
Application Note AN-N5

Fully Associative Disk Drive Caches

MUSIC Semiconductors, the MUSIC logo, LANCAM, and the phrase “MUSIC Semiconductors” are
registered trademarks of MUSIC Semiconductors. MUSIC is a trademark of MUSIC Semiconductors.
All other product names are trademarks of their respective companies. 30 September 1998 Rev. 1a

CACHES INCREASE PERFORMANCE

Caches are employed to reduce the average time that
processors take to talk to memory locations. Two of the
more common applications in computer design are caching
main memory and caching magnetic memory devices such
as hard disk drives. By reducing the average time the
processor spends talking to memory, the effective
performance of the processor is improved. A cache is a
smaller block of memory that is of higher performance
than the memory being cached. This could take the form
of fast SRAM used to cache slower (and cheaper) DRAM
main memory. Or in the case of disk drives (which are
very slow compared to main memory) the cache could take
the form of DRAM to cache the disk drive thus giving
semiconductor speeds instead of mechanical speeds.
Caching the disk drive can lead to greater performance
increases in applications that are highly dependent on disk
transactions. This category includes many common
applications. A cache, as described in this Application
Note, will cache all categories of disk requests thus
transparently caching the directories, file allocation table
(FAT), and files themselves whenever files are accessed.

WHY CACHES WORK

A cache’s ability to improve performance is due to the
fact that most computer code is both highly sequential
and greatly loop-oriented, leading to spatial and temporal
locality of reference in the code. This means that code
that will be used in the near future is likely to be near the
code being used now (spatial locality) and also that code
being used now is likely to be used again soon (temporal
locality). These statistical characteristics of computer code
mean that while a program may require vast amounts of
disk memory to hold code and data to allow an application
to perform all the tasks required of it, most of the time
programs only use small amounts of code and much of
the code is used repeatedly. Thus, improvements in
performance can be made by only moving small blocks
from the disk into higher performance memory.

Since write bandwidth is only about 15% of read
bandwidth, disk caches can improve performance even
more by write buffering of the data stream. In this function,

the disk cache operates as a very large first in, first out
(FIFO) buffer so that for writes of blocks of code near the
size of the cache, the effective bandwidth of the disk drive
is increased to the bandwidth of the cache. Statistically,
writes to the disk of data smaller than common cache sizes
are very common. By buffering writes to disk, the overhead
of the disk seek and latency times can also be amortized.

HOW CACHES WORK

A cache works by moving blocks of code in use into faster
memory so that the data are available more quickly. Since
the cache has faster access time than the disk, it has a
wider bandwidth, which means that more data can be
transferred in the same amount of time. Additionally,
cache, which is constructed with semiconductor memory,
can eliminate some of the fixed-disk overhead such as disk
access time, thus increasing performance even more.

CACHE MAPPING

Because the cache is a duplicate of a small amount of a
much larger memory space, the cache must be mapped
somehow from the disk memory. Several methods are used
for this mapping, all of which have advantages and
disadvantages. The most widely used methods are based
on the principle of associativity and these are further
broken down into one-way set-associative (or direct
mapped,) n-way set-associative (typically n = 2 or 4) and
fully associative.

OTHER CACHE DESIGN CHOICES

Another permutation of cache architecture is whether the
cache is designed as look-through or look-aside cache.
Look-through cache lies in the data path between the
processor and hard disk drive and buffers all information
flow going to the disk drive. The data request from the
processor “looks through” the cache. The cache decides if
the data requested will be supplied to the processor by
itself, in which case it never tells the drive of the request,
or if the data need to be retrieved from the drive, the cache
forwards the request on to the drive. The other choice is
look-aside cache where the cache does not buffer the data
flow but simply monitors the data requests and data

Application Note AN-N5

Rev. 1a 2

transfers and copies the data as they pass back and forth
on the bus. The main advantage of the look-through cache
is the fact that on the memory side of the cache the bus
traffic is reduced thus allowing other activity. This is
important in designs for main cache, i.e. cache between a
processor and main memory, since the activity is on the
system bus that squeezes out other system bus activity by
bus masters other than the processor. This advantage does
not apply to the disk system under consideration since
there are no other bus masters. Although look-through
cache is more complex than look-aside cache, a
look through cache is required if the cache
will be modifying control information as it passes
from the disk drive to the host.

DEGREE OF ASSOCIATIVITY TIED TO
PERFORMANCE

In one-way set associative caches, the main memory can
only be mapped into one location of the cache memory. In
n-way set-associative caches, any location in main memory
can be mapped into n locations in the cache. In a fully
associative cache, any location in disk memory can be
mapped into any location in the cache. Figure 1 shows
how tracks from the disk map into a one-way set-
associative cache. In set-associative mapping schemes the
drive memory is divided into groups that are the size of
the cache memory. These are labeled groups 1 through 4,
in the figure, although typically there are more groups.

T rac k A

T rac k B

T rac k C

C ac he M em ory

D isk M em ory

(D irec t M appe d or
1-W ay Set A s soc iat iv e)

T rac k A

T rac k B

T rac k C

T rac k A

T rac k B

T rac k C

T rac k A

T rac k B

T rac k C

T rac k A

T rac k B

T rac k C

T ag Buf fer

G roup 2

G roup 1

G roup 3

G roup 1

G roup 2

G roup 3

G roup 4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 1: One Way Set-Associative Mapping

Application Note AN-N5

Rev. 1a3

Suppose for example that track B from group 1 is written
into the cache. Since the cache is direct mapped, track B
must go into the place in cache reserved for track B. The
cache tag buffer, which is associated with each track, will
be written with the offset of the group. Note how the cache
can hold tracks from different groups as long as they are
not at the same relative position in the group. If two tracks
are used that have the same relative place in a group, such
as track A of group 4 (noted by the dashed line) then the
second occurrence of track A will replace the first one. If
tracks with the same relative position are
used closely together in code, for example in a loop, then
the cache will continually overwrite the track, alternating
groups. This is called thrashing, and it greatly degrades

the cache performance. To find data stored in the cache,
the relative position of a track is calculated (for example
“B”) and then the tag buffer contents for track B are
compared to see if the group offset is correct. If the group
offset matches, then the track in the cache is the correct
one and can be used.

Figure 2 outlines how a two-way set-associative cache is
organized. In this case, there are two possible locations
for every track that reduces thrashing (but does not
eliminate it). On the other hand, it exacts time and cost
penalties because extra logic must compare the two tag
buffers to determine which set of the cache contains the
proper track A (if any).

T rac k A

T rac k B

T rac k C

C ac he M em ory

D is k M em ory

T rac k A

T rac k B

T rac k C

T rac k A

T rac k B

T rac k C

T rac k A

T rac k B

T rac k C

T rac k A

T rac k B

T rac k C

T rac k A

T rac k B

T rac k C

(2-W ay Set As s oc iat i v e)

2 L o ca tio n s
fo r Tra ck A

T ag Buf fer

G roup 2

G roup 1

G roup 3

T ag Buf fer

G roup 4

Set 1

Set 2

G roup 1

G roup 2

G roup 3

G roup 4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2: Two-Way Set-Associative Mapping

Application Note AN-N5

Rev. 1a 4

Figure 3 outlines the construction of a fully associative
cache that allows any track to be stored in any location.
To do this the usual tag buffer is replaced with a content-
addressable tag buffer, then a one cycle search will give
the correct track address in the cache (if it exists). Fully
associative cache is more flexible too, since the disk
memory does not have to be divided up into groups of the
size of the cache memory. This leads to a
more flexible cache that can accommodate different disk
drives when they are updated.

FULLY ASSOCIATIVE CACHE - THE BEST
PERFORMER

In the past, the performance advantages of fully associative
caches were not realized because of the cost of providing
a content-addressable memory (CAM) to perform the
searching function. With the availability of MUSIC
Semiconductors LANCAM, this increased performance
is now available at system costs comparable to current
solutions.

Figure 3: Fully Associative Cache Mapping

Cache M emory

Disk Memory

Track A

Track B

Track C

Track A

Track B

Track C

Track A

Track B

Track C

Track A

Track B

Track C

(Fully Assoc iative)

Any Track (B in this case)

Any Track (A in this case)

Any Track (A in this case)

Any Track (C in this case)

G roup 1

G roup 3

G roup 2

CAM Tag B uffer

G roup 4

G roup 1

G roup 2

G roup 3

G roup 4

.

.
.
.

.

.

.

.

.

.

.

.

Application Note AN-N5

Rev. 1a5

AN EXAMPLE SYSTEM

As discussed previously, caches are commonly used to
speed up memory access for a processor to main memory
or hard disk memory. This Application Note primarily
deals with using cache for hard disks, although the
concepts are similar.

For purposes of this Application Note, we will consider
disk caching for a most common system, a “Compatible
PC” using the ISA (Industry Standard Architecture) bus
and using an Intel processor. Although this system is
possibly the most common hardware in existence it is,
nevertheless, a rather complex system in itself.
Additionally, the ISA based PC is the foundation for all
of the higher performance PC architecture today and it
considers only functions (blocks) and interfaces (arrows).
When viewed on a systems level however, it is much easier
to design since only one function and its interfaces must
be considered. Note the top dotted box that encloses a
subsystem, the IDE Interface Logic. The first cache design
described simply replaces that subsystem with another
subsystem that performs all the same functions and talks
over the same interfaces.

A PC consists of hardware and software working in concert
to accomplish tasks that the user finds useful. Most users
would be pleased if they only had to think of the task at
hand to accomplish the work, this would be a really “user
friendly interface.” To eliminate as much work as possible,
system designers and software engineers try at every
opportunity to hide lower level processes. In the PC, this
building of a user friendly interface has occurred over time
and built layer on layer, since the builders of the system
had to keep older foundations in place to make the current
PCs compatible with the large installed base of older PCs.
A PC consists of the hardware, such as the processor, and
standards used to assemble the hardware, such as the
specification of the system bus. Additional components of
the system are the BIOS, or basic input/output system,
and the operating system kernel, DOS, (or disk operating
system). DOS in itself is written like an onion with the
interface to the user, the prompt, as the outside layer. To
bring more user friendliness to the system, another layer
of software, Windows™, was introduced as another layer
of the onion to make the user interface more friendly by
use of a graphical interface.

The BIOS is the lowest level of software in the PC although
it is frequently called firmware since it is contained on a
ROM (read only memory). The instructions can not be
changed by the operation of the machine so it is not exactly
soft, but the ROM can be exchanged with another
containing modified instructions, thus the instructions are
shares many elements with architectures based on other
micrprocessors. Figure 4 gives a system overview of the
portion of an ISA computer related to the hard disk drive.
This system view hides much of the hardware by firm.
The BIOS provides the first level of interface between the
hardware and higher level software. The BIOS is designed
to hide the hardware from the upper software by
implementing identical services for identical commands,
called interrupts, for the machines most basic functions.

The DOS kernel, which is the next layer of the onion,
also implements various hardware-independent services
for use by higher software. The services of interest to us
are those concerning file operation and disk control,
although DOS contains a lot more services than these.
The earliest versions of DOS laid out a plan for storing
files on floppy disks and subsequent versions were
modified to handle the enormous storage capability of the
early hard disk drives installed on the PC-XT, ten Mbytes.
As drive capacities increased, further versions of DOS were
modified to allow larger disks to be used.

Figure 4: Systems View of a PC

HOST

System
Bus (ISA)

ATA/IDE
BusIDE INTERFACE

LOGIC
IDE DISK

DRIVE

LAM/
IDE INTERFACE

LOGIC

System
Bus (ISA)

ATA/IDE
Bus

Application Note AN-N5

Rev. 1a 6

HOW FILES ARE STORED

DOS stores data in files, which are variable sized records
of data. These files are organized as a series of bytes (which
consist of 8 bits of binary data). DOS stores these files on
the disk as a series of clusters of segments. Each segment
is 512 bytes long and the clusters consist of one or more
segments depending on the type of disk and the version of
DOS. DOS keeps track of the files by placing their names
in a directory, sort of an index, that is associated with
each disk. Also stored in the directory is the location on
the disk of the start of the first cluster of a file. Since the
file can be much larger than a single cluster, it is stored
on a series of clusters. Due to the dynamic nature of a
disk, the series of clusters frequently are not contiguous
on the disk, so DOS has to have a scheme to find all the
clusters for a file. Since the area reserved for a file in the
directory is a fixed size and can only contain the address
of one cluster (the first one), the location of the other
clusters must be stored somewhere else. DOS takes care
of this by reserving a location on each disk to keep a record
of pointers to clusters, called the FAT (file allocation table).
This is the sequence when a request for a file is handed to
DOS to service. DOS looks into the directory that returns
the location of the first cluster of the file. DOS then looks
in the FAT at the location for the first cluster of the file
and stored there is the address of the second cluster of the
file. Stored in the location of the second cluster of the file
is the address of the third cluster of the file, and so forth,
until the last FAT entry (pointing to the last cluster of the
file) is reached, which has a special reserved address that
indicates to DOS that it is at the end of the file. Of course,
DOS also retrieves the real data stored in the clusters

pointed to by the FAT entries. Storing data like this is
called a linked list, since each entry is linked to the next
entry. The sequence to retrieve data: get directory entry,
get FAT, get file, are to the disk drive the same kind of
requests, thus a cache that stores all requests will de-facto
cache the directory entry, FAT and file without software
or hardware modifications.

SAMPLE DESIGN OF A FULLY ASSOCIATIVE
DISK CACHE

A de facto disk drive interface called IDE (coded as ANSI
standard X3T9.2791D) predominates in the market for
computers based on the ISA bus and derivatives, the so-
called PC market. Use of a fully associative cache with
drives based on this interface can provide significant
performance advantages at minimal cost. The following
description is based on the IDE interface, but the concepts
can be easily extended to other disk drive interfaces.

In Figure 5, a common implementation of an IDE interface
is schematically diagrammed. For disk drive reads or
writes, the processor writes the cylinder desired (high and
low bytes of the cylinder number), the desired drive and
head (1 byte), the starting sector (1 byte), and the total
number of sectors (1 byte into 8 bit registers in the disk
drive). The drive then reads or writes data to the identified
sectors. Additional instructions are available for non-data
operations such as formatting, etc.

One method of caching the data from the disk drive is to
store an entire track from one side of one platter. Since
tracks are defined by mechanical positions of the heads,

Figure 5: IDE (ATA) Interface

H O ST
Inte rfac e /

C on t r o l
Log i c

ID E
D is k
D riv e

D ata B us

C ont ro l Bus

A T A (ID E) B us

ISA Bu s

Application Note AN-N5

Rev. 1a7

changes in tracks are major contributors to access times.
Another major contributor to access times is the latency
between when the drive knows what sector it wants to
access and when the platters turn to bring that sector under
the head, which is on average, half the time required for a
full turn of the platters. For illustrative purposes, the drive
to be cached will have 17 sectors on each track, each sector
having 512 bytes. The total amount of data on a track is
therefore 8704 bytes. Any track is uniquely defined by 3
bytes: cylinder high and low, and the Drive/Head byte.

LANCAM REPLACES TAG BUFFER AND
SEARCH LOGIC

Referring to Figure 6, the cache is set up using standard
DRAM to hold the cached disk data with a fully associative
memory, a LAMCAM, to hold the index into the DRAM.
The LAMCAM is partitioned into 32 bits of CAM memory,
and 32 bits of associated RAM memory. The CAM memory
will be written with the 3 bytes that define a track on the
disk (which we will call the track name) along with a
fourth byte to hold an aging tag. The associated RAM
will hold a pointer into the DRAM to the first byte of the
first sector of each track stored in DRAM (track pointer).
Figure 7 details the partitioning of the CAM memory as

used for a tag buffer. The address space of the DRAM is
linear, and the addresses (track pointers) to be stored in
the associated RAM portion of the LANCAM will be
multiples of 8704, the amount of bytes in each track of
our disk drive. There are several operating conditions for
this cache.

Case 1: Data Read From Disk, Track Not In Cache
The Control logic extracts the cylinder/drive/head 24-bit
identifier and presents it to the LANCAM, which in this
case indicates a miss (no match). The Control logic then
sends the track name (along with the start sector and
number of sector bytes) to the disk. While waiting for the
disk to return the full track of data, the Control logic first
determines if any free memory exists by examination of
the full flag. If free memory exists, the Control logic
determines where by searching for the next free address.
If no free memory exists, then the Control logic frees up
memory through a replacement algorithm. After a long
while, the disk returns the data. The data are passed to
the processor and concurrently written into DRAM
memory in the free block. The track name, track pointer,
and aging tag are also written to the LAMCAM.

Figure 6: Fully Associative LAMCAM/DRAM Cache

H O S T C o n t r o l
L o g i c

I D E
D i s k

D r i v e

L A M C A M
1 0 2 4 X 6 4

3 2 C A M :
3 2 R A M

D R A M
L A M

1 0 2 4 X
 8 . 5 k
b y t e s

C o n t r o l B u s

D a t a B u s

A T A (I D E)
B u s

D a t a B u sC
on

tro
l B

u
s

C
on

tro
l B

u
s

I S A B u s

Application Note AN-N5

Rev. 1a 8

Case 2: Data Read From Disk, Track In Cache
The Control logic presents the track name to the LANCAM
to search both “clean” and “dirty” entries, one of which
indicates a hit. “Clean” and “dirty” are tags in the
LANCAM that indicate that data in the cache match the
data on the disk (“clean”) or that the data in cache do not
match the data on the disk (“dirty”). The Control logic
then retrieves the pointer, calculates the offset based on
the sectors required, retrieves the data from the proper
location in DRAM, and supplies it to the processor. The
aging tag can also be updated in the LAMCAM.

Case 3a: Data Write Of A Full Track To Disk,
Track Not In Cache
The Control logic writes the data into DRAM and stores
the track name and track pointer in the LANCAM setting
the validity condition to “dirty” (“dirty” indicates that the
cache data have been updated but not yet written to the
disk.) The Control logic writes the track data to the disk
as fast as disk access allows. With each
successful track write to disk, it changes the validity
condition to “clean” and updates the aging tag. In this
case, the cache acts as a very large FIFO to buffer data. If

the data to be written to the disk exceed the capacity of
the cache, the Control logic tells the processor to wait.

Case 3b: Case 3b is the same as case 3a, but only some
sectors of the track are written to the disk. In this case the
new sectors are written to their proper location in DRAM
and the LAMCAM track name is tagged “partial.” At the
same time, the entire track is read from the disk, and when
received by the Control logic, the missing sectors are
written into the proper place in DRAM to fill out the track.
The LANCAM track name tag is changed to “clean.”

Case 4: Data Write To Disk, Track In Cache
First use a LANCAM match to check if the data in cache
are either “clean” or “dirty.” Then write the data over in
the old location marking it as “dirty.” Write the data to
disk as soon as possible and change the tag to “clean.”

The design of a cache memory presents some unique
challenges. Since data can be stored in two different places,
in the cache memory or on the disk drive, or even in both
places, care must be taken in the design to ensure that the
correct data are supplied to the processor. Additionally,

C y l i n d e r H i g h D r i v e / H e a dC y l i n d e r L o w R A M P o i n t e r R A M P o i n t e r

¥
¥
¥

3 2 b i t s o f C A M M e m o r y 3 2 b i t s o f A s so c i a t e d R A M M e m o r y

L A M C A M M e m o r y B l o c k

¥
¥
¥

1
 2
3
 4
5
 6
7
 8

8 7 0 4
8 7 0 5

8 7 0 6
8 7 0 7

¥
¥
¥

D R A M M e m o r y

¥
¥
¥

A g e R A M P o i n t e r

Figure 7: LAMCAM/DRAM Memory Mapping

Application Note AN-N5

Rev. 1a9

since the cache is volatile memory (data are lost when the
power goes away,) care must also be taken to ensure that
the most current data are on the disk drive in a timely
manner so that when power is removed from the system,
good data are not only stored in the cache and therefore
lost. In the following discussion data are referred to as
“clean” and “dirty.” “Clean” data are data in the cache
that match data stored on the disk. “Dirty” data are data
in the cache that are not “coherent” with data on the disk.
These “dirty” data are, in fact, more recent and more
correct than the corresponding disk data. The “dirty” data
are generated by the processor modifying “clean” data in
the cache. A cache that operates in this manner is called a
write back cache, since the data are written first into the
cache and then copied from the cache back on to the disk.
This problem of processor written cache data not matching
the disk data can be eliminated by always writing to the
disk directly when data are received from the processor
and copying the data into the cache at the same time,
(called write through cache). Unfortunately, this advantage
carries a disadvantage, which is that now the processor
can only write to the cache as fast as it could write to the
disk even without the cache. Another scheme to reduce
the chance of lost data is to set a time limit for how long
“dirty” data can stay in the cache. This is easily
implemented by incorporation of a timed “dirty” CAM
search along with forced write-back to change all data to
“clean.” Since high performance is the goal of using a
fully associative cache, a cache using the write back design
should be considered.

CAM FEATURE ALLOWS EASY AGING
ALGORITHM IMPLEMENTATION

Replacement algorithm implementation: Write a sequence
number (“age”) that increments every four writes into the
fourth CAM byte. When the LANCAM is full, change
the validity condition of the oldest “clean” tracks to
“empty” in units of four. They will be easy to find using a
mask register to only search the “age” byte. Since we are
only using a byte to store the age in, there are only 256
possible ages. Since the MU9C1480A LANCAM can have
1024 entries, there will be four entries of each age. If more
than one LAMCAM is used, the aging algorithm will have
to be modified by either increasing the size of the age to
more than 8 bits, or increasing the number of entries with
the same age to eight (or more) from four.

Control Logic - Figures 8 through 11 are flow charts that
detail operation of the Control/interface logic block. Figure
8 starts with decoding the addresses sent to the disk drive
over the ISA bus. If the addresses are for disk commands,
the logic passes them on to the disk drive without
modification. If the addresses indicate that the transaction
is for data, then the Control logic determines if the data
transaction is a read or write. If the transaction is a data
write, then the Control logic first performs a “dirty” search
of the LAMCAM and then performs a “clean” search of
the LAMCAM. If either of these searches is successful,
the data being supplied by the processor are contained in
the DRAM cache. Using the starting address (which is
determined from the LAMCAM address resulting from
the search), the Control logic writes the data to the DRAM
cache, marking it as “partial” (if less than a full track) or
“dirty” if it is a full track. If the track is not stored in the
cache, the Control logic obtains the next free address in
the LAMCAM and writes the data in that location marked
either “partial,” or “dirty,” as appropriate. If the tracks
stored in the cache are “partial” then the Control logic
must request the same track data from the disk drive and
fill in the missing sectors in the cache.

Figure 9 details the data read operations of the Control
logic/cache memory interface. Figure 10 details the steps
necessary to get LAMCAM free addresses. Also included
are the steps to obtain free addresses if the cache is full of
either “clean” or “dirty” locations. Figure 11 details the
steps necessary to clean up the LAMCAM so that all the
data are “clean,” i.e., the cache data match the disk drive
data.

Other functions, not detailed in the series of flow charts,
but required of the Control logic, are any required
buffering, level shifting, address decoding, or memory
housekeeping. A careful analysis of system requirements
should be made to determine the feasibility of using a write-
back cache. Although the write-back cache can give
significant performance advantages, it also presents more
opportunities for loss of data. Implementation of a write-
through cache requires a slight modification of the Control
logic.

Application Note AN-N5

Rev. 1a 10

A cache constructed as outlined in this Application Note
will store the disk data on a track by track basis in a fully
associative manner and will be able to start to retrieve the
track of data from the cache in little more than the full
address/compare cycle time of the LAMCAM (225
nanoseconds for the slowest -12 LANCAM). The speed
of data retrieval will depend on the bandwidth of the
DRAM memory. The fully associative nature of the cache
will lead to higher cache hit rates and more efficiency and
performance.

OTHER WAYS TO CACHE DRIVE TO
 PROCESSOR TRANSFERS

The caching solution previously described, while
appropriate for the system described, is not the only choice.
A differently designed cache may better serve other
architectures and other systems. Using the system
description previously presented, consider the following
cache design.

When a request is made to DOS for a particular file the
following transactions take place. DOS accesses the
directory portion of the disk and retrieves the directory
entry. This entry points to the location of the first cluster
of the file. DOS also must access the disk to retrieve the
FAT that has the linked list of clusters for the file. DOS
now can determine all the clusters and thus sectors that
make up the desired file. DOS now can access the disk
again to retrieve the complete file. As can be seen, there

is a lot of disk accessing going on to retrieve a file. A
cache could be constructed that would store both the
directory entries and the linked list of clusters (FAT in
this case). Operating systems that read up and store this
file information in memory are ripe prospects for
improvement through the use of a fully associative cache
that would speed up the search for the file clusters. This
architecture could result in a separate cache more removed
from the disk drive dedicated to list searching. A cache of
this sort would be of particular use for systems that typically
use lots of files such as network servers.

SELECTING AN ARCHITECTURE

A question that must be answered is how is the cache
implemented in the system – indeed, how does the system
configuration affect decisions regarding how and what to
cache? The system described previously has hardware,
software, and performance limitations unique to itself and
based in its history. Other systems, such as UNIX®, have
different hardware, software, performance limitations, and
history. Each architecture must be examined to determine
where and how a cache should be used and what the
benefits versus costs will be for each application. It is clear
however that a fully-associative cache offers higher cache
performance than solutions using set-associative
architecture.

Application Note AN-N5

Rev. 1a11

D e co d e
 A d d r e sse s

R e a d / W r i te ?

D a ta o r
N o n -D a ta
C o m m a n d

?

N o n -D a ta D a ta

T r a n sf e r
C o m m a n d

to D r i v e

L o a d
R e g i s t e rs

C o m p o se T r a ck
N a m e

" D i r ty "
C A M

S e a r ch

M a t chN o M a t ch

M a t ch
" C l e a n "

C A M
S e a r ch

N o M a t ch

D e t e r m i n e
L A M C A M /D R A M
A d d r e ss i n u se

G e t f re e
L A M C A M /D R A M

A d d r e ss

W r i t e S e c to r s
to D R A M a t

A d d r e ss

W r i te T ra c k N a m e
to L A M C A M a t

A d d re ss - " p a r t i a l "

W r i te T ra c k D a t a
to D R A M a t

A d d r e ss

W r i te T ra c k N a m e
to L A M C A M a t

A d d r e ss " D i rt y "

D a ta
R e a d

T r a n sf e r T r a c k
R e q u e st t o D i sk

R e ce i ve T r a ck
D a t a f r o m D i sk

W r i t e S e c t o r s t o
D R A M to f i l l o u t

T r a c k d a ta

W r i te T ra c k N a m e
to L A M C A M a t

A d d r e ss - " D i r ty "

C l e a n U p
L A M C A M

W r i t e R e a d

Figure 8: Caching of Data Write Requests to the Disk Drive

Application Note AN-N5

Rev. 1a 12

Figure 9: Caching of Data Read Requests to the Disk Drive

D a t a
R e a d

L o a d
R e g is t e r s

C o m p o s e T r a c k
N a m e

" D i r t y "
C A M

S e a r c h

M a t c hN o M a t c h

M a t c h
" C l e a n "

C A M
S e a r c h

N o M a t c h

G e t T r a c k A d d r e s s
f r o m L A M C A M

R e a d T r a c k D a t a
f r o m D R A M
a t A d d r e s s

T r a n s f e r T r a c k
R e q u e s t t o
D is k D r iv e

R e c e i v e T r a c k
D a t a f r o m D i s k

E x t r a c t R e q u e s t e d
S e c t o r s

T r a n s f e r
S e c t o r s
t o H o s t

W r i t e T r a c k D a t a
t o D R A M a t

A d d r e s s

W r i t e T r a c k A d d r e s s
t o L A M C A M

t a g g e d " C le a n "

G e t
L A M C A M

F r e e
A d d r e s s

I n (F i g . 1 0)

G e t
L A M C A M

F r e e
A d d r e s s

O u t
(F ig . 1 0)

E x t r a c t R e q u e s t e
S e c t o r s

T r a n s f e r S e c t o r s
t o H o s t

Application Note AN-N5

Rev. 1a13

Figure 10: Generation of Free Addresses in the LANCAM Tag Buffer

G e t L A M C A M
F r e e

A d d r e s s I n

I s
L A M C A M

F u ll ?

N o t F u l l F u ll

G e t L A M C A M
F r e e A d d r e s s

O u t

G e t N e x t F r e e
A d d r e s s

G e t N e x t F r e e
A d d r e s s

A r e Th e r e
A n y "C le a n "
L o c a t io n s ?

N oY e s

A p p ly P u rg in g
A lg o r it h m t o

"C le a n " L oc a t io n s

G e t A d d re s s
o f N e x t "D ir t y "

L o c a t io n

W r it e T r a c k t o
D is k D r iv e

C h a n g e L o c a t i o n
t o "E m p t y "

R e t u rn
A d d r e s s

Application Note AN-N5

Rev. 1a 14

Figure 11: Implementation of Cache Write-Back

C l ea n U p
LA M C A M

W r it e Tr a ck t o
D isk D r iv e

C h an g e L oc at i on
to " C le a n"

Se t U p M as k
to c om p ar e on

"D i rty " o nl y

Se a rc h
f or "D irt y "

En tr ie s

N o "D irt y "
En tr ie s

"D i rty "En tr y
F o un d

LA M C A M
al l

"C l e an "

Ge t L AM C AM /
D R AM

Ad dr e ss

Application Note AN-N5

Rev. 1a15

NOTES

Application Note AN-N5

Rev. 1a 16

NOTES

European Headquarters
MUSIC Semiconductors
Torenstraat 28
6471 JX Eygelshoven
Netherlands
Tel: +31 45 5462177
Fax: +31 45 5463663

MUSIC Semiconductors reserves the right to make changes to
its products and specifications at any time in order to improve
on performance, manufacturability, or reliability. Information
furnished by MUSIC is believed to be accurate, but no
responsibility is assumed by MUSIC Semiconductors for the use
of said information, nor for any infringement of patents or of
other third party rights which may result from said use. No
license is granted by implication or otherwise under any patent
or patent rights of any MUSIC company.
©Copyright 1998, MUSIC Semiconductors

MUSIC Semiconductors Agent or Distributor:

USA Headquarters
MUSIC Semiconductors
254 B Mountain Avenue
Hackettstown, New Jersey 07840
USA
Tel: 908/979-1010
Fax: 908/979-1035
USA Only: 800/933-1550 Tech. Support

 888/226-6874 Product Info.

Asian Headquarters
MUSIC Semiconductors
Special Export Processing Zone 1
Carmelray Industrial Park
Canlubang, Calamba, Laguna
Philippines
Tel: +63 49 549 1480
Fax: +63 49 549 1023
Sales Tel/Fax: +632 723 62 15

http://www.music-ic.com
email: info@music-ic.com

