
MUSIC Semiconductors® reserves the right to make changes to this product without notice for the purpose of improving design or performance
characteristics. MUSIC is a trademark of MUSIC Semiconductors. The phrase “MUSIC Semiconductors”, the MUSIC logo, and LANCAM are
registered trademarks of MUSIC Semiconductors. Windows is a trademark of Microsoft® Corporation.

Using The CAMSimTMWorkbench Simulator
by Ray Parry and Mike Clausen

 APPLICATION NOTE
AN - N2

1.0 INTRODUCTION

The CAMSim Workbench is a software program that simulates
the functional operation of the MUSIC’s Mu9C1640 CacheCAM
and MU9C1480 LANCAM Content-addressable Memory
devices. CAMSim allows the user to execute the instruction set
manually or by using a data file and to monitor the changes in
the internal CAM memory array and registers, as well as the
resulting data and match outputs.

What You Need to Get Started

• A copy of the CAMSim Workbench (Available on a 3.5"
 diskette)

• This Application note
• Either the MU9C1640 CacheCAM Data Sheet or the

 MU9C1480 LANCAM Handbook

CAMSim runs under Windows 3.1 on a 386 or 486 Compatible
computer with a minimum of 2MB RAM and a mouse.

Disk Contents

README.TXT
SETUP.EXE
SETUP.INF
INIT.DAT*
INCRE.DAT*
INPUT.DAT*
RESET.DAT*
STATUS.DAT*
TRANSVAR.CWB
FLAGS.CWB
IRX.CWB
REG.CWB
VECTORX.CWB
CWB.EXE
CWB.HLP
METER.DLL

(* indicates sample files)

2.0 INSTALLATION

The installation of the CAMSim under Windows 3.1 is
performed automatically by the Setup program on the
distribution disk, with all the files stored to a directory named
CAMSim by default. Since the files on the distribution disk are
not compressed, CAMSim can also be installed by copying all
the files directly to a directory on a hard disk and executing it
from Windows File Manager. Finally, the program will run

directly from the floppy if desired. The disk is not copy
protected, and a backup copy should be made and the original
disk stored for safe-keeping.

Installation Under Windows 3.1

Step 1: Turn on the computer. Select Windows by either
having it called in your autoexec.bat file on boot-up, or by typing
"win" from your DOS prompt.

Step 2: When the Windows Program Manager screen is
displayed, insert the CAMSim Workbench distribution disk into
the floppy drive. With your mouse, click and drag on File and
release on Run. At the Run dialog box, type in "A:\SETUP"
(assuming that the CAMSim disk is in the A: drive), and hit
<return>, or click on the OK box.

Step 3: A CAMSim Workbench Dialog box will appear to
inform you that the Setup program will create a directory called
C:\CAMSIM and install the simulator to it unless you type in a
different directory of your own choosing. Enter <return> or click
on the OK box when you are satisfied with the directory name,
and the Setup program will proceed with installation.

Step 4: A thermometer will keep you informed of the
installation progress, and if it is successful, a dialog box will
appear to inform you of that. Hit <return> or click on the OK box
to return to the Program Manager.

Step 5: You'll see that the Setup program created a Program
Group called CAMSim Workbench with the MUSIC icon in it.
You can move the CAMSim icon to another Program Group,
such as Main or Applications by clicking and dragging it with the
mouse (and then selecting and deleting the CAMSim
Workbench Program Group) or, by selecting Window Tile,
arrange the screen to incorporate the CAMSim Workbench as
part of the Windows display. The icon is a pointer to where the
CAMSim Workbench files are stored in the directory structure.
The CAMSim Workbench is now installed to operate under
Windows.

3.0 USING THE LANCAM WORKBENCH

To use the CAMSim Workbench, double-click on the CAMSim
Workbench icon, and then click on the OK box in the copyright
dialog box that will appear. The Workbench will appear with the
following Pull-Down menus: File, Edit, Search, Window,
Commands, Run, and Help. To display the simulator itself, click
on the Run menu and pull down to CAMSim Simulator, wAhich
will bring up the simulator screen with all the
CacheCAM/LANCAM registers and memory locations

April 15, 1997 Rev. 2.5

®MUSIC
S E M I C O N D U C T O R S

I

Rev. 2.5
2

 AN - N2 MUSIC Semiconductors®

displayed and filled with "X"s to indicate that the values are
unknown. The simulator operation is controlled by the six
buttons to the right: File..., Run..., Pause, Next, Execute, and
Restart. Clicking on the Maximize (^) button in the upper right
corner of the CAMSim window displays the Comparand and
Mask registers at the bottom of the screen.

The Menus

The File menu allows you to open a New edit window for a data
file (See data file preparation). It also allows you to Open an
existing data file edit window for revising or generating vectors.
Vector generation for use with the simulator is done on an open
data file edit window. Multiple data files can be open at the
same time, but only the currently active file is available for
vector generation. You need to Save your data file with a .dat
extension for future use.

The Edit menu provides the standard Windows edit tools to use
with your data file edit window.

The Search menu provides the standard Find and Replace edit
tools to use with your data file edit window.

The Window menu allows you to select between your current
open windows.

The Commands menu provides the CacheCAM/LANCAM
command set for insertion into the simulator window or into edit
windows.

The Run menu allows you to bring up the CAMSim Simulator,
or to Generate Vectors from an active data file edit window. It
also permits selecting Logging, which will generate a .log file
of a simulation.

The Help menu will give you access to the Windows help
library. Refer to the CacheCAM or the LANCAM Handbook for
more information.

The Registers

At the top of the screen are displayed the internal registers of
the device: the 16-bit Page Address, Device Select, Address,
Instruction, Control, and Segment Contol registers, the 10-bit
Next Free Address register and the 32-bit Status register. When
the Window Maximize button is pressed, the bottom of the
screen displays the Comparand register and the two Mask
registers, which are 64 bits in width. Each bit can be displayed
as an "X", indicating an "unknown" state of the bit at power-up,
or a "1" or "0" after having been set by loading information into
the register.

The CAM Memory Array

The Memory Array Display ("CAM") at the left side of the screen
is composed of 1024 entries, displayed as 4 groups of 4-digit
hexadecimal words representing the 64 bits of stored
information. Each group represents a 16-bit segment of the
memory, with the Most Significant word at the left, and the Least
Significant word at the right. Each memory entry is followed by
three bits, denoted as "s e m." The first bit in this group is the
"Skip" bit, which is a "0" if the entry is not skipped. The second

bit is the "Empty" bit, which is a "1" if the entry is empty. The
third bit represents the internal "Match" line for that entry, and is
a "1" if that particular entry was a match during an automatic or
forced compare operation. At power-up, each bit in memory is
an "X" to indicate its unknown state. When loaded with data, the
memory digits become hexadecimal characters (0-F), and the
"s e m" bits are "0" or "1."

The Input Display

The Inputs to the device are displayed as two boxes for
(Command) Type and (Command or) Data Bus value, and as
three Input Control Flags (/MI, /FI, /EC) for setting the two Flag
inputs and the Enable Compare input, over to the right of the
Command input boxes. The Command Type is the left-most
box, and can be either "Command_write," "Command_read,"
"Data_write," "Data_read" or "Dummy." This box is loaded in
one of five ways: manually clicking on the box and typing in the
Command type; pulling down the Commands menu and
selecting a command, which will automatically fill in the
Command type as a "Command-write"; pulling down the
Commands menu and selecting User Defined, which allows
you to select a Command type; clicking and dragging on the
arrow box next to the Command Type input box; or by reading
the Command type from a vector file.

The Command or Data Bus value box is where the actual
instruction, address, or data value is input. Again, input to this
box is by a variety of methods: manually clicking on the box and
typing in the desired instruction; pulling down the Commands
menu and selecting an instruction, which will automatically fill in
the Command or Data Bus value box; pulling down the
Commands menu and selecting User Defined, which allows
you to select a Command type and then replacing the "0x0000"
that automatically appears in the Data Bus value box with the
desired value; or by reading the Instruction or Data Bus value
from a vector file. Input data is represented in Hexadecimal
form, with the "0x" being a prefix denoting Hexadecimal.

Check boxes are provided to change the default settings for the
/MI, /FI, or /EC pins. When an instruction is selected from the
Commands menu, these values are automatically set to
/MI=HIGH, /FI=LOW, and /EC=HIGH or LOW. It is important to
check that the proper value of /EC is loaded with each
instruction. Normally, /EC is HIGH except when you want to do
a compare on data and then needs to be over-ridden to LOW
on the last data segment input to the Comparand register to
allow the daisy chain to reflect the match output. In these boxes,
a HIGH is indicated by an "X" and a LOW by a blank box.
Clicking on the box will reverse the setting.

The Output Display

On the lower left of the screen are two boxes, one labeled /MF
and the other /FF. These two display the outputs of the /MF and
/FF pins. If an "X" is displayed in a box, the output is HIGH. If it's
blank, the output is LOW. If these levels go LOW, they are also
stored in the History Log, and on the .log file, if that is enabled.
To the right of these boxes, under the input Data Bus are 16 bits
representing the output data bus. In the CacheCAM and
LANCAM, the input and output data busses are the same
bi-directional three-state bus. When data is read out, it will be
displayed here in binary form, as "1"s, "0"s, or as "+"s when the

Rev. 2.5
3

AN - N2MUSIC Semiconductors®

bus is high impedance or Three-state. This data will also be
shown in the History Log in Hexadecimal form. If the output was
Three-state, that will be displayed as "0xxxxx."

The History Log and “.log” Files

On the right of the screen under the Push buttons is a small box
with scrolling capability. In this box are stored the last 20
instructions given the device along with any data output during
reads as well as the /MF and /FF symbols which, if recorded,
indicate that those flags went LOW during the given operation.
The most recent instruction is at the top of the list, and using the
scroll box will allow you to view the preceeding instructions. If
you want to log the entire command sequence, selecting
Logging from the Run menu will open a dialog box requesting
a filename with the extension ".log." Type in a filename.log and
the simulator will store the entire list of instructions and outputs
from a lengthy command sequence. Also stored in the file are
screen updates which include all changes to the registers.
Additionally, all changes to the memory array that are visible on
the display are recorded. The filename.log file can be viewed
by opening an edit window and typing in filename.log. It can
also be viewed from DOS edit by typing "EDIT filename.log."

The Push Buttons

On the right side of the screen are six push buttons that control
that operation of the simulator. These are activated by clicking
on them with the mouse.

File... The File button brings up a window that asks you to
select a vector file for running on the simulator. It displays the
list of .vec files currently in the directory. You can either type the
name in, or double-click on the file name you want from the list
displayed. A .vec file must be selected for the simulator to run
prior to pressing the Run... button.

Run... The Run... button executes the vector file loaded above.
The execution of instructions will proceed automatically unless
halted by encountering an error or a Stop instruction in the
original data file; pressing the Pause button; or reaching the
end of file. If interrupted by an error, or an instruction that can't
be processed, a dialog box will display an error message and
ask whether you want to continue by pressing OK or Cancel.
Clicking on Cancel will stop the execution so you can examine
the history of instructions in the History Log and the present
state of the simulated device registers and outputs. You can
then continue the execution step by step using the Next and
Execute buttons, or in a continuous stream by clicking on the
Run... button. Clicking on OK will continue with the instruction
execution.

Pause The Pause button stops the execution of instructions
started by the Run... button. This allows you to look at the
history of instructions in the History Log, the state of the
simulated device registers and outputs, and if desired, to
proceed one instruction at a time by using the Next and Execute
buttons. Pressing the Run... button will continue the instruction
execution in a continuous stream.

Next The Next button reads in the next instruction and needs

to be followed by pressing the Execute button, which will allow
you to single step through an instruction list in a vector file.

Execute The Execute button causes an instruction to be
executed in the simulator. The instruction can come from either
a vector file loaded into the simulator with the Next button, or
from entering it into the input data boxes, either manually or
from the Commands menu.

Restart The Restart button returns the simulator to its
power-up state, where all the registers and memory locations
are represented by "X"s, indicating unknown states.

4.0 A SAMPLE SIMULATION

The simulator has two ways to load instructions and data to
exercise the device: manually one instruction at a time, or
through input files that allow you to give the simulated device
a series of instructions that can either be executed one at a
time, or in a continuous string. To get a feel for how the
simulator performs, open one of the data files by clicking and
pulling down File Open. The dialog box will display a list of the
available data files in the C:\camsim directory. You can either
double-click on one of the files listed, change directories by
double-clicking on one in the directory column, or typing in a
path and file (with the extension .dat). Double-clicking on
"init.dat" will bring up an Edit window with the "init.dat" file
displayed. Each line displays an instruction to be issued to the
LANCAM with the Command Type (e.g., "CW"), the Command
Code or Data (e.g., "TCO_DS" or "0X0000"), followed by three
input signals. You can scroll through the list of instructions by
clicking and dragging on the scroll box or clicking in the scroll
bar. Note that spaces are used in an instruction to separate the
various parts. Note also that For-loop sections have a different
format.

The simulator uses vector files to input instructions that are
generated from these data files. To generate the "init.vec" file
from the "init.dat" file, click and pull-down the Run Generate
Vectors menu. A dialog box appears giving you a running status
on the generation of the vector file from the open data file. Click
on the OK box when "Success" appears next to "Status." You
can close the data file if you want by clicking and dragging on
the File Save menu, or you can keep it active and switch to the
simulator window by clicking on it. At this point, you need to
select the "init.vec" file to load the LANCAM by clicking on the
File... button, which brings up the File Open dialog box. Again,
the vector file is selected by double-clicking on it, changing
directories, or typing it in directly. Click on "init.vec" to load that
file into the simulator.

At this point, you can choose to step through the instruction list
in the "init.dat" ("init.vec") file one line at a time or in a
continuous string. To step through, click on the Next button.
This loads the first instruction into the Input Type and Data Bus
fields. Clicking on the Execute button causes this instruction
(command_write SPS_CR) to load into the Instruction Register
as all zeroes (the Op Code for an SPS_CR is "0x0000," where
the 0x prefix indicates a Hexadecimal number; without the 0x
prefix, the number would be considered decimal). Clicking the
Next button again brings up the next instruction
(command_write TCO_DS) and clicking the Execute button
shows the change to the Instruction register. Note that both

Rev. 2.5
4

 AN - N2 MUSIC Semiconductors®

instructions are listed in a window in the lower right that keeps
a record of the last 20 instructions. Logging can also be turned
on to keep a record of all the instructions issued and data
output, as well as other useful information.

At this point, to complete executing the file in a continuous
string, click on the Run... button. As you can see, the
instructions load the first 50 entries of the CAM memory with
data. After loading the data, different data is loaded into the
Comparand register, and when the compare happens, no
match occurs, resulting in the Warning dialog box, that the Data
Move instruction is ignored. This is because no match occured
with /EC taken LOW. If you now click on Cancel, the simulator
is paused so that you can review the instruction list up to this
point. If you click on OK, the execution of the instruction list
continues as before. A Warning box appears when the last
instruction is executed. Clicking on OK returns you to the
simulator, ready for additional instructions to be entered
manually or by another file.

5.0 DATA FILE PREPARATION

To simplify running longer routines, data files can be prepared
by using any editor, including the Windows editor. Clicking and
dragging on File New will bring up the Edit Windows dialog box,
with a new, unnamed file ready for entering instructions. The
instruction format for these files is:

Command_type Command/Data Flags (MI FI EC)

with each field separated by one or more spaces. A typical
instruction might look like this:

cw SPD_M@[AR],V MI_HI FI_LO EC_HI

Review Appendix A for a sample of a properly formatted data
file for Windows. These files are stored as filename.dat. To be
turned into vector files for use by the simulator, click and drag
down to Generate Vectors on the Run menu, and when the
dialog box appears, double-click on the filename you have
assigned. A vector file will be generated having the same
filename but with a .vec extension.

Command Type

Command_types correspond to the type of cycle you want the
simulated device to execute, and correspond to the levels of the
input pins /CM and /W.

Command_type /CM /W Abbreviation
===
Command_write LO LO CW or cw
Command_read LO HI CR or cr
Data_write HI LO DW or dw
Data_read HI HI DR or dr

For an instruction line, one of the above needs to start the line.
Abbreviations can be used. If using the Windows editor, clicking
and dragging on the Commands User Defined menu, will bring
up another menu where the first four are available. Moving the
mouse to one of them and then releasing the button will insert
that command_type into the edit window at the cursor location.

The Command_or_Data field will be filled with "0x0000" which
you can replace with either the Instruction you desire for a
Command_write, or the data you want for a Data_write. For
Command_reads or Data_reads, the input value in this field is
ignored (but a value must be in the field).

Command or Data

The next field contains the command to be written to the
simulated device. The allowable command set is listed in the
CacheCAM or LANCAM documentation, and is also available
on the pull-down Commands menu. It is important that the data
file commands be written exactly as shown in Appendix B for
proper parsing of the instruction by the vector generation
program. Clicking and dragging to the command you want from
the menu bar will insert it in the edit window at the cursor
location to save you having to type each one. Also inserted will
be the Command type, and the three input Flags in their typical
settings. These Flag settings may need to be changed as
appropriate, but the order they are in must be as in the
examples.

Input Control Flags

The Input Control Flags can be either typed into the data file by
hand, or inserted in a default form when you click and drag to
a command from the Command menu. Check to see that the
flag conditions are the ones you want, particularly the state of
EC.

MI = The state of the Match Input pin. MI_HI means that
either this is a single chip with the /MI pin tied HIGH, or if it's in
a string of chips, that no chip ahead of it in the daisy-chain has
a match, thus selecting this chip for detecting Highest-priority
Matches. If MI were LOW (MI_LO), it would indicate that a prior
chip has a match indicated, and that chip would receive
Highest-priority Match operations. Normally, you would set
MI_HI.

FI = The state of the Full Input pin. FI_LO means that either
this is a single chip with the /FI pin tied LOW, or if it's in a string
of chips, that all the chips ahead of it in the daisy-chain are full,
thus selecting this chip for Next Free Address operations. If FI
were HIGH (FI_HI), that would indicate that a prior chip has
empty locations, and that chip would receive Next Free Address
operations. Normally, you would set FI_LO.

EC = The state of the /EC input pin. This pin enables the
/MF output pin to reflect the presence of the detection of an
internal match. If /EC is HIGH (EC_HI), then /MF only reflects
the state of /MI, and any internal match detected on this chip is
not shown on the /MF pin. If /EC is LOW (EC_LO), then /MF
will go LOW if an internal match is detected. /EC also controls
the daisy-chain locking mechanism, whereby only the
Highest-priority chip can respond after a match is detected.
Thus, normally, you only take /EC LOW on the last data
segment loaded into the Comparand register, so that the results
of the automatic compare can be shown on the /MF pin. If you
are not using hardware flags in your application, but only
reading the status register for the results of a compare, you
might wish to keep /EC HIGH.

Rev. 2.5
5

AN - N2MUSIC Semiconductors®

A NOP instruction allows /EC to be taken HIGH after a
"no-match," for example, to unlock the daisy chain without
altering any register or memory contents.

Other Instructions

The following additional instructions are similar to those used in
"C," and will help in data file preparation and documentation.

 ! or /* These indicate comment lines. Comments must be on
separate lines from instructions.

#define This defines a constant to be used in the routine. Each
constant must be separately defined. The format is as follows:

#define MEMSIZE

variable or, var This defines variables, one per line, to be
used within for...loops, as in:

var pattern
FOR pattern = 0 LT 10
dw pattern MI_HI FI_LO EC_HI
LOOP

for...loop For...loops are like Do loops or For...next
statements. Here, "i" does not need to be pre-defined as a
variable, since it's not used within the loop. The format for a
For...loop is as follows: (each item in the "for" statement must
be separated by spaces)

for i = n condition m
instructions
loop

where i is any variable, defined or not, n is a start constant, m
is a finish constant , and condition is one of: LT (Less Than),
GT (Greater Than), LE (Less Than or Equal), and GE (Greater
Than or Equal). For...loops cannot be nested.

repeat n This is used to repeat a command n times, as in:

repeat 4 dw 0x0000 MI_HI FI_LO EC_HI

which will do four data writes of all zeroes. These can be
combined to fill the CAM memory by doing:

for i = 0 LE 1023
repeat 4 dw 0x0000 MI_HI FI_LO EC_HI
loop

stop This inserts a breakpoint in the file simulation. The
simulation will halt and a dialog box will appear giving you the
choice to continue by pressing "OK," or to stop by pressing
"Cancel."

6.0 ERROR MESSAGES

"Error, couldn't parse xxxxxxxxx."

During vector generation, the parser had difficulty with a
specific entry in the filename.dat file. Check the command
against the listing in Appendix B.

"Bits n and m in the control register are set illegally." or "Control
register bits n and m are set illegally."

You need to check your setting of the Control Register during
a TCO_CT command for proper selection.

"The xxxxxxxxxx instruction is ignored."

This would indicate that the simulator expected a different
next instruction, such as a value following a two-step
command, or that a no-match was found after a Compare,
so that the chip can't respond until you unlock it by taking
/EC HIGH.

"There is no match."

The command issued or command sequence was not
recognized by the simulator as proper or expected under
the existing conditions.

"Warning, a Data Read or Data Write cycle was interrupted
before the Segment count was complete."

This indicates that the Segment counter had not finished the
incrementing the segment count before it was interrupted.
This is allowable, but it means that it will resume counting
where it left off at the next DW or DR cycle, rather than
resetting itself, with erroneous segment reading or writing
likely.

"No more vectors in this file."

You have reached the end of the filename.vec input file to the
simulator. You may now execute instructions step-by-step,
load another vector file for execution from this point, or start
over by clicking on the Restart button.

"Need to open a file for reading first."

The simulator needs a filename.vec input file to be selected
for execution. Click on the File... button and select a .vec
file by double-clicking on it, or typing its name into the entry
box and hitting return, before clicking on Run....

"Conversion to decimal overflow." or "Conversion to binary with
negative number. Integers must be less than 32767."

Constants and variables must be positive integers less than
32767.

"Not enough memory to run CAMSim. Try closing other
applications."

You need 2 Megabytes of RAM or greater to run Windows
and the simulator at the same time.

7.0 WHO TO CALL FOR HELP

For assistance in running the simulator, or information on the
MUSIC Semiconductors' MU9C1480 LANCAM or MU9C1640
CacheCAM, please call the MUSIC sales office near you.

Rev. 2.5
6

 AN - N2 MUSIC Semiconductors®

Appendix A, Listing of Sample File "init.dat"

CW 0x0000 MI_HI FI_LO EC_HI ! Initializes internal State machine
CW TCO_DS MI_HI FI_LO EC_HI ! Targets Device Select register
CW 0xFFFF MI_HI FI_LO EC_HI ! Selects all chips
CW TCO_CT MI_HI FI_LO EC_HI ! Targets Control register
CW 0x0000 MI_HI FI_LO EC_HI ! Resets chip
CW TCO_PA MI_HI FI_LO EC_HI ! Targets Page Address register
CW 0xABCD MI_HI FI_LO EC_HI ! Sets chip for address 'ABCD'
CW TCO_CT MI_HI FI_LO EC_HI ! Targets Control register
CW 0x8040 MI_HI FI_LO EC_HI ! Sets 48 bits CAM
CW TCO_SC MI_HI FI_LO EC_HI ! Targets Segment Control register
CW 0x18C0 MI_HI FI_LO EC_HI ! Sets for 4 segment writes and reads
CW SPD_M@[AR],V MI_HI FI_LO EC_HI ! Sets Pers. Dest. to Mem @ Add. reg
FOR i=0 LT 50 ! This For...loop fills the first 50 locations
REPEAT 4 DW 0x1010 MI_HI FI_LO EC_HI ! in the memory array with a '1010' pattern.
LOOP ! 'Repeat 4' fills all four segments
CW TCO_SC MI_HI FI_LO EC_HI ! Targets Segment Counter register
CW 0x39C9 MI_HI FI_LO EC_HI ! Sets for 3 segment writes and reads
CW TCO_DS MI_HI FI_LO EC_HI ! Targets Device Select register
CW 0xABCD MI_HI FI_LO EC_HI ! Selects chip with address 'ABCD'
CW SPD_CR MI_HI FI_LO EC_HI ! Sets Pers. Dest. to Comparand reg.
DW 0x0000 MI_HI FI_LO EC_HI ! Writes 3 segments of network data
DW 0x0000 MI_HI FI_LO EC_HI ! of all zeroes, takin g /EC LOW on
DW 0x0000 MI_HI FI_LO EC_LO ! last segment to lock daisy chain.
CW MOV_HM,CR,V MI_HI FI_LO EC_HI ! If a match (which there isn't), move

! the Comparand to the matching address
CW MOV_NF,CR,V MI_HI FI_LO EC_HI ! Move the Comparand to the Next Free address
DW 0x1010 MI_HI FI_LO EC_HI ! Writes 3 segments of network data
DW 0x1010 MI_HI FI_LO EC_HI ! of 1010 to the Comparand reg.
DW 0x1010 MI_HI FI_LO EC_LO ! taking /EC LOW on last segment.
CW MOV_HM,CR,V MI_HI FI_LO EC_HI ! Moves the Comparand to the Highest-priority

! match address.
CW MOV_NF,CR,V MI_HI FI_LO EC_HI ! Moves the Comparand to the Next Free address
CR 0x0000 MI_HI FI_LO EC_HI ! Reads Status register bits 15-0
CR 0x0000 MI_HI FI_LO EC_HI ! Reads Status register bits 31-16

Note: Comments were put adjacent to instructions for clarity, rather than on a separate line as the simulator requires.

AN - N2

Rev. 1
7

AN - N2MUSIC Semiconductors®

Set Persistent Source
SPS_CR = 0x0000;
SPS_MR1 = 0x0001;
SPS_MR2 = 0x0002;
SPS_M@[AR] = 0x0004;
SPS_M@aaaH = 0x0804;
SPS_M@HM = 0x0005;

Set Persistent Destination
SPD_CR = 0x0100;
SPD_CR[MR1] = 0x0140;
SPD_CR[MR2] = 0x0180;
SPD_MR1 = 0x0108;
SPD_MR2 = 0x0110;
SPD_M@[AR],V = 0x0124;
SPD_M@[AR][MR1],V = 0x0164;
SPD_M@[AR][MR2],V = 0x01A4;
SPD_M@[AR],E = 0x0125;
SPD_M@[AR][MR1],E = 0x0165;
SPD_M@[AR][MR2],E = 0x01A5;
SPD_M@[AR],S = 0x0126;
SPD_M@[AR][MR1],S = 0x0166;
SPD_M@[AR][MR2],S = 0x01A6;
SPD_M@[AR],R = 0x0127;
SPD_M@[AR][MR1],R = 0x0167;
SPD_M@[AR][MR2],R = 0x01A7;
SPD_M@aaaH,V = 0x0924;
SPD_M@aaaH[MR1],V = 0x0964;
SPD_M@aaaH[MR2],V = 0x09A4;
SPD_M@aaaH,E = 0x0925;
SPD_M@aaaH[MR1],E = 0x0965;
SPD_M@aaaH[MR2],E = 0x09A5;
SPD_M@aaaH,S = 0x0926;
SPD_M@aaaH[MR1],S = 0x0966;
SPD_M@aaaH[MR2],S = 0x09A6;
SPD_M@aaaH,R = 0x0927;
SPD_M@aaaH[MR1],R = 0x0967;
SPD_M@aaaH[MR2],R = 0x09A7;
SPD_M@HM,V = 0x012C;
SPD_M@HM[MR1],V = 0x016C;
SPD_M@HM[MR2],V = 0x01AC;
SPD_M@HM,E = 0x012D;
SPD_M@HM[MR1],E = 0x016D;
SPD_M@HM[MR2],E = 0x01AD;
SPD_M@HM,S = 0x012E;
SPD_M@HM[MR1],S = 0x016E;
SPD_M@HM[MR2],S = 0x01AE;
SPD_M@HM,R = 0x012F;
SPD_M@HM[MR1],R = 0x016F;
SPD_M@HM[MR2],R = 0x01AF;
SPD_M@NF,V = 0x0134;
SPD_M@NF[MR1],V = 0x0174;
SPD_M@NF[MR2],V = 0x01B4;
SPD_M@NF,E = 0x0135;
SPD_M@NF[MR1],E = 0x0175;
SPD_M@NF[MR2],E = 0x01B5;
SPD_M@NF,S = 0x0136;
SPD_M@NF[MR1],S = 0x0176;
SPD_M@NF[MR2],S = 0x01B6;
SPD_M@NF,R = 0x0137;

SPD_M@NF[MR1],R = 0x0177;
SPD_M@NF[MR2],R = 0x01B7;

Temporary Command Override
TCO_CT = 0x0200;
TCO_PA = 0x0208;
TCO_SC = 0x0210;
TCO_NF = 0x0218;
TCO_AR = 0x0220;
TCO_DS = 0x0228;
TCO_PS = 0x0230;
TCO_PD = 0x0238;

Move
MOV_CR,MR1 = 0x0301;
MOV_CR,MR2 = 0x0302;
MOV_CR,[AR] = 0x0304;
MOV_CR,[AR][MR1] = 0x0344;
MOV_CR,[AR][MR2] = 0x0384;
MOV_CR,aaaH = 0x0B04;
MOV_CR,aaaH[MR1] = 0x0B44;
MOV_CR,aaaH[MR2] = 0x0B84;
MOV_CR,HM = 0x0305;
MOV_CR,HM[MR1] = 0x0345;
MOV_CR,HM[MR2] = 0x0385;
MOV_MR1,CR = 0x0308;
MOV_MR1,MR2 = 0x030A;
MOV_MR1,[AR] = 0x030C;
MOV_MR1,aaaH = 0x0B0C;
MOV_MR1,HM = 0x030D;
MOV_MR2,CR = 0x0310;
MOV_MR2,MR1 = 0x0311;
MOV_MR2,[AR] = 0x0314;
MOV_MR2,aaaH = 0x0B14;
MOV_MR2,HM = 0x0315;
MOV_[AR],CR = 0x0320;
MOV_[AR],CR[MR1] = 0x0360;
MOV_[AR],CR[MR2] = 0x03A0;
MOV_[AR],MR1 = 0x0321;
MOV_[AR],MR2 = 0x0322;
MOV_[AR],CR,V = 0x0324;
MOV_[AR],CR[MR1],V = 0x0364;
MOV_[AR],CR[MR2],V = 0x03A4;
MOV_[AR],MR1,V = 0x0325;
MOV_[AR],MR2,V = 0x0326;
MOV_aaaH,CR = 0x0B20;
MOV_aaaH,CR[MR1] = 0x0B60;
MOV_aaaH,CR[MR2] = 0x0BA0;
MOV_aaaH,MR1 = 0x0B21;
MOV_aaaH,MR2 = 0x0B22;
MOV_aaaH,CR,V = 0x0B24;
MOV_aaaH,CR[MR1],V = 0x0B64;
MOV_aaaH,CR[MR2],V = 0x0BA4;
MOV_aaaH,MR1,V = 0x0B25;
MOV_aaaH,MR2,V = 0x0B26;
MOV_HM,CR = 0x0328;
MOV_HM,CR[MR1] = 0x0368;
MOV_HM,CR[MR2] = 0x03A8;
MOV_HM,MR1 = 0x0329;
MOV_HM,MR2 = 0x032A;

Appendix B, Command List with Op Codes

Rev. 1
8

 AN - N2 MUSIC Semiconductors®

MOV_HM,CR,V = 0x032C;
MOV_HM,CR[MR1],V = 0x036C;
MOV_HM,CR[MR2],V = 0x03AC;
MOV_HM,MR1,V = 0x032D;
MOV_HM,MR2,V = 0x032E;
MOV_NF,CR = 0x0330;
MOV_NF,CR[MR1] = 0x0370;
MOV_NF,CR[MR2] = 0x03B0;
MOV_NF,MR1 = 0x0331;
MOV_NF,MR2 = 0x0332;
MOV_NF,CR,V = 0x0334;
MOV_NF,CR[MR1],V = 0x0374;
MOV_NF,CR[MR2],V = 0x03B4;
MOV_NF,MR1,V = 0x0335;
MOV_NF,MR2,V = 0x0336;

Validity Bit Control
VBC_[AR],V = 0x0424;
VBC_[AR],E = 0x0425;
VBC_[AR],S = 0x0426;
VBC_[AR],R = 0x0427;
VBC_aaaH,V = 0x0C24;
VBC_aaaH,E = 0x0C25;
VBC_aaaH,S = 0x0C26;

VBC_aaaH,R = 0x0C27;
VBC_HM,V = 0x042C;
VBC_HM,E = 0x042D;
VBC_HM,S = 0x042E;
VBC_HM,R = 0x042F;
VBC_ALM,V = 0x043C;
VBC_ALM,E = 0x043D;
VBC_ALM,S = 0x043E;
VBC_ALM,R = 0x043F;

Compare
CMP_V = 0x0504;
CMP_E = 0x0505;
CMP_S = 0x0506;
CMP_R = 0x0507;

Set Full Flag
SFF = 0x0700;

No Operation
NOP_1 = 0x0300;
NOP_2 = 0x0309;
NOP_3 = 0x0312;

Appendix B, Command List with Op Codes, Continued

MUSIC Semiconductors®

European Headquarters
MUSIC Semiconductors
Torenstraat 28
6471 JX Eygelshoven
The Netherlands
Tel: +31-45-5462177
Fax: +31-45-5463663

USA Headquarters
MUSIC Semiconductors
254 B Mountain Avenue
Hackettstown, New Jersey 07840
USA
Tel: 908/ 979-1010
Fax: 908/ 979-1035

Asian Headquarters
MUSIC Semiconductors
Special Export Processing Zone
Carmelray Industrial Park
Canlubang, Calamba, Laguna
Philippines
Tel: +63 92 549 1480
Fax: +63 92 549 1024
Sales Tel/Fax: +632 723 62 15

MUSIC Semiconductors reserves the right to make changes to its products
and specifications at any time in order to improve on performance,
manufacturability or reliability. Information furnished by MUSIC is believed to
be accurate, but no responsibility is assumed by MUSIC Semiconductors for
the use of said information, nor for any infringements of patents or of other
third-party rights which may result from said use. No license is granted by
implication or otherwise under any patent or patent rights of any MUSIC
company.

© Copyright 1997, MUSIC Semiconductors

http://www.music.com
MUSIC Semiconductors’ agent or distributor:

