
Application Note AN-N19

Using The MU9C1965A LANCAM® MP
For Data Wider Than 128 Bits

MUSIC Semiconductors, the MUSIC logo, LANCAM, and the phrase “MUSIC Semiconductors” are registered
trademarks of MUSIC Semiconductors. MUSIC is a trademark of MUSIC Semiconductors. 30 September 1998 Rev. 1a

INTRODUCTION

This Application Note describes how the MUSIC MU9C1965A
LANCAM MP can be used to hold very wide data words. The
MU9C1965A LANCAM MP is a 1024 x 128-bit CMOS content-
addressable memory (CAM) with a 32-bit I/O. It has enhanced
features, which include a dual Configuration Register set and
a faster operating mode with no wait states after a no-match.
Although a data length of 512 bits will be used as an example,
the LANCAM MP can be used to hold any data word width.
This document outlines the initialization and configuration of
the CAM and the routines used to add, remove, and search
for data.

EXPLANATION OF GENERAL METHOD

For some applications it is necessary to store and compare
words wider than 128 bits. A MU9C1965A LANCAM MP can
be used to store and search the extra-wide data words.
Techniques are available that split the data word into individual
128-bit CAM words. Each CAM word is individually written
to the Comparand register until the whole word has been
searched for or added to the CAM. The method used for
manipulating the data is very similar to the software technique
for manipulating linked lists. Link lists use pointers to link
items in a list. For example, in C language, data structures are
linked together by declaring one of the members as a pointer.
This member is made to point to the next data structure in the
list. To terminate the list, the pointer of the last data structure
is a NULL pointer.

In this case, we want to divide the whole data word into
words that can be stored in separate CAM locations and
have them linked together in some way. Using 16 of the
available 128 bits as a TAG does this. This TAG is similar to
the pointer used in a linked list. If the total data length is
split up and stored in different CAM locations, the TAG of
each CAM word is the address of the preceding segments.
Table 1 shows how a 512-bit data word would be stored in
the CAM memory array. Please note that the order in which
the data word is split is arbitrary. The individual bits of the
512-bit word can be arranged to suit the user’s own application.

Although 16 bits have been used for the TAG, this can be
tailored to any particular application. Because the TAG
represents an address of a CAM memory location, 16 bits
would provide TAGs for over 60,000 locations. If an
application does not require a table of this size then the
number of bits used can be reduced to an appropriate number.

The data word is split and stored in five locations in the
CAM memory array. The lower 16 bits of Segment 0 stores
the address of the proceeding 112 bits of the data word. The
upper 16 bits of Segment 0 are used for data. The order in
which the word is split is not important and can be tailored
to suit the user’s specific application.

Notes :
1. xxxxxxxxH = “Don’t Care”
2. V = Valid CAM memory array location
3. E = Empty CAM memory array location

Table 1: A 512-Bit Data Word Stored in Five Consecutive CAM Locations

Segment 3 Segment 2 Segment 1 Segment 0 Validity Address
<bits 111–80> <bits 79–48> <bits 47–16> <bits 15–0>FFFEH V 0263H

<bits 223–192> <bits 191–160> <bits 159–128> <bits 127–112>0263H V 0264H
<bits 335–304> <bits 303–272> <bits 271–240> <bits 239–224>0264H V 0265H
<bits 447–416> <bits 415–384> <bits 383–352> <bits 351–336>0265H V 0266H
<bits 511–480> <bits 479–448> 00000000H 00000266H V 0267H

xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH E 0268H
xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH E 0269H
xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH E 026AH
xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH E 026BH

Application Note AN-N19

Rev. 1a 2

Another similarity that this scheme shares with a linked list
is the use of a NULL pointer. This is used to show the end of
the list. This is accomplished by using the start TAG =
FFFEH. The first CAM word of each 512-bit word is given a
NULL value. This NULL value is arbitrary to some extent,
although it must pass the following criteria:

(a) It has to be a value greater than the number of CAM
locations being used.

(b) It cannot be FFFFH as this could cause confusion when
the CAM data bus is in the tri-state condition.

Thus, the value FFFEH is ideal, as it passes both of the
criteria.

Padding bits are required when the total data word does not
fit exactly into whole CAM words. In the case of a 512-bit
data word, there will be 48 bits of the final CAM word that
will be unused. If these bits were left unused, any search
would have to mask the relevant bits. This adds a further
complication to the process. Instead, the unused bit
locations are given a pad value. This could be any arbitrary
value, although it has to be constant throughout routines.
In this case, 0 is chosen to fill all unused bit locations.

Initialization and Configuration of the CAM
The Initialization and Configuration routine has been
constructed to configure four MU9C1965A LANCAM MPs
for use in the following extra-wide comparand routines. The
following explains the routine that is shown in Table 2. Lines
1 through 11 initialize the CAMs. Line 1 clears up any power-
up anomalies that may be left in the part. Line 2 sets all
devices to listen to the following commands. Line 3 resets
the devices.

Lines 4 through 11 give a unique Page address to each
CAM in the chain. Line 4 targets and sets the Page Address
register of the highest-priority (lowest address value) device

in the chain. Line 5 sets the Full flag on this device, forcing
the next device in the chain to respond to the next set of
initialization commands. This cycle of targeting the Page
Address register, setting the Page Address value, and
setting the Full flag is repeated until all devices in the chain
have a unique Page Address value. Line 11 resets all devices,
returning the Full flags to their normal function.

Lines 12 through 20 configure the Background Register set
for use in the delete routine (the delete routine needs to use
Mask Register 1 for compares). Line 13 configures the CAMs
as 128 bits CAM, 0 bits RAM, and use Mask Register 1 for
compares. The CAMs are also configured for Enhanced
mode. Lines 14 to 18 initialize Mask Register 1 for use in
comparing on only the TAG bits. Line 19 sets the Segment
Control register to write to Segment 0 (lower 16 bits are the
TAG bits), and read from Segments 0 through 3. Line 20 sets
the Persistent Destination for Data Writes to the Comparand
register.

Lines 21 through 24 configure the Foreground Register set
for normal operation (normal compares without Mask
Register 1). Line 22 configures the CAMs as 128 bits CAM,
0 bits RAM, and invoke no mask registers for compares.
The CAMs are also configured for Enhanced mode. Line 23
sets the Segment Control register to write to Segments 0
through 3, and read from Segments 0 through 3. Line 24 sets
the Persistent Destination for Data Writes to the Comparand
register.

The CAMs have been configured to have the lower 16 bits
of Segment 0 (32-bit segment) contain the TAG bits and the
upper bits contain a 16-bit slice of the data word. The
remaining three segments contain 32-bit slices of the overall
data word. Mask Register 1 in the Background Register set
has been configured to mask bits 127 – 16. This is to allow
only the TAG bits located in Segment 0 to be used in any
automatic compare. The bit assignments for Segment 0 are
shown in Figures 1 and 2.

31

TAGData

16 015

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2: MR1 Segment 0 Bit Assignments

31

TAGData

16 015

 Figure 1: Segment 0 of Each CAM Word

Application Note AN-N19

Rev. 1a3

Line /CM /W /EC Cycle
Length

Mnemonic DQ[31:16] DQ[15:0] Description

1 L H H Medium 0000H 0000H Command Read: Clears
power-up anomalies

2 L L H Short TCO_DS 0A28H FFFFH Select all devices
3 L L H Medium TCO_CT 0A00H 0000H Reset all devices
4 L L H Short TCO_PA 0A08H 0000H Set Page address = 0 for

first device
5 L L H Long SFF 0700H xxxxH Set Full flag
6 L L H Short TCO_PA 0A08H 0001H Set Page address =1 for

second device
7 L L H Long SFF 0700H xxxxH Set Full flag
8 L L H Short TCO_PA 0A08H 0002H Set Page address =2 for

third device
9 L L H Long SFF 0700H xxxxH Set Full flag

10 L L H Short TCO_PA 0A08H 0003H Set Page address = 3 for
fourth device

11 L L H Medium TCO_CT 0A00H 0000H Resets Full flag in all
devices

12 L L H Short SBR 0619H xxxxH Select Background Register
set

13 L L H Short * TCO_CT 0A00H 8011H Set Control register:
128 CAM, 0 RAM, MR1,
Enhanced Response mode

14 L L H Short SPD_MR1 0108H xxxxH Set Persistent destination to
MR1

15 H L H Short FFFFH 0000H Segment 0: TAG bits only
16 H L H Short FFFFH FFFFH Segment 1
17 H L H Short FFFFH FFFFH Segment 2
18 H L H Short * FFFFH FFFFH Segment 3
19 L L H Short TCO_SC 0A01H 00C0H Set SC : Write Segment 0,

Read Segments 0:3
20 L L H Short SPD_CR 0100H xxxxH Set Persistent destination to

Comparand
21 L L H Short SFR 0618H xxxxH Select Foreground Register

set
22 L L H Short * TCO_CT 0A00H 8001H Set Control register:

128 CAM, 0 RAM, No Mask,
Enhanced Response mode

23 L L H Short TCO_SC 0A01H 18C0H Set SC: Write Segments
0:3, Read Segment 0:3

24 L L H Short SPD_CR 0100H xxxxH Set Persistent destination to
Comparand

Table 2: CAM Initialization and Configuration Routine

Notes:
1. xxxxH = “Don’t Care”
2. Short * = This indicates cycles that are normally long, but may run as short because the results from the

automatically triggered compare are not used.

Application Note AN-N19

Rev. 1a 4

Adding Data Words to the CAM
Data words wider than 128 bits can be split and added to the
CAM in any order. The order of the bits can be arranged to
suit the user’s specific application. For this example, a
512-bit data word is split into five 4-segment CAM words.
These CAM words will then be written to the CAM
Comparand register. Each CAM word written to the
Comparand register must be of the form shown in Figure 3.

The routine in Table 3 shows how a 512-bit data word can
be added to a 128-bit wide CAM. Any other data length
could be implemented by adding or removing 128-bit CAM
words. The last CAM word must be edited to suit by adding
or removing pad bits. The software implementation of this
routine, as shown in Figure 4 on page 6, simplifies using
traditional looping methods.

Lines 1 through 4 write the first of the five CAM words to
the Comparand register. This word has been given the start
TAG FFFEH. An automatic compare is done after the last
segment is written. A match can be determined from the
/MF pin of the last device in the chain, or by looking at
DQ31 in the Status register during the Status register read
on line 5. DQ31 will be driven LOW by the highest-priority
matching device, or it will be pulled HIGH by a pull-up resistor
that must be added to DQ31 when using this method.

At this point a decision has to be made, based on whether a
match exists or not. If a match exists, lines 6a through 6c are

omitted, as there is no need to add the CAM word to the
memory array. This saves memory space and simplifies any
search or delete routines. If there was no-match given after
the automatic compare, lines 6a through 6c are completed.
Line 6b reads the Next Free Address register. This is done
to find out where the CAM word will be written. Line 6c
writes the CAM word to the memory array at the next free
address.

Lines 7 through 10 write the next CAM word to the
Comparand register. The TAG written with Segment 0 is the
address where the previous CAM word can be found. This
will be one of the following:

(a) If there was a match found at line 5 when the Status
register was read, the TAG will be the address of the
highest-priority match. This can be found by masking
the Status register contents with 0000FFFFH.

(b) If there was no-match found at line 5, the TAG will be
the memory array location where the CAM word is
written after the move instruction. Line 6b reads from
the Next Free Address register. The TAG is found by
masking this with 0000FFFFH.

Lines 11 through 17 are the same as lines 5 through 11. The
same procedure is followed until all CAM words have been
written to the Comparand register.

Figure 3: Individual CAM Word Bit Arrangement

Segment 3 Segment 2 Segment 1 Segment 0

DQ[31:16] DQ[15:0] DQ[31:16] DQ[15:0] DQ[31:16] DQ[15:0] DQ[31:16] DQ[15:0]
data data data data data data data TAG

Line /CM /W /EC Cycle
Length

Mnemonic DQ[31:16] DQ[15:0] Description

1 H L H Short <bits15–0> FFFEH Write seg 0 to CR (with start
TAG = FFFEH)

2 H L H Short <bits 47–32> <bits 31–16> Write seg 1 to CR
3 H L H Short <bits 79–64> <bits 63–48> Write seg 2 to CR
4 H L L Long <bits 111–96> <bits 95–80> Write seg 3 to CR
5 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

Table 3: CAM Cycle Sequence for Adding an Entry

If a match is not found, add to memory array (otherwise omit 6a through 6c)
6a L L L Short TCO_NF 0218H xxxxH Target Next Free Address

register
6b L H H Medium xxxxH NF[15:0] Read NF Address reg
6c L L H Long MOV_NF_

CR_V
0334H xxxxH Move data from CR to NF

address (set Valid)

Application Note AN-N19

Rev. 1a5

Line /CM /W /EC Cycle
Length

Mnemonic DQ[31:16] DQ[15:0] Description

7 H L H Short <bits 127–112> ppppH Write seg 0 to CR (with TAG =
ppppH : see note)

8 H L H Short <bits 159–144> <bits 143–128> Write seg 1 to CR
9 H L H Short <bits 191–176> <bits 175–160> Write seg 2 to CR
10 H L L Long <bits 223–208> <bits 207–192> Write seg 3 to CR
11 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match is not found, add to memory array (otherwise omit 12a through 12c)
12a L L L Short TCO_NF 0218H xxxxH Target Next Free Address

register
12b L H H Medium xxxxH NF[15:0] Read NF Address reg
12c L L H Long MOV_NF_

CR_V
0334H xxxxH Move data from CR to NF

address (set Valid)
13 H L H Short <bits 239–224> qqqqH Write seg 0 to CR (with TAG =

qqqqH : see note)
14 H L H Short <bits 271–256> <bits 255–240> Write seg 1 to CR
15 H L H Short <bits 303–288> <bits 287–272> Write seg 2 to CR
16 H L L Long <bits 335–320> <bits 319–304> Write seg 3 to CR
17 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match is not found, add to memory array (otherwise omit 18a through 18c)
18a L L L Short TCO_NF 0218H xxxxH Target Next Free Address

register
18b L H H Medium xxxxH NF[15:0] Read NF Address reg
18c L L H Long MOV_NF_

CR_V
0334H xxxxH Move data from CR to NF

address (set Valid)
19 H L H Short <bits 351–336> rrrrH Write seg 0 to CR (with TAG =

rrrrH: see note)
20 H L H Short <bits 383–368> <bits 367–352> Write seg 1 to CR
21 H L H Short <bits 415–400> <bits 399–384> Write seg 2 to CR
22 H L L Long <bits 447–432> <bits 431–416> Write seg 3 to CR
23 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match is not found, add to memory array (otherwise omit 24a through 24c)
24a L L L Short TCO_NF 0218H xxxxH Target Next Free Address

register
24b L H H Medium xxxxH NF[15:0] Read NF Address reg
24c L L H Long MOV_NF_

CR_V
0334H xxxxH Move data from CR to NF

address (set Valid)
 25 H L H Short 0000H ssssH Write seg 0 to CR (with TAG =

ssssH: see note)
26 H L H Short 0000H 0000H Write seg 1 to CR
27 H L H Short <bits 479–464> <bits 463–448> Write seg 2 to CR
28 H L L Long <bits 511–496> <bits 495–480> Write seg 3 to CR

Notes:
1. xxxxH = “Don’t Care”
2. *SR[31:16] , *SR[15:0] = If there was a match during the comparison, the contents of the Status register are valid and appear on

DQ[31:0]. If no-match occurs, all the devices are in the tri-state condition to prevent bus contention. Pull-up resistors are required to
drive the bus to 0xFFFFFFFF on a no-match condition.

3. NF[15:0] = The contents of the 16-bit Next Free Address register are valid and appear on DQ[15:0].
4. ppppH = The TAG bits for this CAM word. It is the address where the first CAM word was located or placed.
5. qqqqH = The TAG bits for this CAM word. It is the address where the second CAM word was located or placed.
6. rrrrH = The TAG bits for this CAM word. It is the address where the third CAM word was located or placed.
7. ssssH = The TAG bits for this CAM word. It is the address where the fourth CAM word was located or placed.

Table 3: CAM Cycle Sequence for Adding an Entry (continued)

Application Note AN-N19

Rev. 1a 6

Data Search of CAM
Table 4 is a search routine to determine whether a 512-bit
data word is stored in a 128-bit wide CAM. Any other data
length could be implemented by adding or removing 128-bit
CAM words. The last CAM word has to be edited to suit by
adding or removing pad bits. The software implementation
of this routine, as shown in Figure 5 on page 8, simplifies
using traditional looping methods.

The search procedure involves comparing each individual
CAM word with the CAM memory array. Lines 1 through 4
write the first of the five CAM words to the Comparand
register. This word has been given the start TAG FFFEH.
An automatic compare is done after the last segment is
written. A match can be determined from the /MF pin of
the last device in the chain, or by looking at DQ31 in the
Status register during the Status register read on line 5.
DQ31 will be driven LOW by the highest-priority matching
device, or it will be pulled HIGH by a pull-up resistor that
must be added to DQ31 when using this method. At this

point a decision has to be made, based on whether a match
exists or not:

(a) If there is no-match, the search has failed to locate a
section of the 512-bit word. This means that the 512-bit
word is not in the CAM. There is no need to compare
the remaining CAM words.

(b) If there was a match after the automatic compare, the
TAG for the next CAM word is found by masking the
contents of the Status register with 0000FFFFH. This
TAG is used when writing the next CAM word to the
Comparand register.

This is repeated until all the CAM words have been searched
for in the CAM. When the automatic compare has given a
match for all five CAM words, the 512-bit word was found
in the CAM.

Figure 4: C Code for Adding an Entry

void add_entry (unsigned long data_array [4][5]) /*data_array holds the 512-bit data word.
 It is five CAM words and segment 0 of each

word has 0000H where the TAG will be placed */
{
unsigned long tag, status ;
unsigned int location ;

tag = 0x0000FFFE; /* the first TAG is always FFFE */
for (location = 0; location < 5; location ++)
 {
 data_array [0][location] |= tag ; /* add the TAG to segment 0 of each CAM word */
 dws(data_array [0][location]); /* data write short - first segment */
 dws(data_array [1][location]); /* data write short - second segment */
 dws(data_array [2][location]); /* data write short - third segment */
 dwlec(data_array [3][location]); /* data write long with /ec low - fourth segment */
 status = crm(); /* command read medium to read status register */
 if ((status & 0x80000000) == 0)/* match found in memory array (requires pull-up resistor on DQ31) */
 {
 tag = status & 0x0000FFFF; /* the tag for the next CAM word is the
 address of the highest priority match */
 } /* there is no need to add the CAM word to the memory array from the CR */
 else
 {
 cwsec(0x02180000); /* target the NF address register for a command read.

 /ec must be low to unlock the daisy chain */
 tag = crm() & 0x0000FFFF; /* command read medium - the tag for the

 next CAM word is the next free address */
 cwl(0x03340000); /* command write long - move data from CR to NF address */
 }
 }/* end for */
}/* end add_entry */

Application Note AN-N19

Rev. 1a7

Line /CM /W /EC Cycle
Length

Mnemonic DQ[31:16] DQ[15:0] Description

1 H L H Short <bits15–0> FFFEH Write seg 0 to CR (with start
TAG = FFFEH)

2 H L H Short <bits 47–32> <bits 31–16> Write seg 1 to CR
3 H L H Short <bits 79–64> <bits 63–48> Write seg 2 to CR
4 H L L Long <bits 111–96> <bits 95–80> Write seg 3 to CR
5 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match was not found then the 512-bit data word was not found, therefore the search may
end. If a match was found then continue.

6 H L H Short <bits 127–112> ppppH Write seg 0 to CR (with TAG =
ppppH: see note)

7 H L H Short <bits 159–144> <bits 143–128> Write seg 1 to CR
8 H L H Short <bits 191–176> <bits 175–160> Write seg 2 to CR
9 H L L Long <bits 223–208> <bits 207–192> Write seg 3 to CR
10 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match was not found then the 512-bit data word was not found, therefore the search may
end. If a match was found then continue.

11 H L H Short <bits 239–224> qqqqH Write seg 0 to CR (with TAG =
qqqqH: see note)

12 H L H Short <bits 271–256> <bits 255–240> Write seg 1 to CR
13 H L H Short <bits 303–288> <bits 287–272> Write seg 2 to CR
14 H L L Long <bits 335–320> <bits 319–304> Write seg 3 to CR
15 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match was not found then the 512-bit data word was not found, therefore the search may
end. If a match was found then continue.

16 H L H Short <bits 351–336> rrrrH Write seg 0 to CR (with TAG =
rrrrH: see note)

17 H L H Short <bits 383–368> <bits 367–352> Write seg 1 to CR
18 H L H Short <bits 415–400> <bits 399–384> Write seg 2 to CR
19 H L L Long <bits 447–432> <bits 431–416> Write seg 3 to CR
20 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match was not found then the 512-bit data word was not found, therefore the search may
end. If a match was found then continue.

21 H L H Short 0000H ssssH Write seg 0 to CR (with TAG =
ssssH: see note)

22 H L H Short 0000H 0000H Write seg 1 to CR
23 H L H Short <bits 479–464> <bits 463–448> Write seg 2 to CR
24 H L L Long <bits 511–496> <bits 495–480> Write seg 3 to CR
25 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

Notes:
1. *SR[31:16] , *SR[15:0] = If there was a match during the comparison, the contents of the Status register are valid and

appear on DQ[31:0]. If no-match occurs, all the devices are in the tri-state condition to prevent bus contention. Pull-
up resistors are required to drive the bus to 0xFFFFFFFF on a no-match condition.

2. ppppH = The TAG bits for this CAM word. It is the address where the first CAM word was located.
3. qqqqH = The TAG bits for this CAM word. It is the address where the second CAM word was located.
4. rrrrH = The TAG bits for this CAM word. It is the address where the third CAM word was located.
5. ssssH = The TAG bits for this CAM word. It is the address where the fourth CAM word was located.

Table 4: CAM Cycle Sequence for Searching for an Entry

Application Note AN-N19

Rev. 1a 8

bool search (unsigned long data_array [4][5]) /*data_array holds the 512-bit data word. It
is five CAM words and segment 0 of each word
has 0000H where the TAG will be placed */

{
unsigned long tag, status ;
unsigned int location ;

tag = 0x0000FFFE; /* the first TAG is always FFFE */
for (location = 0; location < 5; location ++)
 {
 data_array [0][location] |= tag ; /* add the TAG to segment 0 of each CAM word */
 dws(data_array [0][location]); /* data write short - first segment */
 dws(data_array [1][location]); /* data write short - second segment */
 dws(data_array [2][location]); /* data write short - third segment */
 dwlec(data_array [3][location]); /* data write long with /ec low - fourth segment */
 status = crm(); /* command read medium to read status register */
 if ((status & 0x80000000) == 0) /* match found in memory array */

/*(requires pull-up resistor on DQ31)*/
 {
 tag = status & 0x0000FFFF; /* the tag for the next CAM word is the

address of the highest-priority match */
 }
 else
 {
 return FALSE; /* the routine has found that the 512-bit word is not in the CAM */
 } /* please note that FALSE and TRUE must be assigned values using #define*/
 }/* end for */
 return TRUE; /* the routine has found that the 512-bit word is in the CAM */
}/* end search */

Deleting Data Words from the CAM
Data words are added to the CAM in a way that will allow
CAM words to be shared among entries. For this to occur
the data “slice” and the associated TAG from one entry
must be identical to another. This usually occurs when
entries differ only in the end CAM words. If the first CAM
words are identical then they can be shared. It is impossible
for only the last CAM words of an entry to be shared.
Figure 6 shows how 512-bit entries would have been located
in the CAM memory array if some CAM word sharing was
possible during addition.

It can be seen that some of the CAM words form part of
more than one 512-bit entry. This means that when deleting
entries, care must be taken not to delete individual CAM
words that are part of more than one entry. For example, the
first three CAM words in Figure 6 can not be deleted at
present because they form part of three separate 512-bit
entries. The TAG of each CAM word must be tested to
check that the CAM word that they point to is not part of
multiple 512-bit entries. The test is completed in reverse
working from TAG 5 through TAG 2. The start TAG = FFFFh,
does not need to be tested as it does not signify an address

of a linked CAM word. When a multiple entry condition is
found it can be assumed that the subsequent CAM words
also form part of multiple entries and need not be tested. It
is also known that the fifth CAM word of any 512-bit entry
is always part of that entry only and can be safely deleted.

The routine in Table 5 on page 10 shows how a 512-bit data
word can be removed from a 128-bit wide CAM. The software
implementation of this routine, as shown in Figure 7 on
page 13, simplifies using traditional looping methods. The
512-bit word will be located in the CAM memory array split
up into five 128-bit CAM words. The 512-bit data word to
be removed from the CAM must be located using the same
procedure as the search routine. This will find the five CAM
words and their associated TAGs. The TAGs that were given
when they were added to CAM will be located in Segment 0 of
each CAM word. The five TAGs will be known as T1, T2, T3,
T4, and T5. T1 is the first TAG and is always FFFEH.

The Delete routine is split into two parts. The first part,
which is the same as the search routine, is described in lines
1 through 25. The second part, which deletes the individual
CAM words, is described in lines 26 through 48.

Figure 5: C Code for Searching the CAM for an Entry

Application Note AN-N19

Rev. 1a9

Figure 6: CAM Words Being Shared by 512-bit Entries

Lines 1 through 4 write the first of the five CAM words to
the Comparand register. This word has been given the start
TAG FFFEH (T1). An automatic compare is done after the
last segment is written. A match can be determined from the
/MF pin of the last device in the chain, or by looking at
DQ31 in the Status register during the Status register read
on line 5. DQ31 will be driven LOW by the highest-priority
matching device, or it will be pulled HIGH by a pull-up resistor
that must be added to DQ31 when using this method. At
this point a decision has to be made, based on whether a
match exists or not.

(a) If there is no-match, the 512-bit word to be removed
cannot be found in the CAM. There is no need to

compare the remaining CAM words. The routine ends
here. The word cannot be deleted, as it is not located in
the CAM array.

(b) If there was a match after the automatic compare, the
TAG for the next CAM word is found by masking the
contents of the Status register with 0000FFFFH. This
TAG is used in line 6 and will be known as T2.

This is repeated until all the CAM words have been searched
for in the CAM. When the last CAM word compare has
given a match, the five TAGs have been found (T1, T2, T3,
T4, T5). They can now be used to remove the 512-bit word
from the CAM.

data tag

Start TAG = FFFFh of each 512-bit word

Second TAG of each 512-bit word

Fifth TAG of each 512-bit word

Fourth TAG of each 512-bit word

Third TAG of each 512-bit word

Application Note AN-N19

Rev. 1a 10

Line /CM /W /EC Cycle
Length

Mnemonic DQ[31:16] DQ[15:0] Description

1 H L H Short <bits15–0> FFFEH(T1) Write seg 0 to CR (with start
TAG = FFFEH)

2 H L H Short <bits 47–32> <bits 31–16> Write seg 1 to CR
3 H L H Short <bits 79–64> <bits 63–48> Write seg 2 to CR
4 H L L Long <bits 111–96> <bits 95–80> Write seg 3 to CR
5 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match was not found then the 512-bit data word was not found, therefore the routine will end
because it will be unable to delete the word. If a match was found then continue.

6 H L H Short <bits 127–112> T2 Write seg 0 to CR (with TAG =
T2: see note)

7 H L H Short <bits 159–144> <bits 143–128> Write seg 1 to CR
8 H L H Short <bits 191–176> <bits 175–160> Write seg 2 to CR
9 H L L Long <bits 223–208> <bits 207–192> Write seg 3 to CR
10 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match was not found then the 512-bit data word was not found, therefore the routine will end
because it will be unable to delete the word. If a match was found then continue.

11 H L H Short <bits 239–224> T3 Write seg 0 to CR (with TAG =
T3: see note)

12 H L H Short <bits 271–256> <bits 255–240> Write seg 1 to CR
13 H L H Short <bits 303–288> <bits 287–272> Write seg 2 to CR
14 H L L Long <bits 335–320> <bits 319–304> Write seg 3 to CR
15 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match was not found then the 512-bit data word was not found, therefore the routine will end
because it will be unable to delete the word. If a match was found then continue.

16 H L H Short <bits 351–336> T4 Write seg 0 to CR (with TAG =
T4: see note)

17 H L H Short <bits 383–368> <bits 367–352> Write seg 1 to CR
18 H L H Short <bits 415–400> <bits 399–384> Write seg 2 to CR
19 H L L Long <bits 447–432> <bits 431–416> Write seg 3 to CR
20 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If a match was not found then the 512-bit data word was not found, therefore the routine will end
because it will be unable to delete the word. If a match was found then continue.

21 H L H Short 0000H T5 Write seg 0 to CR (with TAG =
T5: see note)

22 H L H Short 0000H 0000H Write seg 1 to CR
23 H L H Short <bits 479–464> <bits 463–448> Write seg 2 to CR
24 H L L Long <bits 511–496> <bits 495–480> Write seg 3 to CR
25 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

Table 5: CAM Cycle Sequence for Deleting an Entry

After the search has been completed, all the TAGs are now
known. If at any time the automatic compare caused a no-
match condition, the 512-bit word was not found in the CAM.
Therefore the delete routine will fail, as it will not be able to
proceed. If all the TAGs were located, the routine will proceed
by removing the five CAM words one at a time.

The five individual CAM words are stored in the CAM
memory array linked together by their TAGs. Each word is
linked to the preceding word in a chain. The first has the
TAG FFFEH and the final word has no other CAM words
linked to it.

As described earlier, CAM words can be part of more than
one 512-bit entry. The fifth CAM word can be safely deleted
as it will only be part of the entry being deleted. Moving
through the chain from fourth word to first word, each word
must be checked before it is deleted.

To check each CAM word, a comparison is done on only
the TAG bits of the previous word using MR1. This shows
if any other 512-bit words share the CAM word referred to
by the TAG. If the comparison produces a match condition,
the CAM word associated with the TAG cannot be deleted.

Application Note AN-N19

Rev. 1a11

Line 26 deletes the last of the five CAM words by setting
the validity of the highest-priority match to empty. If the
search procedure produced a match condition on line 25,
the highest-priority match should be the fifth CAM word.
As mentioned earlier, this word can be safely deleted but
the remaining CAM words must be checked before deletion.
Line 27 selects the Background Register set to enable any
comparisons through a Mask register. Line 28 writes
Segment 0 of the fifth CAM word into the Comparand
register to test the TAG = T5.

Writing Segment 0 causes an automatic comparison to be
performed. At this point, the Mask register will be
automatically invoked to cause the comparison to be
performed on only the 16 TAG bits. A match can be
determined from the /MF pin of the last device in the chain,
or by looking at DQ31 in the Status register during the
Status register read on line 29. DQ31 will be driven LOW by
the highest-priority matching device, or will be pulled HIGH
by a pull-up resistor that must be added to DQ31 when
using this method. At this point a decision must be made,
based on whether a match exists or not:

(a) If there was a match, the 128-bit CAM word specified
by the TAG is part of more than one 512-bit word.
Therefore the next and subsequent CAM words cannot
be removed from the memory array. The Delete routine
can stop at this point as no other CAM words can be
deleted as they form more than one 512-bit entry.

(b) If there was a no-match after the automatic compare,
the TAG was not found anywhere else in the CAM
memory array. The next CAM word can be removed.
Line 30 selects the appropriate device where the 128-
bit word is known to be located. Line 31 deletes the
word by setting the validity of the CAM word specified
by T5 to empty. Line 32 selects all the devices in the
daisy chain to respond to subsequent instructions.

The remaining TAGs (T4, T3, and T2) are tested in the same
way. T1 (FFFEH) does not need to be tested as this does
not represent an actual CAM word address. If the routine
encounters a match condition after any of the automatic
comparisons, it will skip to line 48. This selects the
Foreground Register set to return the system to normal
operating mode.

Table 5: CAM Cycle Sequence for Deleting an Entry (continued)

Line /CM /W /EC Cycle
Length

Mnemonic DQ[31:16] DQ[15:0] Description

26 L L H Long VBC_HM_
E

042DH xxxxH Delete CAM word 5 by setting
the validity to empty

27 L L H Short SBR 0619H xxxxH Select Background Register set
28 H L L Long 0000H T5 Write seg 0 to CR (with TAG =

T5: see note)
29 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If no-match: continue. If there is a match, the deletion routine may skip
to line 48 as subsequent CAM words cannot be deleted as they are part
of more than one 512-bit entry.

30 L L H Short TCO_DS 0A28H T5/1024 Select appropriate device : see
note

31 L L H Long VBC_aaaH
_E

0C25H T5 Delete CAM word 4 by setting
the validity to empty

32 L L H Short TCO_DS 0A28H FFFFH Select all devices
33 H L L Long <bits 351-336> T4 Write seg 0 to CR (with TAG =

T4 : see note)
34 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

Application Note AN-N19

Rev. 1a 12

Notes:
1. *SR[31:16] , *SR[15:0] = If there was a match during the comparison, the contents of the Status register are valid and appear on

DQ[31–0]. If no-match occurs, all the devices are in the tri-state condition to prevent bus contention. Pull-up resistors are
required to drive the bus to 0xFFFFFFFF on a no-match condition.

2. Tn/1024 = The appropriate device must be selected using a Temporary Command Over-ride instruction. The TAG indicates the
address of the CAM word to be deleted. Bits 15-10 of the TAG indicate the page address (and therefore the appropriate device)
of the CAM word. In this case, the correct device is given by dividing the TAG by 1024, but similar solutions are possible.

3. T2 = The TAG bits for the second CAM word. It is the address where the first CAM word was located.
4. T3 = The TAG bits for the third CAM word. It is the address where the second CAM word was located.
5. T4 = The TAG bits for the fourth CAM word. It is the address where the third CAM word was located.
6. T5 = The TAG bits for the fifth CAM word. It is the address where the fourth CAM word was located.

Table 5: CAM Cycle Sequence for Deleting an Entry (continued)

If no-match: continue. If there is a match, the deletion routine may skip to line 48
as subsequent CAM words cannot be deleted as they are part of more than one
512-bit entry.

40 L L H Short TCO_DS 0A28H T3/1024 Select appropriate device : see
note

41 L L H Long VBC_aaaH
_E

0C25H T3 Delete CAM word 2 by setting the
validity to empty

42 L L H Short TCO_DS 0A28H FFFFH Select all devices
43 H L H Short <bits 127-112> T2 Write seg 0 to CR (with TAG

= T2 : see note)
44 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

If no-match: continue. If there is a match, the deletion routine may skip to line 48
as subsequent CAM words cannot be deleted as they are part of more than one
512-bit entry.

45 L L H Short TCO_DS 0A28H T2/1024 Select appropriate device : see
note

46 L L H Long VBC_aaaH
_E

0C25H T2 Delete CAM word 1 by setting
the validity to empty

47 L L H Short TCO_DS 0A28H FFFFH Select all devices
48 L L H Short SFR 0618H xxxxH Select Foreground Register set

If no-match: continue. If there is a match, the deletion routine may skip to line 48 as subsequent
CAM words cannot be deleted as they are part of more than one 512-bit entry.
Line /CM /W /EC Cycle

Length
Mnemonic DQ[31:16] DQ[15:0] Description

35 L L H Short TCO_DS 0A28H T4/1024 Select appropriate device : see
note

36 L L H Long VBC_aaaH
_E

0C25H T4 Delete CAM word 3 by setting
the validity to empty

37 L L H Short TCO_DS 0A28H FFFFH Select all devices
38 H L L Long <bits 239-224> T3 Write seg 0 to CR (with TAG =

T3 : see note)
39 L H H Medium *SR[31:16] *SR[15:0] Read Status reg

Application Note AN-N19

Rev. 1a13

. Figure 7: C Code for Deleting a CAM Entry

TIME CRITICAL APPLICATIONS

It can be seen that the procedure to delete an entry from
the CAM is very time consuming. This is due to the need
to: (a) locate the TAGs, (b) test the individual CAM words
to make sure they are not part of other entries, and finally
(c) delete the appropriate 128-bit words. In time critical
applications, the deletion routine may cause congestion if
more important operations have to wait until a deletion is
finished. It is usually true that searches are more important
than deletions and therefore have a higher priority. In this
case, the deletion can be delayed if the more important
search has to be performed.

If there are no searches pending, deletions may be done in
complete procedures. If searches are required once a

deletion has started, it is possible to interrupt the deletion to
perform the more important tasks. Once these tasks have been
cleared, the deletion can be returned to and completed. The
deletion can be split up into five smaller routines that must be
completed in the order specified:

1. Search the CAM to locate the individual TAGs of each
CAM word and delete the fifth CAM word.

2. Test the fourth CAM word to make sure it is not part of
more than one entry and delete if possible.

3. Test the third CAM word and delete if possible.
4. Test the second CAM word and delete if possible.
5. Test the first CAM word and delete if possible.

Figure 8 shows how the operations can be interleaved if
searches need to be done once a deletion has begun.

void delete (unsigned long data_array [4][5]) /* data_array holds the 512-bit data word. It
 is five CAM words and segment 0 of each word
has 0000H where the TAG will be placed */

{
unsigned long status, tag ;
unsigned int location ;

if (search(data_array) == TRUE)
 /* this uses the search routine to locate all the TAGs and affixes them to the CAM words */
{
 cwl(0x042D0000); /* VBC_HM_E - the last CAM word can be removed as it has no other CAM

words linked to it. */
 cws(0x06190000); /* command write short - set background register set */
 for (location = 5; location > 1; location —) /* work back from CAM word 5 to CAM word 2 */
 {
 dwlec(data_array [0][location]); /* data write long with /ec low - segment 0.

 This is to do a compare on the TAG */
 status = crm(); /* command read medium - read status register */
 if ((status & 0x80000000) != 0) /* no match found in memory array */
 { /* (requires pull-up resistor on DQ31 */
 tag = data_array[0][location] & 0x0000FFFF; /*separate tag from segment 0 */
 cws(0x0A280000 & tag /1024); /* TCO_DS select correct device */
 cwl(0x0C250000 & tag); /* VBC_aaa_E: delete CAM word pointed to by the TAG */
 cws(0x0A28FFFF); /* TCO_DS 0xFFFF select all devices */
 }
 else
 {
 break; /* there was not a match on the TAG comparison, therefore no more

of the CAM words can be deleted */
 }/* end if */
 }/* end for */
 cws(0x06180000); /* command write short – set foreground register set */
}/* end if */
}/* end delete */

Application Note AN-N19

Rev. 1a 14

time

search

delete
(3) test and delete
third word

delete
(1) search and
delete fifth word

delete
(2) test and
delete fourth
word

delete
(4) test and delete
second word

delete
(5) test and delete
first word

Figure 8: Interleaving Searches with Deletions

Application Note AN-N19

Rev. 1a15

Blank Routine Worksheet

/CM /W /EC Cycle
Length

Mnemonic DQ[31:16] DQ[15:0] Description

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Control Register Bit Assignments

Segment Control Register Bit Assignments

Mode
Standard = 00
Enhanced = 01
Reserved = 10
No Change = 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reset

= 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set
Dest
Segment
Limits
= 0
No
Chng
= 1

 Match Flag
Enable = 00
Disable = 01
No Change=11

Full Flag
Enable = 00
Disable = 01
No Change=11

Translation
No Trans = 00
Translated = 01
No Change= 11

64 CAM / 0 RAM = 000
48 CAM / 16 RAM = 001
32 CAM / 32 RAM = 010
16 CAM / 48 RAM = 011
48 RAM / 16 CAM = 100
32 RAM / 32 CAM = 101
16 RAM / 48 CAM = 110
No Change = 111

Compare Mask
None = 00
MR1 = 01
MR2 = 10
No Change= 11

Address Register
Increment = 00
Decrement = 01
Disable = 10
No Change = 11

Destination
Count Start
Limit
00 - 11

Destination
Count End
Limit
00 - 11

Source
Count Start
Limit
00 - 11

Source
Count End
Limit
00 - 11

Load
Destination
Segment
Count
= 0
No
Chng
= 1

Destination
Segment
Count Value
00 - 11

Load
Source
Segment
Count
= 0
No
Chng
= 1

Source
Segment
Count Value
00 - 11

Application Note AN-N19

Rev. 1a 16

NOTES

European Headquarters
MUSIC Semiconductors
Torenstraat 28
6471 JX Eygelshoven
Netherlands
Tel: +31 45 5462177
Fax: +31 45 5463663

MUSIC Semiconductors reserves the right to make changes to
its products and specifications at any time in order to improve
on performance, manufacturability, or reliability. Information
furnished by MUSIC is believed to be accurate, but no
responsibility is assumed by MUSIC Semiconductors for the use
of said information, nor for any infringement of patents or of
other third party rights which may result from said use. No
license is granted by implication or otherwise under any patent
or patent rights of any MUSIC company.
©Copyright 1998, MUSIC Semiconductors

MUSIC Semiconductors Agent or Distributor:

USA Headquarters
MUSIC Semiconductors
254 B Mountain Avenue
Hackettstown, New Jersey 07840
USA
Tel: 908/979-1010
Fax: 908/979-1035
USA Only: 800/933-1550 Tech. Support

 888/226-6874 Product Info.

Asian Headquarters
MUSIC Semiconductors
Special Export Processing Zone 1
Carmelray Industrial Park
Canlubang, Calamba, Laguna
Philippines
Tel: +63 49 549 1480
Fax: +63 49 549 1023
Sales Tel/Fax: +632 723 62 15

http://www.music-ic.com
email: info@music-ic.com

