
Application Note AN-N3

Virtual Memory Applications Of The
MU9C1480A LANCAM®

MUSIC Semiconductors, the MUSIC logo, LANCAM, and the phrase “MUSIC Semiconductors” are registered
trademarks of MUSIC Semiconductors. MUSIC is a trademark of MUSIC Semiconductors. 30 September 1998 Rev.1a

The availability of large content-addressable memories,
with their unique associative search properties brings the
possibility of improved search speeds in virtual memory
applications. This application note outlines methods to
improve database server and network response times using
MUSIC Semiconductors’ MU9C1480A 1K x 64 LANCAM
as an example.

INTRODUCTION

Acceleration of database file retrieval is extremely important
in today’s world of heavily networked computer systems.
Accelerated disk file retrieval or manipulation makes the
file server more efficient, which improves network
throughput, and the use of associative or content-
addressable memory (CAM) can provide this improvement.

Improvements in disk access times can contribute greater
network performance than increases in network
transmission rate, frequently at lower cost. Since a large
percentage of computer system usage is database oriented,
network traffic is weighted toward communications between
remotes and servers. Most of these communications will
be remote requests for database records and related data in
a relational database, rather than the transmission of
complete files. In these cases, the disk file access time
becomes a sizable proportion of the overall network
response time as seen by the remotes. For example, a full
screen of text data could be transmitted in about one
millisecond over a 16 MHz network (ignoring overhead),
while the time required for the disk access to retrieve the
data is measured in tens of milliseconds. These factors
make disk latency time a major component of network file
retrieval request time. Disk latency includes the time to
read the File Allocation table and then the time to retrieve
the data, both of which are affected by disk access time.
Additionally, if the file is fragmented, or if a record is to be
found by “key field” searches, more disk accesses are
required.

Disk access times can be improved by using external
memory. One approach to improving access times has been
to use large RAM caches (RAMDISK) to store frequently
used disk files to eliminate disk accesses for files that have

been stored in the cache. If enough virtual memory is
installed, many database files with their additionally related
files can be stored and accessed at RAM speeds providing
significant system performance enhancements. An
additional way to improve access time by milliseconds is to
store the File Allocation table (FAT) in CAM, saving the
initial disk access time. The availability of large CAMs from
MUSIC Semiconductors makes rapid FAT caching a
possibility by providing a large tag buffer space and nearly
instantaneous translation of virtual addresses to actual
addresses. Previous approaches to look up table tag buffers
suffer from resorting time delays whenever files are replaced,
which can be quite often, and access time delays due to the
need for shadow memory areas to perform address
translations. The primary file handles or codes can be stored
in the MU9C1480A, and the disk executive control software
can fetch likely related files to a CAM-based tag buffer as
well. If the FAT were augmented or duplicated in CAM,
whenever a file was requested, the CAM-based FAT would
be examined first to determine if the file were resident in
virtual memory, saving an unnecessary disk access. This
process consumes only hundreds of nanoseconds rather
than tens of milliseconds. If the file was not found in virtual
memory, the starting physical sector of the file could be
obtained directly from the associated CAM data, with the
disk accessed directly after the CAM operation. This
method is faster than search tree schemes due to the fully
associative nature of a CAM, saving critical milliseconds
and improving server performance.

The MUSIC Semiconductors’ MU9C1480A is an ideal Fully
Associative Tag Register for virtual memory mapping,
particularly for mapping disk files to main memory. Its size,
1024 entries x 64 bits, allows the creation of large buffer
areas for many files of arbitrary size and arbitrary location
in main memory. Although the access time of the
MU9C1480A is slower than a fast SRAM, for fast instruction
or data caching of main memory the access time is very fast
compared to disk directory or file search times. However,
its large size and dual associativity makes the MU9C1480A
effective in memory-to-memory cache, since it provides
space for 1024 addresses of blocks of arbitrary size in
memory for virtual storage, and facilitates replacement
algorithms through its versatile instruction set.

Application Note AN-N3

Rev. 1a 2

Figure 2: Virtual Memory Mapping, Type 2 (Indirect Pointer)

C A M A d d r . 1

C A M A d d r . 2

C A M A d d r . 3

C A M A d d r . 4

V IR T U A L S T O R A G E
A R E A

A c tu a l
A d d re s s 3

A c tu a l
A d d re s s 1

A c tu a l
A d d re s s N

A c tu a l
A d d re s s 2

V ir tu a l
B lo c k Z

V ir tu a l
B lo c k Y

V ir tu a l
B lo c k X

B lo c k Y

B lo c k Z

B lo c k X

D IS K o r M A IN
M E M O R Y

V ir tu a l B lo c k s in a n y p a g e
o rd e r d u e to in d ire c t
a d d res s s c h e m e.

CA M Ad dres s of the tag s
form a po in te r to the ind irec t
ta g ad dres s bu ffer .

B lo c k W

V ir tu a l
B lo c k W

T A G X

T A G W

T A G Y

T A G Z

A d d . P t r . 2

A d d . P tr . N

A d d . P t r . 1

A d d . P t r . 3

C A M T A G
M E M O R Y

In d ir e c t A d d r e s s
b u ff e r (S h a d o w)
p o in ts t o a c tu a l
a d d re s s in
m e m o ry w h e re
v ir tu a l b lo c k h a s
b e e n s to re d .

IN D I R E C T A D D R E S S
P O IN T E R T O

V IR T U A L A R E A

C A M A d d r . 1

C A M A d d r . 2

C A M A d d r . 3

C A M A d d r . N

T A G X

T A G Y

T A G Z

T A G W

V I R T U A L S T O R A G E
A R E A I N M E M O R Y

C A M T A G
R E G I S T E R

A c t u a l
A d d r e s s 1

A c t u a l
A d d r e s s 3

A c t u a l
A d d r e s s N

V ir t u a l
B lo c k X

V ir t u a l
B lo c k Y

V ir t u a l
B lo c k W

B lo c k Z

B lo c k X

B lo c k W

D I S K M E M O R Y
O R M A I N M E M O R Y

V ir t u a l B lo c k s m u s t b e in
s o m e c o n t ig u o u s p a g e
o r d e r in m e m o r y a r e a .

V ir t u a l T a g s a r e a s s o c ia t iv e ly
lo c a t e d , b u t t h e C A M A d d r e s s
f o r m s t h e a c t u a l p o in t e r t o t h e
v ir t u a l m e m o r y s t o r a g e b lo c k
a r e a .

B lo c k s c a n b e m a p p e d
(lo a d e d) in t o a n y v ir t u a l
a r e a .

B lo c k Y

V ir t u a l
B lo c k Z

A c t u a l
A d d r e s s 2

Figure 1: Virtual Memory Mapping, Type 1

Application Note AN-N3

Rev. 1a3

TAG STORAGE
VIRTUAL BLOCK

ACTUAL ADDRESS
POINTER

CAM PARTITION RAM PARTITION

TAG ACCESS CYCLE: IF EXIST, THEN VIRTUAL BLOCK ADDRESS TO SYSTE M
ADDRESS REGISTER

63 063
The MU9C1480A has a unique architectural feature
particularly useful in virtual memory tag register applications
in its adjustable CAM/RAM word partitioning, which creates
a dual associativity. The actual address pointer to the cache
or virtual memory area is stored in a RAM partition in the
same memory location as the virtual tag, which is stored in
the CAM partition. The actual address in the RAM partition
can be accessed associatively after the virtual tag in the
CAM partition is associatively accessed. The actual
address pointer can then be output from the CAM in the
succeeding CAM cycle and presented to the system address
bus. This is a significant improvement over previous
methods of pointing to the actual address, where the virtual
tag must reside in a CAM location whose address is equal
to the actual starting address of the virtual block in the
cache area, or the method where the CAM address is used
as an indirect pointer to a shadow RAM location which
finally contains the actual start address of the virtual block.

VIRTUAL MEMORY MAPPING APPROACHES

Figure 1 depicts the traditional (Type 1) approach to CAM
tag buffering. The blocks of memory from disk (for simplicity,
we will use the term “disk” to mean mass storage or slow
memory as opposed to virtual or cache memory) can be

written to the virtual memory area in any order, but must
normally be mapped into areas of known address
boundaries to simplify access. Each block mapped into the
virtual memory area is assigned an actual address and that
address must be of a value that can be directly equated to
an address in the tag buffer CAM by some offset, page or
block value. The content of that address in the CAM is the
tag or address of the disk file to be associatively located by
the CAM. When the system calls for the file or address of
a disk block, the address goes first to the CAM and if
present, the system reads the address of the matched
location in the CAM and uses it as an offset to an address
of a memory block set aside for virtual or cache storage.
That offset plus the base address becomes the actual

Figure 4: Contents of each Word in the

0

T A G X

T A G W

T A G Y

T A G Z

T A G

T A G

A c tu a l A d d r . 2

V IR T U A L S T O R A G E
M U 9 C 1 6 4 0 C a c h e C A M

T A G M E M O R Y A d d r e s s 3

A d d r e s s 1

A d d r e s s N

A d d r e s s 2

V ir tu a l
B lo c k Z

V ir tu a l
B lo c k Y

V ir tu a l
B lo c k X

B lo c k Y

B lo c k Z

B lo c k X

D IS K
M E M O R Y

V ir tu a l B lo c k s in a n y
o r d e r a n d le n g th .

V ir tu a l M e m o r y T a g s s to r e d
a n y w h e r e in C A M w ith o u t r e g a r d
to C A M A d d r e s s . A c tu a l A d d r e s s
s to r e d in C A M 's a s s o c ia te d d a ta
R A M p a r t it io n a n d is a c c e s s e d
w h e n ta g is a s so c ia t iv e ly fo u n d
a n d c a n b e o u tp u t im m e d ia te ly .

B lo c k WV ir tu a l
B lo c k W

A c tu a l A d d r . N

A c tu a l A d d r . 1

A c tu a l A d d r . 3

A c tu a l A d d r . N
(1 0 2 4)

6 3 03 2 3 1

Figure 3: Virtual Memory Mapping with MU9C1480A Partitioning

Application Note AN-N3

Rev. 1a 4

the actual storage area of the virtual blocks. In this
approach, the addresses of the virtual tags in the CAM are
used as pointers to an indirect address storage area in which
the final pointers are stored to the virtual blocks in the
memory. With this method, virtual blocks can be stored in
any order and length in the cache area, since the indirect
pointers can be made to point to effectively anywhere in
memory. Contiguous organization of virtual blocks is
unnecessary, and if the indirect pointers are wide enough,
the length of each virtual block can be arbitrary. Although
this method is significantly more flexible than the Type 1
approach, it is still less than optimal due to the complex
housekeeping of all the different memory areas involved.

Figure 3 illustrates the streamlined approach with the
MUSIC Semiconductors’ MU9C1480A LANCAM as the
Tag Buffer and Indirect Pointer memory all in one IC. The
operation is identical to that of Figure 2, but significantly
enhanced by the incorporation of indirect address pointers
within the CAM device itself, which are directly accessible
when the virtual address is associatively located.
Consequently, translation tables between CAM locations
and indirect address pointers need not be maintained in
any external memory, and no secondary memory access
cycles are required to fetch pointers. Since the pointer to
the actual memory address of the virtual block is contained
in a RAM partition of the CAM word, it is immaterial where
in the CAM any tag is stored, since the location of the tag
in CAM is of no consequence to the operation. Storage of
tags in the CAM is thus simplified, which also simplifies
memory management schemes by reducing the complexity

Figure 5: State Sequence for 32-bit Search for Tag
and Fetch of Pointer

D ATA O N
D Q1 5-0

A CTIVE SIG N A LS
O U TPUT >

LEGEND

D ATA
W R ITE

/E, /W

D ATA
W R ITE

ID LE

D ATA
R EA D>

/E

D ATA
R EA D>

/E, /EC

/E, /W ,
/EC , /MF>

2 ND 16 -B ITS O F
VIR TUA L PO INTER

IF N O MATCH

R EA D 1ST 16 -B ITS
O F VIRTUA L PO INTER

W R ITE 2 ND
1 6-B ITS O F TA G

W R ITE 1 ST
1 6-B ITS O F TA G

MA TCH FLA G

IF MA TCH :

C W
N O P

/E, /W
/C M

address of the virtual file. In short, the CAM address
becomes the pointer to the virtual file actual address. This
approach is functional but suffers from the necessity of
requiring the operating system virtual memory control
firmware or hardware to always keep track of the addresses
of contiguous blocks in the virtual memory area so that
they can be related to the CAM tag word addresses. Virtual
memory area storage blocks must be of regular size, since
the CAM address is used as an offset to point to the
starting locations. This approach makes replacement
schemes convoluted, since a regular block size must be
removed when it becomes dormant, and its replacement
written in that exact location to maintain the relationship to
the CAM address as its pointer. These direct relationship
requirements slow down the access time of the virtual
memory system, since there is considerable latency in all
these memory accesses and translations, and if
replacements occur often, the overall performance suffers.

An improved design is shown in Figure 2, the Type 2 Indirect
Virtual-to-Actual mapping technique. The general approach
is similar to that of Figure 1, but the indirect technique
provides more flexibility in mapping virtual addresses to
actual addresses. The difference can readily be seen in
Figure 2 by the appearance of another storage area, the
indirect pointer memory, between the CAM tag buffer and

Figure 6: MU9C1480A Logic Symbol

102 4 x 64
CAM ARRA Y

/W

/E C

/E

/CM

16DQ 1 5-0

/M F

/FF

/F I/M I

Application Note AN-N3

Rev. 1a5

of the hardware and/or software. The MU9C1480A
LANCAM provides a hardware “Match Flag” pin to signal
if a match is found, giving an immediate indicator whether
a virtual file is present in the cache or not. A hardware “Full
Flag” is also provided to facilitate scheduling of replacement
algorithms. An internal Status register replicates these flags
for reading by software routines for off-line or background
maintenance.

The system designer has the choice of using the tag
location address in the CAM to expand the relational
storage of additional attributes, if needed by virtual memory
applications or database management. Given the fully
associative characteristics, performance benefits, and
capacity of a virtual memory design using the MU9C1480A
LANCAM, the system designer now has the opportunity
for a more competitive and higher performance solution for
virtual memory management and mass storage caching.

ASSOCIATIVITY FEATURES OF THE
MU9C1480A

A more in-depth review of the secondary associativity
feature of the MU9C1480A LANCAM and its
implementation will be beneficial at this point to clarify just
how the above storage and associativity of the tag and
related indirect pointer are realized. The 64-bit word width
in the MU9C1480A LANCAM can be partitioned into CAM/
RAM on 16-bit boundaries. The CAM partition is accessed
associatively with the input, as one would expect with a
fully associative memory, and the RAM partition forms the
secondary associated or related data field, which is then
available for output on the next immediate device cycle. In
the following example, the MU9C1480A LANCAM is
globally partitioned as 32 bits of CAM with 32 bits of
associated RAM. The virtual tags are stored in the CAM
partition, and the actual address pointers to main memory
of the virtual blocks (files) are stored in the RAM partition.
The availability of 32 bits of address field for both tag and
pointer fields provides another system enhancement by
eliminating the need for hardware or software to do the
address offset calculation. Figure 4 is a graphic
representation of the contents of each word in the
MU9C1480A LANCAM array when so partitioned.

The access and control state sequence for virtual tag field
identification and fetch of the actual address pointer of the
virtual storage block in main memory is illustrated by Figure
5. The operation is as follows:

1. The first 16 bits of the tag are written via the data bus,
DQ (15-0), to the MU9C1480A’s Comparand register, which
is the default destination for Data Write cycles.

2. The second 16 bits are written to the Comparand register,
using the internal Segment Control counter to guide the
data to the CAM partition and begin the automatic Compare
operation. If the matching 32-bit Tag is present, the hardware
Match Flag pin goes LOW, and the Status register is set
with the match condition and location.
3. If a successful match is indicated, a Data Read cycle can
be performed to fetch the first 16 bits of the actual address
pointer from the Highest-priority match location and output
them to the DQ (15-0) data bus, again using the internal
Segment Control counter to obtain the data from the RAM
partition.

4. Another Data Read Cycle is performed to fetch the
second 16-bit segment of the actual address pointer,
completing the procedure.

Device Cycle Control Definitions
A Data Write Cycle is defined by taking the /W (write) pin
LOW at the beginning of a cycle coincident with driving
the /E (enable or clock) pin LOW. A Read cycle is performed
by leaving the /W pin HIGH during /E.

To issue Command instructions to the device for
initialization or to modify its operation, the /CM (command)
pin is brought LOW coincident with /E, and an instruction
selected from the extensive instruction set is written to the
Instruction register via the DQ (15-0) bus.

Figure 6 shows the logic symbol for the MU9C1480A,
demonstrating the simplicity of mapping the device into a
system architecture with its 16-bit data bus, four-wire control
bus with straightforward timing requirements, match flag
output, full flag output, and match-in and full-in pins for
cascading.

Application Note AN-N3

Rev. 1a 6

In an LRU scheme, each virtual tag is flagged with some
means of identifying the chronological order in which
the tags have been accessed. When the CAM is full, or
after some arbitrary interval, the least recently used tag(s)
are purged. One effective method is to create a linked
list where each tag has some means to point to the
address of the tag which was previously addressed,
creating an ordered chain of next-most-recently-
accessed tags.

At first glance, the LRU linked list scheme appears most
efficient, since only the least recently used tag will be
purged and replaced, because it is at the end of the
address chain. However, it requires additional control
and temporary storage external to the tag buffer to
implement, since each address must be read as the tag
contents are read, and then be appended to the next
accessed tag in order to form the linked list. The
MU9C1480A LANCAM facilitates this approach, since
the match address is readily available to the controlling
system via the device Status register, and the Associated
Data RAM partition can be used to store the previously
accessed tag address. There are two additional
considerations for this method. First, external
intervention is required to read the match address and
store it in readiness for the next tag match, taking extra
foreground processing time. Secondly, it uses up ten of
the Associated Data field bits to store the next address,
which are shared with the virtual block actual address
pointers. The CAM approach is an improvement,
however, over other tag buffer designs, which typically
have no associated data field in them and require an
even more elaborate indirect pointer system to
associated data memory.

REPLACEMENT ALGORITHM
CONSIDERATIONS

Most virtual memory caching architectures must take into
consideration a means of replacing tags when they have
become dormant, or when the CAM is full. There are several
approaches to these replacement algorithms, the most
common of which are summarized below. All these methods
have their advantages and disadvantages, but they have
different effects on the efficiency, or “hit rate,” of the caching
scheme depending upon the size and flexibility of the CAM
tag memory. These considerations are significantly different
for the MU9C1480A LANCAM versus previously available
tag buffer memories.

1. Least Recently Used (LRU)

Another replacement approach is the LFU method, where
each tag is flagged with a time interval value which
increments periodically. The tags then have “time
stamps” related to when they were last accessed. Several
tags may have been accessed during the same interval,
of course. Purging takes place on the oldest time stamps,
based upon the fact that those tags least frequently
accessed will have the oldest time stamps and are
therefore statistically safe to purge and replace. The
associative nature of the CAM allows a one cycle
purging of all entries with the same time stamp.

The LFU approach purges not just the least recently
used tag as in an LRU approach, but rather all the oldest
tags within some time period. Previous caching schemes
with small tag buffers preferred the LRU approach
because of that distinction, but with today’s larger tag
buffers and the degree of multi-tasking, file access, and
subroutine execution, LFU techniques have become
more commonplace.

The third major approach is a random replacement
scheme where tags are arbitrarily purged when the CAM
is full, using some pseudo random number generation
algorithm to target randomly selected CAM addresses
for replacement.

The random replacement method is the simplest to
implement, and causes very little overhead in hardware
and software, since no markers are used at all. Tags and

2. Least Frequently Used (LFU)

Another LRU approach is to merely flag each location
as it is accessed with an ever-increasing (or decreasing)
number, indicating the order of access. When the CAM
is full, the lowest (or highest) numbered locations are
purged. Assigning an incrementing number value to each
tag access operation is only a little more efficient, since
it still requires another operation after each tag access.
Also, there is a limit to the maximum number that can be
assigned, since a limited number of bits are available to
assign to the LRU flag. One approach to this problem is
to clear all the LRU value flags and start numbering over
again. Another is to reduce each assigned number by a
fixed offset after purging an identical amount of the
oldest locations. Both of these procedures require
repetitive operations to examine each tag location for its
counter value and reset it, which reduce the efficiency
of these approaches.

3. Random Replacement

Application Note AN-N3

Rev. 1a7

SUMMARY

In light of the above considerations, an LFU replacement
scheme might be most effective overall. Because the
MU9C1480A has 1024 entries, even after many tags have
been stored, a considerable length of time is likely to have
passed, and the probability is quite high that the Least
Frequently Used tag is also the Least Recently Used tag.
Also, all the necessary LFU markers can be easily contained
within the CAM itself with no appreciable performance
degradation. The functionality of the CAM lends itself to
rapid purging of LFU tags in the background, and also to
expedient flagging of the locations as they are “hit,” or
accessed, with the least execution time penalty. Only a few
Associated Data partition bits need be used, since a fairly
long time interval can be used and one to eight bits of time
stamp should suffice. Using eight bits of the RAM partition
for LFU time stamping would still leave 24 bits for the actual
address pointer field of the virtual blocks, which allows 16
million words of virtual storage.

TIME STAMPING AND PURGING

The methodology of time stamping takes advantage of a
few features of the device itself. Due to the flexibility of the
Segment Control register within the MU9C1480A, the upper
32 bits of the 64-bit Comparand register can be written with
the desired search tag, leaving the lower 32 bits untouched
as an additional storage resource. Periodically, when the
processor-maintained time base changes, the new value of
the time stamp can be written into the lower portion of the
Comparand register, remaining there until overwritten by
another time stamp value.

If the search for the desired tag is successful, the state
diagram of Figure 5 on page 4 is modified by adding a MOV
HM,CR[MR1] instruction to the state loop between the
second Data Write cycle and the first Data Read cycle. In
this instruction, Mask Register 1 masks all bits except the
time stamp bits, so the previously stored tag and its
associated virtual address pointer are not altered by the
move operation. Because the time stamp modification is
infrequent, it can be considered a background operation
and of little consequence to system latency time. This LFU
approach satisfies the need to minimize access cycles during
foreground virtual access operations, since it takes only
one CAM cycle to update the time stamp, with no external
memory references or specialized hardware, and utilizes the
CAM functionality to locate and purge the oldest entries.
When purging is necessary, an explicit compare operation
on only the time stamp bits is executed using the same
 mask, so that only the locations with the oldest time stamp
match and can be purged with a VBC ALM,E instruction,
which changes the validity bits for all matching locations
to “Empty.”

RE-ALLOCATION OF MEMORY

An additional replacement issue involves reallocating the
actual memory space in the virtual memory allocation map
to permit the installation of new tags after purging the old.
Obviously, when a tag is purged from the CAM, the actual
memory space occupied by the virtual routine is now
available, and can be reallocated by the virtual memory
driver, which needs to know which locations have become
free. There are several ways in which this can be done,
depending upon system constraints and requirements. It
is assumed that the virtual memory driver has kept track of
just where in main memory each virtual routine had been
stored when it was added to the virtual area, and that each
file stored has a length marker, offset, or end address
contained within itself. The operating system would store
within its allocation table the length or stop address of
each virtual file when it is first tagged and stored in main
memory. This information can be used during the purge
routine to reallocate, or flag as “available,” the main memory
space occupied by a virtual file whose tag has been purged.

blocks are randomly purged on the assumption that once
purged, they can be reinstalled if called again. The more
random the purge and the larger the tag buffer, the lower
the probability of deleting a frequently used tag. Obviously,
a larger tag buffer minimizes the “miss” probability, so that
system performance is maximized. “Hit” or “miss”
performance is not deterministic, however. Having no
additional foreground hardware or software overhead to
conduct a more complex purge compensates somewhat for
the difference. Random replacement may often be the
fastest overall purging method.

Application Note AN-N3

Rev. 1a 8

One re-allocation method is to modify the above purge
routine so that when the explicit compare operation is done
to locate virtual tags with the oldest LFU tag, the associated
data RAM field (the actual memory address of the virtual
routine) of the Highest-priority match is read from the
MU9C1480A LANCAM, and that actual address is directly
passed to the operating system memory allocation driver
and used to flag the starting location of the memory space
to be reallocated. The allocation map should already know
the size of the virtual file, so the correct amount of memory
can be reallocated directly. The purge procedure then
includes a VBC HM,E instruction to empty the first
Highest-priority matching tag location after reading its
associated data field for the actual address pointer, followed
by a CMP V instruction which will find the next matching
tag location, and so on. The purge time can be improved if
the virtual addresses to be purged and reallocated are read
from the CAM into a file by the system, and then acted
upon for re-allocation after the CAM purge is completed.
With this approach, the time that the purge routine accesses
the CAM is minimized, and the actual main memory
re-allocation can be done as a background operation by
the system. A second approach for determining which
areas in virtual memory are to be reallocated requires fewer
foreground CAM cycles, but requires more system
background execution time. If the CAM purge routine
follows the steps as given above, and just purges all the
oldest entries at once using a VBC ALM,E instruction, the
number of CAM access cycles is minimized. In order to
determine which tags were purged and which actual
memory locations can be reallocated, the system returns to
the CAM in a background operation and performs a read of
all valid locations to learn which virtual tags and their actual
addresses still exist in the CAM. This information can be
read into a system file and compared off-line with the
previous memory allocation map maintained by the system.
The virtual addresses which exist in the system allocation
map but not in the CAM array, have been purged, and can
therefore have their memory space reassigned. This
approach is the reverse of the previous approach, and has
the constraint that the system needs to return to the CAM
to read the existing tags and reallocate space before the
available virtual storage area of main memory is full.

LEARNING

To facilitate learning and storage of new tags, the
MU9C1480A has a powerful “Move Comparand to the Next
Free Address, set Valid” (MOV NF,CR,V) instruction. When
a file handle or subroutine address is presented to the
Comparand register and a “no match” occurs, the system
memory management supervisor can issue a MOV NF,CR,V
instruction to the CAM, and the non-matching tag in the
Comparand register will be copied to the Next Free location
in the MU9C1480A, which is the lowest numbered empty
location. An internal priority encoder automatically keeps
track of the Next Free location, so the addition of new tags
is straightforward and requires very little overhead. Before
issuing the MOV NF,CR,V command to the device, the
system must determine where it wants to put the virtual
block in actual memory, so that the actual address pointer
can be moved to the lower portion of the Next Free location
along with the tag in the upper portion. The internal
Segment Control register can be used to load the actual
address pointer into the lower portion of the Comparand
register, while the tag occupies the upper portion.

DISK CACHING USING CAMs

Based on the foregoing discussion, it is necessary to
consider some additional circumstances unique to disk
cache virtual memory designs, particularly if full file names
are used as the tag pointing to the virtual file area. Whereas
main memory location tags may find 32 bits of tag sufficient,
caching based upon disk file names may require a
significantly wider tag word, because file names may be 11
or more characters long, each character comprising seven
or eight bits. One approach is to use the power of the CAM
associative look up to locate the long word by using
multiple CAM locations to store the full file name, and
execute more than one compare cycle to find each part of
the file name which is stored in more than one location
using additional bits to identify partial words. The basic
function is the same as described earlier, but with the added
complexity of storing sections of each file name in separate
CAM locations along with appended flag bits to identify
matching partial words.

Application Note AN-N3

Rev. 1a9

Another approach uses two CAMs in parallel, each with a
part of the file name stored in it, and searches in parallel to
find the virtual file tag. In this approach, the file name
sections are stored in identical locations in each CAM, so
that similar file names having a partial match on a portion of
the name do not result in erroneous match detection. The
address of the matching location in each CAM is read to
assure detection of the correct complete file name. If a match
occurs at different locations in each CAM, it is the same as
a “no match” condition; the file is not in virtual memory,
because the match was only partial. This condition could
occur if different file names are stored with identical upper
or lower sections to the desired one, but not both upper
and lower. If the desired file name also existed in the CAMs,
multiple matches might occur in one or both CAMs. In that
case, only the matching locations which have identical
addresses in both CAMs are the correct match. The
MU9C1480A provides a convenient method to process
multiple matches for location of the correct match.

PARALLEL CAM EXAMPLE

The operational sequence would be as follows, assuming
an 11 character file name. Divide the file names, as they are
loaded into the CAMs, into upper and lower sections. In
the example shown in Figure 7, an eight character lower
section is loaded into CAM 0, and a four character upper
section is loaded into CAM 1. Segments 0 and 1 of CAM 1
will be loaded with the actual address pointer to the virtual
file location in main memory. 32 bits are set as an associated
data RAM partition, with 24 bits for the actual address
value and the eight remaining bits reserved for time stamps
as described earlier. Names shorter than 12 characters can
be padded out with some illegal value.

Although the method uses a parallel arrangement of CAMs,
they can be loaded and read sequentially, depending upon
the system bus width. An external means of control must
be provided to synchronize the data bus inputs to the
CAMs via separate control of their /E input enable pins, to
sequence the upper and lower portions of the file name and
the vector in the associated data partition of CAM 1. The
external control must also read the match flag from each
CAM and then examine the Status registers of each CAM
in turn to determine if the match addresses are equal. The
external control logic will also need a 10-bit comparator to
detect match address equivalence between the two CAMs.
If the match addresses are equal, the file resides in virtual

memory, and the associated data is read from segments 0
and 1 of CAM 1 to fetch the actual starting address of the
virtual file.

If the match addresses are unequal, it is a “no-match,” and
the tag is not in virtual memory. If multiple matches occur
(detected by reading the MM bit in the CAMs Status
registers), the multiple matches are interrogated
sequentially until a match location equal in both CAMs is
found. This might occur if file names such as
“ANYFILE1.DOC,” and “ANYFILE1.WK1” are stored, as
in the example of Figure 7. For simplicity, the upper portion
of a file name is shown stored in CAM 1, but this is likely to
result in numerous “alias” multiple matches.
“ANYFILE1.DOC” and “ANYFILE1.WK1” will have a
multiple match in CAM 0 but only one match in CAM 1.
The Status register of CAM 1 is read to fetch the match
address and retained externally to the CAM. The Status
register of CAM 0 is then read to determine the first matching
address of the multiple match. If equal to the address in
CAM 1, the match is valid, and the actual address vector
can be read from CAM 1 and the file executed. If not equal,
the match location in CAM 0 is set to “skip” by a VBC
HM,S instruction, and a CMP V instruction is executed in
CAM 0. This compare will find the next matching location.
The Status register is again read, and if equal to that in
CAM 1, the match is valid. After reading the associated
data to fetch the actual vector, the skipped location(s) must
be set back to “valid” to enable future comparisons. To do

Figure 7: File Name Example

CAM 1 WORD
Upper File Tag Portion with

Actual Address Vector and Time Stamp

 63 47 31 23 0

Actual Address
Vector

Time
Stamp

D O C *

A N

CAM 0 WORD
Lower File Tag Portion

Y F I L E 1

 63 47 31 15 0

Application Note AN-N3

Rev. 1a 10

that, a CMP S instruction is now executed to compare only
those locations set to “skip” with the contents of the
Comparand register. Next a VBC ALM,V instruction is
executed to set all the matching skipped locations back to
“valid.”

ADDITIONAL CONSIDERATIONS

Multiple matches due to common file name extensions can
be minimized if short file names are right justified rather
than left justified as shown in Figure 7. The padding would
be in the high order CAM 0 bits in that case. The associated
data vector could be in CAM 0, so more primary file name
characters are in the same CAM as the extension, minimizing
multiple matches. The best method to minimize the
probability of multiple matches on “alias” names is to
alternate characters between the two CAMs, rather than
merely splitting the file name at some point in length.

The primary caution for this methodology is that both
CAMs must be initially set to the same number of empty
and RAM-only locations, if used, to maintain synchronicity
between the CAMs, so that when new file name tags are
added, they will load to the same location in each CAM
when the “Move to Next Free Address” instruction is used
for learning a new tag.

The procedure for finding the aged time stamp will be the
same as the given above for CAM 1; but once CAM 1 is
purged, the empty locations must be found and the
equivalent addresses in CAM 0 set to empty to maintain
the identical available locations. This is accomplished by
executing a CMP E instruction in CAM 1 after the purge
cycle, and locating the empty addresses by reading the
Status register after the match, then setting the first empty
location found to “skip” as in the previous example of
multiple match processing, and repeating the CMP E, Status
Read, and VBC HM,S procedure, until all matching empty
locations are found. The CMP E instruction compares only
the empty validity bits, regardless of memory content, so
no masking need be done to find empty locations.

CONCLUSION

The major features of the MU9C1480A LANCAM in virtual
memory tag buffer are its word width, memory depth,
associated data partitioning, and internal instruction set.
The width provides ample addressing capability without
offset calculations, and the partition capability allows the
powerful function of intrinsic virtual block addressing. Its
capacity and dual associativity with partitioning
combination, and the ease of Next Free Address learning
enables efficient replacement, further reducing system
latency time. Integration of the MU9C1480A virtual memory
scheme into a memory management system can be achieved
without requiring modification to the operating system or
BIOS by the use of a virtual memory driver program to
intercept disk file calls. The combination of the CAM tag
buffer, control logic, and virtual driver can be transparently
placed between the operating system and the disk
controller.

These combinations of features, coupled with the ability to
locate a large amount of virtual storage anywhere in memory
at essentially random addresses, gives the CAM solution
an advantage over fast SRAM or small cache tag buffers.
The ability of the MU9C1480A LANCAM to easily point to
any arbitrary memory area as a virtual block for storage of
any size file should give significant acceleration to virtual
or mass memory storage systems.

ACKNOWLEDGMENTS:

Teuvo Kohonen, “Content-Addressable Memories” 2nd
Edition 1987 Springer-Verlag

Application Note AN-N3

Rev. 1a11

NOTES

Application Note AN-N3

Rev. 1a 12

NOTES

European Headquarters
MUSIC Semiconductors
Torenstraat 28
6471 JX Eygelshoven
Netherlands
Tel: +31 45 5462177
Fax: +31 45 5463663

MUSIC Semiconductors reserves the right to make changes to
its products and specifications at any time in order to improve
on performance, manufacturability, or reliability. Information
furnished by MUSIC is believed to be accurate, but no
responsibility is assumed by MUSIC Semiconductors for the use
of said information, nor for any infringement of patents or of
other third party rights which may result from said use. No
license is granted by implication or otherwise under any patent
or patent rights of any MUSIC company.
©Copyright 1998, MUSIC Semiconductors

MUSIC Semiconductors Agent or Distributor:

USA Headquarters
MUSIC Semiconductors
254 B Mountain Avenue
Hackettstown, New Jersey 07840
USA
Tel: 908/979-1010
Fax: 908/979-1035
USA Only: 800/933-1550 Tech. Support

 888/226-6874 Product Info.

Asian Headquarters
MUSIC Semiconductors
Special Export Processing Zone 1
Carmelray Industrial Park
Canlubang, Calamba, Laguna
Philippines
Tel: +63 49 549 1480
Fax: +63 49 549 1023
Sales Tel/Fax: +632 723 62 15

http://www.music-ic.com
email: info@music-ic.com

