
Application Note AN-N11

The MUSIC_CAM� Device Models

MUSIC Semiconductors, the MUSIC logo, LANCAM, and the phrase “MUSIC Semiconductors” are registered
trademarks of MUSIC Semiconductors. MUSIC_CAM and MUSIC are trademarks of MUSIC Semiconductors. 30 September 1998 Rev. 2.7a Draft

1.0 INTRODUCTION

The MUSIC_CAM models are behavioral VHDL or
Verilog functional models of individual devices in the
MUSIC Semiconductors LANCAM® family. VHDL
model packages include a CAM model, a workbench
model, and a CAM stimulus driver model. These three
models combine to provide the user with the means to
develop CAM instruction sequences that can be tested
against the model from the provided stimulus driver or
some other system level device. The Verilog and VHDL
device models may be used as components for board
simulations or as reference models while developing
custom ASICs to drive the MUSIC CAMs. (Note that the
VHDL workbench model and CAM stimulus driver model
can be supplied with the Verilog model upon special
request.)

The MUSIC_CAM models have been designed to perform
setup and hold timing checks (except 0 setup times) as
well as generate the correct timing for device output
signals. Timing verification may be enabled or disabled
by setting a single variable, allowing CAM instruction
sets to be tested before timing is considered.

What You Need to Get Started
To receive a MUSIC_CAM model, your company must
sign a software license with MUSIC Semiconductors. The
model will then be shipped as source code on a 3.5" HD
floppy disk in UNIX tar format. (Note that other media
and formats may be available on special request and should
be specified when placing an order.)

To run a MUSIC_CAM model, you must have the files
contained on the MUSIC_CAM disk and a Verilog or IEEE
1076 VHDL simulator. The disk files include the
MUSIC_CAM model, workbench and stimulus driver
models (VHDL versions only), and some sample
instruction sequence files.

The release notes supplied with the model list the files
contained in that version. All files are part of the
MUSIC_CAM model unless otherwise specified.

2.0 INSTALLATION

To install the MUSIC_CAM model, copy the contents of
the MUSIC_CAM disk to the area where the simulation
will be compiled. Then follow the compilation order
outlined in the file compile.fil to create the model
executables. In general, the model can be run at one of
two simulation levels.

The first level is the mcam (MUSIC_CAM entity) level.
This is the MUSIC_CAM model itself. When this level is
used, it is assumed that the user will define a model or
circuit to drive the MUSIC_CAM model.

The second level (supplied only with the VHDL versions)
is the mcambnch (MUSIC_CAM_BENCH entity) level.
This level is intended to test the operation of the
MUSIC_CAM model as well as the development of
instruction sequences for driving LANCAM devices. Two
MUSIC_CAM_BENCH versions are supplied, one with a
single instantiation of the MUSIC_CAM model, and the
other with two instantiations connected in a daisy chain.
In this environment the mcamtest (MUSIC_CAM_TEST
entity) model reads instructions and data out of a file
named opcodes.fil and creates the appropriate control
signals for the connected MUSIC_CAM model(s). The
mnemonics that are defined for opcodes.fil are contained
in Appendix A of this document.

3.0 USING THE CAM MODEL

To use the MUSIC_CAM models in conjunction with other
models or circuitry, see your VHDL or Verilog simulator
manuals. The models provided by MUSIC are behavioral
level models and should be usable in any Verilog or IEEE
1076 VHDL simulator.

The user will typically create a symbol description of the
MUSIC model that can be wired together with other
circuitry. A number of options are set by the entity
statement in the mcam.vhd file. These option selections
may be changed by using generics when the MUSIC_CAM
model is instantiated in the next level of the hierarchy.

Application Note AN-N11

Rev. 2.7a Draft 2

Table 1: MU9C1480A Signal Names Mapping

EB
WB
CMP
ECB
MIB
FIB
DQ[15:0]
MFB
FFB

/E
/W
/CM
/EC
/MI
/FI
DQ[15:0]
/MF
/FF

Model Signal Name Device Signal Name

Table 2: mcam Simulation Level Paths to Registers

\N4\REG.DEVICE_SELECT_REGV
\N4\REG.PAGE_ADDRESS_REGV
\N4\REG.STATUS_REGV
\N4\REG.NEXT_FREE_REGV
\N4\REG.SEGMENT_REGV
\N4\REG.CONTROL_REGV
\N4\REG.ADDRESS_REGV
\N9\DPATH.CR
\N9\DPATH.MR1
\N9\DPATH.MR2

Some VHDL simulation environments require a
configuration statement. For these cases, a configuration
statement that is commented out has been provided in the
mcam file. The mcambnch file contains an active
configuration statement (i.e., not commented out).

Device Cycle Time
The device cycle time of the device being simulated is set
by the “DEVICE” integer generic in the mcam.vhd entity
statement. Comments there will guide the user to the value
required to set the “DEVICE” generic to the desired CAM
cycle time. Each version of the MUSIC_CAM model will
contain the timing information for all available cycle times
available at the model release date.

Input Timing Checks
The “TIME_CHECKS” generic is a boolean value that
controls the checking of input timing violations. Setting
it TRUE will check input signals for set-up and hold timing
and report violations as a WARNING.

Output Timing
Minimum, typical, or maximum output timing may be
selected by setting the “DELAY_SETTING” generic to
an integer value of 0 (minimum), 1 (typical), or 2
(maximum). The defined constants “min,” “typ,” and
“max” may also be used within the mcam.vhd file.

Match Flag Output Waveforms
The LANCAM match output flags have a period of time
where their output may not be valid. The MUSIC_CAM
model outputs an ‘X’ to indicate these time periods when
the “NO_XOUT” boolean generic is set to FALSE. The
actual match flag waveform is output when “NO_XOUT”
is TRUE.

Signals
Some signal names in the MUSIC_CAM model are
different from those used on the actual devices. These
differences are necessary because of the ‘/’ character used
in the device signal names. In general, the model signal
names are the same with the ‘/’ removed and a ‘B’
appended to indicate “bar” or “active LOW.” Table 1
shows this mapping for the MUSIC MU9C1480A
LANCAM. Other devices follow this same pattern.

Registers
The MUSIC_CAM model intentionally does not display
the register values since this would imply seeing the insides
of the device. However, this information can be obtained
through read instructions or by looking inside the CAM
model. To assist the user, the paths to the register values
are given in Table 2 for the mcam level and Table 3 for
the mcambnch level. Registers MR1, MR2, and CR are
Mask Registers 1 and 2 and the Comparand register,
respectively.

Debug Switches
To assist the user in understanding the operation of the
model, additional debug switches have been incorporated.
These switches allow the user to enable the recording of
debug statements in a file. For example, the user may
choose to see what has been placed into the CAM. This
can be performed by setting the DBGMEM flag to TRUE
in the mcampack.vhd file. As a result of the TRUE value,
the next simulation using the VHDL code will result in
the generation of a file, mem.fil, which will contain
information relating to any accesses to the CAM portion
of the device. In a similar manner, the generation of files
relating to internal registers, Comparand and Mask
registers, and output flags can be selected individually or
all at once. The file output formats and the flags to set are
documented in mcampack.vhd.

Application Note AN-N11

Rev. 2.7a Draft3

Table 3: mcambnch Simulation Level Paths to
Registers

\MCAM\N4\REG.DEVICE_SELECT_REGV
\MCAM\N4\REG.PAGE_ADDRESS_REGV
\MCAM\N4\REG.STATUS_REGV
\MCAM\N4\REG.NEXT_FREE_REGV
\MCAM\N4\REG.SEGMENT_REGV
\MCAM\N4\REG.CONTROL_REGV
\MCAM\N4\REG.ADDRESS_REGV
\MCAM\N9\DPATH.CR
\MCAM\N9\DPATH.MR1
\MCAM\N9\DPATH.MR2

4.0 USING THE WORKBENCH

The VHDL MUSIC_CAM packages include a workbench
for code development. The workbench takes an input file
named opcodes.fil containing instruction mnemonics from
Appendix A and generates the proper signal values and
timing to initiate those instructions in the CAM. As each
instruction is processed, the line number, the instruction,
and any value read from the CAM will be displayed. Your
simulator will allow you to observe the values of the control
signals and the data bus simultaneously. To see how the
workbench functions, copy one of the demo files to
opcodes.fil and start a MUSIC_CAM_BENCH level
simulation.

The workbench has the option of generating EB cycle
timing based on the specifications for 70, 90, or 120 ns
cycle time devices. In addition, it can generate 100 ns
cycles (75 ns EB LOW, 25 ns EB HIGH) that may be used
with models set to simulate device cycle times of 70 or 90
ns, allowing CAM cycles to be generated on nicely spaced
boundaries for easy interpretation of simulation results.
The desired EB cycle time may be set in the generic
statement contained in the mcamtbnchvhd file entity
statement, otherwise the default cycle time will be use as
specified in the mcamtest.vhd file.

The workbench is capable of supplying variable EB cycle
lengths to the device model based on the entries in
opcodes.fil. The details for doing this are discussed in
Section 6. Note that specifying 100 ns cycles disables
this feature.

Command read and data read cycles report the value output
onto the DQ bus output by the LANCAM model. This
value is compared to the value in the data field of all read
cycles, and a warning is generated and a 50 ns pulse is
output on the /READERR signal if there is a mismatch.
The /READERR pulse may be used by most simulators as
a breakpoint to temporarily stop the simulation execution.
See Commands and Data in Section 6 for additional
information on data formats and special values.

5.0 USING THE SAMPLE SIMULATIONS

Demo files that may be simulated at the mcambnch level
are provided on the disk to assist the user in understanding
the operation of the model. To make use of one of the
sample stimulus files, the user must copy one to
opcodes.fil, then start the simulation. The workbench code
will read the instruction mnemonics from the file and
transmit the correct signals to the MUSIC_CAM model.

6.0 STIMULUS FILE PREPARATION

To simplify running longer routines, stimulus files can be
prepared by using any editor. The file must be named
opcodes.fil when the simulation is run. The format of the
stimulus file is:

Cycle_type[Length[EC_flag]] Cmd/Data [Cmd_Val] [Flags];

Each field must be separated by one or more white space
characters. White space characters are spaces, commas
(‘,’), and parentheses (‘(’ and ‘)’). Below are a few
examples of typical instructions.

cw SPD_AR_V MI_HI FI_LO EC_HI;
cws2(TCOW_SC,0x18C0);
drlec(0x1EF35ab7);

Each line in opcodes.fil must be terminated with a
semicolon (‘;’), including REPEATs and comments, and
there must be no blank lines at the end of the file. Demo
instruction files have been included on the disk to illustrate
the proper file format. The data files can be stored as any
name, but they must be renamed to opcodes.fil to be run
by the model.

Application Note AN-N11

Rev. 2.7a Draft 4

The fields, white space characters, and comment indicators
have been selected to allow the stimulus file to be prepared
in the form of a C or C++ source code file, which allows
instruction sequences to be transported between the model
and development hardware. In the workbench
environment, C++ comments (“//”) and “#DEFINE” and
“#INCLUDE” statements are ignored by the parser.

The CAM cycle types may be specified in a way that
invokes a C function call. In a typical situation, the
functions are included in a header file that is specific to
the development hardware configuration. A header file is
available for the CAMLAB Development Kit, and a similar
header file is available for WidePort LANCAMs. In
addition to the function calls for the various cycle types,
these header files contain the #DEFINE statements that
translate the instruction mnemonics in Appendix A to the
op-code values required by the device. The functions in
these files may be modified by the user to meet specific
hardware configurations. For more information, please
contact MUSIC Semiconductors applications support.

Cycle Types
The Cycle_type sets the levels of the CMB and WB input
pins. One of the two-character abbreviations in Table 4
must be used to start every instruction line. The characters
‘c’, ‘d’, ‘r’, and ‘w’ in the Cycle_type field are the only
characters that are not case sensitive, but they must be
both upper case or both lower case.

Cycle Lengths
The third character on the line is optional, but if it is ‘s’,
‘m’, or ‘l’, the cycle length will be set to short, medium,
or long, respectively. These characters must be lower case.
If it is any other character or white space, the cycle length
is set to long.

ECB Control
The fourth character on the line is optional, but if it is ‘e’,
the ECB input will be set LOW for that CAM cycle. This
character must be lower case. Once an ‘e’ is found in the
fourth character position, the EC_LO and EC_HI input
control flags are disabled, and any other character or
whitespace at that position will cause ECB to be set HIGH.
For more information on the ECB pin, please see Input
Control Flags.

Commands and Data
The next field is “Cmd/Data,” which contains the
command or data to be written to the CAM. The allowable
command set is printed in Appendix A. It is important
that the data file commands be written exactly as shown
in Appendix A for proper parsing of the instructions by
the workbench.

For WidePort LANCAMs, TCOW commands and
commands including “aaa” require a hexadecimal value
for “Cmd_Val” in the command write cycle. This data is
provided by separating the command and data with a space
or a comma (‘,’).

Data values and data for WidePort LANCAM TCOW and
“aaa” cycles are given as hexadecimal values. The parser
ignores the first two characters, so that the value may
include the usual “0x” before the value. The value must
be four hex characters (16-bits) for LANCAMs and
WidePort LANCAM TCOW and “aaa” cycles, and eight
hex characters (32-bits) for WidePort LANCAM read and
data write cycles.

Two special values are available for use during read cycles.
The values 0xZZZZ for LANCAM simulations and
0xZZZZZZZZ for WidePort LANCAM simulations may
be used to check for a high impedance condition on the
DQ bus. This would be expected, for example, when
performing a read cycle with the daisy chain locked (ECB
LOW at the start of the previous cycle) when no match is
present in cascaded LANCAMs. See the device data sheet
or LANCAM handbook for more details. The values
0xXXXX or 0xXXXXXXXX may be used to disable the
output value checking, including the /READERR signal
generation.

Table 4: Cycle_type Abbreviations

Cycle_type CMB WB Abbreviation

Command_write
Command_read
Data_write
Data_read

LO
LO
HI
HI

LO
HI
LO
HI

CW OR cw
CR or cr
DW or dw
DR or dr

Application Note AN-N11

Rev. 2.7a Draft5

Input Control Flags
Input Control Flags may be provided with each command
line and must be in capital letters. The order of the flag
inputs is not critical, but they must be of the form signal_HI
or signal_LO. The latest release makes the input flags
persistent; i.e., the flag state is held over from the previous
cycle, so they are not required on every line.

MI = The state of the Match Input pin. MI_HI means that
either this is a single device with the MIB pin tied HIGH;
or, if it is in a string of devices, that no device ahead of it
in the daisy-chain has a match, thus selecting this device
for detecting Highest-priority matches. If MI were LOW
(MI_LO), it would indicate that a prior device has a match
indicated, and that device would receive Highest-priority
matches. If MI were LOW (MI_LO), it would indicate
that a prior device has a match indicated, and that device
would receive Highest-priority Match operations.
Normally, you would set MI_HI.

FI = The state of the Full Input pin. FI_LO means that
either this is a single device with the FIB pin tied LOW;
or, if it is in a string of devices, that all the devices ahead
of it in the daisy-chain are full, thus selecting this device
for Next Free Address operations. If FI were HIGH (FI_HI),
that would indicate that a prior device has empty locations,
and that device would receive Next Free Address
operations. Normally, you would set FI_LO.

EC = The state of the ECB input pin. This pin enables the
LANCAM’s MFB output pin to reflect the detection of an
internal match. If ECB is HIGH (EC_HI), then MFB only
reflects the state of MIB, and any internal match detected
in this device is not shown on the MFB pin. If ECB is
LOW (EC_LO), then MFB will go LOW if an internal
match is detected. ECB also controls the daisy-chain
locking mechanism, whereby only the Highest-priority
device can respond after a match is detected. Normally,
you only take ECB LOW on the last data segment loaded
into the Comparand register, so that the results of the
automatic compare can be output by the MFB pin for the
next device in a daisy chain and to get the system match
indication.

A no-operation instruction (NOP, NOP_1, NOP_2, or
NOP_3) allows ECB to be taken HIGH after a “no-match,”
for example, to unlock the daisy chain without altering

any register or memory contents. This is only required for
LANCAM versions that do not have the ‘A’ suffix. See
the device data sheet for more information.

The EC_LO and EC_HI flag indicators will be disabled
once an ‘e’ is used in the fourth character position (see
ECB Control above), but this function has been retained
for compatibility with code sequences for the original
workbench.

Comments
‘!’, ‘#’, and “//” indicate a comment line. The comment
designator must be the first character(s) in the line and
the comment must be terminated with a semicolon (‘;’).
Comments may also be added after the semicolon of an
instruction line, as the parser ignores everything after the
first one in the line.

Repeat
“REPEAT n” is used to repeat a command n times, as in:

REPEAT 4 dw 0x0000 MI_HI FI_LO EC_HI ;

which will perform four data writes of all zeroes. The word
“REPEAT” must be all upper-case letters. A REPEAT
command line must be terminated with a semicolon (;).

7.0 ERROR MESSAGES

Error and warning messages are generated either by the
device model or by the workbench. Some messages may
apply only to certain LANCAM device configurations, and
others may be modified for the specific device being
modeled.

Device Model Errors
The user may encounter several messages in the
MUSIC_CAM model. These messages are generated using
a VHDL assertion statement, so the message appearance
may vary with each simulator. However, a summary of
the basic messages that could appear and the severity of
the message are given below. It is assumed that the
simulator will provide the time that the assertion statement
is encountered.

Application Note AN-N11

Rev. 2.7a Draft 6

Ignored Data Read.
Ignored Data Write.
Ignored read cycle.
Ignored TCO_PA or SFF instruction.
Ignored instruction - DS not equal to PA.
Ignored cycle - DS not equal to PA.
Severity: “Warning”

These messages will appear and operation will continue
with the next command if, during a command or data
access, the device ignores the instruction due to reasons
outlined in the device documentation.

Ignored instruction - no match.
Ignored instruction - match in higher priority device.
Ignored instruction - match flag disabled.
Ignored cycle - no match.
Ignored cycle - match in higher priority device.
Ignored cycle - match flag disabled.
Severity: “Warning”

The messages above will appear if an instruction requires
a match to be present and no match is indicated, the match
is in a higher priority device, or the match flag is disabled.

Ignored instruction - device full or Full Flag not enabled.
NFA write ignored - not device with next free location.
Severity: “Warning”

One of these messages will appear if the a MOV_NF (Move
to Next Free Address) instruction is encountered when
the device is full, the Full flag is disabled in the Control
register, or the FFB input is not LOW.

CMB hold time violation.
ECB hold time violation.
WB hold time violation.
DQ hold time violation.
RESETB LOW time violation.
Severity: “Error”

The preceding messages may appear as a result of a timing
violation with timing checks enabled. If an error message
does occur, most instructions will still be performed.
However, there are instances where the instruction will
not complete as expected and may result in incorrect or
incomplete operations being performed.

EB low pulse width violation. TCO_CT reset (MEDIUM)
EB low pulse width violation. TCO CMND READ (MEDIUM)
EB low pulse width violation. WRITE TCO_CT (LONG)
EB low pulse width violation. COMMAND WRITE (SHORT)
EB low pulse width violation. (SHORT)
EB low pulse width violation. LAST REG WRITE (LONG)
EB low pulse width violation. MEMORY write (MEDIUM)
EB low pulse width violation. (MEDIUM)
EB low pulse width violation — VBC. (LONG)
EB low pulse width violation. (LONG)
Severity: “Error”

The preceding messages may appear as a result of an EB
LOW pulse width violation with timing checks enabled.
If possible, the message describes the reason for the
violation.

EB high pulse width violation.
Severity: “Error”

This message will appear when a violation of the HIGH
pulse width has occurred with timing checks enabled.

EB has become unknown or Z.
Severity: “Warning”

This message will result whenever the EB signal goes to a
state other than ‘1’ or ‘0.’

Workbench Errors
MUSIC_CAM_BENCH will notify the user if it
encounters any errors in opcodes.fil. These error
statements are explained below. The ‘n’ designates the
line number in opcodes.fil where the error was detected.

Could not decode command on line : n
Could not decode line : n

These error messages are issued when the line being
processed has some kind of syntax error that prevents it
from being parsed correctly.

Unexpected end of line : n

Application Note AN-N11

Rev. 2.7a Draft7

This error is issued during the parsing of opcodes.fil when
no command, data or flag field is found in a command
write cycle.

Could not get repeat value line : n

This error is displayed when a syntax error prevents a
repeat line from being parsed correctly.

WARNING: put in XXXX because of bad hex value on
line: n

This warning is given anytime the data value for the
instruction has an illegal hex value.

Incorrect coding for op_type line : n

This error will be issued when the cycle type is other than
one of the abbreviated values in Table 4.

WARNING: DQ Output did not match expected value!!!

This warning will appear if the data value specified for a
read cycle did not match the value actually output by the
CAM(s), and the /READERR signal will go to a ‘1’ for
50 ns.

8.0 WHO TO CALL FOR HELP

For assistance in running the device models, or information
on the MUSIC Semiconductors’ CAM products, please
call your local MUSIC sales office.

Application Note AN-N11

Rev. 2.7a Draft 8

SPD_CR = 0x0100;
SPD_CRMR1 = 0x0140;
SPD_CRMR2 = 0x0180;
SPD_MR1 = 0x0108;
SPD_MR2 = 0x0110;
SPD_AR_V = 0x0124;
SPD_ARMR1_V = 0x0164;
SPD_ARMR2_V = 0x01A4;
SPD_AR_E = 0x0125;
SPD_ARMR1_E = 0x0165;
SPD_ARMR2_E = 0x01A5;
SPD_AR_S = 0x0126;
SPD_ARMR1_S = 0x0166;
SPD_ARMR2_S = 0x01A6;
SPD_AR_R = 0x0127;
SPD_ARMR1_R = 0x0167;
SPD_ARMR2_R = 0x01A7;
SPD_aaa_V = 0x0924;
SPD_aaaMR1_V = 0x0964;
SPD_aaaMR2_V = 0x09A4;
SPD_aaa_E = 0x0925;
SPD_aaaMR1_E = 0x0965;
SPD_aaaMR2_E = 0x09A5;
SPD_aaa_S = 0x0926;
SPD_aaaMR1_S = 0x0966;
SPD_aaaMR2_S = 0x09A6;
SPD_aaa_R = 0x0927;
SPD_aaaMR1_R = 0x0967;
SPD_aaaMR2_R = 0x09A7;
SPD_HM_V = 0x012C;
SPD_HMMR1_V = 0x016C;
SPD_HMMR2_V = 0x01AC;
SPD_HM_E = 0x012D;
SPD_HMMR1_E = 0x016D;
SPD_HMMR2_E = 0x01AD;
SPD_HM_S = 0x012E;
SPD_HMMR1_S = 0x016E;
SPD_HMMR2_S = 0x01AE;
SPD_HM_R = 0x012F;
SPD_HMMR1_R = 0x016F;
SPD_HMMR2_R = 0x01AF;
SPD_NF_V = 0x0134;
SPD_NFMR1_V = 0x0174;
SPD_NFMR2_V = 0x01B4;
SPD_NF_E = 0x01B4;
SPD_NFMR1_E = 0x01B4;

Set Persistent Destination

APPENDIX A: COMMAND LIST WITH OP-CODES

SPS_CR = 0x0000;
SPS_MR1 = 0x0001;
SPS_MR2 = 0x0002;
SPS_AR = 0x0004;
SPS_aaa = 0x0804;
SPS_HM = 0x0005;

MOV_CR_MR1 = 0x0301;
MOV_CR_MR2 = 0x0302;
MOV_CR_AR = 0x0304;
MOV_CR_ARMR1 = 0x0344;
MOV_CR_ARMR2 = 0x0384;
MOV_CR_aaa = 0x0B04;
MOV_CR_aaaMR1 = 0x0B44;
MOV_CR_aaaMR2 = 0x0B84;
MOV_CR_HM = 0x0305;
MOV_CR_HMMR1 = 0x0345;
MOV_CR_HMMR2 = 0x0385;
MOV_MR1_CR = 0x0308;
MOV_MR1_MR2 = 0x030A;
MOV_MR1_AR = 0x030C;
MOV_MR1_aaa = 0x0B0C;
MOV_MR1_HM = 0x030D;
MOV_MR2_CR = 0x0310;
MOV_MR2_MR1 = 0x0311;
MOV_MR2_AR = 0x0314;
MOV_MR2_aaa = 0x0B14;
MOV_MR2_HM = 0x0315;
MOV_AR_CR = 0x0320;
MOV_AR_CRMR1 = 0x0360;
MOV_AR_CRMR2 = 0x03A0;
MOV_AR_MR1 = 0x0321;
MOV_AR_MR2 = 0x0322;
MOV_AR_CR_V = 0x0324;
MOV_AR_CRMR1_V = 0x0364;
MOV_AR_CRMR2_V = 0x03A4;
MOV_AR_MR1_V = 0x0325;
MOV_AR_MR2_V = 0x0326;
MOV_aaa_CR = 0x0B20;
MOV_aaa_CRMR1 = 0x0B60;
MOV_aaa_CRMR2 = 0x0BA0;
MOV_aaa_MR1 = 0x0B21;
MOV_aaa_MR2 = 0x0B22;
MOV_aaa_CR_V = 0x0B24;
MOV_aaa_CRMR1_V = 0x0B64;
MOV_aaa_CRMR2_V = 0x0BA4;
MOV_aaa_MR1_V = 0x0B25;
MOV_aaa_MR2_V = 0x0B26;
MOV_HM_CR = 0x0328;
MOV_HM_CRMR1 = 0x0368;
MOV_HM_CRMR2 = 0x03A8;
MOV_HM_MR1 = 0x0329;
MOV_HM_MR2 = 0x032A;
MOV_HM_CR_V = 0x032C;
MOV_HM_CRMR1_V = 0x036C;
MOV_HM_CRMR2_V = 0x03AC;
MOV_HM_MR1_V = 0x032D;
MOV_HM_MR2_V = 0x032E;
MOV_NF_CR = 0x0330;
MOV_NF_CRMR1 = 0x0370;
MOV_NF_CRMR2 = 0x03B0;

 Set Persistent Source Move

Application Note AN-N11

Rev. 2.7a Draft9

Compare

CMP_V = 0x0504;
CMP_E = 0x0505;
CMP_S = 0x0506;
CMP_R = 0x0507;

Validity Bit Control

VBC_AR_V = 0x0424;
VBC_AR_E = 0x0425;
VBC_AR_S = 0x0426;
VBC_AR_R = 0x0424;
VBC_aaa_V = 0x0C24;
VBC_aaa_E = 0x0C25;
VBC_aaa_S = 0x0C26;
VBC_aaaH_R = 0x0C27;
VBC_HM_V = 0x042C;
VBC_HM_E = 0x042D;
VBC_HM_S = 0x042E;
VBC_HM_R = 0x042F;
VBC_ALM_V = 0x043C;
VBC_ALM_E = 0x043D;
VBC_ALM_S = 0x043E;
VBC_ALM_R = 0x043F;

Special Instructions (LANCAM “A” family only)

SFT_CR_R = 0x0600;
SFT_CR_L = 0x0601;
SFT_MR1_R = 0x0610;
SFT_MR2_L = 0x0611;
SFR = 0x0618;
SBR = 0x0619;
RSC = 0x061A;

APPENDIX A: COMMAND LIST WITH OP-CODES (CONTINUED)

MOV_NF_MR1 = 0x0331;
MOV_NF_MR2 = 0x0332;
MOV_NF_CR_V = 0x0334;
MOV_NF_CRMR1_V = 0x0374;
MOV_NF_CRMR2_V = 0x03B4;
MOV_NF_MR1_V = 0x0335;
MOV_NF_MR2_V = 0x0336;

Set Persistent Source Move

SPD_NFMR2_E = 0x01B5;
SPD_NF_S = 0x0136;
SPD_NFMR1_S = 0x0176;
SPD_NFMR2_S = 0x01B6;
SPD_NF_R = 0x0137;
SPD_NFMR1_R = 0x0177;
SPD_NFMR2_R = 0x01B7;

TCO_CT = 0x0200;
TCO_PA = 0x0208;
TCO_SC = 0x0210;
TCO_NF = 0x0218;
TCO_AR = 0x0220;
TCO_DS = 0x0228;
TCO_PS = 0x0230;
TCO_PD = 0x0238;

Temporary Command Override

Set Full Flag

SFF = 0x0700;

NOP
NOP_1 = 0x0300;
NOP_2 = 0x0300;
NOP_3 = 0x0309;

= 0x0312;

No Operation

Application Note AN-N11

Rev. 2.7a Draft 10

APPENDIX B: Sample Stimulus File (Excerpt From LANCAM Bridge Demo File)

#include <stdio.h>;
#define COMPARE;
#define NO_VHDL;
#define DEBUG;
#include “1480.h”;
!void main ();
!{;
// **************;
// Initialize CAM;
// **************;
// Clear Power-up anomalies;
crl (zzzzzz);
// Set Device Select for Broadcast;
cws (TCO_DS);
cws (0xFFFF);
// Reset All CAMs;
cws (TCO_CT);
// Initialize Page Address Registers;
cws (TCO_PA);
cws (0X0000);
cws (SFF);
cws (TCO_PA);
cws (0X0001);
// Reset All Full Flags;
cws (TCO_CT);
cwl (0X0000);
cws (TCO_DS);
cws (0x0000); /* select device zero */
crm (0x07FF); /* read status */
//;
// **************;
// Configure CAM;
// **************;
cws (TCO_SC);
cws (0x1800); /* 2 dest segs, 1 src segment */
cws (SPD_MR1); /* time stamp mask */
dws (0x7FFF);
dws (0xFFFF);
dws (0xFFFF);
dws (0xFFFF);
cws (SPD_CR);
cws (SPS_HM);
cws (TCO_CT);
cwl (0x8040); /* 48 CAM, 16 RAM */

//;
// First packet: to B from A;
// ********************************;
// DA filter routine with no match;
// ********************************;
dws (0x000);
dws (0xBBBB);
dws (0xBBBB);
dwlec (0xBBBB);
drlec (ZZZZZZ);
cws (NOP); /* clear /EC for next command */
// **********************************;
// SA filter routine with no match;
// **********************************;
dws (0x000A);
dws (0xAAAA);
dws (0xAAAA);
drlec (0XAAAA);
drlec (ZZZZZZ);
cws (NOP);
cwl (MOV_NF_CR_V);
//;
// Second packet: back to A from B;
// *******************************;
// DA filter routine with match;
// *******************************;;
dws (0x0000);
dws (0xAAAA);
dws (0xAAAA);
dwlec (0XAAAA);
drlec (0x000A);
cwl (MOV_HM_CRMR1); /* update time stamp */
// **********************************;
// SA filter routine with no match
// **********************************;
dws (0x000B);
dws (0xBBBB);
dws (0xBBBB);
dwlec (0xBBBB);
drlec (ZZZZZZ);
cws (NOP);
cwl (MOV_NF_CR_V);
//;

Application Note AN-N11

Rev. 2.7a Draft11

NOTES

Application Note AN-N11

Rev. 2.7a Draft 12

NOTES

European Headquarters
MUSIC Semiconductors
Torenstraat 28
6471 JX Eygelshoven
Netherlands
Tel: +31 45 5462177
Fax: +31 45 5463663

MUSIC Semiconductors reserves the right to make changes to
its products and specifications at any time in order to improve
on performance, manufacturability, or reliability. Information
furnished by MUSIC is believed to be accurate, but no
responsibility is assumed by MUSIC Semiconductors for the use
of said information, nor for any infringement of patents or of
other third party rights which may result from said use. No
license is granted by implication or otherwise under any patent
or patent rights of any MUSIC company.
©Copyright 1998, MUSIC Semiconductors

MUSIC Semiconductors Agent or Distributor:

USA Headquarters
MUSIC Semiconductors
254 B Mountain Avenue
Hackettstown, New Jersey 07840
USA
Tel: 908/979-1010
Fax: 908/979-1035
USA Only: 800/933-1550 Tech. Support

 888/226-6874 Product Info.

Asian Headquarters
MUSIC Semiconductors
Special Export Processing Zone 1
Carmelray Industrial Park
Canlubang, Calamba, Laguna
Philippines
Tel: +63 49 549 1480
Fax: +63 49 549 1023
Sales Tel/Fax: +632 723 62 15

http://www.music-ic.com
email: info@music-ic.com

