

available: clear the table and begin a new one, or extend theode is checked to see if it is a literal. A literal code would
table length. Extending the table length is an automatichave a magnitude less than 256. If the code is literal it is
implementation of LZW variable length coding. When the sent to the output section. The code is then appended to
table is extended, the number of encoding bits growsthe base string and it is written to the table at the next free
accordingly. For example, when the 9-bit table is filled, code location. This current code now becomes the new
10-bit codes may be employed thereby extending the tablbase string. If the code had not been literal, then a table
length by 512 entries (total of 1024). The reason that longetookup using the code as index would have produced a
codes are not utilized from the start is that greaternew string. The literal portion of this new string would be
compression can be achieved if the shortest possible codelaced on an output stack and the base string portion
is used for as long as possible. When no more table spa@xamined. This process would be repeated until the base
is available, the table must be modified in some fashionstring portion is a literal. In this manner, an output stack
The simplest modification is to clear the table and to send &ontaining all of the symbols that built up the code can be
Clear code with the data so that the expander is aware of theroduced. Each symbol would now be popped from the
table change. More complex methods in which entries arestack and sent to the output section. The final literal would
selectively deleted have been explored, but the complexityoe appended to the original base string and written to the
of implementation seems to outweigh any benefit of table. An example of the expansion process can be seenin
additional compression. Table 4.

The LZW expansion process begins with a table of literal As long as the table limits have not been exceeded, this
ASCII codes, just as with the compression process (LZWprocess continues until a special symbol is encountered.
expanders do not require any previous informationA Clear code will essentially restart the algorithm. An
regarding string tables; a local string table will be built from EOF will terminate the process. If the next free code
the compressed data). The first code from the data stream Iecation is beyond the current code size, then the table
read and sent to the output. This code is the base string fanust be lengthened and the code size incremented. A Clear
future reference. The next code is now read and checked farode should be received before the table limit is reached.
special codes (EOF or Clear code). If not a special code, the
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proof. There is a certain type of string that can cause th
compressor to send a code that has not yet been construc

Z
0
(e
|

TABLE ENTRY OUTPUT

As presented, the expansion routine is not completely buIII
d

in the expander table. The situation can be illustrated with M s M
the example string ABABA. If the string AB already exists i [258] = M +i [
in the table, then the compressor will send the code for AB S [259] =i+s s
then add ABA to its table. The compressor will then process 2;9 [ggg] =S : s S
the next known string, ABA (beginning with the middle A), 261 %262% _ ;59'+ S IS
and send its code. If the expansion flow is interpreted, it is _ St
i ; : p [263] = 261 + p 0
found that this code is not yet in the expander table. p [264] = p + p o
i [265] =p +i i
Fortunately, this case is handled by placing a simple teqt
in the expander routine. If the expander receives arn

unknown code (if the code value is greater than the next Table 4: LZW Expansion Example

free code), then it has encountered this special case. The

expander should at this point output the last translatedimilarly, a control flow diagram for the hardware

code (AB), and then repeat the first letter from that codemplemented LZW expander is provided in Figure 8 on page

(A). This code string (ABA) is also added to the next free 14. The expander will first read any header information that

location in the expander’s string table. The compressothe specific implementation provides. A code will then

and expander string tables are now back in sync and thigmmediately be read. According to the rules for this system,

symbols sent to the output are correct. this first code must be a Clear code. This will insure a clean
table and proper synchronization with the compressed data.

A control flow diagram for the hardware implementation The flow proceeds as outlined in the above description.

of an LZW compressor is given in Figure 7. The flow is The expansion process creates a contiguous table that may

essentially the same as has been described in the precedibg efficiently stored and accessed in a RAM, so a CAM is

paragraphs with a few more details. After initialization, the not required for this process.

Clear code and the EOF code are calculated. These codes

should be the first two available (for example, 256 and 257)Following are descriptions of variable names referenced

Header information may include initial code size andto in Figure 7:

maximum table size. The first code output in this

implementation is the Clear code. This serves to insure thatariable

both tables are cleared and that the expander i€lear_code Description

synchronized. At this point the flow is as described Clear table command (CAM
previously. The code table is, of course, a CAM and anyEOF_code initialization)
table lookups will be completed in a single transaction. Signifies end of data stream (literally
match End Of File)
Code CAM lookup match location
INPUT TABLE ENTRY  OUTPUT Next_code Current symbol
Next available code (CAM - next free
M e - Lastcode  address)
i [258] = M +i M Oldcode Base string for Compressor
s [259] =i +s ' Origcode  Base string for Expander
? [522] =S : S S Code holder during Expander stacking
S []_S' ______ S Lastout procedure
s [262] = 259 + s 259 Last I|te_ral output holder for LZW
i . Outstack[ ] expansion anomaly
p [263] = 261 + p 261 Code_size Output stack array for Expander
p [264]=p +p p Max_code Current code size in bits _
[ [265] = p + i p Overflow  Current maximum code (, (Code_size))
[266] =i+ _ i Max_size =~ Maximum table length

Maximum code size for table

Table 3: LZW Compression Example (Logz(Overrow))
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A block diagram for the LZW compression hardware can beBased on statistical information, the time spent in the Found
found in Figure 9. As shown, the actual hardware branch is about 65-85% of the total. An estimated
implementation for such a complex algorithm is fairly simple. throughput based on this information would be:

This is due to the fact that the CAM provides a complex

lookup function that would normally require a good deal (.75*6) +(.25*10) = 70 clocks =

more hardware. The bulk of the hardware is basically found 105ns (@ 66 MHz)

in the control section, which consists of a moderately

complex state machine controller. This section provides alEstimated compression rate:

of the flow control functions as well as CAM Op-Codes. 1-byte/105-ns = 9.5 MBytes/sec

The only hardware required apart from the control sectionimplementation of common data compression/expansion

and CAM is a latch and a multiplexor. The input and outputalgorithms in hardware has been shown to be simplified

formatters are required to pack (or unpack) the data intdhrough the use of MUSIC Semiconductors CAM

widths that match the external I1/0O bus. All of the functions technology. Beyond those examples presented here, any

specified in the control flow diagrams (Figure 7) can be compression scheme that utilizes sparsely populated tables

implemented using this handful of components. can take advantage of the extremely high-speed search
capabilities of the LANCAM or ATMCAM.

Use of a single MUSIC MU9C4320L ATMCAM will support

a table length of 4096 (12-bit codes). Longer tables areReferences

possible simply by cascading CAMs to increase the

table length (2 CAMs = 13 bits, 4 CAMs = 14 bits). [1] Gallager: “Variations on a theme by Huffman.” IEEE

MUSIC ATMCAMs have been designed to cascade Transactions, 1978, IT-24, (6), pp. 668-674.

with no additional external logic and with no additional

lookup penalty. [2] Knuth: “Dynamic Huffman Coding.” Journal of
Algorithms, 1985, 6, (2), pp.163-180.

A single ATMCAM could also be used to support a number

of smaller tables. This feature could be used to suppor{3] Bentley, Sleator, Tarjan, Wei: “A Locally Adaptive

multiple data streams going over a single network link. Compression Scheme.” CACM, 1986, 29, (4), pp.320-330.

For example, the table could be divided into four 1K

segments to support four 1K tables with only a small[4] Welch: “A Technique for High-Performance Data

reduction in throughput. Compression.” IEEE Computer, 1984, 17, pp. 8-19.

An estimate of the throughput of the described system can
be made based on the control flow diagram (Figure 7), the
block diagram (Figure 9), and statistical information
regarding the branches taken. The flow has two main
branches: one for symbol found, and one for symbol not
found. All non-CAM related functions (input and output
formats, etc.) would be pipelined. Using a 66 MHz controller
(7 ns PLD) and a-70 MU9C4320L ATMCAM, the following
cycle estimates can be made:

Not Found # Clocks Found # Clocks
CAM look-up 6 CAM look-up 6
CAM write 4

10 6
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INITIALIZE:
calc Clear_code
calc EOF_code
OUTPUT (Header_info)
INPUT (Lastcode) J

|

LEAR TABLE:
OUTPUT (Clear_code)
CAM init
reset Next_code
reset Code_size

r

INPUT (Code)

Code =

EOF ?

No

cAm 1oakup ([[asTcode]Code]) |

CAM

v

OUTPUT (Lastcode)

OUTPUT (EOF_code)

STOP

M atch?

No

CAM write ([ Lastcode] Code[Next_code [0 |)

v

OUTPUT (Lastcode)

A 4

CAM

Lastcode = read [m atc h]

L
Lastcode = Code
(Next_code > Max_code) &
(Code_size < Max_size)
| Code_size ++ |
Yes Next_code =
Overflow ?
| Next_code ++ |
Figure 7: LZW Compression Flow Control
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INITIALIZE:
INPUT (Header_info)
set Clear_code
set EOF_code

INPUT (Code)
Origcode = Code

Code =

v

CLEAR TABLE:
RAM init

reset Next_code
reset Code_size
INPUT (Code)
Origcode = Code
Oldcode = Code
Lastout= Code
OUTPUT (Code)

Clear_code ?

Code < yes

STOP

Next_code ?

No

]

Outstack[] = Lastout

Code = Oldcode

(Expansion Anomoly)

Outstack[ ] = Code
Lastout = Code

OUTPUT (Outstack)

v

.

RAM lookup ()

Outstack[]= RAM read ( Code )

Code = RAM read [data (old code)]

CAM write ( |N ext_code |0 |0Idcode

|C ode ]

v

Oldcode = Origcode
Next_code ++

(Next_code >= Max_code)
& (Code_size < Max_size)

Code_size ++

Figure 8: LZW Expansion Control Flow
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Input IEOF
_— Formatter

L

Last_Symbol

1l 0

Last_Code

‘ Symbol

DQ [19:8]  DQ [7:0]
ATMCAM

AC [5:0] (———

IE

W <

AV

/VB <

IOE

IFF

IMF

A

A

A
- DO —— O = —~+ 35 0 O

AA [11:0]

Output :>
Formatter Out

Figure 9: LZW Compression/ Expansion Block Diagram
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NOTES
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